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Preface to the Second Edition

In the Preface to the first edition, originally published in 1980, we mentioned
that this book was based on the author’s lectures in the Department of
Mechanics and Mathematics of the Lomonosov University in Moscow,
which were issued, in part, in mimeographed form under the title “Probabil-
ity, Statistics, and Stochastic Processors, I, IT” and published by that Univer-
sity. Qur original intention in wnting the first edition of this book was to
divide the contents into three parts: probability, mathematical statistics, and
theory of stochastic processes, whick corresponds to an outline of a three-
semester course of lectures for university students of mathematics. However,
in the course of preparing the book, it turned out to be impossible to realize
this intention completely, since a full exposition would have required too
much space. In this connection, we stated in the Preface to the first edition
that only probability theory and the theory of random processes with discrete
time were really adequately presented.

Essentially all of the first edition is reproduced in this second edition.
Changes and corrections are, as a rule, editorial, taking into account com-
ments made by bath Russian and foreign readers of the Russian original and
of the English and German translations [$11]. The author is grateful to all of
these readers for their attention, adviee, and helpful criticisms.

In this second English edition, new materiaf also has been added, as
follows : in Chapter II1, §5, §67—12; in Chapter IV, §5; in Chapter VII, §§8-10.
The most important addition is the third chapter. There the reader will
find expositions of a number of problems connected with a deeper study of
themes such as the distance between probability measures, metrization of
weak convergence, and contiguity of probability measures. In the same chap-
ter, we have added proofs of a number of important resulis on the rapidity of
convergence in the central limit theorem and in Poisson’s theorem on the
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approsimation of the binomial by the Poisson distribution. These were
merely stated in the first edition.

We also call attention to the new material on the probability of large
deviations (Chapter IV, §5), on the central limit theorem for sums of depen-
dent random variables (Chapter VIL, §8), and on §§9 and 10 of Chapter VIL

During the last few yeurs, the literature on probability published in Russia
by Mauka has been extended by Sevastyanov [S10], 1982; Rozanoy [R6],
1985; Borovkov [B4], 1986; and Gunedenko [G4], 1988. It appears that these
publications, together with the present volume, being quite different and
complementing each other, cover an ¢xtensive amount of material that is
essentially broad enough to satisfy contemporary demands by students in
various branches of mathematics and physics for wstruction in topics n
probability theory.

Gnedenko’s textbook [G4] contains many well-chosen examples, includ-
ing applications, together with pedagogical material and extensive surveys of
the history of probability theory. Borovkov's textbook [B4] is perhaps the
most like the present book in the style of exposition. Chapters 9 (Elements of
Renewal Theory), 11 (Factorization of the Identity} and 17 (Functional Limit
Thecrems), which distinguish [B4] from this book and from [G4] and [Ré6],
deserve special mention. Rozanov's textbook contams a great deal of mate-
rial on a variety of mathematical models which the theory of probability and
mathematical statistics provides for describing random phenomena and their
evolution. The textbook by Sevastyanov is based on his two-semester course
at the Moscow State University. The material in its last four chapters covers
the minimum amount of probability and mathematical statistics required in
4 ong-year university program. In our text, perhaps to a greater extent than
in those mentioned above, a significant amount of space is given to set-
theoretic aspects and mathematical foundations of probability theory.

Exercises and problems are given in the books by Gnedenko and
Sevastyanov at the ends of chapters, and in the present textbook at the end
of each section. These, together with, for example, the problem sets by A. V.
Prokhorov and V. G. and N. G. Ushakov (Problems in Probability Theory,
MNauka, Moscow, 1986) and by Zubkov, Sevastyanov, and Chistyakov (Col-
lected Problems in Probability Theory, Nauka, Moscow, 1988} can be used by
readers for independent study, and by teachers as a basis for seminars for
students.

Special thanks to Harold Boas, who kindly translated the revisions from
Russian to English for this new edition.

Moscow A, Shiryaev
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This textbook 1s based on a three-semester course of lectures given by the
author in recent years in the Mechanics—Mathematics Faculty of Moscow
State University and issued, in part, in mimeographed form under the title
Probability, Statistics, Stochastic Precesses, I, IT by the Moscow State
University Press.

We follow tradition by devoting the first part of the course {roughly one
semester) to the elementary theory of probability (Chapter I). This begins
- with the construction of probabilistic models with finitely many outcomes
and introduces such fundamental probabilistic concepts as sample spaces,
events, probability, independence, random variables, expectation, corre-
[ation, conditional probabilities, and so on.

Many probabilistic and statistical regularities are effectively illustrated
even by the simplest random walk generated by Bernoulli trials. In this
connection we study both classical results (law of large numbers, local and
integral De Moivre and Laplace theorems) and more modern results {for
example, the arc sine law).

The first chapter concludes with a discussion of dependent random vari-
ables generated by martingales and by Markov chains.

Chapters I1-I1V form an expanded version of the second part of the course
{second semester). Here we present (Chapter II) Kolmogorov's generally
accepted axiomatization of probability theory and the mathematical methods
that constitute the tools of modern probability theory (s-algebras, measures
and their representations, the Lebesgue integral, random variables and
random elements, characteristic functions, conditional expectation with
respect to a g-algebra, Gaussian systems, and so on). Note that two measure-
theoretical results—Carathéodory’s theorem on the extension of measures
and the Radon-Nikodym theorem —are quoted without proof.
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The third chapter is devoted to problems about weak convergence of
probability distributions and the method of characteristic functions for
proving limit theorems. We introduce the ¢concepts of relative compaciness
and tightness of families of probability distributions, and prove (for the
real line} Prohorov's theorem on the equivalence of these concepts.

The same part of the course discusses properties *“with probability 1%
for sequences and sums of independent random variables (Chapter IV). We
give proofs of the **zero or one laws™ of Kolmogorov and of Hewitt and
Savage, tests for the convergence of series, and conditions for the strong law
of large numbers. The law of the iterated logarithm is stated for arbitrary
sequences of independent identically distributed random variables with
finite second moments, and proved under the assumption that the variables
have Gaussian distributions.

Finally, the third part of the book (Chapters V=VIII)is devoted to random
processes with discrete parameters (random seguences). Chapters V and VI
are devoted to the theory of stationary random sequences, where * station-
ary " is interpreted either in the strict or the wide sense. The theory of random
sequences that are stationary in the strict sense is based on the ideas of
ergodic theory : measure preserving transformations, ergodicity, mixing, etc.
W reproduce 2 simple proof (by A. Garsia) of the maximal ergodic theorem;
this also lets us give a simple proof of the Birkhotf- K hinchin ergodic theorem.

The discussion of seguences of random variables that are stationary in
the wide sense begins with a proof of the spectral representation of the
covariance fuction. Then we introduce orthogonal stochastic measures, and
integrals with respect to these, and establish the spectral representation of
the sequences themselves. We also discuss a number of statistical problems:
estimating the covariance function and the spectral density, extrapolation,
interpolation and filtering. The chapter includes material on the Kalman—
Bucy filter and its generalizations.

The seventh chapter discusses the basic tesults of the theory of martingales
and related ideas, This material has only rarely been included in traditional
courses in probability theory. In the last chapter, which is devoted to Markov
chains, the greatest attention is given to problems on the asymptotic behavior
of Markov chains with countably many statcs,

Each section ends with problems of various kinds: some of them ask for
proofs of statements made but not proved in the text, some consist of
propositions that will be vsed later, some are intended to give additional
information about the circle of ideas that is under discussion, and finally.
some are sumple exercises.

In designing the course and preparing this text, the author has used a
variety of sources on prohahility theory. The Historical and Bibliographical
Notes indicate both the historial sources of the results and supplementary
references for the material under consideration.

The numbering system and form of references is the following. Each
section has its own enumeration of theorems, lemmas and formulas (with
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no indication of chapter or section), For a reference to a result from a
different section of the same chapter, we use double numbering, with the
first number indicating the number of the section (thus, (2.10) means formula
(10) of §2). For references to a different chapter we use triple numbering
{thus, formula (I1.4.3} means formula (3) of § of Chapter II). Works listed
in the References at the end of the book have the formn [L#], where L is a
letter and # s 2 nurneral,

The author takes this opportunity to thank his teacher A. N. Kolmogoroyv,
and B. V. Gnedenko and Yu. V. Prokhorov, from whom he learned probability
theory and under whose direction he had the opportunity of using it. For
discussions and advice, the author also thanks his colleagues in the Depart-
ments of Probability Theory and Mathematical Statistics at the Moscow
State University, and his colleagues in the Section on probability theory of the
Steklov Mathematical Institute of the Academy of Sciences of the U.S.S.R.

Moscow A. N. SHIRYAEV
Stekloy Mathematical Institute

Translater's acknowledgement. I am grateful both to the aunthor and to
my colleague, C. T. Ionescu Tulcea, for advice about terminology.
R.P.B.
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Introduction

The subject matter of probability theory is the mathematical analysis of
random events, ie, of those empirical phenomena which—under certain
circumstance—can be described by saying that:

They do not have deterministic regularity {(observations of them do not
yield the same outcome);

whereas at the same time

They possess some statistical regularity (indicated by the statistical
stability of their frequency).

We illustrate with the classical example of a “fair " toss of an “unbiased”
coin. It is clearly impossible to predict with certainty the outcome of each
toss. The results of successive experiments are very irregular (now “head,”
now “tail ’) and we seem to have no possibility of discovering any regularity
int such experiments. However, if we carry out a large number of “indepen-
dent™ experiments with an “unbiased™ coin we can observe a very definite
statistical regularity, namely that “head™ appears with a frequency that is
“close™ to 3.

Statistical stability of a frequency is very likely to suggest a hypothesis
about a possible quantitative estimate of the “randomness™ of some event 4
connected with the results of the experiments. With this starting point,
probability theory postulates that corresponding to an event A there is a
definite number P(A), called the probability of the event, whose intrinsic
property is that as the number of *“independent™ trials {experiments) in-
creases the frequency of event 4 15 approximated by P{A).

Apphed to our example, this means that it is natural to assign the proba-
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bility 4 to the event A that consists of obtaining “head” in a toss of an
“unbiased ™ coin.

There is no difficulty in multiplying examples in which it is very casy (o
obtain numerical values intoitively for the probabilities of one or another
event. However, these examples are all of a similar nature and involve (so far)
undefined concepts such as “fair™ toss, “unbiased” coin, “independence,”
etc.

Having been invented to investigate the quantitative aspects of “random-
ness,” probability theory, like every exact science, became such a science
only at the point when the concept of a probabilistic model had been clearly
formulated and axiomatized. In this connection it is natural for us to discuss,
although only briefly, the fundamental steps in the development of proba-
bility theory.

Probability theory, aga science, originated in the middle of the seventeenth
century with Pascal (1623-1662), Fermat (1601-1655) and Huygens
(1629-1695). Although special caleulations of probabilities in games of chance
had been made earlier, in the fifteenth and sixteenth centuries, by Italian
mathematicians (Cardano, Pacioli, Tartaglia, etc ), the first general methods
for solving such problems were apparently given in the famous correspon-
dence between Pascal and Fermat, begun in 1654, and in the first book on
probability theory, De Ratiociniis in Aleae Ludn (On Calculations in Games of
Chance), published by Huygens in 1657, It was at this time that the funda-
mental concept of “mathematical expectation™ was developed and theorems
on the addition and multiplication of probabilities were established.

The real history of probability theory begins with the work of James
Bernoulli (1654-1705), Ars Conjectandi (The Art of Guessing) published in
1713, 1n which he proved {quite rigorously) the first lirnit theorem of prob-
ability theory, the law of large numbers; and of De Moivre (1667-1754),
Miscellanea Analytica Supplementum {a rough translation might be The
Analytic Method or Analytic Misceliany, 1730), in which the central limit
theorem was stated and proved for the first time (for symmetric Bernoulli
trials).

Bernoulli deserves the credit for introducing the “classical” definition of
the concept of the probability of an event as the ratio of the number of
possible outcomes of an experiment, that are favorable to the event, to the
number of possible outcomes. ‘

Bernoulli was probably the first to realize the importance of considering
infinite sequences of random trials and to make a clear distinction between
the probability of an event and the frequency of its realization.

De Moivre deserves the credit for defining such concepts as independence,
mathematical expectation, and conditional probability.

In 1812 there appeared Laplace’s (1749-1827) great treatise Théorie
Analytiqgue des Probabilitiés (Analytic Theory of Probability) in which he
presented his own results in probability theory as well as those of his pre-
deccssors. In particular, he generalized De Moivre’s theorem to the gencral
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{unsymmetric) case of Bernculli trials, and at the same time presented De
Moivre’s results in a more complete form.

Laplace’s most important contribution was the application of proba-
bilistic methods to errors of observation. He formulated the idea of consider-
ing errors of observation as the cumulative results of adding a large number
of independent elementary errors. From this it followed that under rather
general conditions the distribution of errors of observation must be at lcast
approximately normal.

The work of Poisson (1781-1840) and Gauss (1777-1855) belongs to the
same epech in the development of probability theory, when the center of the
stage was held by limit theorems. In contemporary probability theory we
think of Poisson in connection with the distribution and the process that
bear his name. Gauss is credited with originating the theory of errors and, in
particular, with creating the fondamental method of least squares.

The next important period in the development of probability theory is
connected with the names of P. L. Chebyshev (1821-1894), A. A, Markov
{(1856-1922), and A. M. Lyapunov (1857-1218), who developed effective
methods for proving limit theorems for sums of independent but arbitrarily
distributed random variables.

The number of Chebyshev's publications in probability theory is not
large —four in all—but it would be hard to overestimate their role in proba-
bility theory and in the deveqlnpment of the classical Russian school of that
subject.

“On the methedological side, the revolution brought about by Chebyshev
was not only his insistence for the first ime on complete rigor in the proofs of
limit theorems, . .. but also, and pnncipally, that Chebyshey always tried to
obtain precise estimates for tha deviations from the limiting regularities that are
available for larpe but finite numbers of trnals, in the form of inequalities that are
valid unconditionally for any number of trials.”

(A. N. KoLmocorov 30D

Before Chebyshev the main interest in probability theory had been in the
calculation of the probahilities of random events. He, however, was the
first to realize clearly and exploit the full strength of the concepts of random
variables and their mathematical expectations.

The leading exponent of Chebyshev’s ideas was his devoted student
Markov, to whom there belongs the indisputable credit of presenting his
teacher’s results with complete clarity. Among Markov's own significant
contributions to probability theory were his pioneering investigations of
limit theorems for sums of independent random variables and the creation
of a new branch of probability theory, the theory of dependent random
variables that form what we now call & Markov chain.

“Marko¥’s classical course in the caleulus of probability and his original
papers, which are models of precision and clarity, contributed to the greatest
extent to the transformation of probability theory into one of the most significant
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branches of mathematics and to a wide extension of the ideas and methods of

Chebyshev.”
{S. N. BernsTEIN [31}

To prove the central limit theorem of probability theory (the theorem
on convergence ta the normal distribution), Chebyshev and Markov used
what is known as the method of moments. With more general hypotheses
and a simpler method, the method of characteristic functions, the theorem
was obtained by Lyapunov. The subsequent development of the theory has
shown that the method of characteristic funictions is a powerful analytic
tool for establishing the most diverse limit theorems.

The modern period in the development of probability theary begins with
its axiomatization. The first work in this direction was done by S. N. Berns-
tein (1880-1968), R. von Mises (1883-1953), and E. Borel (1871-1956).
A. N. Kolmogorov's book Foundations of the Theory of Probability appeared
in 1933. Here he presented the axiomatic theory that has become generally
accepted and is ot only applicable to all the classical branches of probability
theory, but also provides a firm foundation for the development of new
branches that have arisen from questions in the sciences and involve infinite—
dimensional distributions,

The treatment in the present book is based on Kolmogorov's axiomatic
approach. However, to prevent formalities and logical subtleties from obscur-
ing the intuitive ideas, our exposition begins with the elementary theory of
probability, whose elementariness is merely that in the corresponding
probabilistic models we consider only experiments with finitely many out-
comes. Thercafter we present the foundations of probability theory in their
most general form.

The 1920s and *30s saw a rapid development of one of the new branches of
probability theory, the theory of stochastic processes, which studies families
of random variables that evolve with time. We bhave seen the creation of
theories of Markov processes, stationary processes, martingales, and limit
theorems for stochastic processes. Information theory is a rccent addition.

The present book is principally concerned with stochastic processes with
discrete parameters: random sequences. However, the material presented
in the second chapter provides a solid foundation {particularly of a logical
nature) for the study of the general theory of stochastic processes.

It was also in the 19205 and *30s that mathematical statistics became a
separate mathematical discipline. In a certain sense mathematical statistics
deals with inverses of the problems of probability : If the basic aim of proba-
bility theory is to calculate the probabilities of complicated events under a
given probabilistic model, mathematical statistics sets itself the inverse
problem: to clarify the structure of probabilistic-statistical models by

means of obscrvations of various complicated events. ' N
Some of the problems and methods of mathematical statistics are alsa

discussed in this book. However, all that is presented in detail here is proba-
bility theory and the theory of stochastic processes with discrete parameters.



CHAPTER 1
Elementary Probability Theory

§1. Probabilistic Model of an Experiment with a
Finite Number of Qutcomes

1. Let us consider an experiment of which all possible results are included
in a finite number of outcomes ey, ..., wy. We do not need to know the
nature of these outcomes, only that there are a finite number N of them.

We call @y, ..., wy elemeniary events, or sample points, and the finite set
) = {m;,...,my},
the space of elementary events or the sample space.

The cheice of the space of elementary events is the first step in formulating
a probabilistic model for an experiment. Let us consider some examples of
sample spaces.

ExaMPLE 1. For a single toss of a coin the sample space Q consists of two
points:

Q= {H,T)},

where H = “head” and T = “tail”. (We exclude possibilities like * the coin

stands on edge,” “the coin disappears,” etc.)

ExamrLe 2. For n tosses of a coin the sample space is
Q={wiw=1(a,...,a),a=HorT}
and the general number N{2) of outcomes is 2",
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ExampLE 3. First toss a coin. If it falls “head” then toss a die (with six faces
numbered 1, 2, 3, 4, 5, 6); if it falls “tail”, toss the coin again. The sample
space for this experiment is

Q = {H1, H2, H3, H4, H5, H6, TH, TT}.

We now consider some more complicated examples involving the selec-
tion of » balls from an urh containing M distinguishable balls.

2. ExaMPLE 4 (Sampling with replacement). This is an experiment in which’
after cach step the selected ball is returned again, In this case each sample of
n balls can be presented in the form (a,, ..., a.), where g; is the label of the
ball selected at the ith step. It is clear that in sampling with replacement
each a; can have any of the M values 1, 2,..., M. The description of the
sample space depends in an essential way on whether we consider samples
like, for example, (4, 1, 2, 1) and (1, 4, 2, 1) as different or the same. It is
customary to distinguish two cases: ordered samples and unordered samples.
In the first case samples containing the same elements, but arranged
differently, are considered to be different. In the second case the order of
the ¢lements is disregarded and the two samples are considered to be the
same. To emphasize which kind of sample we are considering, we use the
notation {a,, ..., a,) for ordered samples and [q,,..., a,} for unordered
samples.
Thus for ordered samples the sample space has the form

Q={ww=(a,...,aq,).a=1,..., M}
and the number of (different) outcomes is
N(Y) = M". (1)
I, however, we consider unordered samples, then
Q={we=I[a,...,a0a=1,..., M.

Clearly the nomber N{Q) of (different) unordered samples is smaller than
the number of ordered samples. Let us show that in the present case

N{ﬂ) = C.gd'+n— 11 (2}

where C}, = kV/[I'(k — D!] is the number of combinations of I ¢lements,
'taken £ at a time.

We prove this by induction. Let N(M, n) be the number of outcomes of
interest. It is clear that when & < M we have

Nk, 1) =k=C).
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Now suppose that Nk, n) = Ck...—, for k < M; we show that this formula
continues to hold when » is replaced by n + 1. For the unordered samples
[21, ..., a,+,] that we are considering, we may suppose that the elements
are arranged in nondecreasing order: g, < g; < +-+ < a,,. It is clear that the
number of unordered samples with a, = 1 is N{(M, n), the number with
a, = 2is N(M — 1, n), etc. Conseguently

NMn+D=NMmn+NM-L1Ln+- -+ N(1,n)
= Chrn-1 +Ch-14n-1+ -G
= (Chdn — ClHA ) + (G Fn — G i)
d oo (O~ ) = s
here we have used the easily verified property
Ci_l + CE: = Ci+1

of the binomial coefficients.
ExaMmpLE 5 {Sampling without replacement). Suppose that r < M and that
the selected balls are not returned, In this case we agan consider two pos-

sibilities, namely ordered and unordered samples.
For ordered samples without replacement the sample space is

Q={w:o={@,....a) & #Fa,k#*La=1...,M}

and the number of elemenis of this set {called permutations)is M{M — 1} ---
(M — n + 1). We denote this by (M), or A}, and call it “the number of
permutations of M things, n at a time™).

For unordered samples (called combinations) the sample space

Q={wow=I[a,. . ..algFfak*la=1.., M}
consists of
N = Cy (3)

elements. In fact, from each unordered sample [ay, --., a,] consisting of
distinct elements we can obtain n! ordered samples. Consequently

N -nl = (M),

and therefore

N =

(M),
= G

The results on the numbers of samples of n from an urn with M balls are
presented in Table 1.
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Table 1
With
Agn Chin_1 replacement
Without
(M), Che replacement
Sample
Ordered Lnordered Type

For the case M = 3 and n = 2, the corresponding sample spaces are
displayed in Table 2.

ExaMpLE 6 (Distribution of objects in cells). We consider the structure of
the sample space in the problem of placing n objects (balls, etc.) in M cells
(boxes, ete.). For example, such problems arisc in statistical physics in study-
ing the distribution of »n particles (which might be protons, ¢lectrons, ...)
among M states (which might be energy levels).

Let the cells be numbered 1, 2,..., M, and suppos¢ first that the objects
are distinguishable (numbered 1, 2,...,n). Then a distribution of the »
objects among the M cells is completely described by an ordered set
(ay,..-,a,), where a; is the index of the cell containing object i. However,
if the objects are indistinguishable their distribution among the M cells
is completely determined by the unordered set [ay, ..., a,], where a, is the
index of the cell into which an object is put at the ith step.

Comparing this situation with Examples 4 and 5, we have the following
correspondences:
(ordered samples) < (distinguishable ohjects),
{unordered samples) «— (indistinguishable objects),

Table 2
LD L) L | 1] 22 [3531 ] win
2.1 2.2y (23) [L2] [1.3] replacement
3.0 (3,2 (3.3 [2,3]
(L,2) {(L,3) [1,2] [1,3] Without
2.1) (2,3) [2, 3] replacement

G G.3

Ordered Unordered Sample

Type
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by which we mean that to an instance of an ordered (unordered) sample of
n balls from an urn containing M balls there corresponds (one and only one)
instance of distributing n distinguishable (indistinguishable)} objects among
M cells,

In a similar sense we have the following correspondences:

(sampling with replacement) < (a cell may receive any munb-er) 1

of objects

- - a cell may receive at most
(sampling without replacement) «— (ﬂm3 object ) .

These correspondences generate others of the same kind:

an unordered sample in indistinguishable objects in the
samphing without problem of distribution among cells
replacement when each cell may receive at

most one object

etc.; so that we can use Examples 4 and 5 to describe the sample space for
the problem of distributing distinguishable or indistinguishable objects
among cells ¢ither with exclusion (a cell may receive at most one object) or
without exclusion (a cell may receive any number of objects).

Table 3 displays the distributions of two objects among three cells. For
distinguishable objects, we denote them by W (white) and B (black). For
indistinguishable objects, the presence of an object in a cell is indicated
bya +.

Table 3
el T 1[wis[ ] [8]|{++] [ 1[J++] J[ 1 [++] _
£
Blw] || Iw[B] |[ [wiB] Eaka B i £3 N EY ;‘f;ﬁ
(B [w|[ [BIw][ [ [w[B] |1+
WiB[ | wl_ I8 ESET I S R )
B|W [ [w[s] | [+ 5 2
[B]  Twj [ IBjW]
Distinguishable Indistinguishable ~Distribu-
objects ohjects Kmd_ tion
ol objcis
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Table 4
N{Q} in the problem of placing » objects in M cells
Kind_ of Distingmshable | Indistinguishable
objects ohjects objects

Distribution

Without exclusicn L Chisn—i With
(Maxwell- {Bose— replacement
Boltzmann Einstein
s1atistics) statistics)

With exclusion (M), Che Without
(Fermi-Dirac replacement
slatlistics)

Ordered Unordered Sample
samples samples Type
N(EY) in the problem of choosing » balls from an urn
containing M balls

The duality that we have observed between the two problems gives ys
an obvious way of finding the number of outcomes in the problem of placing
objects in cells. The results, which include the results in Table 1, are given in
Table 4.

In statistical physics one says that distinguishable (or indistinguishable,
respectively) particles that are not subject to the Pauli exclusion principlet
obey Maxwell-Boltzmann statistics {or, respectively, Bose-Einstein statis-
tics). If, however, the particles are indistinguishable and arc subject to the
exclusion principle, they obey Fermi—Dirac statistics {see Table 4). For
example, electrons, protons and neutrons obey Fermi-Dirac statistics.
Photons and pions obey Bose-Einstein statistics. Distinguishable particles
that are subject to the exclusion principle do not occur in physics.

3. In addition to the concept of sample space we now need the fundamental
concept of event.

Experimenters are ordinarily interested, not in what particular outcome
occurs as the result of a trial, but in whether the outcome belongs to some
subset of the set of all possible outcomes. We shall describe as events all
subsets A < Qfor which, under the conditions of the experiment, it is possible
to say cither “the outcome we A™ or “the outcome w ¢ A.”

t At most ane particle in each cell. (Translator)
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For cxample, let a coin be tossed three times. The sample space £2 consists
of the cight points

2 = {HHH, HHT, ..., TTT}

and if we are able to observe (determine, measure, etc.) the results of all three
tosses, we say that the set

A = {HHH, HHT, HTH, THH)

is the event consisting of the appearance of at least two heads. If, however,
we can determine only the result of the first toss, this set A cannat be consid-
ered to be an event, since there is no way to give either a positive or negative
answer to the question of whether 2 specific outcome ¢ belongs to 4.

Starting from a given collection of sets that are events, we can form new
events by means of statements containing the logical connectives “or,”
“and,” and “not,” which correspond in the language of set theory to the
operations “union,” “intersection,” and “complement.”

H A and B arc scis, their unien, denoted by A U B, is the set of points that

belong cither to A or to B:
AVB={wel);we AorweB}

In the language of probability theory, A w B is the event consisting of the
realization either of A or of B.

The intersection of A and B, denoted by A n B, or by AB, is the set of
points that belong to both A and B:

AnB={weQ:wedand we B}

The event A m B consists of the simultaneous realization of both 4 and B,
For example, if A = {HH, HT, TH} and B = {TT, TH, HT} then

AuU B = {HH, HT, TH, TT} (=%),
A~ B = {TH, HT}

If A is a subset of €, its complement, denoted by A, is the set of points of
€2 that do not belong to A.

If B\ A denotes the difference of B and A (i.c. the set of points that belong
to B but not to A) then 4 = Q\A. In the language of probability, A is
the cvent consisting of the nomrealization of A. For example, if A =
{HH, HT, TH} thenr A = {TT?}, the event in which two successive tails occur.

The scts A and A have no points in common and consequently 4 n A is
empty, We denote the empty set by 2. In probability theory, (7 is called an
impossible event. The set € is naturally called the certain event.

When A and B are digjoint (AB = &), the union 4w B is called the
sum of A and B and written A + B.

If we consider a collection &7 of sets A © Q we may usc the set-theoretic
operators w, N and \ to form a new collection of sets from the elements of
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s#y; these sets are again events. If we adjoin the certain and impossible
events £2 and J-ye obtain a collection & of sets which is an algebra, i.e. 2
collection of subsets of £2 for which

(1) Qe.f,
(2) if Ae &, Be .of, the sets A v B, A n B, A\ B also belong to o7,

It follows from what we have said that it will be advisable to consider
collections of events that form algebras. In the future we shall consider only
such collections.

Here are some examples of algebras of events:

(a) {€) &}, the collection consisting of €2 and the empty set (we call this the
triviaf algebra);

(0) {A, 4, Q, &}, the collcetion gencrated by A;

{c) & = {A4: 4 Q}, the collection consisting of alf the subsets of Q
(including the copty set (7).

It is easy to check that all these algebras of events can be obtained from the
following principle.
We say that a collection

2=1{D,,...,D}

of sets is a decomposition of £2, and call the D, the atoms of the decomposition,
if the D; are not empty, are pairwise disjoint, and their sum is ;

D+ +D, =0

For exampie, if {2 consists of three points, Q = {1, 2, 3}, there are five
different decompositions:

%, ={D;} with D, = {1, 2, 3};

2, = {D, D5} with D, = {1,2}, D, = {3};
%3 = (D, D;} with D, = {1,3}, D, = {2};
@, = {Dy, Dy} with D, = {2,3},D, = {1};

D = {D,, D,, D;) with D, = {1}, D, = {2}, D, = {3}.

(For the general number of decompositions of & finite set see Problem 2.)

If we consider all unions of the sets in &, the resulting collection of sets,
together with the cipty set, forms an algebra, called the algebra induced by
2, and denoted by a(Z). Thus the elements of o D) consist of the empty set
together with the sums of sets which arc atoms of 2.

Thus if € is a decomposition, there is associated with it a specific algcbra
& = ().

The converse is also true, Let 97 be an zlgebra of subsets of a finitc space
{2. Then there is a unique decompesition £ whose atoms are the elements of
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A, with & = o(2). In fact, let De % and let D have the property that for
every Bedd the sct D m B either coincides with D or is empty. Then this
collection of scts D forms a decomposition & with the required property
«(Z) = . In Example (a), 2 is the trivial decomposition consisting of the
single set D, = Q;in (b), 2 = {A, 4}. The most fine-grained decomposition
2, which consists of the singletons {w,}, w; e}, induces the algebra in
Example (c), i.c. the algebra of all subscts of €.

Let £, and 22, be two decompositions. We say that £, is finer than &,,
and writc @, < 9,, if a(D,) S «(2,).

Let us show that if  consists, as we assumed above, of a finite number of
POINts ,, ..., oy, then the number N{=#) of sets in the collection «f is
cqual to 27, In fact, every nonempty set A€ o can be represented as 4 =
{o, ..., 0.}, where w; €, 1 < k < N. With this set we associate the se-
quence of zeros and ones

©,...,0,1,0,...,0,1,..),

where there are ones in the positions iy, ..., i, and zeros elsewhere. Then
for a given k the number of different sets A of the form f{e; , ..., «;} is the
same as the number of ways in which k ones (k indistinguishable objects)
can be placed in N positions (N cells). According to Table 4 (see the lower
right-hand square) we sce that this number is C%. Hence (counting the empty

set) we find that
N@y=1+Ch+---+Ch=(1+ 1) =27

4. We have now taken the first two steps in defining a probabilistic model
of an experiment with a finite number of outcomes: we have selected a sample
space and a collection &/ of subsets, which form an algebra and are called
events. We now take the next stcy, to assign to each sample point {outcome)
o), i=1,..., N, a weight. This is denated by p(e;) and called the
probability of the outcome e, ; we assume that it has the following properties:

(a) 0 < p(e;) < | (nonnegativity),
{b) pler,) + --- + plwy) = 1 (normalization),

Starting from the given probabilities p(e,) of the outcomes cw;, we define
the probability P(A) of any cvent A € &7 by

PA)= 3 pod (4)

{i: eneA)

Fmally, we say that a triple
(€2, o, P),

wherc Q = {w,, ..., @y}, & is an algebra of subsets of £ and

P = {P(A4); A e =}
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defines (or assigns) a probabilistic model, or a prabability space, of experiments
with a {finite) space 2 of outcomes and algebra o of events.
The following properties of probability follow from (4):

P2 =0, ()
PE) =1, (6)
P(4 v B) = P(A) + P(B) — P(4 n B). 7

In particular, if A n B = {7, then

P(A + B) = P(4) + P(B) (8)
and
P(A) = 1 — P(A). (%)

5. In constructing a probabilistic model for a specific sitnation, the con-
struction of the sample space {} and the algebra ¢ of events are ordinarily
not difficult, In elementary probability theory one usually takes the algebra
s ta be the algebra of all subsets of {1 Any difficuity that may arise is in
assigning probabilities to the sample points. In principle, the solution to this
problem lies outside the domain of probability theory, and we shall not
consider it in detail We consider that our fundamental problem is not the
questton of how to assign probabilities, but how to calculate the proba-
bilities of complicated events (clements of &) from the probabilities of the
sample points,

It is clear from a mathematical point of view that for finite sample spaces
we can obtain all conceivable (fizite) probability spaces by assigning non-
ncgative numbcers p,y, ..., Py, satisfying the condition p; + --- + py = 1, to
the outcomes ey, . .., Wy

The validity of the assignments of the numbers p,, - . ., py ¢an, in specific
cases, be checked to a certam cxtent by using the law of large numbers
{which will be discusscd later on). It states that in a long series of “inde-
pendent” experiments, carried out under identical conditions, the frequencies
with which the elementary events appear are “closc” to their probabilities.

In connection with the difficulty of assigning probabilitics to outcomes,
we note that there are many actual situations in which for reasons of sym-
metry it seems rcasonable to consider all conceivable outcomes as equally
probable. In such cases, if the sample space consists of points w,,. ., wy,
with N < o0, we put

plw,) = -+ = play) = I/N,
and consequently
P(A) = N(A)/N (10)
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for cvery event 4 e of, where N(A4) is the number of sample points in 4.
This is called the classical method of assigning probabilities. It is clear that
in this case the calculation of P{A) reduces to calculating the number of
outcomes belonging to A. This is usually done by combinatorial methods,
so that combinatorics, applied to finite sets, plays a significant role in the
calculus of probabilities,

ExampLE 7 (Coincidence problem). Let an vrn contain M balls numbercd

1, 2,..., M. We draw an ordered sample of size n with replacement. It is
clear that then

!‘M}

and N(£2) = M". Using the classical assignment of probabilitics, we consider
the M" outcomes cqually probable and ask for the probability of the event

Q= {wa={ay,...,aha,=1...

A={w:w=(a,....4)a+#a,i#j),

i.e., the event in which there is no repetition. Clearly N{4) = M(M — 1)-..
(M — n + 1), and therefore

P(A}=(E3"=(1~;?)(1~J%)...(1—";41). (11

This problem has the following striking interpretation. Suppose that
there are n students in a class. Let us suppose that each student’s birthday
is on one of 365 days and that ail days are equally probable. The question
is, what is the probability P, that there are at least two students in the class
whose birthdays coincide? If we interpret selection of birthdays as selection
of balls from an urn containing 363 balls, then by (11)

(365),
365"

The following tabie lists the values of P, for some values of n:

w= 1=

H

4

16

22

23

40

64

P,

0.01&

0.284

0476

0.507

0.891

0997

It is interesting to note that {(unexpectedly ! the size of class in which there
is probability 4 of finding at least two students with the same birthday is not
very large: only 23,

ExamPLE 8 (Prizes in a lottery). Consider a lottery that is run in the following
way. There arc M tickets numbered 1, 2,..., M, of which »n, numbcred
1,..., n, win prizcs (M = 2n). You buy » tickets, and ask for the probability
(P, say) of winning at least one prize.
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Since the order in which the tickets are drawn plays no role in the prescnce
or absence of winners in your purchase, we may suppose that the sample space
has the form

ﬂ= {m:m= [ﬂl,---,ﬂ"],ﬂk?éﬂhk# Lai= 11"'9M}'
By Table 1, N(X}) = C5;. Now let
Ao=fwo=[ay..,ala.Fa ,k#La=n+1,..., M}

be the event that there is no winner in the set of tickets you bought. Again
by Table 1, N{(A4y) = Cjs_,. Therefore

bea _ (M = 1),
G (M,

= (=) s (=)

and consequently

R n n
P—1—P(A,,}z1—(1—5)(1—M_1)---(1~—m).

If M = n? and 1 — o, then P(Ag) = ¢~ ! and
P—1—e¢ 10,632
The convergence is quite fast : for n = 10the probability is already P = 0.670.

P(Ag) =

6. PROELEMS

1. Establish the following properties of the operators ~ and -
AuB=BuA, AB = BA (commutativity),
Av{BuO={(AuBu(l, A(BC) = (ABIC (associativity),
A(B v Cy= AB U AC, Au(BC) =AU B A v O (disributivity),
AuvAdA=4  AA=A (idempotency)

Show also that
AUB=AnB AB=Aub

2. Let 2 contain N elements. Show that the number d() of different decompositions of
£} is piven by the formula

kﬂ'
T (12)

d(N} = e~! i

k

et

(Hint: Show that
mM—1
d(N)= 3 Ch_ d(k), where J4(0)=1,
k=0

and then verify that the series in {12) satisfies the same recurrence relation.)
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3. For any fimte collection of sets 4,,...,4,,
Pld, w---u A< PA I+ + P(A

4. Ler A and B be events. Show that AR U BA is the event in which exactly one of A
and B occurs. Maoreover,

P(AE L BA) = P(A) + P(B) — 2P(AB).
5. LetA,,...,A, be events, and define §,, §,,...,5,asfollows: S, = 1,
SF:EP[AHHH'HAM)’ liri:n,
e

where the sum is over the unordered subsets J, = [k,,.... k] of {1,...,x}.

Let B, be the event in which each of the events 4,,.. . ., A, occurs exactly m times,
Show that

P(B) = ¥ (—1y—"C"s,.

In parsticular, form =0
P(B)=1—58, +8; —---+ 8,.

Show also that the probability that at least m of the events 4,,..., 4, occur
simultaneously is

PB) + -+ P(B) = 3, (—1F "},

In particular, the probability thai at least one of the events A,, ..., A, occurs is
PB)+ - +PB)=5—8+--- 1 8§,.

§2. Some Classical Models and Distributions

1. Binomial distribution. Let a coin be tossed # times and record the resulis
as an ordered set {a,, ..., a,), where g, = 1 for a head ("success™)and g, = 0
for a tail (" failure™). The sample space is

Q={mw=_(y,....a)a=01}
To each sample point ¢ = (a,, ..., a,) we assign the probability
) = P2,

where the nonnegative numbers p and g satisfy p + g = 1. In the first place,
we verify that this assignment of the weights p(w) is consistent. It is enough
to show that 3, .q p{) = 1.

We consider all outcomes @ = (ay,..., a,) for which ¥, q; = k, where
k=0,1,...,n According to Table 4 (distribution of k mdistinguishable
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ones in n places) the number of these outcomes is Cy, Therefore

2 plw) = Z Crg ™t =(p+agr=1
well
Thus the space £ together with the collection .« of all its subscis and the
probabilities P(A) = } .1 F{w), A € #Z, defines a probabilistic model. It is
natural to call this the probabilistic model for # tosses of a coin.
In the case n = 1, when the sample space contains just the two points
w = 1 (“success™) and o = 0 (“failure™), it is natural to call p(l) = p the
probability of success. We shall see later that this model for n tosses of a
coin can be thought of as the rcsult of n “independent™ experiments with
probability p of success at each trial
Let us consider the events

A, ={w:wo={,,...,a)a, + - +a,=k} k=01,..., n,
consisting of exactly k successes. It follows from what we said above that
P4 = Cipfg ™, (1)

and H=0 P(A;J = 1.

The set of probabilities (P(Ay), . ... P(A4,)) is called the binomial distribu-
tion (the numbcr of successes in a sample of size /). This distribution plays an
exiremely important role in probability theory since it arises in the most
diverse probabilistic models. We write P () =P(4,). k=0, 1,...,n
Figure 1 shows the hinornial distribution in the case p = 4 (symmetric coin)
forn = §, 10, 20,

We now present a different model {in essence, eguivalent to the preceding
one) which describes the random walk of a “ particle.”

Let the particle start at the origin, and after unit time let it take a unit
step upward or downward (Figure 2).

Conscquently after » steps the particle can have moved at most » units
up or r units down, It is clear that each path o of the particle is completely
specified by a set (a,, .. ., a,), where a; = + 1 if the particle moves up at the
fth step, and a, = —1 1f 1t moves down. Let us assign to each path  the
wmght plen) = p"‘”’g" ) where v(w) is the number of + 1’s in the sequence

= (dy, ..+, @) L& v(iw) = [(a; + --- + a,) + n]/2, and the nonnegative
numbers pand g satisfy p + g = 1.

Since ¥, plw) = 1, the set of probabilities p(c) together with the space
2 of paths @ = {a,, ..., @, and its subsets define an acceptable probabilistic
model of the motion of the particle for n steps.

Let us ask the following guestion: What is the probability of the event A4,
that after » steps the particle is at a point with ordmnate k? This condition
is satisficd by those paths @ for which v(w) — {(n — v(a)} = £, L.e.

n+k
Ww) = 5
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Ph[k]l F"{k}‘
0.3+ H=23 03+ n=10
02+ 024
ol 4 | 014 | ‘ |
| | 1
— 1:"; ||1|1|rr||‘:
012345 0123456782910
Pn(k}*
0-3-- n=20
024
o1+
} k
012345678810°- """ " " 20

Figure 1. Graph of the binomizal probahilities P () for n = 5, 10, 20.

The number of such paths (see Table 4) is CI"H212 and therefore
P(Ak) — C-E:n + ic],flp[n+k]_-'2q[n k2
Consequently the binomial distribution (P(A_,), ..., P{4y), ..., P(4,))

can be said to describe the probability distribution for the position of the

particle after n steps.
Note that in the symmetric case (p = g = 1) when the probabilities of

the individual paths are equal to 27",
P(4)) = Cl+¥2. 3

Let us investigate the asymptotic behavior of these probabilitics for large n.
If the number of steps is 2n, it follows from the properties of the binomial
coeflicients that the largest of the probabilities P{A,), | k| < 2n, is

P(4o) = C3,- 277"
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L i 1 1 [ 1 1 1 A ]_h,
] L) 1 I I L] k T e 1

-4 -3 -2 -10 1 2 3 4
Figure 3. Beginning of the binomial distribution.
From Stirling's formula {see formula (6) in Section 4}

nl~  /2ane "WF
Conseguently

(2”) 22" . 1

Cﬂ I
=~

and therefore for large «
1

=

Figure 3 represents the beginning of the binomial distribution for 2n
steps of a random walk (in contrast to Figure 2, the time axis is now directed
upward).

P(Ap) ~

2. Multinomial distribution. Generalizing the preceding model, we now
suppose that the samplc space is
{f.i’..'l = {alt“‘:ﬂw):al=bl:--'rb.r}:
where b, ..., b, are given numbers. Let v{w) be the number of elements of
e = (ay, ..., a) that are equalto by, i = 1,..., r, and define the probability
of o by
P(ﬂ—‘) —_ p'{:[ml p:r{ml’
where p; =z Oand p, + -+ + p, = 1. Note that
2 rlw) = E Chnys ..o, mPY - 10

well njz ,nrzﬂ}
g+ o Fma=n

where C.(ry,...,n) 1s the number of (ordered) sequences {a,,...,q,} in
which b, occurs n,; times, ..., b, occurs », times. Since n, elements b, can

t The notation ' {n) ~ g{n) means that f{n)fu(n)} — 1 asr — co.
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be distributed into » positions in C7* ways; ry elements b, into 7 — n,
positions in (1, ways, etc., we have

Cn(”l: sray r} = C:l * C"H:'M Tt C:r—[ﬂi'f' ey - )

nl (r— ny)!

= * +||1
mitn—n)! nyl(m—n, — n,y)l

nl
nyle--nl’

Therefore

n!
Lp@= ¥ P =+ 4 p) =
e nE0, . ne20y 1l

ngt = 4n.=n

and consequently we have defined an acceptable method of assigning
probabilities.
Let

Ap,on, ={orvi{o)=ny, ..., v{w) = n,}.
Then

P(Am.....i':.-) = Cn("h === nr)Pi‘I e P:‘lr' (2}
The set of probabilities
{P(An;.,..,n,.)}

is called the multinomial (or polyncmial) distribution.
We emphasize that both this distribution and its special case, the binormial
distribution, originate from problems about sampling with replacement,

3. The multidimensional hypergeometric distribution occurs in problems that
involve sampling without replacement.

Consider, for example, an urn containing M balls numbered 1, 2, ..., M,
where M, balls have the color &, ..., M, balls have the color b,, and
M, + .-+ M, = M. Suppose that we draw a sample of size » < M without
replacement. The sample space is

Q=[mo=I(a,. - .a)ha#za.kEtla=1.., M}

and N(Q) = (M),. Let us suppose that the sample pointg are eguiprobable,
and find the probability of the event B, ., in which », balls have
color by, ..., n, balls have color b,, where n, + +++ + 1, = n. It is easy to
show that

N(Bnl..‘..n.-} = C"{Hl, = nr)(Ml)n, e (Mr)nr&
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and therefore

_ N(B,,..n) _Chi - Ch 3
P(B,,....n)} = N Chs ' &

The set of probabilities {P(B,, )} is called the multidimensional
hypergeometric distribution. When r = 2 it is simply called the hypergeometric
distribution because its “generating function™ is a hypergeometric function,

The structure of the multidimensional hypergeometric distribution is
rather complicated. For cxample, the probability
_ CMChh

P(Bu ) = —0%
M

contams nine factorials,. However, it is easily established that if M — o
and M, — oo in such a way that M, /M — p (and therefore M,/M — 1 — p)
then

s H1+ﬂ1=n, M1+M2=M: (4)

P(B"h I'I:_) — C::+"2P"l{l - P)m* (5)

In other words, under the present hypothescs the hypergeometric dis-
tribution is approximated by the binomial; this is intuitively clear since
when M and M, are large (but finite), sampling without replacement ought
to give almost the same result as sampling with replacement.

ExampLE. Let us use (4) to find the probability of picking six “lucky™ num-
bers in a lottery of the following kind (this is an abstract formulation of the
“sportloto,” which is well known in Russia):

There arc 49 balls numbered from 1 to 49; six of them are lucky (colored
red, say, whercas the rest are white). We draw a sample of six balls, without
replacement. The question is, What is the probability that all six of these
balls are lucky? Taking M = 49, M, = 6, n, = 6, n, = 0, we see that the
event of interest, namely

B, o = (6 balls, all lucky}
has, by (4), probability
1
Cls
4. The numbers n! increase extremcly rapidly with #. For example,

10! = 3,628,800,

15! = 1,307,674,368,000,

and 100! has 158 digits. Hence from either the theoretical or the computa-
tional point of view, it is important to know Stirling’s formula,

n!=./2n (E)“ exp(—l—i"—n) . 0<é, <1, (6)

P(‘Bﬁ-.ﬂ) == _~ '?.2 > ].D_E-

e
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whose proof can be found in most textbooks on mathematical analysis
{see also [69]).

5. PROBLEMS
1. Prove formula (5).

2. Show that for the multinomial distribution {P(4,.,..., A, )} the maximem prob-
ability is attained at a point (k,,...,k,) that satisfies the inequalities np; — I <
ki<{n+r—1Dp,i=1,....x

3. One-dimensional Ising model. Consider n particles located at the points 1, 2,..., a
Suppose that each particle is of one of two types, and that there are n, particles of the

first type and n, of the secowd (n, + n, = n). We suppose that all #! arrangements of
the particles are equally probable.

Construct a corresponding probabilistic model and find the probability of the
event A.(m, , My, May, Maz) = {V|; = My15- ... Vo = Maa}, Where v;is the qumber
of particles of type { following particles of type f (i, f = 1, 2).

4. Prove the following inequalities by probabilistic reasoning:

Yyt = 2,
S (Y = G,
k=0
S (—1y*Ch = €, ment,
2
k=D

¥k — 1)Ch = mfm — 127, m>2.
k=D

§3. Conditional Probability. Independence

1. The concept of probabilities of events lets us answer questions of the fol-
lowing kind: If there are M balls in an urn, M, white and M, black, what is
the probability P{4) of the event 4 that a selected ball is white? With the
classical approach, P{A) = M, /M.

The concept of conditional prebability, which will be introduced below,
lets us answer questions of the following kind: What is the probability that
the second ball is white (event B) under the condition that the first ball was
also white (event A)? (We are thinking of sampling without replacement.)

It is natural to reason as follows: if the first ball is white, then at the
second step we have an urn containing M — | balls, of which M, — 1 are
white and M, black; hence it seems reasonable to suppose that the {condi-
tional) probability in question is (M, — I)/(M — 1).
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We now give a definition of conditional probability that is consistent
with our intuitive ideas.
Let (€2, <, P) be a {finite) probability space and A an event (ie. A€ 8.

Definition 1. The conditional probability of event B assuming event A with
P(A) > O (denoted by P(B|A)) is

P{AB)

P(A4) ()

In the classical approach we have P(A) = N{A}/N(Q), P{AB) =
N(AB)Y/N(C)), and therefore

N(4B)

P(BIA) =

2)

From Definition 1 we immediately get the following preperties of con-
ditional probability;
P(A[4) = 1,
P{J|4) =0,
P{B|A) = 1, B2 A,
P(B, + B;|A) = P(B,|4) + P{B;| A).
It follows from these properties that for a given set A the conditional
probability P(-| A) has the same properties on the space (2 n A4, & ~ A),

where & N A = {B n A: B € &/}, that the original probability P(-) has on

(£, 5#).
Note that

P(BlA) + P(B|A4) = 1;
however in peneral

P(B|4) + P(BIA) # 1,

P(B{A) + P(BiA) # 1.

ExamMpLE 1. Consider a family with two children. We ask for the probability
that toth children are boys, assurmning

(a) that the older child is a boy;
(b) that at least one of the children is a boy.
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The sample space is
(2 = {BB, BG, GB, GG},

where BG means that the older child is a boy and the younger is a girl, etc.
Le¢t us suppose that all samnple points are equally probable:

P(BB) = P(BG) = P(GB) = P(GG) = 1.

Let A be the event that the older child is a boy, and B, that the younger
child is a2 boy. Then 4 U B is the event that at least one child is a boy, and
AB is the event that both children are boys, In question (a) we want the
conditional probability P(AB|A), and i (b), the conditional probability
P(AB|A u B).

It is easy to see that

1
Plaia) = 24D 3 o,
1
P(ABlAuB) =Bz 1

“PAuB 1IT7F

2. The simple but important formula (3), below, is called the formula for
total probability, It provides the basic means for calculating the probabili-
ties of complicated events by using conditional probabilities.

Consider a decomposition 2 = {A4,,..., 4, } withP{A) = 0,i=1,...,n
(such a decomposition is often called a complete set of disjoint events). It
is clear that

B=BA, +---+ BA,
and therefore

]

P(B) = } P(BA).

i=1

But
P(BA;) = P(B|A)P(A)).

Hence we have the formula for total probability:

P(B) = . P(BIAIP(A). 3)
In particular, if 0 < P{A4) < 1, then

P(B) = P(B| A)P(A) + P(B| A)P(A). @
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ExAMPLE 2. An urn contains M balls, m of which are “lucky.” We ask for the
probability that the second ball drawn is lucky (assuming that the result of
the first draw is unknown, that a sample of size 2 is drawn without replace-
ment, and that all coutcomes are equally probable). Let A be the ¢vent that
the first ball is lucky, B the event that the second is lucky. Then

mim — 1)
P(BAY MM —1) m—1
P =% =~ m M1’
M
m(M — m)
P(BIA_)=P(BE)_M(M—1)= m

P(A) M—m M-—1
M

and
P(B) = P(B} A)P(A) + P(B|A)P(A4)

m—1 m m M—-—m m

M1 MTM-1 ™M M

It is interesting to observe that P(A) is precisely m/M. Hence, when the
nature of the first ball is unknown, it does not affect the probability that the
second ball is lucky.

By the definition of conditional probability (with P{A) > 0),

P(AB) = P(B{A)P(A). (3

This formula, the multiplication formula for probabilities, can be generalized
(by induction) as follows:If4,,..., 4,_, areeventswithP{4, :-- 4,-,) = 0,
then

P(Ay---A,) = P(A)P(A;|Ay) - P{A Ay - - A, y) (6)
(here A,--- A, = A, nA; v v A4

3. Suppose that 4 and B are events with P(A4) > 0 and P(B) > 0. Then
along with {5) we have the parallel formula

P(AB} = P(A|B)P(B). (7)
From (5) and (7) we obtain Bayes’s formula

P(A)P(BA)

P(4IB) = =5

(8)
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If the events 4,, ..., A, form a decormposition of £, {3) and (8) imply
Bayes’s theorem:

P{AIP(B|A;)
D=1 P{4P(BiA)’

In statistical applications, A,,..., A, {4y +--- + A, =) are cften
called hypotheses, and P(A,) is called the a priorit probability of 4,. The

conditional probability P(A;} B) is considered as the a posteriori probability
of A, after the occurrence of event B.

P(4;|B) = (9)

ExampPLE 3. Let an urn contain two coins: A,, a fair coin with probability
§ of falling H; and A,, a hiased coin with probability 1 of falling H. A coin is
drawn at random and tossed. Suppose that it falls head. We ask for the
probability that the fair coin was selected.

Let us construct the corresponding probabtlistic model. Here it ts natural
to take the sample space to be the set 2 = {A,H, A, T, A, H, 45T}, which
describes all possible outcomes of a selection and a toss (A, H means that
coin A, was selected and fell heads, etc.) The probabilities plew) of the vanious
ontcomes have to be assigned so that, according to the statement of the
problem,

P(4,) = P4, =1
and
PIA) =3  PHIA) =13

With these assignments, the probabilitics of the sample points are uniguely
determined:

P(A]_H} = é} p(—‘dln = %, P(AzH) — ‘tLﬂ P{AZT) = %_
Then by Bayes’s formula the probability in question is

B P(A,P(H{A4,)
(A {H) = P(A,)P(HIA,) + P(A4;)P(H|A,)

3
-1,

and therefore
P(A,|H) = 2

4. In certain sense, the concept of independence, which we are now going to
introduce, plays a central role in probability theory: it is precisely this concept
that distinguishes probability theory from the general theory of measure

Spaces.

t A priori; before the experiment ; 2 posreriori: after the experiment.
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If A and B are two events, it is natural to say that B is independent of 4
if knowing that A has occurred has no effect on the probability of B. In other
words, * B is independent of A if

P{B|A) = P(B) (10)
(we are supposing that P(A) > O).
Since
P{A
POBIA) =
it follows from (10) that
P(AB) = P(A)P(B). (11)

In exactly the same way, if P(8) > 0itisnatural to say that “ A is independent
of B™ if

P(A|B) = P(A).

Hence we again obtain (11), which is symmetric in A and B and still makes
sertse when the probabilities of these events are zero.
After these preliminaries, we introduce the following definition.

Definition 2. Events 4 and B are called independent or statistically independent
{with respect to the probability P} if

P(AB) = P(A)P(B).

In probability theory 1t is often convenient to consider not only independ-
ence of events {or sets) but also independence of collections of events (or
sets).

Accordingly, we introduce the following definition.

Definition 3. Two algebras «f | and o, of events (or sets) are called independ-
ent or statistically independent (with respect to the probability P) if all pairs
of sets A, and A,, belonging respectively to =f, and =/,, are independent,

For example, let us consider the two algebras
sty = {Ali zl!l o3, 2} and 3 = {Aj, A-Z! &, n}:

where A, anhd A, are subsets of (L It is easy to verify that o, and o, are
independent if and only if 4, and 4, are independent. In fact, the independ-
ence of .o/, and s/, means the independence of the 16 events A, and 4,,
A, and A,,..., 5 and Q. Consequently A, and A, are independent. Con-
versely, if 4, and A, are independent, we have to show that the other 15
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pairs of events are independent. Let us verify, for example, the independence
of A; and A,. We have

P{4,4,) = P(4,} — P(4,4;3) = P(4,) — P{4,)P(4;)
= P(4,)- (1 — P{4,)} = P(4,)P{4,).
The independence of the other pairs is verified similarly.

3. The concept of independence of two sets or two algebras of sets can be
extended to any finite number of sets or algebras of sets.

Thus we say that the sets A,,..., A, are collectively independent or
statistically independent (with respect to the probability Pyiffork = 1,..., »
and 1 <i, <iy <---<i<n

P(4;, -+ 4;) = P(4;) -+ - P(4,). (12)
The algebras 7, ..., of, of sets are called independent or statisticaily
independent (with respect to the probability P)ifall sets A,, ..., A, belonging

respectively to .«,, ..., &, are independent.

Note that pairwise independence of events does not imply their indepen-
dence. In fact if, for example, Q = {w,, w,, 3, @,} and all outcomes are
equiprobable, it 1s easily verified that the events

A = {wy, wy}, B = {wy, ws}, C = {w,, 4}
are pairwise independent, whereas
P(ABC) = 2 # (3 = P(4A)P(B)P(C).
Also note that if

P(ABC} = P(AP(B)P(C)

for events A, B and C, it by no means follows that these events are pairwise
mdependent. In fact, let Q consist of the 36 ordered pairs (i, /), where i, j =
1,2,..., 6and all the pairs are equiprobable. Thenif A = {(i,j):j = 1,2 or 5},
B=A(i,j):j=4,50r6}, C={(i,): i+ j= 9} wehave

P(AB) = ¢ # & = P(A)P(B),

P(AC) =35 #1: = P(A)P(C),

P(BC) =¢5 #15 = P(B)P(C),
but also

P(ABC) = & = P(AP(BIP(C).

6. Let us consider in more detail, from the point of view of independence,
the classical model (€2, &7, P) that was introduced in §2 and used as a basis
for the binomial distribotion.
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In this model
Q= {0 = Ay, ..., 000 =01}, o ={A: 4 Q}
and
plw) = pHoig"TE (13)

Consider an event A = Q. We say that this event depends on a trial at
time k if it is determined by the value a, alone. Examples of such events are

A= {wia,=1}, A= {w:a =0}

Let us consider the sequence of algebras o7, &7, ..., &,, where o), =
{A,, A, 5, S} and show that under (13) these algebras are independent.
It is clear that
Pa)= T po)= T pregeE
fazay= 1} {e; o= 1)
=F Z pitt o ta- it ae e ta,

':ﬂl'l-t-rnﬂ- Iedr+ I.l-"lnh}

n=1
O Lt S IR 1" T Yo Y S T t foin=11=-1
w q1'Zi'= Y—im g =-1-tag+) o= p ZGC -1 Fg =p
=

and a similar calevlation shows that P(4,) = g and that, for k # 1,
P(AkAI) - PZ'! P(Ak‘q!) = g, P("qkAl) = q.?.*

It is easy to deduce from this that &7, and &, are independent for k # L

It can be shown in the same way that o, &7,, ..., &, arc independent.
This is the basis for saying that our model (£t &7, P} corresponds to “n
independent trials with two outcomes and probability p of success.” James
Bernoulli was the first to study this model systematically, and established
the law of large numbers (§5) for it. Accordingly, this model is also called
the Bernoulli scheme with two outcomes (success and failure) and probability
p of success.

A detailed study of the probability space for the Bernoulli scheme shows
that it has the structure of a direct product of probability spaces, defined
as follows.

Suppose that we are given a collection (Q,, 4,, P,),..., ({,, 8,, P,) of
finite probability spaces. Form the space Q@ = 1, x Q, x --- x & of points
w ={a,,....a,), where g;e ;. Let &f = &, @ .-- ® &, be the algebra of
the subsets of £2 that consists of sums of sets of the form

A=B, xB; .- x B,

with B; e #;. Finally, for @ = (a,,..., a,) take p(w} = p,(a,) - - pAa,) and
define P{4) for theset A =B, x B, x --- x B, by

P(4) = Y pifay) -+ - pala,).

{areBLy mudne Byl
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It is casy to verify that P(Q)) = 1 and therefore the triple (£, &, P) defines

a probability space. This space is called the direct product of the probability
spaces (Cy, &, Py), ....0,. 4,, P,).

We note an easily verified property of the direct product of probability
spaces; with respect to P, the events

Ay ={wra,eB,}, ..., A, = {wra,cB,},
where B; ¢ 88, are independent. In the same way, the algebras of subsets of 3,

o ={Ay A, = {wia, €By), B4},

----------------------------------------

of, = {A,: A, = {w:a,cB,}, B,cB,}

are independent.
[t is clear from our construction that the Bernoulli scheme

(!}’M’F) with ﬂ={m:w=(ﬂl!---;a«n},ﬂj=00[‘]}
@ ={A:AcQ} and plw)=prig" T

can be thought of as the direct product of the probability spaces {Q};, £;, P).
i=12...,rn where

ni = {D! l}! '@E = {{0}1 {l}: E’jr ﬂi}:
P{{1})=p  P{{0} =4

7. PROBLEMS

1. Give examples to show that in general the equations
P(B|A} + P(B|4) = 1,
P(B|A) + P(B|A) =1

are false.

2. An urn containg M balls, of which M, are white. Consider a sample of size n. Le1 B,
be the event that the ball selected at the jth step is white, and 4, the event that a sample
of size n contains exactly & white balls. Show that

P{BJFAI.:} = k/n
both for sampling with replacement and for sampling without replacement.

3 Let A;,..., A, beindependent events. Then
P( UAI) =1 — []P(4).
i=1 i=1

4. Let Ay..... A, be independent events with P(A4,) = p;. Then the probability Py
thai neither event occurs is

Py = rl—-El{l — P
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5. Let 4 and B be independent events. In terms of P{4) and P({5). find the pmhabi]ities
of the events that exactly &, at least &, and a1 most k of A and B occur (k = 0, 1, 2).

6. Let event A be independent of itseld, ie. let A and A4 be independent. Show that
P{A) is either B or 1.

7. Let event A have P(4) = 0 or 1. Show that A4 and an arbitrary event B are inde-
pendent.

8. Consider the electric circuit shown in Figure 4:

i N

e

Figure 4

Each of the switches 4, B, C, D, and E is independently open or closed with
probabilities 7 and g, respectively. Find the probabilily that a signal fed in at "input™
will be received at “output ™, If the signal is received, what is the conditional prob-
ability that E is open?

&4. Random Variables and Their Properties

1. Let (82, &7, P) be a probabilistic model of an experimentit with a finite
number of outcomes, N({}) < o, where o7 is the algebra of all subsets of
). We observe that in the exampies above, where we caiculated the probabil-
ities of various events A4 e o, the specific nature of the sample space £ was
of no interest. We were interested only in numerical properties depending
on the sample points. For example, we were interested in the probability of
some number of successes in a series of i trials, in the probability distribution
for the number of objects in cells, ete.

The concept “random wvariable,” which we now introduce (later it will
be given a more general form) servés to define guantities that are subject to
“measurement ” in random experiments.

Definition 1. Any numerical function ¢ = &{w) defined on a (finite) sample
space Q is called a (simple) random variable. (The reason for the term “ simple ™
random variable will become clear after the introduction of the general

concept of random variable in §4 of Chapter IL)
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ExaMpLE 1. In the model of two tosses of a coin with sample space €} =
{HH, HT, TH, TT}, define a random variable £ = £{en} by the table

o HH HT T™H TT

ey || 2 | 1 0

Here, from its very definition, £(w) is nothing but the number of heads in the
outcome w.

Another extremely simple example of a random variable is the indicator
(or characteristic function} of a set Ae s

¢ = I 4(w),
where T

1! A!
L) = {0 z:A.

When experimenters are concerned with random variables that describe
observations, their main interest is in the probabilities with which the
random variables take various values. From this point of view they are
interested, not in the distribution of the probability P over (Q, «7), but in
its distribution over the range of a random variable. Since we are considering
the case when  contains only a finite number of points, the range X of
the random variable £ 15 also finite. Let X = {x,, ..., x,,}, where the (differ-
ent) numbers x,, ..., X,, €xhaust the values of £

Let 2 be the collection of all subsets of X, and let Be &. We can also
interpret B as an event if the sample space is taken to be X, the set of values
of &

On (X, &), consider the probability P,(-) induced by ¢ according to the
formula

PyAB) = P{w: {w)e B}, Bed.

It is clear that the values of this probability are compietely determined by
the probabilities

Pdx) = Pla: fw) = x}, x; € X.

The set of numbers {Px), ..., Pdx,)} is called the probability distri-
bution of the random variable £,

+ The notation I{A) is also used. For frequently used properties of indicators see Problem 1.
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ExaMPLE 2. A random variable £ that takes the two values 1 and 0 with
probabilities g (“success™) and g (“failure™), is called a Bernoullif random
variable. Clearly

P x)=p7¢'"", x=01 (1)

A Binomial {or binomially distributed) tandom variable £ is a random
variable that takes the n 4+ 1 values 0, 1, ..., r with probabilities

Pix) = Cp"g" ™7, x=0,1,...,n {2)

Note that here and in many subsequent examples we do not specify the
sample spaces (€2, o, P), but are interested only in the values of the random
variabies and their probability distributions.

The probabilistic structure of the random variables £ is completely
specified by the probability distributions {P(x;),i = 1,..., m}. The concept
of distribution function, which we now mntroduce, yields an equivalent
description of the probabilistic structure of the random variables.

Definition 2. Let x ¢ R'. The function
Fx) = P{w: {{w) < x}

is called the distribution function of the random variable £,

Clearly
F g(x) = E P ﬁ{xi]
(i > g}

and
P} = Folx;) — Fulx; —),

where Fux—) = limy, F{).
If we suppose that x; < x; < - < X,, and put F(x,) = 0, then

Pdx) = Fo(x) — Foxi_y),  i=1,...,m

The following diagrams (Figure 5) exhibit P,(x) and F(x) for a binomial
random variable.

It follows immediately from Definition 2 that the distribution F, = F(x)
has the following propertics:

(1) F{—0) =0, F(+ )= 1;
(2) F{x)iscontinuous on theright (F{x+) = F,(x)) and piecewise constant.

+ We use the terms * Bernoulli, binotnial, Poisson, Gaussian, . . . , random variables ™ for what
are more usually called random variables with Bernoulli, binomial, Poisson, Gaussian, . . ., dis-
tribukions.
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F¢{x}
-
~ "‘*--..__‘H
] e
q ‘:Ji"’
1 2 H
F c{x

i

Figure 5

Along with random variables it is often necessary to consider random
vectors & = (&,,..., &) whose components are random variables. For
¢xample, when we considered the multinomial distribution we were dealing
with a random vector v = (v,...,v,), where v, = v{w) is the number of
elements equal to b;,i = 1,..., », in the sequence @ = (g, ..., a,).

The set of probabilities

Pdxy ey %) = Plwtéyw) = x,, .00, Ed@) = x,},

where x; € X;, the range of &, 1s called the probability distribution of the
random vector £, and the function

F{{xl: resy I,.) = P{Eﬂ'. ‘fl(m} = xl: "y é,,(lﬂd) = xr}’

where x,e R, is called the distribution function of the random vector ¥ =

{él! L | 61‘)'
For exampie, for the random vector v = (v, -. ., v,) mentioned abave,
Finy,....n)y=Clny,...,0)0% - pfr
(see (2.2)).

2. Let &,.... &, be a set of random variables with values in a (finite) set
X & R'. Let & be the algebra of subsets of X.
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Definition 3. The random variables £,,..., £ are said to be independent
(collectively independent) if
P{il = Xps e &y = X} = P{ﬁl = xl} P{‘:r = xr}
for all x,, ..., x, € X; or, equivalently, if
P{EIEBIE vy 'ﬁrEBr} = P{'fl EBI} Tt P{'ﬁrE Br}
forall B,,..., B, %.

We can get a very simple example of independent random variabies
from the Bernoulli scheme. Let
Q={ww={0@,....,a)a =01}, plw)=pErg" i
and & (w) = a;forw = (a,,...,a,%.i = 1,..., n. Then the random variables
£1.€5, ..., £, are Independent, as follows from the independence of the events
A ={wiag, =1}..., 4, = {w:a, =1},

which was established in §3.

3. We shall frequently encounter the problem of finding the probability
distributions of random variables that are functions f(€,, ..., &) of random
variables £, ..., {,. For the present we consider only the determination
of the distribution of a sum { = & +  of random variables.

If £ and » take values in the respective sets X = [x,,...,x} and ¥ =
{¥{,-.., y}, the random variable { = & + # takes values in the set Z =
{zz=x;+yui=1....k:j=1,..., 1} Then it is clear that

F@=P{{=z}=P{{+n=zt= 3} P{E=x,n=y}
(i e xg +yp=2z|
The case of independent random variables € and » is particularly import-
ant. In this case
P{{=x;,n=1y}=P{f =x}P{n =y

and therefore

K
Pc(z) = E F -E(xI}Pq(yj) = tgl P {(xi)‘Pq(z — %) (3)

(i 7k xy + yi=2]

for all z € Z, where in the last sum P (z — x;)istaken tobe zero if z — x,¢ ¥
For ¢xample, if £ and # are independent Bernoulli random variables,
taking the values 1 and 0 with respective probabilities p and g, then Z =
{0, 1, 2} and
P{0) = PLO)P0) = 4%,
P (1} = PLOP (1} + PL1)P(0) = 2pq,
P(2)y = PLNP (1) = p~.
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It is easy to show by induction that if &,, £,...., £, are independent
Bernoulli random variables with P{¢;, = 1} = p, P{§, = 0} = g, then the
random variable { = &, + --- + &, has the binomial distribution

Py=Cipd"™ k=0,1,...,n (4)

4. We now turn to the important concept of the expectation, or mean value,
of a random variable.

Let (€2, o, P) be a (finite) probability space and & = &{w) a random
variable with values in the set X = {x,,..., x.}. fwe put 4; = {e: & = x;}.
f=1,..., k& then £ can evidently be represented as

k

§) = } x KA. (5)

i=1

where the sets A4,, ..., 4, form a decomposition of € (i.c., they are pairwise
disjomnt and their sum is £}; see Subsection 3 of §1).

Let p, = P{& = x;}. It is intuitively plausible that if we observe the values
of the random variable £ in “n repetitions of identical experiments”, the
value x; ought to be encountered about p;n times, i = 1, ..., k. Hence the
mean value calculated from the results of » experiments is roughly

1 K
H[”plxl + - apx] = Z M Xq-

(=1

This discussion provides the motivation for the following definition.

Definition 4. The expectation? or mean value of the random variable £ =
Y%y x:I{A;) is the number
k

EE = Y x,P(A). (6)

i=1

Since A; = {w: {(w) = x;} and Pgx;) = P(A;), we have
k

EE =3 x:Pyxy). (N

=1
Recalling the definition of F, = F(x}and writing
AFdx) = Fix) — Fdx —),

we obtain P{x,) = AF (x,;) and consequently

EE= T xAFdx). ®)
i=1

+ Also known as mathematical cxpectation, or ¢xpected value, or {especially in physics) expec-
tation value. {Translator)
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Before discussing the properties of the expectation, we remark that it is
often convenient to use another representation of the random variable &,
namely

]

E(eo) = jz x: 1 (B},
=1
where B, + --- + B, = £}, but some of the x; may be repeated. In this case
EZ can be calculated from the formula };_, x;P(B;), which differs formaily
from (5) because in (5) the x, are all different. In fact,

Y xPB)=x ) PB)=xP4)
Lfxg=xi} Liz =]
and therefore
k

t
2. XP(B) = 3, xP(4).

=l i=1

5. We list the basic properties of the expectation:

(1) If § = OthenEL = 0.

(2) E(a¢ + bi) = gE£ + bEw, where a and b are constants.
(3) If £ = n thenEE = En.

(4) |EC| < E[{L

(5) If £ and n are independent, then E&n = E£ -En,

(6) (E|&EnD? < EE2 -En? (Cauchy-Bunyakovskii inequality).
(7) If & = I(A) then EE = P(A).

Properties (1)} and (7) are evident. To prove (2, let

&= fof(fii)- n= ZP;I(Bj}-

‘Then
al + by =ay x;;(4; nB) + b3 y;I(4;~ B)
i § ()
" f
and

E{aé + bn) = 3 (ax; + by )P(A: B}
i
= ZaxiP{A,-} + Eb}’jp{ﬂﬂ

= a; X% P{A) + b ZyjP{BJ-) = gE¢ + BEy.
F

¥ Alzo known as the Cauchy—Schwarz or Schwarz inequality. (Translator)
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Property (3) follows from (1) and (2). Property (4) is evident, since

|ES| =

foP{A.-]‘ < S xIP(4) ~ Elg.

To prove (5) we note that

Edn = E(Z x;I(A.-)) (Z Jf;f(B;))
i ]
. L

= ; x; ¥ P{AP(B))
ot

- (; X, P{Ai)) : (g yjP(B_;)) = E¢-En,

where we have vnsed the property that for independent random variables the
events

A; = {w:&w) =x;} and B;= {w:n(w)=y)

are independent: P(A; n B;) = P{A;)P(B,).
To prove property (6) we observe that

£ =Ty ot = YyHB)

and
Eft =¥ x2P(4)), En? =3 yiP(B)
i i

Let E&2 > O, En? > 0. Put

3 N 7
£= . = .
NN
Since 2{&7| < &£ + %, we have 2E|E7| < EE? + Ef® = 2. Therefore
E|&f| < 1and (E|&n|)* < EZ% -Eq.
However, if, say, E£2 = 0, this means that »; x?P{4,) = 0 and conse-
guently the mean value of ¢ is 0, and P{w: £{w) = 0} = 1. Therefore if at

least one of E&2 or Ex? is zero, it is evident that E |&y| = 0 and consequently
the Cauchy—Bunyakovskii inequality still holds.

Remark. Property (5) generalizes in an obvious way to any finite number of
random variables: if £,, .. ., &, are independent, then

E¢i--+ & = €& - EL,,

The proof can be given in the same way as for the case r = 2, or by induction.
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ExaMPLE 3. Let ¢ be a Bernoulli random variable, taking the values 1 and 0
with probabilities p and 4. Then

EE=1-P{{=1} +0-P{{ =0} =p.

ExampPLE 4. Let £, ..., ¢, be v Bernoulli random variables with P{&; = 1}
=p, P& =0}=gq.p+qg=1 Thenif

Sn=§1 +”-+'§ﬂ
we find that
ES, = np

This result can be obtained in a different way. It is easy to see that ES,
is not changed if we assume that the Bernoulli random variables £, ..., £,
are independent. With this assumption, we have according to {4)

P(Sﬂ=k)=c:pkqn-ki k=0,l,a--,ﬂ.
Thereiore
ES, = Z kKPS, = k)= 3 kChiphg*
k=0 k=0

nl

; K — k)rpkq"_k

rr

_ (n — 1! -1 in—1)=(k—1
- Pz{k~1>'((n p-Goon? ¢
. Z l)' PI H=1p—i __

- P i'{(ﬂ — = np.

However, the first method is more direct.

6. Let & =73 x,/(A4,), where 4; = {o: &w) = x,}, and ¢ = o{&(w)) is a
function of &(w). If B; = {e: ¢(é(w)) = ¥;}, then

o(f@)) = 3 y;1(By),
and consequently J
Eg = g:}’j P8y = ;J’J'Pw(}’;‘]' )
But it is also clear that

@(&(w)) = ; P(xH(A;).
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Hence, as in (9), the expectation of the random variable ¢ = @({) can be
calculated as

Ep(l) = Z @(x)FP .:(xr)-

7. The important notion of the variance of a random variable £ indicates
the amount of scatter of the values of £ around E£

Definition 5. The variance (also called the dispersion) of the random variable
¢ (denoted by VE)is

V¢ =E(¢ — EO

The number o = + ./V£ is called the standard deviation.
Since

E(§ — E&Y =E(§% — 2£.E& + (ELY) =E& — (EEY,
we have
V& = EE® — (EE)
Clearly V¢ = 0. It follows from the definition that
V(a + BE) = b*V{, where a and b are constants.

In particular, Va = 0, V(b&) = ¥¥VE
Let £ and » be random variables. Then

V(¢ + 1) = E((¢ — EQ) + (5 — Em))°
= V¢ + Vy + 2E(E — E{)(n — En).
Write
cov(¢, ) = E({ — ES)(y — En).
This number is called the covariance of £ and . If V& > 0 and Vy > 0, then

ot ) = 9L}
T JVE- vy

is called the correlation coefficient of & and #. It is easy to show (see Problem
7 below) that if g(£, ) = +1, then ¢ and # are linearly dependent:

n=uaf+ b,

witha > 0ifpl&. M) =1landa < 0if (&, M) = —1.
We observe immediately that if £ and » are independent, so are ¢ — E£
and n — En. Consequently by Property (5) of expectations,

cov(&, n) = E(Z — E&).E(y — Ex) = O,
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Using the notation that we introduced for covariance, we have
V(& + ) = V& + Vir + 2c0ov({, n); (10)

if £ and n are independent, the variance of the sum & + # is equal to the sum
of the variances,
V(€ + )= Vi + Vi (11}

It fallows from (10) that (11) is still valid under weaker hypotheses than
the independence of &£ and n. In fact, it is enough to suppose that & and » are
uncorrelated, i.e. cov(é, ) = 0.

Remark. If £ and » are uncorrelated, it does not follow in general that they
are independent, Here is 2 simple example. Let the random vanable o take
the values 0, /2 and # with probability 4. Then & = sin o and # = cos x are
uncarrelated ; however, they are nat only stochastically dependent (i.e., nat
independent with respect to the probability P):

- PiE=1Ln=1}=0#4=P{&=1}Ply=1},

but even functionally dependent: &2 + 5% = 1.
Properties (10) and {11) can be extended in the obvious way to any num-
ber of random variables:

V(Z ﬁf) = IZ V& + E;E cov(¢;, &), (12)
i=1 =1 B
In particular, if £,,..., &, are pairwise independent (pairwise uncorrelated

is suificient), then

V(iif,-) = ign:l\r‘.fl-. (13)

ExaMeLe 5. If £ i1s a Bernoulli random vanable, taking the values 1 and 0
with probabilities p and g, then

VE=E( —EEY¥ = - py* =0 —py’p+ pPq9 = pq.

It follows that if &, , .. ., £, are independent identically distributed Bernoulli
random variables, and S, = &, + --- + &, then

VS, = npq. (14)

8. Consider two random variables £ and #. Suppose that only £ can be ob-
served. If € and n are correlated, we may expect that knowing the value of £
allows us to make some inference about the values of the unobserved vari-
able ».

Any function f = f(£) of £ s called an estimator Jor . We say that an esti-
mator f* = f*(£)1s best in the mean-square sense if

E( — f*(&)* = inf EGr — ).
)
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Let us show how to find a best estimator in the class of linear estimators
AMEY = a + bE We consider the function g(a, b) = E(y — (a + bE))>. Differ-
entiating g(a, b) with respect to g and b, we obtain

ogla, B) _
P —_ ZE[H — (@ + bé}]}
55321!; by _ _ 2E[(n — (a + bENE,

whetice, setting the derivatives equal to zero, we find that the best mean-
square linear estimator is A®¢) = g* + b*£, where

a* = En — b*EL, b ='ﬂ‘f’%. (15)

In other words,

1@ =B+ D¢ e (16)

The number E{qy — A*(E))? is called the mean-square ervor of observation.
An easy calculation shows that it is equal to

2
A* = EGy — A% = Vi — ‘i"’i,}f,—i) — il — %E&ml (D)

Consequently, the larger {in absolute value) the correlation coefficient
pl&, m) between & and gz, the smaller the mean-square error of observation
A* In particalar, if | p(&, )l = 1 then A* = Q (ef. Problem 7). On the other
hand, if € and » are uncorrelated {(g(&, ) = 0), then A*(¢) = En, ie. in the
absence of correlation between £ and # the best estimate of i in terms of £ 15
simply Ex (cf. Problem 4).

9. PROBLEMS
1. Verify the following properties of indicators I, = I ,{to):
in =19, Io=1, I,+15=1,
fip=14-1n,
feog=Ta+1g—1,g-

The indicator of | Jfay 4, is 1 —J[p=, (1 — I,), the indicator of | Ju, A; is
[Fi-1 (1 — I,) and the indicator of Y5, Ais Y7oy La,.

finp=a— IB}J!
where A A B is the symmetric difference of A and B, ie. the set (A\B) v (B\A).
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. Leté&,, ..., £, beindependent random varizables and

gmiu = Ir'lin(fl'l e 'f.n}! Cma: = max{gll s gh)'
Show that

Pl > x} = [P 2 1,

im]

F{gmau = x} = ]_-[ F{'ﬁl = I}.

imi
. Let &,,..., &, be independent Bernoulli random variables such that
P{f;=0} =1 — 44,

P{ér - 1} —_— Riﬂ,.

where A i1s a small number, A >0, A4; > .
Show that

P, + -+ & =1t= (il,)ﬂ.+ OAD),

(=]

P+ + & > 1} = 0(AY.

. Show that inf_ _ .. E(£ — a)? is atiained for & = E¢ and consequently
il E(f — a)® = V&

-t Rl -]

. Let £ be a random varjable with distribution function F{x) and let m, be a median
of Fx), i.e. a point such that

Fulm_—) = g < Fdm,).
Show that
inf E|{—al=E|l—m]}

— o tas oo

Let Py(x) = P{¢ = x} and F,(x) = P(¢ < x}. Show that

—b
P n¢+h{xj =P f( - )-.

F oz e p(X) = ‘F-:(J‘E ; )
fora>0and —owo < b <o Ify =0, then
Fuly) = FA+ /1) — Fd—/ + P— /5.
Let £* = max(£, 0). Then

0, x<q,
Feuy =1 F0), x=10,
Fox), x>0
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. Let £ and 5 be random variables with V& > 0, Vi > 0, and let p = p(£, #) be their

cerrelation coefficient. Show that |p| < 1. If |p| = 1, {ind constants g and b such
that y = g& 4 b, Moreover, if p = 1, then

n—Ep _&—EE
WAL A4
(and therefore o > 0), whereas if p = — 1, then
n— En §—Ef

VAT N7

(and therefore g < Q).

. Let & and  be random variables with EZ = Ey = 0, V¢ = Vi = 1 and correlaticn

coefficient p = p{&, ) Show that
E max(E%, n%) < 1+ /1 — p*

. Use the equation

(Indicamr of U.a!;) = J](1 = L),
=1 i=1

to deduce the formula P(Bg) =1 — 8§, + 8, + --- + §, from Problem 4 of §1.

Let £y,..., &, be independent random wvariables, v, = ¢4(&,.... &) and @, =
@2(Eas1a- - - 2 Ep) functions vespectively of €, ..., & and & ,,,. .., &, . Show that the
random variables ¢; and ¢, are independent.

Show that the random variables &,, ..., &, are independent if and only if
FeyoalXia i ou %} = F.:.(xl} ‘“F:..(xn}
for all x,,...,x,, where Fe . (x,....x ) =P{& € x,....8 £ x,}

Show that the random variable £ is independent of itself (ie., £ and ¢ are inde-
pendent) if and only if £ = const.

Under what hypotheses on £ are the random variables € and sin € independent ?

Let £ and y be independent random varizables and i 2 0. Express the probabilities
of the gvents P{{n < z} and P{&/ < z} in terms of the probabilities P£x) and F,{(¥).

§5. The Bernoulli Scheme. 1. The Law of

Large Numbers

1. In accordance with the definitions given above, a triple

@, P) with Q={0:0=@yp...,0)0a=0 1)},
o ={A:ASQ), plow) = pFag I

is called a probabilistic model of # independent experiments with two out-
comes, or 4 Bernoulli scherme,
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In this and the next section we study some limiting properties (in a sense
described below) for Bernoulli schemes. These are best expressed in terms of
random variables and of the probabilities of events connected with them.

We introduce random variables &, ..., &, by taking E{w) =a;, i =
1,...,n where w = (a,, ..., a) As we saw above, the Bernoulli variables
£{w) are independent and identically distributed:

P{fi=1}=p, P{=0=q i=1...,n

It is natural to think of & as describing the result of an experiment at the
ith stage (or at time {).
Let us put S5(ew) = 0 and

S,=& + -+ &, k=1,....n

As we found above, ES, = np and consegiently
EZ2=p (1)

In other words, the mean value of the frequency of “success”™, Le. 8./n,
coincides with the probability p of stceess. Hence we are led to ask how much
the frequency S,/ of success differs from its probability p.

We first note that we cannot expect that, for a sufficiently small £ > 0
and for sufficiently large #, the deviation of §,./u from p 1s less than ¢ for all
w, L. that

S, (w)
M

_P‘i:a, well (2}
In fact, when 0 < p < 1,
S, n
p{?z 1}=P{¢, =1, & =1} ="
S
p{:=0}='={e:1 =0,...,& =0} = 4~

whence it follows that (2) is not satisfied for sufficiently small ¢ > 0.

We observe, however, that when n is large the probabilities of the events
{S,/n = 1} and {S./n = 0} ar¢ small. It is therefore natural to expect that the
total probability of the events for which |[S.(w)/n] — p| > & will also be
small when n is sufficiently large.

We shall accordingly try to estimate the probability of the event
{w: |[S,(w)n] — p| > €}. For this purpose we need the following inequality,
which was discovered by Chebyshev.
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Chebyshey’s inequality. Let (£}, <7, P) be a probability space and & = &(w) a
Honnegative random variable. Then

P{& > £} < E&fe (3)
foralle > 0.
ProoF. We notice that

§=8I({ 2 e} + IS < &) = LIE = &) = el(§ = &),

where J{4) is the indicator of A.
Then, by the properties of the expectation,

EE > eEI{E > 8) = e P(E = g),
which establishes (3).

Corollary. If £ is any random variable, we have for € > 0,
P{<| = e} < E|{Yfe,

P{I&] = &} = P{£? = &} < EEY/e?, (4
P{I{ — EZ) = &} < V&l

In the last of these inequalities, take £ = S /n. Then using (4.14), we obtain

S V(S,/n} NS, npg _ pg
_" — 'l':. = n = = .

P{ n F ‘ = E} - gt we? wle* ngt
P{

from which we see that for large »n there is rather small probability that the
frequency S,/n of success deviates from the probability p by more than &
Fornz= land 0 < k = n, write

Plk)= Ciptg"™".

Therefore

Sx Pq 1
- T L — [ 5
. P‘_s}_ Yl (3)

—“—p|zﬂ}= Y Pfh,

5
P{
L |y — pl 2 6}

and we have actually shown that

e, 1
Ph)s—=<—, (6)
{rc:lwgpias} ) ng? = 4ne?
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i.e. we have proved an inequality that could also have been obtained analytic-
ally, without using the probabilistic interpretation.
It is clear from (6) that

Z P()—0, n— oo, (7}
(h:(thtm) = p| = ¢}

We can clarify this graphically in the following way. Let us represent the
binomial distribution {P(k), 0 < k < #} as in Figure 6.

Then as nincreases the praph spreads out and becomes flatter. At the same
time the sum of P,(k), over k for which np — ng < k < np + ng, tends to 1.

Let us think of the sequence of random variables §,, $,,..., S, as the
path of a wandering particle. Then (7) has the following interpretation.

Let us draw lines from the origin of slopes kp, k(p + ¢), and k(p — £} Then
on the average the path follows the kp line, and for every £ > 0 wecan say that
when n is sufficiently large there is a large probability that the point §,
specifying the position of the particle at time n lies in the interval

[n(p — &), n(p + £)]; see Figore 7.
We wonld like to write (7) in the following form:

Sy

E‘E}'—*[}, n-—» o, (8)
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However, we must keep in mind that there is a delicate point involved
here. Indeed, the form (8) is really justified only if P is 2 probability on a
space (£}, o) on which infinitely many sequences of independent Bernoulli
random variables &,, &,...., are¢ defined. Such spaces ¢an actually be
constructed and (8) can be justified in a completely rigorous probabilistic
sense (see Corollary 1 below, the end of §4, Chapter 11, and Theorem 1, §9,
Chapter II). For the time being, if we want to attach a meaning to the analytic
statement (7), using the language of probability theory, we have proved only
the following.

Let (%, o™ P, 1 = 1, be a sequence af Berneulli schemes such that

Q" = {o: @™ = (@, ..., a"),a" = 0, 1},

oFM {A:A c ﬂ._{n}},
P @) = P g

aned
SP@) = EH@) + - + S
where, for n< 1, &™ ..., & are sequences of independent identically
distributed Bernoulli random variables.
Then
{n}¢ (0
P‘"’{m["‘: S@™) _ pl= a} = Y PK)—=0, n-ooo. (B
n {#ez| (kfm) — pl = £)

Statements like (7){9) go by the name of James Bernoulli’s law of large
numbers. We may remark that to be precise, Bernoull’s proof consisted in
establishing (7), which he did guite rigorously by using estimnates for the
“tails” of the binomial probabilities P (k) (for the values of k for which
|(k/n) — p| = £). A direct calculation of the swm of the tail probabilities of
the binomial distribution ¥ g.um- s> 9 Pxlk) is rather difficult problem for
large n, and the resulting formulas are ill adapted for actual estimates of the
probability with which the frequencies S,/n differ from p by less than &.
Important progress resulted from the discovery by De Moivre (for p = 1)
and then by Laplace (for 0 < p < 1) of simple asymptotic formulas for P,(k),
which led not only to new proofs of the law of large numbers but also ta
more precise statements of both local and integral limit theorems, the essence
of which is that for large » and at least for k& ~ up,

and

Y R~ [T e
~—_— e 12 dx,
e:lgkin}— ol 5} S 2T v[- £ STER
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2, The next section will be devoted to precise statements and proofs of these
results. For the present we consider the question of the real meaning of the
law of large numbers, and of its empirical interpretation.

Let us carry out a large number, say N, of series of experiments, each of
which consists of “» independent trials with probability p of the event C of
interest.” Let Si/n be the frequency of event C in the ith series and N, the
number of series in which the frequency deviates from p by less than e:

N, is the number of i’s for which |(§//n) — p| < & Then

NJN ~ P, (10)

where P, = P{|(S}/m) — p| < &}.

Itis important to emphasize that an attempt to make (10) precise inevitably
involves the introduction of some probability measure, just as an estimate for
the deviation of S, /n from p becomes possible only after the introduction of a
proebability measure P.

3. Let us consider the estimate obtained above,

o

h
— =P
H
as an answer to the following question that is typical of mathematical
statistics: what is the least number n of observations that is guaranteed to
have (for arbitrary 0 < p < 1)

Y
pd|2n _
-

where ¢ is a given number {usually small)?
It follows from (11} that this number is the smallest integer » for which

1

1
= hr= P <—, (11)
} lk:l[kfn}z- =& Ane?

ga}zl—a, (12)

For example, 1f & = 0.05 and £ = 0.02, then 12 500 observations guarantee
that (12) will hold independently of the value of the unknown parameter p.

Later (Subsection 3, §6) we shall see that this number is much overstated:
this came about because Chebyshev’s inequality provides only a very crude
upper beund for P{|(5./r) — p| = &}.

4. Let us write
Cln, &) = {m:‘-sﬁﬂl—p| £$}.

R

From the law of large numbers that we proved, it follows that for every
& > 0 and for sufficiently large n, the probability of the set C(x, &) is close to
L. In this sense 1t 13 natural to call paths (realizations)  that are in C(n, £)

typical (or (n, e)-typical).
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We ask the following question: How many typical realizations are there,
and what is the weight p{w) of a typical realization?

For this purpose we first notice that the total number N(Q2) of points is 27,
and that if p = 0 or 1, the set of typical paths C(n, £) contains only the single
path (0,0, ....0or (1, 1,..., 1). However, if p = 4, it is intuitively clear that
“almost all™ paths (all except those of the form (0,0, ..., 0 or (L, 1, ..., 1))
are typical and that consequently there should be about 2" of them.

It turns out that we can give a definitive answer to the question whenever
0 < p < 1; it will then appear that both the number of typical realizations
and the weights p{w) are determined by a function of p called the entropy.

In order to present the corresponding results in more depth, it will be
helpful to consider the somewhat more general scheme of Subsection 2 of
§2 instead of the Bernoulli scheme itself.

Let(p,. p2, ..., p.) bea finite probability distribution, 1.¢. a set of nonnega-
tive numbers satisfying p, + - -- + p, = 1. The entropy of this distribution is

H=—} plnp, (14)
i=1

with 0-1n 0 = 0. It is clear that H > 0, and H = 0 if and only if every p;,
with one exception, is zero. The function f(x) = —xInx, 0 < x <1, is
convex upward, so that, as know from the theory of convex functions,

S+ -+ fx) Ef(:-rl + - +xr)_

r ¥

Consequently

P1 +---+p.-_ln(p1 + - +.vr) Iy
r r

H=-) plnp,< —r-
=1

In other words, the entropy attains its largest valueforp, = --- = p, = 1/r
(see Figure 8 for H = H(p} in the case r = 2).

If we consider the probability distribution (py, pP3.---. 2, as giving the
probabilities for the occurrence of events A,, 45, ..., 4,,say, then it is quite
clear that the “degree of indeterminancy” of an event will be different for

HY

In 24— — S ——

— ——rwt T -l

0 p P

Figure 8. The function H{p) = —plnp — (1 — p)In(1 — p).

o =
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different distributions. If, for example, p; = 1, p; = +++ = p, = 0, it is clear
that this distribution does not admit any indeterminacy: we can say with
complete certainty that the result of the experiment will be A,. On the other
hand, if p, = --- = p, = 1/r, the distribution has maximal indeterminacy,
in the sense that it is impossible to discover any preference for the occurrence
of one event rather than another.

Consequently it is important to have a quantitative measure of the in-
determinacy of different probability distributions, so that we may compare
them in this respect. The entropy successfully provides such a measure of
indeterminacy; it plays an important role in statistical mechanics and in many
significant problems of coding and communication theory.

Suppose now that the sample space is

D={w:w=(y....,8ha=1...,¥
and that p{w) = py"™ - - - p¥'™), where v{w} is the number of occurrences of §
in the sequence w, and (py, .. ., p,) is a probability distribution.
Fore>0andr=1,2,...,letvs put
C{n,g) = {m: vili:u} — Pl =&i= 1,...,:}.

It is clear that

P{C{n,e)) =1 — i P{

vi(:‘}}‘_lpl‘ E’E}r

and for sufficiently large n the probabilities P{|{v(ev)}/n) — p;| = €} are
arbitrarily small when # is sufficiently large, by the law of large numbers
applied to the random variables

L) = {1' %=1

=1...,n
0! a.k?“'f’ k ’ "

Hence for large » the probability of the event C(n, £) is ¢lose to 1. Thus, as in
the case n = 2, a path in C(», £) can be said to be typical.
If all p; > 0, then for every e

plow) = exp{—n Er, (— LC) In pk)}.
k=1 n

Consequently if e is a typical path, we have

o

i (—vk:u)lnp*)uH'ﬂ -2

k=1 k=1

vi{to)

r
lnpki —E Z ]'ﬂpk.

k=1

— I

It follows that for typical paths the probability p{ew) is close to e ™ and —
since, by the law of large numbers, the typical paths “almost™ exhaust O
when n is large— the number of such paths must be of order ™, These con-
siderations lead up to the jollowing proposition.
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Theorem (Macmillan). Let p; > 0,i=1,...,rand 0 < & < 1. Then there is
an tg = to(8; py, - - ., p,) such that for ali n > nrg

(@) " ) < N(C(n, £,)) = "E+a;
(b) e "R < plen) < 7B pmeln )]

€ PCne)= Y plew)—+1, n-aw,
weCin, &n)
where

£y is the smaller of & and sj{—Z 3 In pk}.
k=1

ProOF. Conclusion {(c) follows from the law of large numbers. To establish
the other conclusions, we notice that if ¢ € C(n, £) then

Ry, — &1 < V(W) < np. + &1, k=1....7
and therefore

plw) = Exp{_z v In p} < exp{—n z P In pp — £ Z]ﬂ P}
< exp{—n(H — 19)}.

Similarly
Kw) > exp{— n(H + 3£)}.

Consequently (b) is now established.
Furthermare, since

P(C(n,£,)) = N(C(n, &) min pw),

welin, £1)
we have
P(C(n, e1)) 1 -
N(C(n, g4)) = min pe) < @ _ i+ /23
wel(n, 2]
and similarly
P(C{n, &,)) _
P{C gHH— (DY
N(Cln, ) 2~ == > P(C(% )
melin. 1)

Since P(C(n, ,)) — 1, #t — o0, there is an n, such that P(C(n,2,}}) > 1 — &
for n > n,, and therefore

N(C(n, £1)) = (1 — g)exp{n(H — 3)}
= exp{n(H — ¢) + (3ne + In{l — £)))}.
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Let 1, be such that
Lhe + In{l — £) > 0.

for n > r;. Then when n > ny = max(n, 1) we have
N(C(n, g)) = ™ — 9,

This completes the proof of the theorem.

%. The law of large numbers for Bernoulli schemes lets us give a simple and
elegant proof of Weierstrass’s theorem on the approximation of continuous
functions by polynomials.

Let f = f(#) be a continuous function on the interval [0, 1]. We introduce
the pelynomials

5= 3 1(3) i,

which are called Bernstein polynomials after the inventor of this proof of

Weilerstrass's theorem.
If £,,..., &, is a sequence of independent Bernoulli random variables

with P{E, =1} = p, P{E; =03 =gand S, = & + -+ + £, then

Ef(s—;) — B,p)

Since the function f = f(p), being contimuous on [0, 1], is uniformly con-
tinuous, for every £ > 0 we can find & > 0 such that | f(x) - f(p) < ¢
whenever |x — y| < 4. It is also clear that the function is bounded: | f(x)] <
M < w.

Using this and (5), we obtain

150 - 501 = | £ |16 - 5 (5) | carr
< ¥ 1@- f(’-‘) ‘ Cp
fiez| ity — pl = &} H
. k
+ B o PR
{k:|tkin) = p| > 3} /@) f(n) ‘ Crd
k -k . M
<2+ 2M {k:Iwn‘}z-'pI}E] Gra™t <ot anéz &+ 2ne2
Hence

lim max | f(p) — By{(p)| =0,

A—a O=pxl

which is the conclusion of Weierstrass’s theorem.
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6. PROBLEMS

1. Let £ and 5 be random variables with correlation coefficient p. Establish the following
two-dimensional analog of Chebyshev's inequality:

1
P{ — 8| = e/VEorln — Ex| 2 &/Vn} £ 5 (1 + /T 7).
{Hint: Use the resull of Problem 8 of §4.)

2. Let f = f(x) be a nonnegative even function that is nondecreasing for positive x.
Then for a random variable £ with | &w)| < C,

Ef (&) — f{e) Ef(¢ — E&)
—_— =P —Ef| =gl == == T
In particular, if f(x) = »=,
E&2 — & Vi
oz EF{|§—E§FEB}££—:.

3. Let &,,..., &, bea sequence of mdependent random vaniables with VE&; < C. Then
F,”efl +o+ 8 BG4t E)

i hn

C
= S} = E. (15)
(With the same reservations as in (8), inequality {15) implies the validity of the law of
large numbers in more general contexts than Bernoulli schernes.)

4. Let &,,..., &, be independent Bernoulli randam variables with P{£; =1} = p = 0,
P{&; = —1} = 1 — p. Derive the {ollowing inequality of Bernstein: there is a number
a = 0 such that
!

where S, =&, +---+ & ande = (.

5
n

—{2p - 1}1 zz}s 2pea

86. The Bernoulli Scheme. II. Limit Theorems
(Local, De Moivre-Laplace, Poisson)

1. Asin the preceding section, let

Sn=61 +"'+6n'
Then

E&=P. (1)

and by (4.14)
2
E(ﬂ - p) =2 @
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It follows from (1) that S,/r ~ p, where the equivalence symbol ~ has been
given a precise meaning in the law of large numbers as the assertion
P{I(S,/m) — pl = €} = O. It is natural to suppose that, in a similar way, the
relation

S pq
2 pl~ 2 3
x p‘ L @

which follows from (2), can alse be given a precise probabilistic meaning
involving, for example, probabilities of the form

p{ &—P’Ex E}, xe R,
1" "-Jn
F"{ Ex}

(since ES, = np and VS, = npg).
Pli)y=Cipfg™, O0xk<n,

or equivalently
S, —ES,
VS,

If, as before, we write

for n = 1, then

p{ Iﬂ
VS,
We set the problem of finding convenient asymptotic formulas, as r — <0,
for P,(k) and for their sum over the values of k that satisfy the condition on
the right-hand side of (4).
The following result provides an answer not only for these values of k

(that is, for those satisfying |k — np| = O(,/npq)) but also for those satisfying
|k — np| = o{npg)*?.

< x} — ) P,(k). @

fhe: [ (% = ) oA PG| < =}

Local Limit Theovem. Let 0 < p < 1; then

Pl ~ # e—tk-ﬂmiﬂiml’ (5)

2anpg

uniformly for k such that |k — np| = o(npg)*”, ie. asn — w

sup P, (k)
(k: |k — np] semi} 1

+f 2nnpg

— 1{-0,

E—{k— np| I Zrpgl

where @(n) = o(npg)*”.
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The proof depends on Stirling’s formula (2.6)

n! = 2ane”"w(l + R(n)),

where R{n) - 0asn — o0.

Then if r - ¢o, k — oo, — k — oo, we have

X _ nl
= (n — &)
_ 2nn e " 1 + R(n)
27k - 2m(n — k) e *Kk - e~ R(n — < (1 4+ REKL + R(n — 4))
1 ‘l+£:(r1,k,n~k)

Oy

where ¢ = z(n, k, n — k) is defined in an evident way and ¢ » 0 as 1 — <o,
k— oo, n — k— 0.

Therefore
Pty = Ciphg~* = e B 110,
2 (1 -1} () (- 5)
Write p = kfn. Then
Pl = \/Zﬂﬂﬁilil ) (g)k(i%g)"_kﬂ to
— mexp{kln% - k)lni :;}-(1 + 8

- :zmﬁl(l — exp{n[%ln% + (1 —~ %) lni — ;]}(1 + &)
- ;{1 — expi— nHN( + 9

where

1_
Hx) =xnZ £ (1 —x)In—.
4 l1—p

We are considering values of k such that |k — np| = o(npg)**?, and con-
sequently p — f—=0,n— o0,
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Since, for 0 < x < 1,

x l—x
Hi{x)=In——1n ,
{x) > 1—p
R
H(x)_;-l_l—x'
H™(x) = — o + 7y
ETETU %

if we write H(f) in the form H(p + () — p)) and vse Taylor’s formula, we
find that for sufficiently large

H(8) = H(p) + H'(E)P — p) + $H@XF — pY* + 005 — pI")

1/1 1
=§(}5+ E)(ﬁ — PP + O(p — pP)
Consequently
1 ]
PLk) = —_ ——(p — p¥* —pl? .
nlk) N Exv{ Ty py + nO(|f — pl )}(1 + £}
Notice that
, n [k 2 (k—npy
[ﬁ D) —ﬁ(— —F) = -__anq .
Therefore
Pk = —l—e‘*"‘“f’?’!"z"”‘{l + &(n, k, n — k),
2nnpg
where
L+ emibk,n—k=(010+snkn—exprO(p — pI*)} Pﬂ p)
B(1 — p)

and, as 15 easily seen,
supls(m. k., n— k)| = 0, B — 0,
if the sup is taken over the values of & for which
|k —np| < o(n),  @(n) = ofnpg)*>.

This completes the proof.
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Corollary. The conclusion of the local limit theorem can be put in the followin
equivalent form: For all x € B! such that x = o(npg)"’®, and for np + x./npq
an integer from the set {0, 1, ..., n},

1
P,,(np + Xaf "Pq) ™ me-xzm! {7)

Le. asn — o,

sup Py + x/1pq) —1| =0 (8)
foez|x] < 4l 1 o— 542

i

2mnpg
where P(n) = o{npg)*'e,

With the reservations made in connection with formula {5.8), we can
reformulate these results in probabilistic langnage in the following way:

1

PLS, = I} ~ o™ 07OmA, |k — np| = onpgl*®, (9)
npaq
S, —np 1
P{ n = x} ~— e 2 x = olnpg)s. (10)
~/ pg \ 2rnpg

(In the last formula np + x./npg is assumed to have one of the values
0,1,...,n)

If we put t, = (k — np)//npg and At =t — t;, = 1/, /npg, the pre-
ceding formula assumes the form

- A 2
P{Sn = = Ia} ~ Sz g < o(npg). (1)

Sz

It is clear that At = 1/, /npg — 0 and the set of points {f.} as it were
“flls™ the real line. It is natvral to expect that {(11) can be used to obtain the
integral formula

_ b
P{a-:s" Hpﬂb}w— e~ "2 dx, —m < a=h <.

Let us now give a precise statement.

2. For —aoo<a<h = wlet

Pfa, bl = Y. Pfnp+ x/npg),

a=x=sh

where the summation is over those x for which np + x,/npg is an integer.
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It follows from the local theorem (see also (11)) that for all ¢, defined by
k = np + . /npg and satisfying |¢,| < T < oo,

ﬂ.tk .2
Pinp + t./npg) = —— e "1 + &1, n)], (12)
where
sup |e(ti, #) =0, n—> 0. (13)
k=T
Consequently, if 2 and b are given so that — T < a < b < T then
At _ 2 Al -2
Pnp + t,./npg) = — g 2 4 e(ty, H) ——= €
ﬂf%ﬂb b P u-dlzl‘ﬂﬁ 2n nﬂ%ﬂb N
b
- _/—l [ e + BYa b + R@ D)L (14)
21 Ja
where
A, _ 1 —x22
RiMa by = e _ | e7¥2x,
( ) adéiﬂhfzﬂ \JZﬂ o
At b
R¥a, b) = e(ty, 1) —o= g "2,
{ ) wggﬁh ’ \JZE
From the standard properties of Riemann sums,
sup  |RMa, b -0, n— oo (15)

—TzaghsT
It also clear that

sup  |Ri?a, b)|

—TgaxbgT
At
< sup |e(t, m)- Y k_ -z
lex) £ T el =T +f 27
< sup |&ty, n)l
| =T

—Tsegb=T

T
X [LJ' e M dx +  sup  |RWa, b}l] -0, (16}
2 -T

where the convergence of the right-hand side to zero follows from (15) and
from

Xy < gy =1, (17)

1 T 1 «
vk =l

the value of the last integral being well known.
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We write

1 g2
O(x) = r e 2 41,
.,;er -0

Then it follows from (14)-(16) that
sup  |Pya 6] — (@) — @@ =0, noco.  (18)

—T=agb=T

We now show that this result holds for T = o0 as well as for finite T. By
(17), corresponding to a given ¢ > 0 we can [ind a finite T = T{¢) such that

! T 22
e — e *dx > 1—-1 ¢ {19)
NS ET Y -T

According to (18), we can find an N such that for all n > N and T = T{e)
we have

sup | Pfa, 6] — (®(h) — Ba))l < % = (20}

—Txmaxh=sT
1t follows from this and (19) that
P(—-TT]l>1-73s
and consequently
Pf— 0, T] + P(T, ) < ¢,

where P(— o0, T] = limg, _,, P,(S, T) and P(T; c0) = limg,, P,(T, 5.
Thereforefor —o0 < a< —T=<T=<b < o,

_ L -%%2
’P,,(a, k] \/ﬂ Jje X

1 7 oz
5I-F.Iﬂ{ = T e dex
SEATS-T
tlpta - 11— = [ a4 [nma - [
(a, — e — x AL 0| ——F—
1.;’2 'y -.,,.-"2?( T

1 -T
<—e+ P(—c0,—T]+ f e M dx + P (T, w0)
4 ( -.,.I"E?T. - o0
1 1
JA e =12 dx -e::—s+2£ +§s+%s—a

v 7

By using {18) it is now easy to see that P {a, k] tends uniformly to ®(b) —
Ma)for —co < a<b < oo
Thus we have proved the following theorem.
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De Moivre-Laplace Integral Theorem. Let 0 < p < 1,
Pky=Cp'g" %  Plabl= } Pfnp+ x/rpq),

a=xzh

Then

Sup H— GO, {21)

- =a<bs o

b
P.fa, b] —ﬁ‘[‘ e "1 dx| -

With the same reservations as in (5.8), (21) can be stated in probabilistic
language in the following way:

S —ES. <5 22 g | —
P L } </ .r
{a{ \/V_&, 2n

1t follows at onee from this formula that

B—np)_ (A—np)]
Pid <SS, <B— [P B ———) | = 0, (22)
A <S, =Bl [(m N

as n —+ o0, whenever —oo € A < B < ¢C.

H—x OO

Sup
—mua<hg e

EXAMPLE. A true die is tossed 12 000 times. We ask for the probability P that
the number of 6's lies in the interval {1800, 2100].
The required probability is

l [} 5 IZUDD-E_
P = Z szum(ﬁ) (E)
1800 =k < 2100

An exact calculation of this sum would obviously be rather difficult

However, if we vse the integral theorem we find that the probability P in
question is (n = 12000, p = ¢, a = 1800, b = 2100)

2100 — 2000 1800 — 2000
@ e | — @ ¢ — (=2
( 12000 L 5) (4‘12000- ) W8 (= “f}

= O(2.449) — O(— 4.898) = 0.992,

where the values of &{2.449) and ®( —4.898) were taken from tables of O(x)
(this is the normal distribution function; see Subsection 6 below),

3. We bave plotted a graph of P (np + x/npg) (with x assumed such that

np + x./npg is an integer) in Figure 9.
Then the local theorem says that when x = o(npg)'’®, the curve

(1/./2mpgle~ ** provides a close fit to P, (np + x,/npg). On the other hand
the integral theorem says that P{a, b] = P{a./npg < S, — np < b, /npg} =
P{np + a.\/n_pq < 8, < np + by/npg} is closely approximated by the integral

(1// 27} e~ =2 dx.
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Pinp + x\/ﬁ}*

-

——=
| I

-
"“I“
|

0

Figure 9

We write

Fix)y= P(—00,x] (= P{S” s x}) i

Then it follows from (21) that
sup IF“(JC} - (D(JC)I — 0, H — 0O, (23)

—maXaa
It is natural to ask how rapid the approach to zero is in (21) and (23),
48 n — o0, We quote a result in this direction (a special case of the Berry-
Esseen theorem: see §6 in Chapter 111):

2 2
sup [Fyx)— 00 <° \f,:—p‘; (24)

It is important to recognize that the order of the estimate {1/, /npg)
cannot be improved; this means that the approximation of F.{x) by @{x)
can be poor for values of p that are clase to 0 or 1, even when » is large. This
suggests the question of whether there is a better method of approximation
for the probabilities of interest when p or g is small, something better than
the normal approximation given by the local and integral theorems. In this
connection we note that for p = 4, say, the binomial distribution {FP,(k)} is
symmetric (Figure 10). However, for small p the binomial distribution is
asymmetric (Figure 10), and hence it is not reasonable to expect that the
narmal approximation will be satisfactory.

Pk} /Y Pk} A
0.3
0.2-

0.1
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4. It turns out that for small vahes of p the distribution known as the Poisson
distribution provides a good approximation to {P,.(k)].
Let
Cipbg® k=0,1,....n
P"m_{n, k=n+1ln+12..,

and suppose that p is a function p(n) of n.

Poisson’s Theorem. Let p(n) = 0, n — o0, in such a way that np(n) — 4,
where A > 0. Thenfork = 1,2,...,

P)—»m,, n—oo, (25)
where
ﬂk —A
= :I . k=0,1,.... (26)

The proof is extremely simple. Since p(n) = (4/n) + o(1/x) by hypothesis,
for a given k = 0, 1, ... and sufficiently large n,

P (k) = Captq"™"

Hr—D---n—k+ 1[4 AN & A 1\ [*F
N k! [ﬁ*"(ﬁ)]'[l‘z“‘(;)] '

But
4
wn—1)---tn—k + 1)[é + ﬂ(l)]
n n
L ”";IEL" —k ”[,1 + o)) = A,  n-—s oo,
and
n—k
[1 - E + o(l)] —a"? n — 00,
n n
which establishes (25).

The set of numbers {x,, k =0,1,...} defines the Poisson probabiliiy
distribution (m, = 0, Y f2o m, = 1). Notice that all the (discrete) distributions
considered previously were concentrated at only a finite number of points.
The Poisson distribution is the first example that we have encountered of a
(discrete) distribution concentrated at a countable number of points.

The following result of Prokhorov exhibits the rapidity with which P,(k)
converges to m, as n — ¢o: if np(n} = A > 0, then

% 24
Y|P = m| <5 min2 2) @n
k=

(A proof of a somewhat weaker result is given in §12, Chapter II1.)
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5. Let us return to the De Moivre-Laplace limit theorem, and show how it
implies the law of large numbers (with the same reservation that was made
in connection with (5.8)). Since
M
<E [f—¢,
Pq}

P{S" p‘{s} P{ S, — np
n
e ¥gx 0, n-oo, (28

npg

it is clear from {21) that when ¢ > 0
jm

ERUE

ol

J—p‘is}-rl, n— 00,
H

which is the conclusion of the law of large numbers.
From (28)

evnfpq
whence

~ — ey, n— o, (29)
27 S e fuipe

whereas Chebyshev’s inequality yielded only

ol

? - Fr
1t was shawn at the end of §5 that Chebyshev’s ineguality yielded the estimate
1

dee

o=tz
&

5&}21—%.
He

H =

for the number of observations needed for the validity of the inequality

g

Thus with ¢ = 0.02 and o = 0.05, 12 500 observations were needed. We can
now solve the same problem by using the approximation (29).
We define the number k() by

&— < gr>1—o0on
H PI=%r=

k()

1
E j—k:z}

Since e . /(nfpq) = 22.\/1_:, if we define » as the smallest integer satisfying

2e./n > ko) (30)

e XMl gy =1 —a

we find that

££}31—a_ (31)
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We find from (30) that the smallest integer » satisfying

k*(2)

42
guarantees that (31) is satisfied, and the accuracy of the approximation can
easily be established by using (24).

Taking & = 0.02, & = 0.05, we find that in fact 2500 observations suffice,
rather than the 12 500 found by using Chebyshev’s inequality. The va}ues
of k(o) have been tabulated. We quote a number of values of k(e) for various
values of &:

o Ha)
0.50 675
0.3173 100G
0.10 1.645
0.05 1.860
0454 2.000
0.01 2576
0.0027 3.000)

6. The function

D) = \/‘z_n J‘_’ o1 gy (32)

which was introduced above and occurs in the De Moivre—Laplace integral
theorem, plays an exceptionally important role in probability theory. It is
known as the normal or Gaussian distribution on the real line, with the
(normal or Gaussian) density

- ;
e > xeRL

lx) = ——
-

0.67 196258
Figure 11. Graph of the normal probability density ¢(x).

- er———an
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Figure 12, Graph of the normal distribution ®(x). ~

We have already encountered (discrete) distributions concentrated on a
finite or countable set of points. The normal distribution belongs to another
important class of distributions that arise in probability theory. We have
mentioned its exceptional role; this comes about, first of all, because under
rather general hypotheses, sums of a large number of independent random
variables (not necessarily Bernoulli variables) are closely approximated by
the normal distribution (§4 of Chapter III). For the present we mention only
some of the simplest properties of g(x) and @(x), whose graphs are shown in
Figures 11 and 12.

The function ¢(x) is a symmetric bell-shaped curve, decreasing very
rapidly with increasing |x|: thus ¢{1} = 0.24197, (2} = 0.053991, @(3) =
0.004432, o{4) = 0.000134, (5) = 0.000016. Its maximum is attained at
x = Dand is equal to (Za)~1/? ~ (.399.

The curve @(x) = (1/5/25) X, e"™? dt approximates 1 very rapidly
as x increases: {P(1) = 0.8341343, ®(2) = 0977250, @(3) = (.998650, D(4) =
0.999968, ®(4, 5) = 0.999997,

For tables of p(x) and ®(x), as well as of other important functions that
are used in probability theory and mathematical statistics, see [Al].

7. At the end of subsection 3, §5, we noticed that the upper bound for the
probability of the event {e: |(8,/n) — p| = &}, given by Chebyshevs inequal-
ity, was rather crude. That estimate was obtained from Chebyshev’s inegual-
ity P{X > £} < EX?/¢* for nonnegative random variables X > 0. We may,
however, use Chebyshev's inequality in the form |

Ex!k
g% '

P{X =g} =P{X#* > < (33)

However, we can go further by using the “exponential form” of Chebyshev's
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inequality: if X > 0 and A > 0, this states that

P{X = e} = P{e** = &%} < EeM1™9, (34)
Since the positive number 4 is arbitrary, it is clear that
P{X >z} < inf Ee*¥™9, (33)
A0

Let us see what the consequences of this approach are in the case when
X=S/nS=&+ +& PE=D)=pPE=0=gix1
Let vs set (1) = Ee*. Then
@A) =1—p+pe’
and, under the hypothesis of the independence of £,, €., ..., £,.

Ee*™ = [o()]"
Therefore, (0 < a < 1)

P {ﬂ = a} < inf EeABnn=adl = jnf o~rlAai—Ino(im)]
H A>0 A=D

= jnf ¢ "les Inell — ,#Fup.xglas—lnpls)] (36)

5>
Similarly,
P {% < a} < g "SUly<o [as=In @{s}] (37}

The function fis)=as—log[l — p + pe’] attains its maximmum for
p < a < 1 at the point 54( f'(5¢) = 0) determined by the equation

w_21-7
p(l —a)
Consequently,
sup fis) = Hia),
where
H@=aln®+ (1 — a)in =9
P l1—p

18 the function that was previously used in the proof of the local theorem
(subsection 1).

Thus, forp<a <1

P {ﬁ = a} < g "HA) (38)

n

and therefore, sinte H(p + x) = 2x*> and 0 < p 4+ x < 1, we have, for § > 0
and 0 < p <1,
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P {% —p= a} < g2 (39
We can establish similarly that fora< p < 1
P {% < a} < g~rHE), {40)
and consequently, forevery e > 0and 0 <p < 1,
P{%—pg-ﬁ}géﬂ@ {41)
Therefore,
P { % —-pl= s} < 2o7 2% (42)

Hence, it foliows that the number n;{(o) of observations of the inequality

S
|
n

—=p
that are guaranteed to be satisfied for every p, 0 < p « 1, is determined by the

formula
nste) = | |, @

where [x] is the integral part of x. If we neglect “integral parts” and compare
n3(c) with n, (&) = [(dae?) ], we find that

mle 1

R () B 72 1n g
o

51—:}21——&, 43)

1 <0, o | 0.

It is clear from this that when « | 0, an estimate of the smallest number of
observations needed that can be obtained from the exponential Chebyshey
inequality is more precise than the estimate obtained from the ordinary
Chebyshev inequality, especially for small &,

There is no difficulty in applying the formula

— e dy ~
A 2T Ay  2ax
to show that J2{e) ~ 2 log{2/e) when « | 0. Therefore,

Ny (‘1}
R4 (o)

e ¥, X — 00,

- ], o]0,

Incqualities like (38)—(42) are known as inequalities for the probability of
large deviations. This terminology can be explained in the following way.
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The De Moivre-Laplace integral theorem makes it possible to estimate in
a simple way the probabilities of the events {|S, — np| < x\/r_z} charactenz-

ing the “standard” deviation (up to order \/r_m) of S, from np. Even the
inequalities (39), (41), and (42) provide an estimate of the probabilities of the
events {e: |8, — np| < xn}, describing deviations of order greater than /=,
in fact of order n.

We shall continue the discussion of probabilities of large deviations, in
more general situations, in §3, chap. IV.

8. PROBLEMS

1. Let n = 100, p = {5, S 5 15+ 75- Using tables (for example, those in [A1]) of the
binomial and Poisson distribntions, compare the values of the probabilities

P{10 < 8,50 = 12}, P{20 < S,00 = 22},
P{33 < 8,00 = 35 P{40 < 8,50 < 42},
P{50 < § 00 = 52}
with the cormesponding values piven by the normal and Peisson approXimations,
2 Letp =34and Z, = 25, — »(the excess of 1's over O%s in » trials). Show that
suply/anP{Z,, = j} — e P =0, n—o0.
i

3. Show that the rate of convergence in Poisson’s theorem: is given by
e 222

P —

sup
k

§7. Estimating the Probability of Success
in the Bernoulli Scheme

1. In the Bernoull: scheme (12, o, P} with & = (w0 = (x,,..., x,), x; =
0, 1)}, o = A: A = Q},

plw) = p~iq" =,

we supposed that p (the probability of success) was known,

Let us now suppose that p is not known in advance and that we want to
determine it by observing the outcomes of experiments; or, what amounts
to the same thing, by observations of the random variables €,, ..., &, where
E{w) = x;. This is a typical problem of mathematical statistics, and can be
formulated in various ways. We shall consider two of the possible formula-
tions: the problem of estimation and the problem of constructing confidence
intervals.

In the notation used in mathematical statistics, the unknown parameter
1s denoted by 8, assuming a priori that 6 belongs to the set @ = [0, 1]. We
say that the set (Q, s#, Py; 6 € @) with py(w) = 6% (1 — 6"~ * is a probabil-
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istic-statistical model {corresponding to “ r independent trials ™ with probabil-
ity of “success™ ¢ e®), and any function 7, = T{e) with values in © is
called an estimator.

IfS, =&, +---+ & and T =8, /n, it follows from the law of large
numbers that T¥ is consistent, in the sense that (& > 0)

Pl — 6]l =&} =0, n - ¢o. (1)
Moreover, this estimator is unbiased: for every §
E,TF =8, (2)

where E, is the expectation corresponding to the probability P,.

The property of being unbiased is quite natural: it expresses the fact that
any reasonable estimate ought, at least “con the average,” to lead to the
desired result. However, it is easy to see that T is not the only unbiased
estimator, For example, the same property is possessed by every estimator

_byxy + - + byx,

T;' H

where b; + --- + b, = n. Moreover, the law of large numbers (1} is also
satisfied by such ¢stimators (at least if || < K << ¢0; see Problem 2, §3,
Chapter ITI) and so these estimators T, are just as “good ™ as TF,

In this connection there arises the question of how to compare different
unbiased estimators, and which of thern to describe as best, or optimal.

With the same meamng of “estimator,” it is natural to suppose that an
estimator is better, the smaller its deviation from the parameter that is being
estimated. On this basis, we call an estimator 7, efficient (in the class of un-
hiased estimators T} if,

vgﬁ= inf'Vﬂ ?:" ﬂE@, (3)
Ty

where V, T, is the dispetsion of 7,, i.e. Es(T, — 0)°.

Let us show that the estimator T¥, considered above, is efficient. We have

v, S né(l — (i — 8
Vng=\fg(§'-)= I‘.i‘zn= ( 5 ﬂ)= ( ). (4)
n n n n
Hence to establish that T#* is efficient, we have only to show that
infv, 7, 2 14 =9 5)
Tn n

This 1s obviousfor = 0or 1. Let 6 (0, 1) and
pa(x;) = 6%(1 — @)™,

1t is clear that

pa(ew) = | palx:).

i=1
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Let us write
Ly(e} = In pg(e).
Then
L) =In8-3 x; + In(1 — )3 (1 — x)

and

dLo@) _ T —6)

o 21 — &)

Since

1 =E41 = Zpa(m).

and since T, 15 unhiased,
B=E,T, =} T{wlrdw)

After differentiating with respect to 8, we find that

(3Pa(m})
0= §§Fa{w) E' . "y )_Eﬂ[aLgém)],

(ﬂf-?a(ﬂ?))

—_ o6 _ oLy}
1= %7:1 ol) Polw) = EE[TI, a0 ]
Therefore

- Eu[m - e)ﬂ;g*”]

and by the Cauchy-Bunyakowvskii inequality,

1
1 < En[]:- — '5']'1 ' Eﬂ[ﬂf.;g:d)] »
whence
1
2
BT, — 6F = o, ©)
where

a Z
L®) = [ ng‘“)]

is known as Fisher's information.
From (6) we can obtain a special case of the Rao-Cramér inequality
for unbiased estimators T, :
1

Ve 16 ™
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In the present case

_cfoLdenP _ TXE—OQT _ no(1 -8  n
1(0) = Ee[-gg“—] = E"’[ﬁ([—_ﬂ)] B -6r s1 -6’

which also establishes (5), from which, as we already noticed, there follows
the efficiency of the unbiased estimator TF = S,/n for the unknown param-
eter 0.

2. Itisevident that, in considering T* asa pointwise estimator for &, we have
introduced a certain amount of inaccuracy. It can even happen that the
numerical value of T calculated from observabons of x,, ..., x, differs
rather severely from the true value 8. Hence it would be advisable to deter-
mine the size of the error.

It would ke too much to hope that T *{w) differs little from the true value
@ for all sample points . However, we know from the law of large numbers
that for every d > ( and for sufficiently large », the probability of the event
{|8 — T¥w)| > &} will be arbitrarily small.

By Chebyshev's inequality

V, 73 61 —6)

Pofld — TH = 6} < 2 nl

and therefore, for every A =0,

}B{l—ﬂ} 1
Pﬂ{IB—T,?IEl ” }EI—F.

If we take, for example, A = 3, then with Py-probability greater than 0.888
(1 — (1/3%) = & = 0.8889) the event

|9—Tﬂ53/ﬁl;m

will be realized, and a fortiori the event

3
16 — T3] < .
¢ 2.7n

since (1 — &) < .
Therefore

PB{IG—T§[£L}=PE{T.T'— 2 =0Ty + 2 }.‘-‘_*0.8888.

2/n 2/n 2/n

In other words, we can say with probability greater than (L8888 that the exact
value of @ is in the interval [T — (3/2\/n), T} + (3/2,/#)]. This statement
is sometimes written in the symbelic form
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3

2/ (= BRY),

where * > 889%™ means “in more than 88 Y%, of all cases.”
The interval [T# — (3/2/n), T# + (3/2./m)] is an example of what are
called confidence intervals for the unknown parameter.

6~ T¥+

Definition. An interval of the form
[ 1{02), @ a{ew)]

where ¥, () and  ,(w) are functions of sample points, is called a confidence
interval of reliability 1 — & (or of significance level ) if

Pefi(w) < 0 < yra(e)} =z 1 — 4.
for all 9 e ©.

The preceding discussion shows that the interval

A A
TF — . TF -+
[ 2./n zﬁ]
has reliability 1 — (1/2%). In point of fact, the rehability of this confidence
interval is considerably higher, since Chebyshevs ineguality gives only

crude estimates of the probabilities of events.
To obtam more precise results we notice that

6(1 — 6)
n

{m: 16— T < A } = (@ (TH n) < 6 < Yy(TH, ),

where @, = o (T% n) and ry, = §,(TF, 1) are the roots of the quadratic
equation

2
@ -T2 =601 — )

which describes an ellipse situated as shown in Figure 13.

ek e e — e

Figure 13
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Now let

S, —né
Falx) = Pﬂ{m = x}.

Then by (6.24)
1

Slip IFﬂ(x) - m(x)l = \/m

Therefore if we know a prio#i that
D<A=0<]-A<],

where A is a constant, then

1

A/n

sup | Fi(x) — ®{(x}| <

and consequently
I5'(l — )

Po{tr (TH, 1) < B< §,(TH m)} = P;,{l& — T < A

_F{|s — nf) 5,1}
nﬂ(l—ﬂ

2 — 1) —
= (2&(1) — 1) ﬂ\/;

Let A* be the smallest A for which

(20(4) — 1) — =1 - 5%

2
A/n
where 6% is a given significance level. Putting 8 = §* — (Zjﬁ\/;:}, we find
that A* satisfies the equation

1
DiA)=1-=-4.
(4) 7
For large n we may neglect the term 2/A, /n and assume that A* satisfies
SN =1 — %a*.

In particular, if A* = 3 then 1 — 4* = (L9973 .... Then with probability
approximately (L9973

(8)

X1 — 8) &1 — &)
n n

T —3 <0< T*+3

or, after iterating and then suppresging terms of order O(n~ %), we obtain
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T*_3 UGy S T* + 3 S ) (9)
v n n

Hence it follows that the confidence interval

3 3
T — — T¥ 4+ (10)
[ 2./n i z\/ﬁ]

has (for large n) reliability 0.9973 (whereas Chebyshev’s inequality only
provided reliability appreximately (.8889).

Thus we can make the following practical application. Let us carry out
a large number N of series of experiments, in each of which we estimate the
parameter £ after n observations. Then in about 99.73% of the IV cases, in
each series the estimate will differ from the true value of the parameter by
at most 3/2,/n. (On this topic see also the end of §5.)

3. PrROBLEMS

1. Letitbeknownapriorithat 8has a valuein the set &, < [, 1]. Construct an unbiased
estimator for 8, taking values only in ®,,.

2. Under the hypotheses of the preceding problem, find an analog of the Rao-Cramér
inequalily and discuss the problem of efficient estimators.

3. Under the hypotheses of the first problem:, discuss the construction of confidence
intervals for 8.

§8. Conditional Probabilities and Mathematical
Expectations with Respect to Decompositions

1. Let (£}, &7, P) be a finite probability space and
9 = {Dh“ '1Dk}

a decomposition of Q (D, e &, P(D) > 0,i=1,.... k,and Dy + «+- + D, =
£2). Also let A be an event from « and P(A|D,) the conditional probability of
A with respect to D;.

With a set of conditional probabilities {P{A[D,), i = 1, ..., k} we may
associate the random variable

k
w@) = T PAID)I () (1)

(cf. (4.5)), that takes the values P(4|D;) on the atoms of D;. To emphasize
that this random variable is associated specifically with the decomposition
%2, we denote it by

P(A|2) or P(A|2)w)
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and call it the conditional probability of the event A with respect to the de-
composition 2.

This concept, as well as the more general concept of conditional probabili-
ties with respect to a o-algebra, which will be introduced later, plays an im-
portant role in probability theory, a role that will be developed progressively
as we proceed.

We mention some of the simplest properties of conditional probabilities:

P{A + B|2) = P{A|2) + P(B|%); (2)
if & is the trivial decomposition consisting of the single set  then

P(A]€) = P(4). (3)

The definition of P{A| %) as a random variablg lets us speak of its expee-
tation; by using this, we can write the formula (3.3) for total prebability
in the following compact form;

EP(A|2) = P(4). {4)
In fact, since

k
P(A19) = 3. P(AID)In(w),
then by the definition of expectation (see (4.5) and (4.6))
[ R
EP(A|Z) = --21 P{A|D)P(Dy) = _Z,l P(AD) = P(A).

Now let # = s{w) be a random variable that takes the values y,,.... ¥
with positive probabilities:

k
@) = %, yilp{w)
=
where D; = {w: #(w) = y;}. The decomposition 2, = {Dy,..., D;} is called
the decomposition induced by 4. The conditional probability P(A4| 22, ) will
be denoted by P(A|#) or P{A|n)X¢), and called the conditional probability
of A with respect to the random variable . We also denote by P(A|n =y¥,)
the conditional probability P(A[D;), where D; = {a:5{e) = y;}.
Similarly, if ,, #32, ..., fm 21 random variables and 2,, ., ., is the
decomposition induced by 4, B4, - - -, #,, With atoms

D,-.u,yz ..... Yo {m: ?h(w} = Fag-rvrs ﬂm(m} = }’m}!

then P(A|D,, u......) Will be denoted by P(A|ny, 13, .., #,) and called the
conditional probability of 4 with respect to #7,, 1z, ..., B-

ExampLE 1. Let & and # be independent identically distributed random var-
iables, each taking the values 1 and 0 with probabilities p and g. For k =
0, 1, 2, let us find the conditional probability P(£ + n = k|#) of the event
A = {w: & + n = k} with respect 10 #.
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To do this, we first notice the following useful general fact: if £ and # ar¢
independent random variables with respective values x and y, then
P+ =2zly=5) =P +y=2) ©)
In fact,

PE+n=fln=y=bCtn=n1=))

Pl = )
_PEty=zn=y) Pl+y=2aP@ ="
P = 1) Pin=1)
=P +y=2).

Using this formulz for the case at hand, we find that
PE+n=Fkln)y=PE +n=kin =0}
+ P(£ + 5 =k|y = 1), (w)
= P = M g_qw) + P{§ =k — 1}, ().

Thus
i = 0y(0), k=10,
PC -+ 1 = k() = | Ply=ailcd) + @lg=1{@), k=1, (6)
Plig= (@), k=12
or equivalently
g(l — n), k=0,
PE+n=kip=<pl — ) +an. k=1, (M
M. k=2,

2. Let{ = &(w)bearandom variable with valuesintheset X = {x,,..., x,}:
f
£ = _lejfdj(m), A;j={w:l=x3}
j=

and let @ = {D,,..., Dy} be a decomposition. Just as we defined the ex-
pectation of £ with respect to the probabilities P(4,),j = 1,..., L

I
ES = ¥ xiP(4) @®)

it is now natural to define the conditional expectation of { with respect to @
by using the conditional probabilities P(A4;| 2), j = 1,...,L We denote
this expectation by E(¢| &) or E(¢| £2) (w), and define it by the formula

I
E¢I2)= ¥ x;P(4;] D). (9
=1
According to this definition the conditional expectation E(¢| 2) (w) is &
random variable which, at all sample points @ belonging to the same atom
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pe) —B - g
(3.1)
1) —2% . g by

(1} [(IIII

PCl2) —2— ¢ 9)

Figure 14

D, takes the same value Y |_, x;P(A;| ). This observation shows that the
definition of E(E]| %) could have been expressed differently. In fact, we could
first define E(£|D,), the conditional expectation of £ with respect to D;, by

e _E[&Ip]
ECID) = El xJP(A;IDQ( ~ By ) (10
and then define
i
E€|2)w) = ;ZIE@[D‘HE"((”} (11)

(see the diagram in Figure 14).

It is also useful to notice that E(¢| D) and E(£| 2) are independent of the
representation of £,

The following properties of conditional expectations follow immediately
from the definitions:

E(al + by| &) = aE({| 2) + bE(y| %),  aand b constants; (12)

E(£[€}) = EE; (13)
E{C| %)= C, C constant; (14)

if ¢ = I,{) then
E({] 2) = P(4]| 2). (13)

The last equation shows, in particular, that properties of conditional prob-
abilities can be deduced directly from properties of conditional expectations.

The following important property generalizes the formwula for total
probability (5):

EE(Z] @) = E&. (16)

Far the proof, it is enough to notice that by (3)
I

I I
EE((|9) =E 3 x;P(4;] D) = ¥ x,EP(4)| 2) = ;z x;P(A) = EL.
=1 J=1 =1

Let & = {D,,..., D} be a decomposition and 5 = 5(ew) 2 random
variable. We say that » is measurable with respect to this decomposition,
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or Z-measurable, if 2, < 2, i.e.n = n(w) can be represented in the form

Ly
n(w) = _Zl y:lp, (@),

where some y, might be equal. In other words, a random variable is &-
measurable if and only if it takes constant values on the atoms of Z.

ExAMPLE 2. If 2 is the trivial decomposition, 2 = {{1}, then » #s @-meusur-
able if and only if # = C, where C is a constant. Every random variable

y is measurable with respect to 2,
Suppose that the random variable g is Z-measurable. Then

E(Sn| 2) = nE(E] 2) (17
and in particular

E| 2} =n  (E(|2) =9} (18)
To establish (17) we observe that if ¢ = } [, x;1,, then

bk
=3 ¥ x;yilap,

I=1i=1

and therefore
I k
Enl @)=Y )

x;¥: P(A; D 2)

1

i
-

k
x;¥: 2, PUA;D;| D)y, (@)
m=1

(=3
L1

D Apoge A0

L

I
I ] -

I

™~ TM-

ey
n
[
[
]
[y

%;¥:P(A; D;| D), (0)

Il

x;¥iPCA;| DY p{e0). (1%)

On the other hand, since I3, = I, and Iy, - I, = 0,i # m, we obtain

. .
;1 yelp(w) |- [’; x;P(A}| @)]

Il

(| 2)

-k k!
.-21 Yilpfw) | - “El ;1 x;P{A;| D m)] I g {0}
E

f
2 X vxPAID) - Ipfe)

Il

=1
which, with (18), establishes (17).

We shall establish another important property of conditional expectations.
Let 2, and 2, be two decompositions, with 2, < 9, (9, is “finer”
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than £,). Then
E[E(S| 22)] 2,] = E(C] 2,). (20)
For the proof, suppose that
2, = {ﬂu,---:ﬂm}s 2, = {1}11-----5'2-:}-

Thenif & = 3!, x;1,,, we have
t
E({|2,) = E x_,-F’{A_,| 23)

f=1

and it is sufficient to establish that

E[P({A;| @) 2,1 = P(A;] 2,). (21)
Since

P(Aj[ 93] = ;1 P(Aﬂﬂzq)fphs

we have

E[P(Aﬂ @2” @l] = Zl P(Ajlﬂlq)P(ngl 24)
a=

n

= 2 P(4;1Dy) i: F’(”quﬂlp}fﬂm]

=1

= Y lp,s 2 PlA]D)P(Dyy| D)

=1 fa: D2g = 1yp}
_% PlA;Dzp) P(Da;)
ﬂlp q: D!qEDIp] P(ng) P(Dlp)

= gl Iﬂlp . p{AjIDlp} = P(AJ[‘@I)I

which establishes (21).
When 2 is induced by the random variables ny, ..., 4, (2= 2, ),

the conditional expectation E(| 2, ) is denoted by E{&|y,, ..., 1),
ot E(é[#y,....mNw), and is called the conditional expectation of & with

respect tO Ny, .- By
It follows immediately from the definition of E(£[%) that if £ and 5 are

independent, then

E(¢|n) = EL (22)
From (18) it also follows that

E(n) =n (23)
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Property (22) admits the following generalization. Let & be independent
of @ (i.e. for each D;e & the random variables ¢ and I, are independent)-
Then

E(¥| @) = E¢, (24)
As a special case of (20) we obtain the following useful formula:
ELE(S |71, #2)l7a] = E(C]o1y)- (23)

ExaMPLE 3. Let us find E(& -+ #|#) for the random variables ¢ and » consid-
ered in Example 1. By (22) and (23),

EC+nlp)=El+u=p+n
This result can also be obtained by starting from (3):

2
EC+ulm)= X kPE+n=klp}=pl — ) +an +2p=p + 1.
k=0

ExampLE 4, Let & and 5 be independent and identically distributed random
variables. Then

EGEIE +m) = Eglg + ) =30 (26)

In fact, if we assume for simplicity that £ and # take the values 1,2, ..., m,
wefind (1 <k <m2<1<2m)

_Pl=kttn=) PE=kn=1-k

P =klE+n=1D PE+7=D PE+n=10
_PE=RPg=1—k) PH=KP¢=1-4k
PE+n=10 PE+n=1D
=P =Kk|{+n=1).

This establishes the first equation in (26). To prove the second, it is encugh
to notice that

ZEEIE+ ) =EQGIE+ M +E@IE + ) =EL +nlE+n=¢+n

3. We have already noticed in §l that to each decomposition £ =
{D,, ..., Dy} of the finite set £ there corresponds an algebra of %) of subsets
of £2. The converse 18 also true: every algebra & of subsets of the finite space
() generates a decomposition @ {# = af 9)). Consequently there is a one-
to-one correspondence between algebras and decompositions of a finite
space € This should be kept in mind in connection with the concept, which
will be introduced later, of conditional expectation with respect to the special
systems of sets called g-algebras.

For finite spaces, the concepts of algebra and g-algebra coincide. It will
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turn out that if & is an algebra, the conditional expectation E(Z| %) of a
random variable £ with respect to & (to be introduced in §7 of Chapter II)
simply coincides with E(Z|2), the expectation of £ with respect to the de-
composition £ such that & = a 2). In this sense we can, in dealing with
finite spaces in the future, not distinguish between E(£[%) and E(E| 2),
understanding in each case that E(&[42) 15 simnply defined to be E(E| ).

4. PROBLEMS

1. Give an examplk of random variables £ and # which are not independent but for
whach,

E(Cly) = EL.
(€L (22).)
2, The conditional variance of £ with respect to & is the random variable
V(£|9) = EL( — E()1DY|2].
Show that
V& = EV{E}2) + VE(| ).

3. Starting [rom (17), show that for every function f = f(x) the conditional expectation
E(&|x) has the property

ELAmEE]7)] = E[S/ (]

4. 1et £ and i be random variables. Show that inf, E(y — F(EN? is attained for F*(£) =
E(r7| £). (Consequently, the best estimator for » in terms of £, in the mean-square sense,
is the corditional expectatien E{y [€))

5. Let &,,...,¢&,, T be independent random variables, where £,,..., £, are identically
distributed and ¢ takes the values 1, 2,..., 1 Show that il S, = &, + -+ + & 15 the
sum of a random number of the random variables,

E(Se|t) = &Ly, V(S ho) = 1VE,
and
ES, = Ez-E£,, VS§,=Etr:VE + Vi (EE)
6. Establish egnation (24).

§9. Random Walk. 1. Probabilities of Ruin and
Mean Duration in Coin Tossihg

1. The value of the limit theorems of §6 for Bernoulli schemes is not just
that they provide convenient formulas for calculating probabilities P(S, = &)
and P(4d < §, < B). They have the additional significance of being of a
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universal nature, Le. they remain useful not only for independent Bernoulll
random variables that have only two values, but also for variables of much
more general character. In this sense the Bernoulli scheme appears as the
simplest model, on the basis of which we can recognize many probabilistic
regularities which are inherent also in much more general models. _
In this and the next section we shall discuss a number of new probabilistic
regularities, some of which are quite surprising. The ones that we discuss are
again based on the Bernoulli scheme, although many results on the nature

of random oscillations remain valid for random walks of a more general
kind.

2. Consider the Bernoulli scheme (©, 7, P), where Q = {m: @ = (xy, ..., %),
x; = +1}, o consists of all subsets of Q, and p(w) = p**g" ™", Ww) =
(3 x; + n)/2. Let {{w) = x,, = 1,...,n. Then, as we know, the sequence
Eravnnn ¢, is a sequence of independent Bernoulli random variables,

P{é; = 1) =p, P{& = —1) =g, p+g=1.

Let us put §,=0, S, =&, + -+ &, 1 = k < n The sequence S,
S.... -, 8, can be considered as the path of the random maotion of a particle
starting at zero. Here §,,, = §; + £, ie. if the particle has reached the
point S, at time k, then at time &k + 1 it is displaced either one unit up {with
probability p) or one unit down (with probability g).

Let A and B be integers, A < 0 < B. An interesting problem about this
raniom walk is to find the probability that after n steps the moving particle
has left the interval (A, B). It is also of interest to ask with what probability
the particle leaves (A4, B) at A or at B.

That these are natural guestions to ask becomes particularly clear if we
interpret them in terms of a gambling game. Consider two players (first
and second) who start with respective bankrolls (— A4) and B. If £, = +1,
we suppose that the second player pays one unit to the first; if £, = —1, the
first pays the second. Then S, = &, + -+- + £, can be interpreted as the
amount won by the first player from the second (if S, < Q, this is actually
the amount lost by the first player to the second) after & turns.

At the instant & < n at which for the first time §, = B (S, = A4) the bank-
roll of the second (first) player is reduced to zero; in other words, that player
is ruined. {If k¥ < n, we suppose that the game ends at time k, although the
random walk itself is well defined up to time #, inclusive.)

Before we turn to a precise formulation, let us introduce some notation.

Let x be an integer in the interval [4, Blandfor0 < k < nlet S§ = x + S,,

T =min{0 <! < k: §§ = A or B}, (1)

where we agreetotake i = kif A < § < Bforall0 <! <k,

Foreach k in 0 < k < n and x € [A, B]. the instant <, called a stopping
time (see §11), is an integer-valued random variable defined on the sample
space Q (the dependence of 1, on £ is not explicitly indicated).
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It is clear that for all < k the set {¢: 7§ = [} is the event that the random
walk {5¥, (0 < i < k}, starting at time zero at the point x, leaves the interval
(A, B) at time L It is also clear that when ! < k the sets {w: 1§ = I, 8§ = A}
and {w:tf = I, 8 = B} represent the events that the wandering particle
leaves the interval (A, B) at time ! through A or B respectively.

For 0 < k < n, we write

A=Y A{wit =18 =4},
Q=ick
(2)
Br= ¥ fw:g=18 =B

ik

and let
adx) = P(FY),  Bu(x) = P()

be the probabilities that the particle leaves (4, B), through A or B respectively,
during the time mterval [0, k). For these probabilities we can find recurrent
relations from which we can successively determine o,(x), ..., «{x) and

By(x), - .., Bix).
Let, then, A < x < B. It is clear that cg(x) = fo(x) = 0. Now suppose
1 < k < n. Then by (8.5),

Bix) = P(B}) = P(%L[ST = x + 1)P, = 1)
+ P(AEIST = x — DP(E, = —1)
=pP(&ISi=x+ D+ gP&(Si=x-1. ()
We now show that
P(B(S =x + 1) =PI, PEBIS] = x — 1) = P&
Teo de this, we notice that #¥ can be represented in the form

BrE={wixx+ &, x+ &+ -+ E)eB),
where Bf is the set of paths of the form

(2, % + Xggeury X 4+ X1+ -2

with x;, = +1, which during the time [0, k] first leave {4, B} at B (Figure 15).
We represent B in the form Bi**! + By*~ 1, where B{**! and By~~!
are the paths in Bf for which x; = +1 or x; = —1, respectively.
Notice that the paths{(x, x + 1, x + 1 + %5, ..., x 4+ 1 4+ %3 4+ -+ + x)
in Bi~*! are in one-to-one correspondernce with the paths

':X+1,x+1+x1,...,x+l+x2,,__,x+1+x2+..,+xk)

in B* 3, The same is true for the paths in Bf*~ . Using these facts, together
with independence, the identical distribution of £y, ..., &, and (8.6), we
obtain
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>
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h.:tr-_____-__-

A

Figure 15, Example of & path from the set 5.

PEEIST=x+ 1)
=P(=@E|§1 = 1)
=P{(x,x + & x+ & 4+ -+ E)e B, =1}
—P{x+Lx+1+&, . .x+ 14 E +--- +&)eBF]
=P+ Lx+ 1+ &y X+ L+ &y ooe+ e B
= Pt
In the same way,
P(B31ST = x — 1) = P(#"1)
Consequently, by (3) with x&(4, B)and k < n,

Biu(x) = ple—1(x + L} + gBp—1{x — 1}, (4}
where
B(BYy=1 p{A)=0, 0=<!<n (5)
Similarly
a(x) = poy_1{x + 1} + gag_1(x — 1) (6)
with

o (A) = 1, a(B) =10, D=<l=<n

Since ap(x) = Polx) = 0, x € (A, B), these recurrent relations can (at least
in principle) be solved for the probabilities

ay(x), ..., &fx} and fy(x}),..., f{x}.

Putting aside any explicit calculation of the probabilities, we ask for their
values for large n.

For this purpose we¢ notice that since @ _, < @;, k < n, we have
B (X) = Bu(*) = 1. It is therefore natural to expect (and this is actually
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the case; se¢ Subsection 3) that for sufficiently large n the probability §,(x)
will be close to the solution Kx) of the equation

Bx) = pf(x + 1) + gx — 1) (7)
with the boundary conditions
fBy=1, fA)=0, (8)

that result from a formal approach to the limit in (4) and (5).

To solve the problem in (7) and (8), we first suppose that p % . We see
gasily that the equation has the two particular solutions e and b(g/pY*, where
a and b are constants, Hence we look for a solution of the form

Kx) = a + b(a/pY". (9)
Taking account of (8), we find thatfor A < x < R

(a/p)* — (g/pY*
(a/p)* — (afp)*

Let us show that this is the only solution of our problem. It is enough ta
show that all solutions of the problem in (7) and (8) admit the representa-
tion (9).

Let fi(x) be a solution with f(4) =0, f(B) = 1. We can always find
constants & and & such that

&+ blg/pY* = B(4), &+ Ba/py"*' = B4 + D).
Then it follows from (7} that

A+ 2)=da+ bla/py**?

B(x) =

(10}

and generally
B(x) = & + bg/p). .

Consequently the solution (10) is the only solution of our problem.
A similar discussion shows that the only solution of

ofx) = pu(x + 1) + gu(x — 1), xe(A, B) (11)
with the boundary conditions
a(A) =1, w(B) =0 (12)

18 given by the formula
_ (p/a)® — (g/p)”
= ol — ey

If p = g = &, the only solutions S(x) and ofx) of (7), (8) and (11), (12} are
respectively

A<x<B. (13)

x— A
B— A

fx) = (14)

and



iR I. Elementary Probability TheotY

B —x
oe{x) B=A (15)
We note that
a(x) + Blx) = 1 (16)

for0<p=< 1.

We call «(x} and f{x) the probabilities of ruin for the first and second
players, respectively (when the first player’s bankroll is x — A, and the second
player's is B — x) under the assumption of infinitely many turns, which of
course presuppoeses an infinite sequence of independent Bernoulli random
variables £, £,, ..., where £; = +1 is treated as a gain for the first player,
and & = —1 as a loss. The probability space ({2, ¢, P) considered at the
beginning of this section turns out to be toe small to allow such an infinite
sequence of independent variables. We shall see later that such a sequence
can actually be constructed and that f(x) and edx) are in fact the probabilities
of ruin in an unbounded number of steps.

We now take up some corollaries of the preceding formulas.

Iif we take 4 = 0,0 < x < B, then the definition of B(x) implies that this
is the probability that a particle starting at x arrives at B before it reaches 0.
It follows from (10) and (14) (Figure 16) that

x/B, p=gq=3,

o
A=) (L—j;;;ﬂ T an

Now let g > p, which means that the game is unfavorable for the first
player, whose limiting probability of being ruined, namely o = «(0), is given
by

@/m® —1

* T @iy — @yt

Next suppose that the rules of the game are changed: the original bankrolls
of the players are still (—A) and B, but the payoff for cach player is now 4,

ﬂix}l

>
x B

Figure 16. Graph of fi(x), the probability that a particle starting from x reaches B
before reaching 0.
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rather than 1 as before, In other words, now let P(&; = D = p, P(&; = —D =
¢ In this case let us denote the limiting probability of ruin for the first player
by oyy,. Then

w1
27 (a/p?® — g/

and therefore

N '/
V2T {a/p) + (afpy!

<,

ifg > p.

Hence we can draw the following conclusion: if the game is unfavorable
to the first player (i.e., q > p) then doubling the stake decreases the probabiity
of rtiin.

3. We now turn to the question of how fast ¢ (x) and £ _(x) approach their
limiting values e(x) and f(x).
Let us suppose for simplicity that x = 0 and put

oy =00y  B=0A0), p=1—(+ )
It is clear that
v, =P{A <8 <B0<k=<n]
where {4 < §, < B,0 < k < n} denotes the event
| {4 <S8, <B}

Q=k<n

Let n = ym, where r and m are integers and
Ci =£1 + - él‘l‘l'l

...........................

Then if C = | A| + B, it is easy to see that
{A = Sk {Brl ﬂk irn‘l} = {ICI[ < C!---!Igrl < C}:
and therefore, since Ly, ..., {, are independent and identically distributed,

fa 2 P{lGl < C.o 6] < CY = EP{IE:I < C = (P{LI<C)y. 18)

We notice that V¢, = m[1 — (p — g)*]. Hence, for 0 < p < 1 and suffi-
ciently large m,

P{I{,| < C} <4, {19)

where g, < 1, since V{; < Crif P{I{.| 5 C} = 1.
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If p=0 or p=1, then P{|{,] < C} =0 for sufficiently large m, and
consequently (19) is satisfied for0 < p < 1.
1t follows from (18) and (19) that for sufficiently large n

v < &, (20)

where 6 = g]™ < 1.
According to (16}, o + § = 1. Therefore

(e — ) + (B — B} = v,
and since o > o, B > B,, we have
C<a—o, <y, <6,
0xf—f. ==, ¢<1,
There are similar inequalities for the differences w(x) — e (x) and f(x) — f.(x).
4. We now consider the question of the mean duration of the random walk.
Let my(x) = Et; be the expectation of the stopping time 1Lk < n. Pro-

ceeding as in the derivation of the recurrent relations for f;(x), we find that,
for x (4, B),

mx)=Ex= ) IPE=1D
1sighk

= Y I-[pPEE =118 = 1} + gP(F = 1|& = —1)]
15k

= Y L[pP(tt =1 - D+ gP@l =1-1)]
1glsk

= Y (+ DpPE =D +qP(i=] = 0]
Ngigk=—1

= prtp_ (% + 1) + gmy_4(x — 1)
+ Y [Pl =D+ gPEI! = D]

Q=igk—1
=pmy_y{x + 1) + g (x — 1} + 1.

Thus, forx e (4, Byand 0 < k < r, the functions my(x) satisfy the recurrent
relations

mfx} =1 + pmy_ (x + 1} + gmy_,(x — 1), (21)
with mg(x) = 0. From these equations together with the boundary conditions
my(A) = m(B} =0, (22)

we can successively find m,(x), ..., m(x).
Since n{x) < My, (x), the limit

mix) = lim m,(x)

H* @
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exists, and by (21) it satisfies the equation
m({x) =1+ pmix + 1) + gm{x — 1) (23)
with the boundary conditions
m(A) = m(B) = Q. (24)
To solve this equatton, we first suppose that
m(x) < oo, x € {4, B). (25)

Then if p # g there is a particular solution of the form x{g — p) and the
general solution (see (9)) can be written in the form

m[x}=i+a +b(g) .
a—=r i
Then by vsing the boundary conditions m{4) = m(B) = 0 we find that

m(x) = p—iq (BA(x) + Aa(x) — x], (26)

where f(x) and e(x) are defined by (10) and (13). If p = g = 4, the general
solution of (23) has the form

m(x) = a + bx — x%,
ahd since m{4A) = m(B) = ( we have
m(x) = (B — x)(x — A). (27)

It follows, in particular, that if-the players start with equal bankrolls
(B = —A), then

m(0) = BZ.

If we take B = 10, and suppose that ¢ach turh takes a second, then the
(limiting} time to the ruin of one player is rather long: 100 seconds.

We obtained (26) and (27) under the assumption that m(x) < <o, x (A, B).
Let us now show that in fact m(x) s fintte for all x € (4, B). We consider only
the case x = 0; the general case can be analyzed similarly.

Let p = g = 3. We introduce the random variable S, defined in terms of
the sequence S,, 84, - .-, S, and the stopping time ¢, = t5 by the equation

S = 2 Sid g, =ri), (28)
k=0
The descriptive meaning of 8, is clear: it is the position reached by the

random walk at the stopping time 7,. Thus, if 7, < n, then §, = 4 or B;
ift,=nthen A <5, <B
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Let us show that whenp = g = %,
ES, =0, (29)
ES? = Ex,. (30)
To establish the first equation we notice that

ES.. = Z{IE [Sefg, = k}(m)]
k=

= i ELS.1 {rn=k](w)] + i EL(S: — S o, =si{20)]

k=D k=0

= ES, + kZuE[(Sk — S M o, =ny(€0)], (31)

where we evidently have ES, = 0. Let us show that

::EQE[(SE — S [:n=k:»(ﬂ-‘)] = 0.

To do this, we notice that {t, > k} ={A < 8§; <8B5,..., A < 5, < B}
when 0 <k < n The event {4 < §, < B,..., A < 8, < B} can evidently
be written in the form

{w: (L, .-, & e A, (32)
where A, is a subset of { —1, + 1}*. In other words, this set is determined by
Just the values of &,, ..., £y and does not depend on &4y, ..., &,. Since

{t. =k} = {1, > k — I\ {7, > &},

this 1s also a set of the form (32), It then follows from the independence of
&rs--ny by and from Problem 10 of §4 that the random variables §, — S, and
I, 1y are independent, and therefore

E[(sn - Sk)j{t,,-k]] = E[Sn - Sk] . EI[:,,-::;. = 0.

Hence we have established (29).
We can prove (30) by the same method:

n

Y ESEl iy = ZDE([S" + (5 = Sl =)

k=0 k=

ES?
= kgﬂ[ESIEI{Tn=k] + 2ES,(Sx — Sy, =11
+ E(S" - Sk)zI{tn=k}] = ES;% - E E(Sr: - Sk:lzf{tn=k]
k=0

—n— ¥ (- PG, =) = 3 kP(s, = k) = Ex,.
k=0 k=0
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Thus we have (29) and (30) when p =g = 3. For general p and g
(¢ + g = 1) it can be shown similarly that

ESt,, = (P - Q) 'ETm (33)
E[Sf.. — Ta- Egl]z = vgl -E1,, (34)

whereE¢, =p—g, V&, =1 — (p — ¢)*.

With the aid of the results obtained so far we can now show that
lim,,, , M (0) = m(() < oo.

If p = q = £, then by (30)

Et, < max(4?, B?). (35)
If p # g, then by (33),
Et, < TM, (36}
lp — gl

from which it is clear that m(0} < oo.
We also notice that whenp =g =4

Et, = ES} = A%-a, + B f, + E[SM a5, <n1]
and therefore
Az -y + Bz ) ﬂn = ET“ = AZ"‘I“ + Bz' ﬂn -+ mﬂx(Az, Bz}'?n.

It follows from this and (20) that as » — oo, Et, converges with exponential
rapidity to

B _p._ 4 _ a8

— 42 2p _ 42,
m(0) = A% + B*p = A*——— T

There is a similar result when p # g:

il
Er, — n(0) = EA—t-ﬁ—-, exponentially fast.

5. PROBLEMS
1. Establish the following generalizations of {33) and (34):

ES:. = x + (p — g)ETT,
E[Srg T -Eﬂf,]z = V¢, - Exy.

2. Investigate the limits of a(x), f(x), and m{x) when the laval A | —oo.
3. Let p = g = 3 in the Bernoulli scherne. What is the order of E|S,,| for large n?
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4. Two players edch toss their own symmetric coins, independently. Show that the
probability that each has the same number of heads after # tosses is 272" Y 3-o (Co)*-
Hence deduce the equation 3 1_, (C¥)? = C%,.

Let o, be the first time when the number of heads for the first player coincides with
the number of heads for the second player (if this happens within n tosses;o, = 7 + 1
if there is no such time). Find Eminfe,,, #).

§10. Random Walk. II. Reflection Principle.
Arcsine Law

1. As in the preceding section, we suppose that &, £,, ..., &, 15 2 sequence
of independent identically distributed Bernoulli random variables with

P;=1)=p, Pl¢=-1)=4g
Sk=§l+"'+§k: IEkEZH, S.|]=0.
We define
Oz, = min{l <k < 2n: §, = 0},

putting 64, = 00 if 5, # 0for 1 <k < 2n.

The descriptive meaning of a,, is clear: it is the time of first return to
zero. Properties of this time are studied in the present section, where we
assume that the random walk is symmetric, ie. p = g =4

For 0 < k < n we write

tizy = P(Sz = Q), Sz = Ploy, = 2K). (1}
It is clear that wy, = 1 and
gy = Chy - 272

Qur immediate aim is to show that for 1 < k < n the probability f,, is
given by

1
far = ﬁ Hak-1)- (2)

It is clear that
{Jzn = 2&} = {Sl ?é G,Sz ?E 0,.-4-,32;‘_1 ——,éﬂ, SII: =0]’
for 1 < k < n, and by symmetry

S =P{S; #0,...,85_1 #0,8,, =0}
=2P{S, >0,...,854-1>0,8,, = 0}. (3)
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A sequence (So, ..., S,) is called a path of length k; we denote by L,(A)
the number of paths of length k having some specified property 4. Then

Ju=12 Z Ly, > 0,....85 1> 0,85 =0,
(G2 & 14 -4v4 Op)
and Spp41 = Gagt1sv--> 520 = Gogyy + - + ﬂzn}'z_zn
=28, > 0, ..., Sppmy > 0, 85, = 0). 272, (4
where the summation is over all sets (a5, (, ..., 83,) Witha; = 1 1.

Consequently the determination of the probability £, reduces to calcula-
ting the number of paths L,,(S, > 0,...,8;,_; > 0, S5, = 0).

Lemma 1. Let g gnd b be nonnegative integers, a — b > 0 and k = a + b.
Then

a—>b
k

Lk(S,}ﬂ,...,Sk_l}U,Sk=a—b]= Cﬂ. (5)

PRrROOF. In fact,

LyS;>0,...,8_,>0,8§ =a—b)
=L(8=18,>0,...,8 ,>0S8=a—1)
=LiS; =1,8=a—-6— LS, =1,8.,=a—b;
and 3i,2 < i<k — 1,such that §; < 0). (6)

In other words, the number of positive paths (5,, S;, .. -, S,) that originate
at (1, 1y and terminate at (k, a — b) is the same as the total number of paths
from (1, 1) to (k, a — b) after excluding the paths that touch or intersect the
time axis.*

We now notice that

LS, = 1,8, =a—b;31,2<i<k— 1,such that §; < Q)
=L(S, = —-1.8,=a -5, {7

i.e. the number of paths from a = (1, 1) to § = (k, a — b), neither touching
nor intersecting the time axis, is equal to the total number of paths that
connect &¥ = (1, —1) with B. The proofl of this statement, known as the
reflection principle, follows from the easily established one-to-one corre-
spondence between the paths A = (S, ..., 82 5415 .- - - 5) Joining o and
f.and paths B = (—8,,..., — 8., Soui1s - - -, Sy joining ¢* and f§ (Figure 17);
a is the first point where 4 and B reach zero.

* A path (S,, ..., 8)iscalled positive (o1 nonnegative) if all §; > 0(S; = 0); a path is said to
torch the time axis it 8; > Oorelse 5, < 0, for ! < j< k, andthereisan i, I 5 i £ &, such
that §; = 0; and a path is said 1o ffersect 1he 1ime axis if there are two times 7 and § such that
S;>0and 8; < O
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Figure 17. The refiection principle.

From (6) and (7) we find
Lk(Sl} U,-.-,Sk_l}{},sn = — b)
=L(S,=L8=a-b— L(§ = —1, 8 =a—28
a—b
=Gl - Gl ==~ G,
which establishes (5).
Turning to the calculation of f,, we find that by (4) and (5) (with a = k,
b=k — 1),
fzk = ELH(SI e 0,. e SE.F:—]. - U, SZII: == 0)' 2_2"
=2L5-1(8;>0,..., 855, =1)-27%

1 1
Cgk— 1 = A7 Ung=-1)-

—_ Lk
=22 2k — 1 2k

Hence (2) is established.
We present an alternative proof of this formula, based on the following
observation. A straightforward verification shows that

1
% Haw-1) = Hpg-1) — Uzps (8)

At the same time, it 1s clear that
{o2n = 2k} = {03, > Ak — D\ {02, > 2k},
o2, > 20} = {8, #0,..., 84 # 0}
and therefore
{2, =2k} = {817 0,..., Sop—1y # ON\{51 #0,..., 85, # 0}
Hence

.fzi'r.= F{Sl -',éﬂ,...,Sz{k-” #D} - P{Sl ?Eﬂ,___,SZE:f_-D},
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Figure 18

and consequently, because of (R), in order to show that f;; = (/2K 25— 1y
it is enough to show only that

Lo(S, #0,..., 83 % 0) = Ly (S5 = 0). ()
For this purpose we notice that evidently
L8170, , 8 #0) =2L,,(8, > 0,..., 853 > 0).
Hence to verify (9) we need only establish that
2L(8, = 0,...,85 >0 = L(S, = 0: ceea Sy 2= 0) (10}
and
Lo(Sy 2 0,..., 85 2 0) = Lyy(S2 = 0). (11)

Now (10) will be established if we show that we can establish a one-to-one
correspondence between the paths A = (§,,..., $;;) for which at least one
S; = 0, and the positive paths B = (5,, ..., §3.)-

LetA =(S,, ..., 5 )beanonnegative path for which the first zero occurs
at the point g (ie, S, = 0). Let us construct the path, sterting at (a, 2),
(S, +2,8,., +2,...,8, + 2) (indicated by the broken lines in Figure 18).
Then the path B = (S, ..., Sa_ 1, 5. + 2, ..., 83, + 2) is positive.

Conversely, let B = (S,, ..., S,;) be a positive path and b the last instant
at which §, = 1 (Figure 19). Then the path

A =(Sl,....,Sb, Sb-l'l _2!""!Sk._2)

[ NS

Figure 19

I
|
b
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is nonnegative. It follows from these constructions that there is a one-to-one
correspondence between the positive paths and the nonnegative paths with
at least one §; = 0. Therefore formula (10) is established,

We now establish (11). From symmeitry and (10) it is enough to show that

LS. >0, 8, >0+ LS, =0,..., 8, =0and 3],
l EEE 21{, Such thﬂt S:=0} = sz(SZk = 0}.

The set of paths {S,;, = 0) can be represented as the sum of the two sets
%, and ¥,. where &, contains the paths (Sg, ..., S,.) that have just one
minimum, and ¥, contains those for which the minimum is attained at at
least two points.

Let C, e €, (Figure 20) and let ¢ be the minimum point. We put the path
Cy = (8¢, 81, ..., §3;) in correspondence with the path €% obtained in the
following way (Figure 21). We reflect (S;, S,, ..., S;) around the vertical
line through the peint I, and displace the resulting path to the right and
upward, thus releasing it from the point (2%, 0). Then we move the origin to
the point (I, —m). The resulting path CT will be positive,

In the same way, if C; € ¥, we can use the same device to put it into
correspondence with a nonnegative path C%.

(2K, 2m)
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Conversely, let C¥=(8, > 0,...,85;,>0) be & positive path with
S2x = 2m (see Figure 21). We make it correspond to the path C; that is
obtained in the following way. Let p be the last point at which 5, = m.
Reflect (S, ..., S,,,) with respect to the vertical line x = p and displace the
resulting path downward and to the left until its right-hand end coincides
with the point (0, 0). Then we move the origin to the left-hand end of the
resulting path (this is just the path drawn in Figure 20). The resulting path
C, =(S8¢,--.,53) has a minimum at S,; = 0. A similar construction
applied to paths (S, 2 0,..., 8, = 0and 3i, 1 < { < 2k, with §; = 0) leads
to paths for which there are at least two minima and §,; = 0. Henhce we have
established a one-to-one correspondence, which establishes (11).

Therefore we have established (9) and consequently also the formula
Jar =tz 1y — = (L/2kYez - 45-

By Stirling’s formula

vap = Cly 272 ~ > k— .

hE
]

Therefore
1

fzn"’m,

Hence it follows that the expectation of the first time when zero is reached,
narnely

Emin(o,,, 2n) = 3 2kP(c4, = 2k) + 2mu,
=1

n
= Z Uak— 13 + 2‘"‘”2&1
k=1

can be arbitrarily large.

In addition, Y7L, tag—1, = o0, and consequently the limiting value of
the mean time for the walk to reach zero (in an unbounded number of steps)
I8 ©0.

This property accounts for many of the unexpected properties of the
symmetric random walk that we have been discussing. For example, it
would be natural to suppose that after time 2»n the number of zero net scores
in a game between two equally matched players (p = g = 3), i.e. the number
of instants i at which §; = 0, would be proportional to 2n. However, in fact

the number of zeros has order \/Z_n (see [F1] and (15} in §9, Chapter VII).
Hence it follows, in particular, that, contrary to intuition, the “typical” walk
(Sg, Sy, - ... §,) does not have a sinusoidal character (sa that roughly half the
time the particle would be on the positive side and half the time on the negative
side), but instead must resemble a stretched-out wave. The precise formulation
of this statement is given by the arcsine law, which we proceed to investigate.
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2. Let Py, 5, be the probability that during the interval [0, 21] the particle
spends 2k units of time on the positive side.*

Lepma 2. Let iy = 1 and 0 < &k < n. Then
Pak,2n = gt~ U2n- 2 (12)

ProoF. [t was shown above that f3, = #34-1, — lz. L&t us show that

k

Hay = Z Sare Uik —ry- (13)

rel
Since {8,, = 0} < {0,, < 2k}, we have
Sy =0} = {84 =0t n{ry, <2k} = 3 {Su=0}n {73, =2i}.
1<isk
Consequently

Hy = P(S3, =0) = Z P(S;; =0, a5, = 20)

1=i=<k

= ¥ P(Su = Oloy = 2DPlas, = 20).

1=i=k

But

P(S.. = Oo,, = 2D =P8, =0[8; #0,..., 8541 # 0,5, =0}
=P{S,; + (Egey + -+ &) =0[851 #0,...,855-1 #0, 85, =10)
= P8y + (Egpeq + -+ + £ =018 =0)
=Py +-+ L =0= P[SZ[I:—I} = 0.

Therefore
= EI P{S.,—n = OP(o;, =2
Ugg L FTer { 2(k— 1) VP (o, »

which establishes (13).

We turn now to the proof of (12). It is obviously true for k = Qand k = »n.
Now let 1 < k < n — 1. If the particle is on the positive side for exactly 2k
instants, it must pass through zero. Let 2r be the time of first passage through
zero. There are two possibilities: either 5, = 0, & < 2r,or §, < 0,k < 2r,

The number of paths of the first kind is easily seen to be

2 2~ —1_92
(1‘1‘2 f2)-2 * ﬂsz—r},z{n—r; =32 "'er‘sz—rL:ztn—r:--

* We say that the particle is on the positive side in the interval [m — 1,m] if one, at least, of the
values S, and 5 is positive.
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The corresponding number of paths of the second kind is

3-2%"- for* Pay, 2nent-
Consequently, for 1 <k <n — 1,

1 &
Z flr' Plk.ztn-r}' (14)

1 k
PZA:.Z::- == Zflr'PZIk—r}.Eln—r} + 5
2r=l 2r=1

Let us suppose that Py, 5, = tigg -tz holdsform =1,...,n — 1. Then
we find from (13) and (14) that

k k
_ 1 1
sz.zu = Tap—2k- Z f:.—*”n—zr -+ Filaz E er *Uay_2p— 2%

r=1 r=1
= 'iﬂln-lk “Hy + ‘5‘“1& “Uan— g5 = Uap - Hap—3g-
This completes the proof of the lemma.

Now let y(2n) be the number of time units that the particle spends on the
positive axis in the interval [0, 2x]. Then, when x < 1,

SO

L XxXr= Z P zn-
2 In } {k, 172 < (2kj2n) = x} "

Since

as k — oo, we have

P n = Uagp Uy ~ Y ————,
k2 2k 2(n—k) k(n — k}

ask - ccand v — & — o,
Therefore

1 % ky |42
Z PZ‘C-ZH_ Z —"'| - 1 —_—— —}0: n— oo,
fi: 12 <{Zkf2m) Sx} fk: Y2<{Zkfjar)=x} AR | W H

whence

5 ; 1 r dt 0
L —+ fl—= 00,
{k:1j2 <{2k/2n}=x} .2 T Jyyz ,:"t(l _ i}

But, by symmetry,

Py an— '%
(k:kfn< 1423
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and

Lz \/r(l——r_ == arcsm Jx =

Consequently we have proved the following theorem.

Theorem {Arcsine Law). The probability that the fraction of the time spent
by the particle on the positive side is at most X tends to 2n” ! arcsin /*:

Y. Py o.— 2 ! arcsin Jx (15)
{ic:fefm = x}

We remark that the integrand p(t) in the integral

1 J" dt
T Jo {1l — 1)
represents a U-shaped curve that tends to infinity as t — O or L.
Hence it follows that, for large n,

P{O < @ = ﬂ.} {2 (2n} <%+ ﬁ}

i.e., it is more likely that the fraction of the time spent by the particle on the
positive side is close to zere or one, than to the intuitive value 4.

Using a table of arcsines and noting that the convergence in (15} is indeed
guite rapid, we find that

{"”'(;”) < 0024} ~ 01,
o) o
0 o} o
{”(z”) <0, 2} ~ 0.3,
3
P{]’(Z") < n.ss} = 0.6.
n

Hence if, say, n = 1000, then in about one case in ten, the particle spends
only 24 units of time on the positive axis and therefore spends the greatest
amount of time, 976 units, on the negative axis.

3. PROBLEMS
1. How fast does Emin(ay,, 24) — c0 as H — c0?

2. Lett,=minfl <k <n 8, =1} wherewetake i, =c0 f S, <1 for 1 €k < n
What is the limit of Emin(t,. 0} 48 5 — o for symmetric {p = g = 1) and for un-
symmetric {p # g) walks?
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§11. Martingales. Some Applications to the
Random Walk

1. The Bernoulli random walk discussed above was generated by a sequence
$1s - -1 €, Of independent random variables. In this and the next section we
introduce two important classes of dependent random variables, those that
constitute martingales and Markov chains.

The theory of martingales will be developed in detail in Chapter VIL
Here we shall present only the essential definitions, prove a theorem on the
preservation of the martingale property for stopping times, and apply this
to deduce the “bhallot theorem.” In turn, the latter theoremn will be used for
another proof of proposition (10.5), which was obtained above by applying
the reflection principle.

2 Let ({2 7, P) be a finite probability space and 2, < 2, X---1 %2, a
secquence of decompositions,

Definition 1. A sequence of random variables &,, ..., &, is called a martingale
{with respect to the decomposition @, X 2, X --- KX D f

(1) &, is 2,-measurable,
(2) B¢, [2) =&, lsksn—1,

In order to emphasize the system of decompositions with respect to which
the random variables form a martingale, we shall use the notation

&= (& Pdrgusns (D

where for the sake of simplicity we often do not mention explicitly that
1<k<n
When 2, is induced by &, ..., &,, Le.

2, = gal.....aﬁs

instead of saying that £ = (£,, %) is a martingale, we simply say that the
sequence £ = (£,) is a martingale.
Here are some examples of martingales,

ExaMmpiE 1. Let #,, .. -, 5, be independent Bernoulli random variables with

POR = 1) = Pln = —1) = 4,
Su=m 440 ad 9,=9

BLesa ME"

We observe that the decompositions £, have a sirnple structure:

91 = {D+= D_}:
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where
DY = {win, = +1}, D™ ={w:n = —1},
D, ={D"*, D", D77, D77},
where
D™ ={winy =+l,ga=+1} ..., 07" ={wig = -1 = —1},
etc.

It is also easy to see that 2, .. = Ds,..... 5
Let us show that (S, 2,) forms a martingale. In fact, S, is 9,-measurable,
and by (8.12), (8.18) and (3.24),

E(Sy+1[2:) = {5k + m1 |20
= E(Sx| %) + Bl al20) = 8 + E?‘:-‘nﬂ = 5.
I we put S, = 0 and take D, = {€}, the trivial decomposition, thett the
sequence {Sy, Do <k<x also forms a martingale,

ExampLE 2. Let ny, ..., », be independent Bernoulli random variables with
P, = 1)=p, Plij = —1) = g. If p # g, each of the sequences & = (&,)
with

5
¢k=(§) . ¢ = S — k(p — q), where S, =ny + <+ 1,

is a martingale.

ExAMELE 3. Let »# be a random variable, £, = --- = &, and

& = E(n] ). 2)

‘Then the sequence ¢ = (&,, 2,) is a martingale. In fact, it is evident that
E(y| 2,) is &,-measurable, and by (8.20)

E(&xi1|B) = E[E(H 241102 ] = E2,) = &,.

It this connection we notice that f £ = (§,, £,) is any martingale, then
by (8.20)

‘ft = E(*fk+1|@k) = E[E(¢k+2|@k+l}|@k]
=E(,42(2) =--- = E(&,[2:). (3)

Consequently the set of martingales & = (£, ) is exhausted by the
martingales of the form (2). (We note that for infinite sequences ¢ —

(€, D=y this is, in general, no longer the case; see Problem 7 in §l of
Chapter VIL)
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EXAMPLE 4. Letyy, . ... 5, be asequence of independent identically distributed
random variables, Sy =9, +---+m, and @, = D, By = D5 5 .-,
%, = Ds, 5._,....5,- Let us show that the sequence & = (£,, #,) with

S, S,
gl =" ‘52 = g

S,i1-
» _m,___,gk_¢ L& =5,

T a4 1 -k

is a martingale. In the first place, it is clear that @, < @,., and &, is 2,~
measurable. Moreover, we have by symmetry, forj <n —k + 1,

E(n;[2:) = E(m11 2,) (4)
(compare (8.26)). Therefore

n—k+1

(r—k+ DEMI2) = 3 E(19D) = E(Suersal B = Sucisns
i=1
and consequently

. Sn—k+l _
&k = P—k+1 E(r1l 24),

and it follows from Example 3 that £ = (&,, ©,) is a mariingale.

Rematk. From this martingale property of the sequence £ = (&, @)y crens
it is clear why we will sometimes say that the sequence (S, /&), <, fOrms a
reversed martingale. (Compare problem 6 in §l of Chapter VIL)

ExAmpLE 5. Let 14, .. ., 1, be independent Bernoulli random variables with

Po= +1) =P = —1) =4,

S.=m +---+n,.-LetAand Bbeintegers, A < 0 < B. Then with0 < A <
n/2, the sequence & = (&, &) with &, = 9D s and

& = (cos )k exp{il(s,c _B ; A)} (5)

is a complex martingale (ie., the real and imaginary parts of &, form
martingales).

3. It follows from the definition of a martingale that the expectation E£, is
the same for every k:

E&, = EE,.

It turns out that this property persists if time & is replaced by a random
time.
In order to formulate this property we introduce the following definition.

Definition 2. A random variable ¢ = t{w) that takes the values 1, 2, ..., nis
called a stopping time (with respect to a decomposition (2,); cgxn» @1 =
DX 4,) i for k=1,...,n the random variable [,_(w) is F-
measurable.
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If we consider @, as the decomposition induced by observations for k
steps (for example, @, — @,, ., the decomposition induced by the
variables #y, - ., 1), then the @,-measurability of f;,_,(w) means that the
realization or nonrealization of the event {t = k} is determined only by
observations for k steps (and is independent of the “future™).

If &, = o(2,), then the @,-measurability of I,._ (e} is equivalent to the
assumption that

{t=k}eB,. (6)
We have already introduced specific examples of stopping times: the times

T3, 63, introduced in §§¢ and 10. Those times are special cases of stopping
times of the form

t =min{0 < k < n: &, € A},
o =min{0 < k < n: & e A},

which are the times (respectively the first time after zero and the first time)
for a sequence £, £,, .. ., &, to attain a point of the set 4.

(7

4, Theorem 1. Let & = (&, D)) <1 <n D€ a martingale and t a stopping time
with respect to the decomposition (B)y ca<n- Then

E(Z:12,) = &4, (8)
where
é: = Z éi‘:‘rlz=k}(m) {9)
k=1
and
ES. = EL,. (10}

Proor (compare the proof 0f (9.29)). Let D € %, . Using (3) and the properties
of conditianal expectations, we find that

E (6: { D)
P(D)

1 .
@) .

;Em(fn|gr}‘f[:er}'fﬂ]

E(S.|D) =

I

;E(Q f=y-Ip)

]_'U

I
l

T

(D),
D);;E [ECET1e- gy - Ip| 2]

It

n
—

M:

I

E[Caliean - In]

LY
-

D

o

=1

j—

— T_D) E(fn.rp) = E{'sn ID)v
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and consequently
E(S:12,) = E(5,121) = 61

The equation EE, = E£, then follows in an obvious way.
This completes the proof of the theorem.

Corollary. For the martingale (S, 21 550 Of Example 1, and any stopping
time T {with respect to (%,)) we have the fornmilas

ES,=0, ES?=Er (11)

Enown as Wald's identities (cf. (9.29) and (9.30); see also Problem 1 and
Theorem 3 in §2 of Chapter VII).

5. Let us use Theorem 1 to establish the following proposition.

Theorem 2 (Ballot Theorem). Let #4, ..., 4, be a sequence of independent
identically distributed random variables whose values are nommegative integers,
Sc=m+ -+, 1 2k <n Then

+
PIS, < k forallk, 1 <k < n[5,} = (1 —%) , (12)
where at = max(a, 0).

PROOF. On the set {ew: S, > n} the formula is evident. We therefore prove
(12) for the sample points at which 3, < n.

Let us consider the martingale £ = (£, 9 <x<n introduced in Example
4withé, =S5, fn+1—-—Kand 2, =D .  s.

We define

r=min{l <k <n: & =1},

taking t=n on the set {& <1 for all k such that 1 £k <n} =
{max, <, (S0 < 1}. Tt is clear that £ =&, =8, = 0 on this set, and
therefore

{maxﬂf:1}={maxﬂ{l,s,,{n}g{ft=ﬂ}. (13)
1=xi=n ! L=i=h I
Now let us consider those outcomes for which simultaneously

Max, <8y = 1and S, < n. Write ¢ = n + 1 — ©. It is easy to see that
¢ =max{l <k <n: S, =k}

and therefore (since S, < n) we have o <n, S, 20, and §,,, <o + 1.
Cﬂnsﬁqu!‘.ﬂlﬂy Hot+1 = Sﬂ+1 - Sﬂ- o (ﬂ'- + 1} — o= 1, i.e. Hetr1 — 0. Therﬂ-
forea <85,=8,,; <o+ 1,and consequently §, = v and

‘51_ Sn-l-l—t _§=L

T omr+leT a
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Therefore

{max %;:; 1,8, < n} < {& =1} (14)

1zlsn

From {13} and (14) we find that

{max &3_?1,3“{"}={§t=1}n{3,,{n}.

1xign |i'

Therefore, on the set {8, < n}, we have

p{ max St us.,} _ PE. = 115} = EC.I5),

1=zizn I

where the last equation follows because &, takes only the two values 0 and 1.
Let us notice now that E(£.|S,) = E(£,|%,), and (by Theorem 1)
E{{.|12,) = &, = 8,/n. Consequently, on the set {8, < r} we have P{S, <k
forallk suchthat 1 <k < n[S8,} =1 — (8./n).
This completes the proof of the theorem.

We now apply this theorem to obtain a different proof of Lemma 1 of
§10, and explain why it is called the ballot theorem.
Let &y, ..., £, be independent Bernoulli random variables with

PG =1)=P¢ =-1)=1%

Si=¢6 + -+ &, and a, b nonnegative integers such that g — b > 0,
a + b = n. We are going to show that

F'{S,}{l,...,S,,:-DIS,,=a—b}=H. (15)

In fact, by symmetry,
P{S$; >0,...,8,>0|8, =a — b}
= P{§, <0,..., 5, < 0|58, = —(a — b)}
=P{S,+1=<1l,....8 +n<nl§, +n=n—(a — b)}
=Pm <l,....tn+--+m,<nlty+ -+, =0—(a — b}
z[l_n—(a—b):l"':a—b:a—b

# n a+ b’

where we have put i, = &, + 1 and applied (12).
Now formula (10.5) follows from (15} in an evident way; the formula was
also established in Lemma 1 of §10 by using the reflection principle.
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Let us interpret & = + 1 as a vote for candidate 4 and £; = —1 as a vote
for B. Then §, is the difference between the numbers of votes cast for A and
B at the time when & votes have been recorded, and

P{$,>0,...,8,>0|S,=a— b}

is the probability that A was always ahead of B, with the understanding that
A received g votes in all, B received & votes, and g — b >0, a+ b =n
According to (15) this probability is (@ — b)/n.

6. PROBLEMS

1. Let 2, = @, % -+ - = 9, be a sequence of decompositions with @, = {3}, and let
th, be @,-measurable variables, 1 < k < n, Show that the sequence £ = (§,. 2,) with

1
& = !Z [ = E(’TIIEI—J]
=1

is a martingale.

2, Let the random wvariables %,,....%, satisfy E(qluy, ... .1— 1) = 0. Show that the
sequence & = (£} <y o, with £, = 7, and

K
Enar = Z TR TP ) 8
i=1

where f; are given functions, is a martingale.

3. Show that every martingale ¢ = (£;, &,) has uncorrelated increments: if 4 < b <
¢ < d then

Cﬂ\"(f‘g - c'ra gb - éa} =0

4 Let ¢ =(,....¢) be a random sequence such that & is &.-measurable
(2 =X ¥, =< ---=x %) Show that a necessary and sufficient condition for this
sequence to be a martingale (with respect to the system (23,)} s that ES, = EE, for
every stopping time t© (with respect to (£,)) (The phrase “lor every stopping time”
can be replaced by “for every stopping time that assumes two values.”)

5. Show that if & = (£,, &): 2 <, 15 2 martingale and 1 is a stopping time, then

E[Cnfhr-k}] = E[‘:k-rgz=k}]
for gvery k.
6. Let & = (&, 2} and n = (7, #,) be two martingales, £; = n; = 0. Show that

Egn'?n = ZEEU:,‘ - ca—t}(?h - l?ﬁ—l]
fo=
and in particular that

Eﬁf = z E(: — 'fk—I)z-

k=2
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7. Letw,,...,H, be a sequence of independent identically distributed random variables
with Ez;; = 0. Show that the sequence & = (£,) with

' 2
5 = (Zm) — k.
i=1

g SR M e )
' (€ exp A )

is a martingale,

8 Lety,,...,#n, be asequence of independent identically distributed random variables
taking values in a finite set Y. Let {3 = Py, = ¥\ y £ ¥, and let f;{y} be a non-

negative function with %,y f;(¥) = 1. Show that the sequence & = (&;. Z) with

@E = D'h

_ Silmd Al
Jol1) - -~ Solmd’

is a martingak. (The variables &, , known as likelihood ratios, are extremely important
in mathematical statistics.)

&y

§12. Markov Chains. Ergodic Theorem.
Strong Markov Property

1. We have discussed the Bernoulli scheme with
Q={ww=_{x,...,x)x =01}
where the probability p(w) of ¢ach outcome is given by
ple) = p(x1) - - - p(x,). (1)

with p(x) = p"g'™*. With these hypotheses, the variables &, ..., £ wilh
£{w) = x; are independent and identically distributed with

P, =x)=- =P, =x)=p(x), x=01
If we replace (1) by
P} = pi(x1) -+ pulXn),

where p{x) = pi(1 — py), 0 < p; £ 1, the random variables &,,..., & are
still independent, but in general are differently distributed

P& = x) = pi(x), ..., P(£, = X} = p(x).

Wenow consider a generalization that leads to dependent random variables
that form what is known as a Markov chain.

Let us suppose that
Q={ww=xg, Xts.... b x; € X},
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where X is a finite set. Let there be given nonnegative functions pe(x),
21(%, ¥), . .. p{x, ) such that

Zpﬂ(x} = 1:
XEX
(2)
Y pilx, ) =1, k=1,...,n, yekX,
yeX
For cach & = (Xg, X1, ..., X0 put
P2} = po(xodP1lXo. X1} - - - PalXn— 1, X, (3)

It is easily verified that ¥, . pler) = 1, and consequently the set of numbers
pltw) together with the space 2 and the collection of its subsets defines a
probabilistic model, which it is usual to call a model of experiments that form
a Markov chain.

Let us introduce the random variables &g, &, ..., &, with £{w) = x;. A
simple calculation shows that

P(&o = a) = pola),
P({fe = ag, ---, & = &) = po(@o)p1(ae, 41) -+ - Pl - 1. Gx).

We now establish the validity of the following fundamental property of

conditional probabilities:

P{liri = taiildi=au ..., €0 = agt = P{&ii1 = axa 1|6 = ag) (%)

(under the assumption that P(&, = a,, ..., &g = ap) = 0).
By (4),

Pifii1 = @1l = @pre ey §o = o}

— P{{ii: = i Is -+ 3 60 = a{l}
P{&, = at,-... o = do}

_ polagdri(@o. @1} - Py 1{Gks Qi)
polag)--- mlay— 15 ay)

)

= P4 1{u Oy 1)

In a simnilar way we verify

P{&i1 = s 1| = ot = Poar{drs Qa1 (6)
which establishes {5).
Let 2§ = D, be the decomposition induced by &y, ..., &, and
Bi = o{2}).
Then, in the notation introduced in §8, it follows from (5) that
P{écs1 = Qs 1|-@£} = P{fir1 = el &i) 0]

Qr
P{¢x+1 = ﬂu+1|'§na ERY fk} = P{¢k+1 = '—’Jk-l-1|fﬁ}-
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If we use the evident eguation
P{AB|C) = P(A|BC)P(B| ),
we find from (7} that
Pl =ty enos fin = Gt B = Plla=an .- Gy = |G 8)

or

Pl =y sy =ﬂk+1|¢fn=---=‘fk} = P'[':n=an1"'|'£k+l =ﬂu+1|fk}-
)

This equation admits the following intuitive interpretation, Let us think
of &, as the position of a particle “at present,” (&g, ..., €— ) as the “past,”
and (&, 1. . . ., £,)asthe “future.” Then (9) says that if the past and the present
are given, the future depends only on the present and is independent of how
the particle arrived at &, i.e. is independent of the past (&g, ..., &— 1)

Let F = (& =, -, &1 = O N = {& = &},

B={&_1=@a_1,.-+: 0 = ag}-
Then it follows from (%) that
P(FINB) = P(F|N),
from which we easily find that

P(FB|N) = P(F|N)P(B|N). (10)

In other words, it follows from (7) that for a given present N, the future F
and the past B are independent. It is easily shown that the converse also
holds: if (1) holds for allk =0, 1,...,n — 1, then {7) holds for every k = 0,
1,...,n— 1L

The property of the independence of future and past, or, what is the same
thing, the lack of dependence of the future on the past when the present is
given, is called the Markov property, and the corresponding sequence of
random variables &,, ..., £, 18 a2 Markov chain.

Consequently if the probabilities p(ew) of the sample points are given by
(3), the sequence (£, . . ., £,) with £{) = x; forms a Markov chain.

We give the following formal definition.

Definition. Let (€, »#, P) be a (finite) probability space and let & = (&,,..., &)
be a sequence of random variables with values in a (finite) set X. If (7) is
satisfied, the sequence £ = (&, ..., £,) is called a (finite) Markov chain.

The set X is called the phase space or state space of the chain. The set of
probabilities (p,{x)), x € X, with po(x) = P(&, = x) is the initial distribution,
and the matrix |p(x, VI, x, y€ X, with p{x, y) = P{§, = y|&_, = x} 15
the matrix of transition probabilities (from state x to state y) at time
k=1,..., n.
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When the transition probabilities p,{x, y) are independent of k, that is,
px, ¥} = p(x, 3), the sequence £ = (&y, ..., £,) 15 called a homogeneous
Markov chain with transition matrix [p(x, ¥)[.

Notice that the matrix ||p(x, y)| ts stochastic: its elements are nonnegative
and the sum of the elements in each row is 1: Y, p{x, y) = 1, x € X.

We shall suppose that the phase space X is a finite set of integers
(X={0,1..,Nj, X={0, +1,..., + N}, etc), and use the traditional
notation p; = pe(f) and p;; = p(i, j).

It is clear that the properties of homogeneous Markov chains completely
determine the initial distributions p; and the transition probabilities p;;. In
specific cases we describe the evolution of the chain, not by writing out the
matrix [[p;;] explicitly, but by a (directed) graph whose vertices are the states
in X, and an arrow from state i to state j with the number p;, over it indicates
that it is possible to pass from point i to point j with probability p;;. When
pi; = 0, the corresponding arrow is omitted.

Pi;
!/_\!
i j
ExaMmpiE 1. Let X = {0, 1, 2} and
1 00
lesll =2 © 2
£ 0 3

The following graph corresponds to this matrix:

x,_ivi\l
IQ}\L//’-Q%
%

Here state (is said to be absorbing: if the particle gets into this state it remains
there, since pgg = 1. From state 1 the particle goes to the adjacent states 0
or 2 with equal probabilitics; state 2 has the property that the particle remains
there with probability 3 and goes to state 0 with probability 4

Exampre 2. Let X = {0, +1,..., N} po = L. pww = Pi—m-m = 1, and,

for |i| < N,
p ji=i+1],
Pi; =3y4 j=i—1, {11)

0 otherwise.
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The transitions corresponding to this chain can be presented graphically in
the following way (N = 3):

IQH-C}'\_, K_,fD”“‘Ol

-2 5 -1 p

This chain corresponds to the two-player game discussed earlier, when each
player has a bankroll ¥ and at each turn the first player wins + 1 from the
second with probability p, and loses (wins — 1) with probability g. If we
think of state i as the amount won by the first player from the second, then
reaching state N or — N means the ruin of the second or first player, respec-
tively.

In fact, if ., #2,. .., 7, ar¢ independent Bernoulli random variables with
P(PL: +1)=P, P(r.il= _lqu, Su={} and S_;":r,l'l""""'ﬂ’k the
amounts won by the first player from the second, thén the sequence Sg,
8., ..., 8,15 a Markov chain with p; = 1 and transition matrix {11), since

P{SI:+I =JF|S¢: = b, 81 = ik—‘.[r“'}
=P8 + a1 = FS = Spmy = =140+ -}
= P{Sy+ me1 =ilSe =i} = Plmi =7 — kL

This Markov chain has a very simple structure:

Ser1 = Sk + e O0<k<n—1,

where n,, ¥4, - - ., #, 15 a sequence of independent random variables.
The same considerations show that if £y, n,,...,n, are independent
randorm variables then the sequence &,, &,,. .., &, with
Cert = Sl sk Osk<n-1, (12)

is also & Markov chain.

1t is worth noting in this connection that a Markov chain constructed in
this way can be considered as a natural probabilistic analog of a (deter-
ministic) sequence x = {xg, ..., x,) generated by the recurrent equations

Xeaa = fukxz)-

We now give another example of 2 Markov chain of the form (12); this
example arises in queueing theory.

ExaMrLE 3. At a taxi stand let taxis arrive at unit intervals of time {(one at a
time). If no one is waiting at the stand, the taxi leaves immediately. Let , be
the number of passengers who arrive at the stand at time &, and suppose that
1, -- -}, are independent random variables. Let &€, be the length of the
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waiting line at time k, £; = 0. Then if £, = i, at the next time & + 1 the length
£ra 1 Of the waiting line is equal to

N L T ifi =0,
TS =1+ my, izt

In other words,
*fn+1=(fk—l)++?h+1, O<ksn—1,

where a® = max(a, 0), and therefore the sequence ¢ = (Egy.--. &) 18 &
Markov chain.

ExampLE 4, This example comes from the theory of branching processes. A
branching process with discrete times is 4 sequence of random variables
€os &1y - -+, &, where & is interpreted as the number of particles in existence
at time k, and the process of creation and annihilation of particles is as
follows: each particle, independently of the other particles and of the “pre-
history™ of the process, is transformed into j particles with probability p;,
j=01,..., M.

We suppose that at the initial time there is just one particle, &, = 1. If at
time k there are &, particles (numbered 1, 2, ..., &), then by assumption
Eraq 15 glven as a random sum of random variables,

k+1 = ’?ixm +---+ ':"EL’,

where ' is the number of particles produced by particle number i. It is
clear that if £, = Qthen &, ; = 0.If we suppose that all the random variables
7%, k > 0, are independent of each other, we obtain
Pl = ik+1|§1¢ =hy by = b} = Pl = Lyl S =4}
=P{r" + - + 1 = ixaq )
It is evident from this that the sequence &g, £,, ..., &, is a Markov chain.
A particularly interesting case is that in which each particle either vanishes

with probability g or divides in two with probability p, p + ¢ = 1. In this
case it is easy to calculate that

Fij = P{ii1 = Jl& =1}
is given by the formula

B Ciu?zpjqui—ﬂz! i=0...,2,
Pii = g in all other cases.

2. Let & = (&, 1, P) be a homogeneous Markov chain with starting vectors
frows) (1 = (p;) and transition matrix [T = [ p;|. It is clear that

Dy = P{t, =jlég =i} =+ =P, =jlé-, =i}
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We shall use the notation

P =Pl =jl& =1} (=P{la=jl&=1)
for the probability of a transition from state J to state j in k steps, and
i = P{& =}
for the probability of finding the particle at point j at time k. Also let
e = [p, P9 = [pfh.

Let us show that the transition probabilities p{! satisfy the Kolmogerov-
Chaptnan equation

pir i = E pieplh, (13)

or, in matrix form,
Ple+8 — ik _ i (]4)

The proof is extremely simple: using the formula for total probability
and the Markov property, we obtain

P = Plan = JlEo = 1) = Z Pl =h éu = o[ =)
= Z P, =Jl& = )P =alég=1)= zpu] )

The following two cases of {13} are particularly important:

the backward equation

PE+ = Z P!e:p-::j {15}
and the forward equation
pitl = Z Pl P, (16)

(see Figures 22 and 23). The forward and backward eguations can be written
in the following matrix forms

P+l — ptid, [, (17)

[Fp[l:+ 1y — (138 Pm]. {18)
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A

' ¥

[

| -
1 t+1
Figure 22. For the backward equation.

0

Sumilarly, we find for the (unconditional) probabilities p that
pkHD = 5 ptapt
40 = 3 i

or in matrix form
[T+8 = gt . ptd
In particular,
[Rk+0 = &, p
{ forward equation) and
[T+ — [ri . ik

117

(19)

(backward equation). Since MY = P MY = 7, it follows from these equations

that
PH — Pk [T% = 7%

Consequently for homogeneous Markov chains the k-step tramsition
probabilities pf¥! are the elements of the kth powers of the matrix P, so that
many properties of such chains can be investigated by the methods of matrix

analysis.

|
] -
0 k &+ 1

Figure 23. For the forward equation.
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EXAMPLE 5, Consider a homogeneous Markov chain with the two states 0 and

1 and the matrix
P = (Pm:: Pm)_
Mo P

P2 — ( Péa + PorPrio Por(Poo + Pu))
Pro(Poc + P11} P + Pouo

It is easy to calculate that

and (by induction)

P — 1 (1 — P11 I_Pun)
2—poo— P12 \l = P11 1— Pac
+ {(Pon + P11 — 1}"( 1 — poo —(1 — Pnn))
2 — Poo— P11 —(1 = pyy) 1 —py,

(under the hypothesis that |pge + py; — 1] < 1)
Hence it is clear that if the elements of [P satisfy [pgg + pyy — 1]l < 1 (in
particular, if all the transition probabilities p;; are positive), then as n — <0

p* 1 (1 — Py 1- P‘uu)’ (20)

_*
2—poo— P\l —pPuu 1—Poo
and therefore
; 1—pn, . 1—p
lim pi? = ,  limpl) = o0
n Po 2= Poo— Pua A bix Z_Pﬂﬂ—Pu

Consequently il |pgo + p1, — 1| < 1, such a Markov chain exhibits
regular behavior of the following Kind: the influence of the initial state on
the probability of finding the particle in one state or another eventually
becomes negligible (p}? approach limits =;, independent of i and forming a
probability distribution: 7ty 2 0, #; = 0, ®g + =, = 1); if also all p; > 0
thén x4 > O0and =, = 0.

3. The following theorem describes a wide class of Markov chains that have
the property called ergedicity: the limits =; = lim, p;; not only exist, are
independent of i, and form a probability distribution (; = 0, ¥, n; = 1), but
also m; > 0 for all j (such a distribution z; is said to be ergodic).

Theorem 1 (Ergodic Theorem). Let B = ||p;ll be the transition matrix of a
chain with a finite state space X = {1,2,..., N}.
{a) If there is an ng such that

min pfio > 0, (21)
Li
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then there are mimbers ry, . . ., ny Such that
i

and
pi”' - 7, n— o (23)

for every i € X,

(b) Conversely, if there are numbers my, ..., wy satisfying (22} and (23), there
is an ng such that (21) holds.

(c) The numbers (%, ..., ®y) satigfy the equations

iy = Znapzji J=1L.. N (24)

&

PROOF. (a) Let
m{™ = min p{7, M = max pf.
3 i

Since

ptl = E DaYs (25)
we have

mvlnl 1} — min p{n+ 1Y — min Z Pmp{n} > min Z Py MIN Pﬂ’,‘" = m}n:;

i i H © "

whence m? < mi"* ! and similarly M = MY+ '%. Consequently, to establish
(23) it will be enough to prove that

M@ — mi - Q, n—soo, j=1,...,N.
Let £ = min, ; p{? > 0. Then
p'E-r'iu+m — Z 1:&] in;l — Z {nnl l_n}] p"l:;] + & z pl"}FE}]

_ Z [P — spIp® + cplH,

But pii® — ¢p¥} = 0; therefore
PRt = Y [ — epl] + ep = mi(L — &) + epli”,
@

and consequently
miret ™ o> il — £) + gplin.
In 3 similar way
M‘}Hu+nl < Mi'n](l — E) + Ep}frl}_
Combining these inegualities, we obtain
M5m+n| _ mffmﬂ} < (Mi_n] — m}"'-') {1 — g)
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and consequeritly
Mﬁkn@-l-lﬂ _ m}knu+n1 < (M}"’ — m}"]'](l — g)" 10, k— oo,

Thus M% — m" - 0 for some subsequence nrg, ng — ov. But the
difference MY — m!™ is monotonic in n, and therefore M — mi =0,
1n — O0.

If we put m; = lim,, n™, it follows from the preceding inequalities that

1P — ;] < MY — il < (1 — g)imel™d

for n = ng, that is, plJ! converges to its limit =; geometrically (ie, asfastasa
geometric progression).
It is also clear that m{™ = m™ > & > 0 for n > n,, and therefore =; > 0.
(b) Imeguality (21) follows from (23) and (25).
(¢) Equation {24) follows from (23) and (25).
This completes the proof of the theorem.

4. Equations (24) play a major role in the theory of Markov chains. A
nonnegative solution (m,, . . ., my) satisfying ¥, n, = 1issaid to bea stationary
ot insariant probability distribution for the Markov chain with transition
matrix ||p;ll- The reason for this terminology is as follows.

Let us select an initial distribution (=, ..., ny) and take p; = =;. Then

| I I —
PE:'—E“aP«.fﬂﬂj
frd

and in general p” = n;. In other words, if we take (=, ..., 7y) as the initial
distribution, this distribution is unchanged as time goes on, i.¢. for any &

PG =/)=Po=J) Jj=1...,N.

Moreover, with this initial distribution the Markov chain £ = (&,(1, P) is
really statipnary: the joint distribution of the vector (&, £ri i .e.. £34p) I8
independent of k for all ! {assuming that kX + 1 < n).

Property (21) guarantees both the existence of limits 7r; = lim p{}’, which
are independent of i, and the existence of an ergodic distribution, i.e. one
with n; > 0. The distribution (x,, ..., ny) is also a stationary distribution.
Let us now show that the set {ny, ..., my) is the enly stationary distribution.

In fact, let (%,, ..., %) be another stationary distribution. Then

ﬁj = Eﬁqpﬂ == Zﬁupg}lp
i i
and since pfy — =7; we have
;= E(ﬁu'ﬂj} = T;.
@

These problems will be investigated in detail in Chapter VIII for Markov
chains with countably many states as well as with finitely many states,
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We note that a stationary probability distribution {even unique) may
exist for a nonergodic chain, In fact, if

0 1
*={i o)
01 1 0
[[;uzn: 2n+ 1 __
0o 7o)

and consequently the limits lim pf? do not exist. At the same time, the
system

then

Ty = z e Puajs J = 1: 21
reduces to

TCI = 7‘(2,

ﬂz _— Hli‘

of which the unique solution satisfying =, + 7, = 1is (4, 4.
We also notice that for this example the systemn (24) has the form

Ty = ToPoo + A1P1g-
My = MoPo1 + T1P11s

from which, by the condition my = 7, = 1, we find that the unigue stationary
distribution {ny, 7;) coincides with the one obtained above:

I —pn T — 1 — poo
2—pog— P11 ! 2 — poo — P11

g —

We now consider some corollaries of the ergodic theorem.
Let A be a set of states, 4 < X and

1, xeA,
I =
%) {0, xg A,
Consider

TG0} + -+ 14C,)
n+1

valn) =

which is the fraction of the time spent by the particle in the set A. Since

E[Id(fk)wn = i] =P{,cd[f;=1)= _Z{P!?}(=P}k}(f4)):
ie
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we have
€L a0 = (1= — 3 p04)

H 1,=%

and in particular
: .
E[‘*‘{J—}(H}Mu =i]= ] nZn P(qf]

It is known from analysis (see also Lemma 1 in §3 of Chapter IV} that if
a, = a then {ay + --- + a,)/{(n + 1) = a, n » co. Hence if p}’ - m;, k = o0,
then

Ev (m)—=m;, Evyn)—>mn,,  where m,= Jétnj.
For ergodic chains one can in fact prove more, namely that the following
result holds for f (&), ..., L&) ...
Law of Large Numbers. If &,, &,, ... jorm a finite ergodic Markov chain, then
P{lva(n) — 74l > 8} =0, n— o, (26)

for every & > 0 and every initial distribution.

Before we undertake the proof, let us notice that we cannot apply the
results of §5 directly to I,(&y), ..., I4{&.), ..., since these variables are, in
general, dependent. However, the proof can be carried through along the
same lines as for mdependent variables if we again use Chebyshev’s in-
equality, and apply the fact that for an ergodic chain with finitely many
states there is a number g, 0 < p < 1, such that

1P —m[ = C-p" 27)

Let us consider states i and j (which might be the same) and show that,
for e = Q,

P{lv ) — m;] > e|l&g =i} =0, n— oo (28)

By Chebyshev's inequality,

E{lvn(n} — ?Ijl?'llfa =_f}_
i .

P{lvpn) — m[ >£[8p =1} < .

Hence we have only to show that

E{[vp(n) — ﬂjlzlﬁu =i}—=0, H— OO,
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*}:u=f}

A simple calculation shows that

" 4
EIval) — 160 = 8 =%-E{ 5 Gueo = )|

{n + 1)
&0
(” + 1}2 ;;Zu tz;'] i
where
m{_’f "= E{[l'{,-j{':k)jijl{fr)]wu = I}
— w B[ (&) €o = 1] — my-E[L (&) &0 = ]+ ﬂf
= o) — Bl = g ) + 2
s=minfk, ) and t=|k—1|.
By (27),
P =x; + P, ] < Cp™.
Therefore

G S Cill@ + ¢+ p* + 1],

where C, is a constant, Consequently

l " Ly
(n + 1) kgﬂ :;"ﬁ?l _(ﬂ + 1]'2 J:ZCI rz[p oo+l

4C,  2n-+1) 8C,

(n+ 17 1—p (n+ D1 —p =0 n-oow

=

Then (28) follows fram this, and we obtain (26) in an obvious way.

5. In §2 we gave, for a random walk S, §,, ... generated by a Bernoulli
scheme, recurrent equations for the probability and the expectation of the
exit time at either boundary. We now derive similar equations for Markov
chains.

Let £ = (&g, ..., ¢,) be a Markov chain with transition matrix [p,]| and
phase space X = {0, +1,..., £ N}. Let A and B be two integers, —N <
A=<0<B<N,and xeX. Let #,,, be the set of paths (x5, xy4,..., X,
x; € X, that leave the interval (A, B) for the first time at the upper end, iLe.
leave (4, B) by going into the set (B, B + 1, ..., N)-

For A = x = B, put

Bux) = P{(lo..... &) € Busldo = x}-

In order to find these probabilities (for the first exit of the Markov chain
from (A, B) through the upper boundary) we use the method that was
applied in the deduction of the backward equations.
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We have

Bu(x) = P{(y, ..., &) € Bl = X}
= EP::}I' P{(éﬂ! LU gk)El@k+1[§0 =X, é] = y}u
¥

where, as is easily seen by using the Markov property and the homogeneity
of the chain,

P{illo:---. &) € Bhsaléo = x. &1 = ¥}
=P{(x, néz. - ) EBhillo = % & = ¥}
= P{{y, £2.-... {) EFB| &y = V)
=P{(pgn.... &) €Hlo = ¥} = B (W

Therefore

ﬁk(x) = z Px}lﬁk—l(y)
¥

for A < x < Band 1 < k < n. Morcover, it is clear that
ﬁk(x)=11 xzﬂgB"l"l,--.,N,

and
Bu(x) = 0, x=—N,..., A

In a similar way we can find equations for ¢ (x), the probabilitics for first
exit from (A, B) through the lower boundary.

Let 7, = min{0 < I < k: &, ¢ (A4, By}, where 7, = k if the set {-} = &.
Then the same method, applied to m,(x) = E(1, |y = x), leads to the follow-
ing recurrent equations:

mx)=1+ Z Wy — 1{¥)Puy
¥

(here 1 < k < n A < x < B) We define

mk{x) = ﬂ: X é I:A'I' B}

It is clear that if the transition matrix is given by (11) the equations for
e(x), fu{x) and m,(x} become the corresponding eguations from §9, where
they were obtained by essentially the same method that was used here.

These equations have the most interesting applications in the limiting
case when the walk continues for an unbounded length of time. Just as in §9,
the corresponding equations can be obtained by a formal limiting process
(k — o0).

By way of example, we consider the Markov chain with states {0, 1, ..., B}
and transition probabilitics

Pog = 1, Pug = 1,
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and
p;=>0, j=i+4+1,
Bi; =31 J=
g; >0, j=1i-—1,

forl <i<B-—1,wherep;, +g;+#, =1
For this chain, the corresponding graph is

A1
1 &J
- —__——8
N 1 2
' H o] gr-

It is clear that states O and B are absorbing, whercas for every other state
i the particle stays there with probability ;. moves one step to the right with
probability p;, and to the left with probability g;.

Let us find o(x) = lim, ., ., o0,(x), the limit of the probability that a particle
starting at the point x arrives at state zero before reaching state B, Taking
limits as k — o (n the equations for o, (x), we find that

aljy = g;of — 1) + r;of) + pjej + 1)

when 0 < j < B, with the boundary conditions

20)=1, oB)=0.

Since r; — 1 — g; — p;, we have
plo(j + 1) — o)) = gfaf) — ofj — 1))

and consequently

Yp_j

i
B—l 5,7, B‘j

a(j + 1} — e(f) = pga(l) — 1),

where
gy g
. = a — 1.
p.] pl . p] pﬂ
But
i
a(j + 1) — 1=} (i + 1) — i)

=0

Therefore

afj + 1) — 1 = (1) - 1))20 o
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Ifj =B — 1, we have o{j + 1) = «{B} = 0, and therefore

1
aly=1= — =5,
} E.illpi
whence
-l D =i e
o) =E55— and off) = = =, j=1,..,B
i=o0 M =1 P;

{This should be compared with the results of §9.)
Now let m(x) = lim, m,(x), the limniting value of the averagc time taken

to arrive at one of the states 0 or B. Then m{0) = m{B} =
mx) =1+ 3 m(y)p,,
¥

and consequently for the example that we are considering,

w(j) =1+ g;m(j — 1} + r;m(j) + p;m(j + 1)
forj=12,...,B — 1, To find m(j) we put

M =m(p—mi—-1, j=01...,B
Then

pMU+1y=qgMp-1, j=1....,B—1,
and consequently we find that
MG+ 1) =p;M(1) — R

where

G- 4g; 1 s e
py= LG Rj=_[1+_@L+..++u],
Pr By L; Pi—1 Py

Therefore

m) = m(} — mO) = ¥ MG + 1)

=0
i-1 -1 -1
= T~ R)=m()) T pi— T R:
i= i=0 =0
It remains only to determine m(1). But m(B) = 0, and therefare
a R,
Zf ’

nil) =

and for 1 < j < B,

B—l

mj) = ZP; --'_— ZR;

n P i=0
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(This should be compared with the results in §% for the case r; =0, p; = p,
4 = q)

6. In this subsection we consider a stronger version of the Markov property
(8), namely that it remains valid 1if time k 1s replaced by a random time (see
also Theorem 2). The significance of this, the strong Markev property, can
be illustrated in particular by the example of the derivation of the recurrent
relations (38), which play an important role in the classification of the states
of Markav chains (Chapter VIII).

Let £ = (£,,...,£,) be a homogeneous Markov chain with transition
matrix [p;[; let 2° = (D)o<xsn bE a system of decompositions, Zf =

9?,_ & Lot B denote the algebra «{ @) generated by the decomposition
2
We first put the Markov property (8) into a somewhat different form. Let

B ¢ #5. Let us show that then
P{én = yy-any ¢k+l = ak-I-:I.IB ™ (ék = ak)}
= P{&, = i vvu Siay =ﬂk+1|§k=ﬂk} (29)

(assuming that P{B ~ (£, = a,}} > 0). In fact, B can be represented in the
form

B=3*{lo=af ... & =aj},
where > * cxtends over some set (af, . .., af). Consequently
Plg: = @ny oo ns Ekrr = | B 0 (& = @}
_ P{({, = a,,.... & = a) n B}
P{{&x = a)) N B}
_ TPl nh=wnGa=dh. b= 4
P{(& = &) n B}

But, by the Markov property,

P, =a,....5=a)n({=af ..., & = ag)}

(PLE, = Gn, -y Eren = Briléo = aF, .-, & = af}

= }{P{£0=.ﬂﬁ,,..,¢k=ﬂ§} ifak=ar:

0 ifa, #af,

’P{én - an:- LICICH S 6&-}1 = qk+1|‘:k = ak}P{éﬂ = ﬂﬁ‘?*"" gk = ﬂf;}
= if a, = af,

0 if & 5 af,

rp{fn = Opyeenybpey = ﬂk+1|fk = g, }P{(& = ad M B}

=< M =a,

10 ifa, # af.
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Therefore the sum ¥ * in (30) is equal to
Pin = Opo . oos Ei1 = @y 1|& = aP{(& = a) n B},

This establishes (29).
Let t be a stopping time (with respect to the system D% = (Df)p<x<ns SEE
Definition 2 in §11).

Definition. We say that a set B in the algebra % belongs to the system of sets
#Beif foreach k,0 < k <n,

B {t =k} e 8. (31)

It is easily verified that the collection of such sets B forms an algebra
(called the algebra of events observed at time 7).

Theorem 2. Let & = (&g, ....¢,) be a homogeneous Markov chain with
transition matrix [[p;l, T a stopping time (with respect to 9*), B € 8B} and
A={w:t+ 1< nl Thenif PlAn B {{, = a,)} > 0, we have

P{f:-&vt == ﬂ.[: "".tgr-l-l == al.IA H‘B m (&r - aﬂ)}
= P{gt-l-l = ﬂ;, ey él"f’l = ’allA i (ét = ﬂl])}!‘ (32}

and if P{A 0 (£, = ag)} > O then
P{ét-l-!‘ = d[, RN | ét-l-l = al[A M {ft = ﬂl])} = pﬂgm e pﬂf—iﬂ;' (33)

For the sake of simplicity, we give the proof only for the case [ = 1. Since
B~ (t = k) e 8, we have, according to (29),

P{f.s1 = a, AnBn (£, = ay)}
= ¥ Pl =ay, 8 =0 T7=kB)

k<n—1
= 3 Pl =@l = ao, v =k, B}P{{, = ay, T = k, B}
k=h—1
= HE_IP{-’:‘HI =t |&u = ao}P{{, = a. T =k, B}
= Pogay - Z P{l = o, 1=k B} = paga, - P{A N By (€, = ap)}.
k=n—1

which simultaneously establishes (32) and (33} (for (33) we have to take
B=0)

Remark. When I = 1, the strong Markov property (32), (33) is evidently
equivalent to the property that

P{lr1€ClAN BN = ag)} = P {C), (34)
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for every C = X, where

PC) = Z Pagas-

mel

In turn, (34) can be restated as follows: onthe set A = {v < n — 1},
P{f.s,€ C[QE} = Pg,(c}: (35)

which is a form of the strong Markov property that is commonly used in the
general theory of homogeneous Markov processes,

7. Let € = {&y,-.-., &,) be a homogeneouws Markov chain with transition
matrix [p;;ll, and let

fP=Pl&=i&#il1<i<k— 1L =i} (36)

and
M=Pl,=jE#FL1 gk —1[E =i} (37)

for i # j be respectively the probability of first return to state § at time & and
the probability of first arrival at state j at time k.
Let us show that
n
AP =Y fEp™, where pff'=1 (38)
k=1
The intuitive meaning of the formulz is clear: to go from state i to state j
in nsteps, it is necessary to reach state j for the first timein ksteps (1 < k < n)
and then to go from state j to state j in # — & steps. We now give a rigorous

derjvation.
Let f be given and

t=min{l <k < n: & =jh
assuming that t = » + 1if {-} = @. Then i = P{r = k|, = i} and

Py =P =ijlle=1
= Z P{énzjt'r:klfﬂ‘:":}

1=<k=hn

= E P{§t+ﬂ-k =.f: T = kléﬂ = i}v {39}

1<k=

where the last equation follows because £,.,_, = &, on the set {t = k}.
Moreover,theset {t = k} = {t =k, &, = j}foreveryk,1 < k < n. Therefore
if P{&, = i, T = k} > 0, it follows from Theorem 2 that

P{Er-l-n—k =j|¢l] = i, T = k} = P{gt-l-l't—k =j|£l] = i!l T= ks- 6: =I}

in=k)

=P{lernu =Jl& =J} =Y
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and by (37)
i? = kglp{§t+n—k =jlég =L T =k}P{t = k[ = i}
= Elpj?‘“f i,
which establishes (38).
8. PROBLEMS

1. Let ¢ = (&y,-.., &a) be a Markav chain with values in X and = f(x) (x€ X} a
function. Will the sequence (F(&,)..... (&) form a Markov chain? Will the
“reversed™ sequence

(ﬁn! ﬁn—lu e ,'60)
form a Markov chain?

2. Let P = ||p,ll, 1 < i,j < r, be a stochastic matrix and 4 an eipenvalue of the matrix,
i.e. a root of the characteristic equation det|P — AE| = 0. Show that 2, = 1 isan
eigenvalue and that all the other sigenvalues have meduli not exceeding L. If all the

eigenvalues 2,, . . ., 4, are distinct, then pf}! admits the representation

=+ arf{1)A] + -+ @ r)y,

where wy, ay {1}, ..., a;{r) can be expressed in terms of the elements of P, (It follows
from this algebraic approach to the study of Markov chains that, in particular, when
[41 < 1,...,|A4] < 1, the limit lim p{% exists for every j and is independent of i.)

3 Leté = (&, ..., ¢ be a homogenzous Markov chain with state space X and transi-
tion matrix P = {p,I. Let

To(x) = E[@(¢1) 6o = x] (= > cﬂ{.l’)ﬂxy)-
Let the nonnegative function ¢ satisfy
To(x) = plx), xelX.
Show that the saquenice of randem variables
E=(2)  with § =)
is a martingale.

4. Let & = (&, M, P} and & = (&, [T, P} be two Markov chains with different initial
distributions M = {py,..., p) and M1 = (f,,..., §} Show that if min, ;p; = >0
then

> 1B — P = 2(1 — e
i=1



CHAPTER 11

Mathematical Foundations of
Probability Theory

§1. Probabilistic Model for an Experiment with
Infinitely Many Qutcomes. Kolmogorov’s Axioms

1. The models introduced in the preceding chapter enabled us to give a
probabilistic—statistical description of experiments with a finite number of
outcomes. For example, the triple (£, &¢, P} with

Q= {ww="(a,...,a.ha=0,1}, & = {4: 4 £}

and p{w) = p=%g"~E* is a model for the experiment in which a coin is tossed
n times “independently™ with probability p of falling head. In this model the
number N(£}) of outcomes, i.e. the number of points in €& is the finite
number 2"

We now consider the problem of constructing a probabilistic model for
the experiment consisting of an infinite number of independent tosses of a
coin when at each step the probability of falling head 15 p.

It is natural to take the set of outcomes to be the set

2= {w:w=1(a,a,.-ha=01}

Le. the spacc of scquences « = (ay, a3, . - -) whose elements arc 0 or 1.

What is the cardinality N{) of 03? It is well known that every number
a € [0, 1) has a unique binary expansion (coataining an infinite number of
ZETOS)
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Hence it is clear that there is a one-to-one correspondence between the points
w of 2 and the points g of the set [0, 1), and therefore Q has the cardinality of
the continuum, _

Consequently if we wish to construct a probabilistic model to describe
experiments like tossing a coin infinitely often, we must consider spaces Q
of a rather complicated nature. ]

We shall now try to see what probabilities ought reasonably to be assigned
(or assumed) in a model of infinitely many independent tosses of a fair comn
p+a=9. _

Since we may take {2 to be the set [0, 1), our problem can be considered
as the problem of choosing points at random from this sct. For reasons of
symmetry, it is clear that all outcomes ought to be equiprobable. But the
set [0, 1) is uncountable, and if we supposc that its probability is 1, then 1t
follows that the probability p{ew) of each outcome certainly must egual
zero. However, this assignment of probabilities (p(ew) = O, w £[0, 1)) does
not lead very far. The fact is that we are ordinarily not interested in the
probability of one outcome or another, but in the probability that the result
of the experiment is in one or another specified set A of outcomes (an event).
In clementary probability thcory we usc the probabilities p(w) to find the
probability P(A) of the event 4: P(A4) = ) .. 4 p{w). In the present case, with
plw) =0, @ £ [0, 1), we cannot define, for example, the probability that a
point chosen at random from [0, 1) belongs to the set [0, 4). At the same time,
it is intuitively clear that this probability should be 1.

These remarks should suggest that in constructing probabilistic models for
uncountable spaces £ we must assign probabilities, not to individual out-
comnes but to subsets of (L The same reasoning as m the first chapter shows
that the collection of sets to which probabilities are assigned must be closed
with respect to unions, intersections and complements. Here the following
definition 1s usciul.

Definition 1. Let €1 be a set of points en. A system «# of subscts of €1 is called
an algebra if

(a) e,
(&) A,Besd =4 U Be #, AnBed,
(€} Aesd = Adesi

(Notice that in condition (b) it is sufficicnt to reguire only that cither
AvuBesforthat AnBesl, sinceAuB=AnBanddnB=AuUBRB)

The next definition is needed in formulating the concept of a probabilistic
model.

Definition 2. Let &7 be an algebra of subsets of £ A set function u = u(A),
A e «f, taking values in [0, c0]. is called a finitely additive measure defined

i
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on «&f if
u(A + B) = w(A) + u(B). (1}
for every pair of disjoint sets 4 and B in 7.

A finitely additive measure u with u(f2) < oo is called finite, and when
#€2) =1 it is called a finitely additive probability measure, or a finitely
additive probability.

2. We now define a probabilistic model (in the extended sense).

Definition 3. An ordered triple (Q, =, P), where

(a) Q1is a set of points w;
(b) .7 15 an algebra of subsets of (3;
(c) P is u finitely additive probability on A,

is a probabilistic model in the extended sense,

It turns out, however, that this model is too broad to lead to a fruitful
mathematical theory. Consequently we must restrict both the class of sub-
sets of 2 that we consider, and the class of admissible probability measures.

Definition 4. A system $ of subsets of Q2 is a ¢-aigebra if it is an algebra and
satisfies the following additional condition (stronger than (b) of Defini-
tion 1):
(b*) ifd, eF,n=12,...,then
Jd.e&, [A.eF
(it is sufficient to require either that | ] 4, € & or that () 4, € F).

Definition 5. The space £} together with a g-algebra % of its subsets is a
measurable spoce, and is denoted by {Q, #).

Definition 6. A finitely additive measure u defined on an algebra «f of subsets
of O is countably additive (or o-additive), or simply a measure, if, for all
pairwise disjoint subsets A, A5, ... of A with 3 A, € of

p(ﬂifln) - n;flnw.

A finitely additive measure g is said to be o-finite if Q2 can be represented in
the form
Q=3 0O, Q, e,

n=1

with 4{Q,) < w0, n=1,2,....
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If a countably additive measure P on the algebra A satisfies P($}) = 1,
it is called a probability measure or a probability (defined on the sets that
belong to the algebra «#).

Probability measures have the following properties.

If & is the empty set then

P(Z) = 0.
If A, B € of then
P{A v B) = P(4) + P(B) — P(4 n B).

If A, Besf and B = A then
P(B) < P(A).
Ifd,esf,n=1,2,.., and | | A, € o4, then
PA, A v--)SPAY+PAD) +---.

The first three properties are evident. To establish the last one it is enough
to observe that | )i, 4,=Y7, B, where By=A;, B=A; 0N
A, nA,n=2 BB =i j and therefore

p(('j A,) - P(i B,) - ¥ P(B) ﬂf; P(A,).

The next theorem, which has many applications, provides conditions
under which a finitely additive set function is actually countably additive.

Theorem. Let P be a finitely additive set function defined over the algebra 52,
with P((2) = 1. The following four conditions are equivalent:

(1) P is o-additive (P is a probability);

(2) P is continuous from below, ie. for any sets Ay, A,,...€ ¢ such that
A, S Apyyand | By A € 2,

lim P(A,) = P( (} An);
fn n=1
(3) Piscontinuous fromabove, ie. for anysets Ay, Aa, ... suchthat A, =2 A, 4,

and (2, A, € o,

HmPMJ=P(ﬁAJ;

n=1
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(4) Piscontinvous at (7, Le. for any sets Ay, A;,...esf suchthat A,., € A,
ﬂnd ﬂ:;l An = @1

lim P{4,) = 0.

PROOF. (1) = (2). Since

U 4= Ay + (A2\A}) + (A0\AR) + -+,

P( U An) = P(d,) + P(A\A;) + P(A3\A43) + ---
= P(A,) + P(A;) — P(A4,) + P(d,3} — P(A2) + - -
= lim P(4,).

(2)=(3). Letn = 1;then

P4} = P(A, (A N\AD) = P(4,) — P(4,\A,).

Thesequence {4,%\A4,},.-1 of sets 1s nondecreasing (see the table in Subsection
3 below) and

AN = A\ [ Ay

n=] H=1

Then, by (2)

lim P(A,\A,) = P( lj (A,\A,,})

and therefore

lim P(4,) = P(4,) — lim P(4,\4,)

= P(Al} - P( G {Al\An]) = P(Al} - P(AJ.\ 6 An)

n=1

— P — PA) + P( riA..) - F'( ﬁ A..)

{3) = (4). Obvious.
(4) = (1). Let Ay, 45,...€ o7 be pairwise disjoint and let Y 2, A, € <.

Then
P(.-iAi) = F'(i-i]fl,-) + F’(i-ild,—),
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and since } /2, , A; | &, n — oo, we have
i P(4) = lim E P(4,) = lim P(_i A,)
- o [#(4) - (£,
- P(;;A,) - tim P( f ) - P(EIA,-).

3. We can now formulate Kolmogorov’s generally accepted aXiom system,
which forms the basis for the concept of 2 probability space.

Fundamental Definition. An ordered triple ({1, %, P) where

(a) L) is a set of points @,
(b) & is a g-algebra of subsets of €,
(c) P isa probability on &,

is catied u probabilistic model or a probability space. Heve L is the sample space
or space of elementary events, the sets A in F are events, and P(A) is the
probability of the event A.

It is clear from the definition that the axiomatic formulation of probability
theory is based on set theory and measure theory. Accordingly, it is useful to
have a table {pp. 136-137) displaying the ways in which various concepts are
interpreted n the two theories. In the next two sections we shall give examples
of the measurable spaces that are most important for probability theory and
of how probabilities are assigned on them.

4, PrOBLEMS

1. Let Q = {r:re [0, 1]} be the set of rational peints of [0, 1], & the algebra of sets
each of which is a finite sum of disjoint sets A of one of the ferms {r:a < r < b},
fra<r<bl frra<r<b}, {ria=<r <hb} and P(4) = b — a. Show that P{4),
A e &/, is finitely addisive set function but not countably additive.

2. Let ©2 be a countable set and & the collection of all its subsets. Put {4) = 0if 4 is
finite and p(A) = oo i A is infinite. Show that the set function p is finitely additive
but not countably additive.

3 Let gubea finite measure cna g-algebra £ A, e Fn=1,2,...,and A =lim_ A,
(ie, A = lim, A, = Tim, 4,). Show that p(4) = lim, p(A,).

4. Prowe that P(4 & By = P(4) + P(B) — 2P(A n B).
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5. Show that the “distances™ p,(A, B) arxd p.{4, B) defined by
(A B)=P(A A B),

F{AAB) |

—— — ifP{Au R
o, By = {PCACE) " AVERE

0 fPMAVEBE)=0

satisfy the triangle inequality.
6. Let i be a finitely additive measure on an algebra o7, and let the sets A, A,,...€ &

be pairwise disjoint and satisfy 4 = ¥ fo; A4; € of. Then p(4) = 32, 1{A).
7. Prove that

limsup 4, = liminf 4,, ITiminf 4, = lim sup 4,,
lim inf A, = lim sup A, lim sup(A, v B,) = lim sup 4, v limsup B,,
lim sup A, ~ lim inl' B, = lim sop{4, n B = lim sup A, n lim sup B,.
A, T Aor A, | A, then
lim inf 4, = lim sup A,.

8 Let {x,} be a sequence of numbers and A4, = (—co, x.). Show that x = lim sup x,
and A = lim sup 4, are related in the following way: (—o0,x) = A = (—ow, x].
In other words, A4 is equal to either (— o¢, x) or to [ —co, x]-

9. Give an example to show that if a measurg takes the valug + oo, it dogs not follow in
general that countable additivity implies continuity at .

§2. Algebras and ¢-Algebras. Measurable Spaces

1. Algebras and o-algebras are the components out of which probabilistic
models are constructed. We shall present some examples and 2 number of
results for these systeins.

Let £2 be 2 sample space. Evidently each of the collections of sets

F={(2,0), Fr={4:Ac)

is both an algebra and a g-algebra. In fact, %, is trivial, the “poorest”
g-algebra, whereas F* is the “richest” o-algebra, consisting of all subsets
of €.

When £ is a finite space, the s-algebra #* is fully surveyable, and com-
meonly serves as the system of events in the elementary theory. However, when
the space is uncountable the class % * is much too large, since it is Impossible
to define “probability” on such a system of sets in any consistent way.

If A < £, the systern

Fa={ALA D0
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is another example of an algebra (and a o-algebra), the algebra (or ¢-algebra)
generated by A. .

This system of sets is a special case of the systems generated by decomposi-
tions. Int fact, let

P ={D,D,,...}
be a countable decormposition of £} into nonempty sets;
Q=D1+D2+”'; Dfnﬂjﬁﬁ’t I?éj-

Then the system o = (%), formed by the sets that are unions of finite
numbers of elements of the decomposition, i1s an algebra.

The following lermma is particnlarly useful since it establishes the important
principle that there is a smallest algebra, or g-algebra, containing a given
collection of sets.

Lemma 1. Let & be a collection of subsets of (L Then there are a smallest
algebra o(&) and a smallest o-algebra o(£) containing oll the seis that are in &.

Proor. The class F* of all subsets of £} is a s-algebra. Therefore there are at
least one algebra and one ag-algebra containing &, We now define off)
(or o{£)) to consist of all sets that belong to every algebra (or g-algebra)
containing £. It is easy to verify that this system is an algebra (or ¢-algebra)
and indeed the smallest.

Remark. The algebra of E) (or o{E), respectively) is often referred to as the
smallest algebra (or s-algebra) generated by £.
We often need to know what additional conditions will make an algebra,

or some other system of sets, into & s-algebra. We shall present several results
of this kind.

Definition 1. A collection .4 of subsets of £ is a monotonic class if A, e #,
n=1,2,...,together with A, t A or A, } A,implesthat A e .#.

Let £ be a system of sets. Let ({&) be the smallest monotonic class con-
taining &. (The proof of the existence of this class is like the proof of Lemma 1.)

Lemma 2. A necessary and sufficient condition for an algebra <f to be a
o-algebra Is that it is a monotonic class.

ProOOF. A g-algebra is evidently a monotonic class. Now let »/ be a monotonic
class and A, e, n=1, 2,.... It is clear that B, = | JI_, A;e & and
B, € B,.,. Consequently, by the definition of a monotonic class,
B, 1\, A€ . Similarly we could show that [ |2, 4;€ .

By using this lemnma, we can prove that, starting with an algebra of, we
can construct the g-algebra 6{.«7) by means of monotonic limiting processes.
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Thearem 1. Let of be an algebra. Then

p(e) = a(F). (1)

Prook. By Lemma 2, p(#) € o). Hence it is enough to show that u{sf)
18 a g-algebra. But .4 = p(o¥) is a monotonic class, and therefore, by Lemma
2 again, if 1s enough to show that g &) is an algebra.

Let A& .#; we show that 4 € .#. For this purpose, we shall apply a
principle that will often be used in the future, the principle of appropriate sets,
which we now illustrate.

Let

M ={B:Be #,Be #}

be the sets that have the property that concerns us. It is evident that
& S M = 4. Let us show that .# is a monotonic class.
Let B, e 4 then B, € 4, B, e ., and therefore

lim | B, € .47, lim 1t B, & .#, hm | B, e .#, lim | B, € #.
Consequently
ImtB,=lim|B,e# lm]B,=lim]B,e.#,
imTE =lim}B,e#, Iim]B =lm?!Be.#,

and thercfore 4 is a monotonic class. But M # and & is the smallest
monotonic class. Therefore & = ., and if A € & = p(sF), then we also
have A € .#, ie. 4 is closed under the operation of taking complements.

Let us now show that . is closed under intersections.
Let A e 4 and

My={B:Be #, A Be 4}
From the equations

lim]|{(AnB)=Anlim)] B,

imf(AnB)=Anhm?B,

it follows that .# 4 is a monotonic class.
Moreover, 1t 18 ¢asily verified that

(A€ #p)e (Be.d,). (2)

Now let A € of; then since & is an algebra, for every B e &7 the set
A n B € & and thereiore

o = MyS M

But .# , 15 a monatonic class (sincelim T AB, = Alim 1 B,and lim | AB, =
Alim | B,), and .# is the smallest monotonic class. Therefore .# ;, = . for
all A e &. But then it follows from (2) that

(Ac Mg)=(Be #, = H)
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whenever 4 e s and B e . Consequently if 4 € «# then
Ae Hy
for every B € .. Since A is any set in &7, it follows that
o S My S A

Therefore for every B e
u‘ﬁ E = A *

le. f Be. and Ce A then Cn Be 4.
Thus . is closed under complementation and intersection (and therefore
under unions). Consequently .4 is an algebra, and the theorem is established.

Definition 2, Let £ be a space. A class 2 of subsets of Q15 a d-system if

(a) Qe 2;
(b) A,B,e@, Ac B=B\AecD,
(€) A, €D A, S Appy = | A, e D.
If & 15 a collection of scts then d(&) denotes the smallest d-system con-
taining &.

Theorem 2. If the collection & of sets is closed under intersections, then

d(&) = a(&) (3)

PrROOF. Every g-algebra is a d-system, and consequently d{(f) = o(&). Hence
if we prove that d{#) is closed under intersections, d(¢) must be a ¢-algebra
and then, of course, the opposite inclusion o{&) = (&) is valid.

The proof once again uses the principle of appropriate sets.

Let

& ={Bed(f):Bnrn Acd{§)for all A e £3.
If Be& then B Aed& for all A e & and therefore £ = £,. But &, is a

d-system. Hence (&) = &,. On the other bhand, &, c d4(&) by definition.
Consequently

Now let
&3 = {Bed(&): Bn Aed(&)ior all A e d(£)}.
Again it is easily verified that £, 1s a d-system. If B € &, then by the definition

of &, we obtain that B n A e d(&) for all A e &) = d(£). Consequently
& and (&)= &,. But d(&) = &,; hence d(&} = &,, and therefore
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whenever 4 and B are in d(£), the set A N B also belongs to d{£), i.e: d(&) is
closed under intersections.
This completes the proof of the theorem.

We next consider some measurable spaces (£ %) which are extremely
mportant for probability theory.

2. The mezsurable space (R, #{R)). Let R = (— o0, oo) be the real line and
(a,b] ={xeR:a<x<b}

forallaand b, — 0 < a < b < «0. The interval (a, c0] is taken to be (g, o).
(This convention is required if the complement of an interval (— oo, b] is
to be an interval of the same form, ie. open on the left and closed on the
right.)

Let ¢ be the system of subsets of R which are finite sums of disjoint
intervals of the form (a, b]:

Aedifd= Y (a,b], »n<co

i=1

It is easily verified that this systemn of sets, im which we also mclude the
empty set ¢, 15 an algebra. However, it 18 not a g-algebra, since if 4, =
(0,1 — 1/n] e o, we have | ), 4, = (0, 1) ¢ 7.

Let $9(R) be the smallest o-algebra ofs#) containing »#. This c-algebra,
which plays an important role in analysis, is called the Borel algebra of subsets
of the real line, and its sets are called Borel sets.

If .# 1s the system of intervals .# of the form (a, &], and o(.#) is the smallest
g-algebra containing S, it is easily verified that a{#) is the Borel algebra.
In other words, we can obtain the Borel algebra from # without going
through the algebra 7, since o(.#) = o{a(5)).

We observe that
- 1
(ﬂb}=U(:b _]: ﬂ{b,
nwm ] L
o 1 T
[a,B] = (a——,b, a< b
r=1 n a
fral 1 ]
{a} = ﬂ(ﬂ——,a.
n=1 1 i

Thus the Borel algebra contains not only intervals (g, b] but also the single-
tons {g} and all sets of the six forms

(a,0) [abd], [2b), (—w,b), (—o0,b]) (g ) (4)
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Let us also notice that the construction of #(R) could have been bﬂﬁﬂfi on
any of the six kinds of intervals instead of on (g, b], since all the minimal
¢-algebras generated by systems of intervals of any of the forms (4} arc the
same as #(R).

Sometimes it is useful to deal with the s-algebra #(R) of subsets of the
extended real line R = [ — o5, 00]. This is the smallest 5-algebra generated by
intervals of the form

(a.b]={xeR:a < x <b} - =a<b< oo,

where (— o, £] 15 to stand for the set {xe R; —c0 < x < b}

Remark 1. The measurable space (R, #(R)) is often denoted by (R, &) or
(R, ).

Remark 2. Let us ntroduce the metric

|x — ¥yl

pilx, y) = 14 % —y)

on the real ine R (this 15 equivalent to the usual metric [x — y|) and let
BAR) be the smallest o-algebra generated by the open sets S,(x°) =
{xeR:p(x,x") < p}, p > 0,x° & R. Then B(R) = Z(R) (see Problem 7).

3. The measurable space (R", Z(R™). Let R" = R x --- x R be the direct, or
Cartesian, product of # copies of the real line, i.e. the set of ordered n-tuples
x=({x5...., x.), where —co0 < x, < o0,k = 1,...,n The set
Ii=1 x:-xI,

where I, = (a;, b, 1.c. the set {xe R x, el k=1,..., r}. is called a
rectangle, and I, 15 a side of the rectangle. Let .# be the set of all rectangles 1.
The smallest g-algebra o{.#) generated by the system # i1s the Borel algebra
of subsets of R" and is denoted by #(R"). Let us show that we can arrive at
this Borel algebra by starting in a different way.

Instead of the rectangles I = I, x --- x I let us consider the rectangles
B = B, % --- x B, with Borel sides (B, is the Barel subset of the real line
that appears in the kth place in the direct product R % ... x R), The smallest
a-algebra containing all rectangles with Borel sides is denoted by

BR)SD -+ @ B(R)
and called the direct product of the a-algebras #Z(R). Let us show that in fact

B(R) = BR) @ - @ B(R).
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In other words, the smallest g-algebra generated by the rectangles I =
I, x -+ - x I, and the (broader) class of rectangles B = B, X -« x B, with
Borel sides are actually the same.

The proof depends on the following proposition.

Lemma 3. Let & be a class of subsets of Q3, let B € ), and define

EnB={AnNnB:Ae&} (3)
Then
a{& ~ B) = o(#) n B. (6)
PrOOF. Since & = o{&), we have
& n B c o(€) " B. (7)

But 6{&) N B is a g-algebra; hence it follows from (7) that
od N B) = a(d}yn B.

To prove the conclusion in the opposite direction, we again nse the
principle of appropriate sets.
Define

€= {Aeca(f): A Beo(f n B)}.
Since o{§} and o(£ m B) are s-algebras, €5 is also a g-algebra, and evidently
& <€y < o(f)
whence o(8) € o(€5) = €5 = o{€) and therefore o(8) = €. Therefore
A~ Bea(f n B)

for every A € o(£), and consequently ¢{(&) N B = o(& n B).
This completes the proof of the lemma.

FProof that 2(R™)and 8 ® - - - ® & are the same. Thisis obvious forn = 1.
We now show that it is true forn = 2.

Since B(RY) c & ® B, it is enough to show that the Borel rectangle
B, x B, belongs to #(R*?).

Let R = R, x R,, where R, and R, are the “first™ and “second” real
lines, &, = @B, x R,, %, = R, x #,, where &, x R, (or R, x @,)is the
collection of sets of theform B, x R,(orR, x B,),withB, € &, (or B; € 45,).
Also let £, and .#, be the sets of intervals in R, and R,,and £, = #, x R,,
F2 =Ry x F,.Then, by (6),

Bl x B: =§1 ﬁEzEﬁl ﬁ.ﬁz =ﬂ'(ﬁ1]ﬁ§1
a(#, n By € ol F, nFy)
ﬂ-(‘ﬁl X fl):

Il

as was to be proved.
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The case of any n, n > 2, can be discussed in the same way.

Remark. Let #8,(R") be the smallest s-algebra generated by the open sets
SxM ={xeRpx.x% <p}, x"eR" p>0,

in the metric

po(x, x°) = k=Zl2"‘p1(xk, x),

where x = (xy,...,x), x° = (a5, ..., x").
Then @y(R,) = @(R") (Problem 7).

4. The measurable space (R*, #(R*)) plays 2 significant role in probability
theory, since it is used as the basis for constructing probabilistic models of
experiments with infinitely many steps.

The space R™ 1s the space of ordered sequences of numbers,

X = (X, X3,4.--h —wsx <o, k=1,2,...

Let I, and B, denote, respectively, the intervals (o, , b, ] and the Borel subsets
of the kth line (with coordinate x,). We consider the cylinder sets

FIy x - x L)={x:x=(x,%3,.. x4 Ey,....,x, €L}, (8
HB, Xx---x B)={x:x={xy, x;---),x,eB,,...,x,eB}, &)
FB") = {x:(%y,...,x,) € B}, (10)

where B is a Borel set in 8(R"™). Each cylinder #(B, x --- x B,), or #(B"),
can also be thought of as a eylinder with base in R**'_ R™2 ... since

F(B, x---xB)=#B, x - x B, x R),
F(B") = A(B™),

where B"*! = B® x R,
It follows that both systems of cylinders S#(B, x --- x B,) and #(B")
are algebras. It is easy to verify that the unions of disjoint cylinders

F(, % x L)

also form an algebra. Let @(R™), #,(R™) and #,(R™) be the smallest
g-algebras containing all the sets (8), (9) or (10), respectively. {The g-algebra
2 ,(R™) is often denoted by #(R) ® BH(R) x -+-.} It is clear that #(R®) =
2,(R™) = @,{R”). As a matter of fact, all three g-algebras are the same.

Ta prove this, we put

€, ={Ae R {x:{x,,...,x) e A} € BH(R™)}
forn=12,....Let B" € @(R"). Then
B"e ¥, € #(R™).
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But %, is a g-algebra, and therefore
H(R") < o(€,) = €, = BR);
conseguently
&, (R™) = B(R™).

Thus #(R*) = 4,(R*) = B,(R*).

From now on we shall describe sets in 2{R*) as Borel sets (in R%).
Remark, Let &y (R*) be the smallest s-algebra generated by the open sets

S5£x°) = {xeR®: p(x,x°) < p}, x"eR™, p>0,

in the metric
=i ]
PalX x%) = ¥ 27%p1(x, X0),
k=1

where x = (x;,%z,-.., x°=(x},x3,..) Then B(R™) = B,(R™)
{Problem 7).
Here are some examples of Borel sets m R

(@) {xeR*:supx, > a},
{x e R®:inf x, < a}:

() {xeR*;limx, < al,
{xe R*: lim x, > a},
where, as usual,

lim x,, = inf supx,,, lim x,, = sup inf x,,;
H HZR H mzRr

(c) {xeR™:x,—},theset of x € R* for which lim x, exists and is finute;
() {xeR":lim x, > a};

(&) {xeR=:} 2, [x,] > a};
(f) {xeR™: Y7y x;, = 0foratleastonen = 1}.

To be convinced, for example, that sets in (a) belong to the system &(R~),
1t is enough to observe that

{x:supx, > a} = | ) {x:x, > a} € BR™),

{x:infx, < a} = | ) {x: x, < a} € BR™).
5. The measurable space (R, H(RT)), where T is an arbitrary set. The space
RT is the collection of real functions x = (x,) defined for t ¢ T+. In general

we shall be interested in the case when T is an uncountable subset of the real

+ Wc shall alsa use the notations x = {x,),, gr 20d x = [x)), t € R, for elements of RT,
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line. For simplicity and definiteness we shall suppose for the present that
T =[0Q, c0).
We shall consider three types of cylinder sets

Ity X o xIy={x:x, el,...,x_eI}h (11}
ﬁt:.—-r-In{Bl Ko X Bn:l = {x:xn EBII”'Ixt,,EBn}: (12}
F i) = X (%, ..., %, Y B}, (13)

where 1, is a set of the form {g,, b, 1, B, is a Borel set on the line, and B"is a
Borel set in R".

The set £, ., (I, x --- x I} is just the set of functions that, at times
tyse. .51, “get through the windows™ I,,...,I, and at other times have
arbitrary values (Figure 24).

Let &(R™), 8,(RT) and #,(RT) be the smallest g-algebras corresponding
respectively to the cylinder sets (113, (12) and (13). It is clear that

B(RT) = B,(RT) = F,(R7). (14)

As a matter of fact, all three of these g-algebras are the same. Moreover, we
can give a complete description of the structure of their sets.

Theorem 3. Let T be any uncountable set. Then B(RT) = #,(RT) = 8,(RT),
and every set A € F(RT) has the following structure : there are a countable set of
pointsty, t,,...of T and a Borel set B in B(R™) such that

A= {x:{x,, x,,.. yE B}, (15)
PrROOF. Let £ denote the collection of sets of the form (15) (for various ag-

gregates (1, 5,...) and Borel sets B in $(R™)). If 4, A;,...c & and the
corresponding aggregates are T = ({1 AV ), T2 = 1@, 42 ), ...,

Figure 24
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then the set 74 = | J, T™ can be taken as a basis, so that every A has a
representation

A; = {xt(x,,, X,y ..} € Bi},

where B; is a set in one and the same g-algebra B(R®), and t, e T

Hence it follows that the system £ is a g-algebra. Clearly this s-algebra
contains all cylinder sets of the form (1) and, since %,(R") is the smallest
o-alpebra containing these sets, and since we have (14), we obtain

BRT) = #,(RT) = B,(RT) < &. (16)

Let us consider a set A from &, represented in the form (15). For a given
aggregate {ty, ta,...), the same reasoning as for the space (R, #(R*)) shows
that A is an clement of the o-algebra generated by the cylinder sets (11). But
this o-algebra evidently belongs to the s-algebra #(R™); topether with (16),
this established both conclusions of the thearem,.

Thus every Borel set A in the g-algebra 58(RT) is determined by restrictions
imposed on the functions x = (x,), £ € T, on an at most countable set of points
£y, bz.... . Hence it follows, in particular, that the sets

Ay = {x:supx, < Cforallr € [0, 11},
A; = {x:x, = 0 for at least one t € [0, 1]},
A5 = {x: x, is continuous at a given point 1, € [0, 1]},

which depend on the behavior of the function on an uncountable set of points,
cannot be Borel sets. And indeed none of these three sets belongs to B(RI% 11,

Let us establish this for A4,. If 4, e Z(R!% '), then by our theorem there
are a point (¢¥, ¢9,...) and a set B € &(R*) such that

{x: sup x, < C, t [0, 1]} = {x: (x,9, Xg,---) € B°}.

It is ¢lear that the function y, = C — 1 belongs to Ay, and consequently
{ys,...)€ B®. Now form the function

r_C—Lrﬁiﬁul
e+, eg (el

It is clear that
(yl!?! Figa- ) = (Z{T:r Z@a-- -):

and consequently the function z = (z,) belongs to the set {x: (xq,...} € B%.
But at the same time it is clear that itdoesnot belongto the set {x: sup x, < C}.
This contradiction shows that A, ¢ SR 1),
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Since the sets 4,, A; and A, ar¢ nonmeasurable with respect 10 the
s-algebra B[R ) in the space of all functions x = (x,), t € [0, 1], it is
natural to consider a smaller class of functions for which these sets are
measurable. It is intuitively clear that this will be the case if we take the
intial space to be, for example, the space of continuous functions.

6. The measurable space (C, #(C)). Let T = [0, 1] and let € be the space of
continuous functions x = (x,), 0 < r =< 1. This is a metric space with the
metric p(x, ¥) = sup,.7|X, — ¥|. We introduce twc o-algebras in C:
B{C) is the o-algebra generated by the cylinder sets, and 8,(C) is generated
by the open sets {open with respect to the metric p(x, »)). Let us show that in
fact these g-algebras are the same: B(C) = By{C).

Let B = {x:x,, < b} be a cylinder set. It is easy to see that this set is open.
Henee it follows that {x:x, < b,,...,x, < b,}e#B(C), and therefore
Z(0) € B(C).

Conversely, consider a set B, = {y: y € §,(x°)} where x is an element of C
and §,(x°) = {x € C: sup,.¢|x, — x| < p} is an open ball with center at
x®. Since the functions in € are continuous,

= {J’EC:}JESﬂ(x“)} = {}'EC: I'Ilﬂ.xlyr — xf'l = p}
i
=N {yeC:ly, — x| < p} e BC), (A7)
)

where 1, are the rational points of [0, 1]. Therefore #,(C) = H{C).
The following example is fundamental.

7. 'The measurable space (D, #(D)), where D is the space of functions x = (x,),
t € [0, 1], that are continuous on the right (x, = x,, for all ¢ < 1) and have
limits from the left (at every ¢ = D).

Just asfor C, we can introduce 2 metric d(x, y) on D such that the s-algebra
B oIV pencrated by the open sets will coincide with the g-algebra (D)
generated by the cylinder sets, This metric d{x, y), which was introduced
by Skorahod, is defined as follows:

d(x, y) = inffe > 0: A A e A sup|x, — vy + sup [t — A2 < €}, (18)
T I

where A is the set of strictly increasing functions A = A(f) that are continuous
on [0, 1] and have A{0} = 0, (1) = 1.

8. The measurable space ([ [,.r &2, [olicr %) Along with the space
(RT, 4(R™)), which is the direct product of T copies of the real line together
with the system of Borel sets, probability theory also uses the measurable
space (] [ier @ Flicr F ). which is defined in the following way.
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Let T be any set of indices and (£2,, %,) 2 measurable space, f € T. Let
0 = [],er €%, the set of functions w = (ex), £ € T, such that o, & for each
teT.

The collection of cylinder sets
l'fl'i-.---..h..('Bl - X Bﬂ) = {OJ: wtl € Bla ey wr" = B"},

where B, € 5, is easily shown to be an algebra. The smallest o-algebra
containing all these cylinder sets is denoted by [e], . &, and the measurable
space (J| Q. Jo F.) is called the direct product of the measurable spaces
. F)teT

2, PrROBLEMS

L. L=t 22, and 4, be o-algebras of subsets of £2. Are the following systems of sets o-
algebras?

B oA, = AcH, and Ae &),
B, ={A Acd,or Acs@,}

2. Let @ = {D;, D,,...} be a countable decomposition of Q and & = ¢(<2). Are there
also only countably many sets in &7

3. Show that
B(R") @ BR) = BR" ).
4. Prove that the sets (b)~{f) {sez Subsection 4) belong to B(R=).
5. Prove that the sets 4, and 4, (see Subsection 5) do not belong to (R 1D,
6. Prove that the function {15) actually defines 2 metric.
7. Prove that #o(R™) = B(R"), n = 1,and #R*) = Z(R™).

8. Let C = C[0, «¢) be the space of continuous functions x = (x,) defined for t = Q.
Show that with the metric

[1a]
P y)y= 327" nﬂn[ sup [x — wl, l], x, yeC,
= b+

n=1 =l€n

this is a complete separable metric space and that the g-algebra #,(C) generated by
the open sets coincides with the o-algebra #(C) generated by the eylinder sets.

§3. Methods of Introducing Probability Measures
on Measurable Spaces

1. The measurable space (R, #(R)). Let P = P(A) be a probability measure
defined on the Borel subsets A of the real line. Take A = (— <o, x] and put

F{x) = P(—e0, x], xekR. (1)
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This function has the following properties:
(1) F(x)is nondecreasing;
(2) F(—o0) = 0, F{+c0) = 1, where

F(—e0) = lim F{x), F{+ o) = lim F(x);

x| —w xton
(3) F{x)is continuous on the right and has a limit on the left at each x € R.

The first property is evident, and the other two follow from the continuity
properties of probability measures,

Definition 1. Every function F = F(x) satisfying conditions (1)-(3) is called
a distribution fimction (on the real line R).

Thus to every probability measure P on (R, #(R)) there corresponds (by
(1)) a distribution function. It turns out that the converse is also true.

Theorem 1. Let F = F(x) be a distribution function on the real line R. There
exists a unigue probability measure P on (R, #(R)) such that

P(a, b] = F(b) — Fla) (2)

Joralla, b, —oo < a < b < oo,

Proo¥. Let 7 be the algebra of the subscts A of R that are finite sums of
disjoint intervals of the form (q, b]:

A= kil{ﬂk, bk]

On these sets we define a set function P by putting
Pold) = Y [F(b) — Fl@)]l, Aes. (3)
k=1

This formula defines, evidently uniquely, a finitely additive set function on 7.
Therefore if we show that this function is also countably additive on this
algebra, the existence and uniqueness of the required measure P on B(R)
will follow immediately from a general result of measure theory (which we
quote without proof}.

Carathéodory’s Theorem. Ler Q) be a space, of an algebra of its subsets, and
B = o(s¥) the smallest o-algebra containing s¢. Let j, be a o-additive measure
on (€Y, A). Then there is a unigue measure p on (C, o{F)) which is an extension

of iy, Le. satisfies
H(A) = pip(A), Aed,
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We are now to show that P, is countably additive on /. By a theorem
from §1 it is enough to show that P, is continuous at (7, 1.e. to verify that

Po(4010, A,1@, A,ed

Let A,, A,,...beasequence of sets from o with the property A, | 5. Let
us suppose first that the sets 4, belong to a closed interval [ - N, N], N < oo.
Since A is the sum of finitely many intervals of the form {a, &] and since

Po(a', B] = F(b) — Fla")— F(b) — Fla) = Po(a, &]

as a’ | a, because F(x) is continuous on the right, we can find, for every 4,,
a set B, € s such that its closure [B,] < A4, and

Po(A,) — Po(B) < 6275,

where £ is a preassigned positive number.
By hypothesis, [} 4, = & and therefore {1} [B,] = . But the sets [B,]
ar¢ closed, and therefore there 1s a fimte ny = #y(e) such that

o

() [BJ =& @

n=1

(In fact, [ — N, N] is compact, and the collection of sets {[ —N. NI\[B.1}o=s
is an open covering of this compact set. By the Heine-Borel theorem there
is 2 finite subcovering:

0 @M. NIN[E.D) = [N, N]

and therefore [ )i%, [B,] = ).
Using (4) and the inclusions A, € 4, _; € --- € A;, we obtain

g np
PolA,,) = PD(A"D\;:Q B,,) + F’.;,(kﬂ Bk)

=1

=1

- PG(AH;\ A Bk) < Pu( U {Ak\Bk))
k=1 [

Ho g
E E PQ(AI‘\B;() ﬂ Z £ - 2_1'{ i Et
k=1 k=1

Therefore Po{Ad,} L 0, n— co.
We now abandon the assumption that 4, = [ —N, N] for some N. Take
an £ > Oand choose N so that Po[ — N, N] > 1 — &/2. Then, since

A=A, "[-N,N]+ 4, n[—-N,N],
we have

Pol(Ad,) = PA[—N, N] + Po(A, n[—N, N]}
= PD(An M [_Ns N]) + Eﬂ
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and, applying the preceding reasoning (replacing A, by 4, n [ — N, N1), we
find that Py(4, n [— N, NT) < &2 for sufficiently large n. "Hence once again
Po{A,) | 0,n — co. This completes the proof of the theorem.

Thus there is a gne-to-one correspondence between probability measures
P on (R, 2(R)) and distribution functions F on the reaf line R. The measure
P constructed from the function F is usually called the ebesgue-Sticltjes
probability measure corresponding to the distribution function F.

The case when

0, x<q
F(x)=4x, 0<x=<1,
1, x> 1.

is particularly important, In this case the corresponding probability measure
(denoted by 1) is Lebesgue measure on [0, 1]. Clearly XMa, b] =b —a. In
other words, the Lebesgue measure of {a, ] (as well as of any of the intervals
(a, b), [a, b] or [a, b)) is simply its length b — a.

Let

B[O, 1] = {4 A [0, 1]: A e BR)}

be the collection of Borel subsets of [0, 1]. It is often necessary to consider,
besides these sets, the Lebesgue measurable subsets of [0, 1]. We say that a
set A = [0, 1] belongs to Z([0, 1)] if there are Borel sets 4 and B such that
A € A = Band A(B\ A) = 0. It is easily verified that Z([0, 1]}is a -algebra.
It is known as the system of Lebesgue measurgble subsets of [0, 1]. Clearly
([0, 11) = &[0, 1]).

The measure 4, defined so far only for sets in ([0, 1]), extends in a
natural way to the system 2([0, 1]) of Lebesgue measurable sets. Specifically,
if AcZ([0,1]) and A = A = B, where A and Be Z([0, 1]) and B\ A) =0,
we define A(A) = A{A). The set function 4 = A(A), A€ B0, 1]), is easily
seen to be a probability measure on ([0, 1], &[0, 1])). It is usuaily called
Lebesgue measure {on the system of Lebesgue-measurable sets).

Remark. This process of completing (or extending) a measure can be applied,
and is useful, in other situations. For example, let (2, #, P) be a probability
space. Let ZF be the collection of all the subsets A of £ for which there are
seis B; and B, of & such that B, = A c B, and P(B;\B,) = 0. The prob-
ability measure can be defined for sets A € #£F in a natural way (by P(A) =
P(5,}). The resulting probability space is the completion of {2, &, P) with
respect to P

A probability measure such that #¥ = F is called complete, and the cor-
responding space (0, %, P) is a complete probability space.

The correspondence between probability measures P and disiribution
functions F established by the equation P(a, b] = F(F) — F(a) makes it
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F{x)

L |
a

Figure 25

possible to construct various probability measures by obtaining the cor-
responding distribution functions.

Discrete measures are measures P for which the corresponding distri-
butions F = F(x} are piecewise constant (Figure 25), changing their values
al the points x,, x;,... (AF(x,) > 0, where AF(x) = F(x) — F(x—). In
this case the measure is concentrated at the points x,, x5, ...:

P{{x.}) = AF(x,) > O, ; P({x:}) = 1.

The set of numbers (py, p;,...). where p, = P({x,}), is called a discrete
probability distribution and the corresponding distribution function F = F(x)
is called discrete.

We present a table of the commonest types of discrete probability distri-
bution, with their names.

Table 1

Distribution Probabilities p; Parameters

Discrete uniform YN, k=1,2,.._. N N=12...

Bernoull Hh=p Po=4d D<p<lg=I1-p

Binomial Ciphg"™%, k=0,1,....n D<p=l, g=1-=0p,
n=12...

Prisson e YWE, k=01,... A=0

Geometric ¢ 'p, k=0,1,... b<p=<l, g=1—p

Negative binomial g, k=rnr+1,... D=p=l, g=1-—p,
r=12...

Absolutely continuous measures. These are measures for which the corres-
ponding distribution functions are such that

Foy= | s ®
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where f = f(t) are nonnegative functions and the integral is at first taken in
the Riemann sense, but later (see §6) in that of Lebesgue.

The function f = f{x), x € R, is the density of the distribution function
F = F{x){or the density of the probability distribution, or simply the density)
and F = F{x) is called absolutely continucus.

It is clear that every nonnegative f = f(x) that is Riemann integrable and
such that [®. f(x}dx = 1 defines a distribution function by (5). Table 2
presents some important examples of various kKinds of densities f = f(x)
with their names and parameters (a density f(x) is taken to be zero for values
of x not listed in the table).

Table 2
Distribution Density Parameters
Uniform on [a, b] jb—a), as=x=<bh abkeR: a<b
Normal ar Gaussian Qrg?)y R w2 x e R meR o>=>0
X lg_x”j ﬁ
Gamma —_—— x =0 a=>0f=>0
T}
r=1ry -1
Beta XU - xy , d=x=1 r>0,5>D
B(r, 5)

Exponential (gamma

withe = 1, = 1/4) de™2 x>0 A=0
Bilateral exponential 7=l xeR 2>0
Chi-squared, y*

{gamma with a 2TH2INA= T2 (T (nfY), x =0 n=12...

o= nj2, fi=2)

Tin + 1)) xFyTetivz
Student, ¢ TR OR) — ., XeR n=12...
opy e
F mn=12..
B(m/2, n/2) (L + mxjriym* iz
Cauch; o xeR # >0
¥ n{x* + 8%’

Singular measures. These are measures whose distribution functions are
continuous but have all their points of increases on sets of zero Lebesgue
measure. We do not discuss this case in detail; we merely give an example of
such a function.
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Fy{x)

o
X

[ |
3 ¢

Fipurs 26

We consider the interval [0, 1] and construct F{x) by the following pro-
cedure originated by Cantor.
We divide [0, 1] into thirds and put (Figure 26)

1 2
s NEF T

x € (5 §),
. Xe(F3)
x =0,
, x=1

Fa(x) =+

r
et p Lt 5{:- (X

defining it in the intermediate intervals by linear interpolation.
Then we divide each of the intervals [0, 1] and [£, 1] into three parts and
define the function (Figure 27) with its values at other points determined hy

linear interpolation,

Fayx}
A

J
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Continuing this process, we construct a sequence of functions Fy(x),
n =1, 2,..., which converges to a nondecreasing continuous function F(x)
(the Cantor function), whose points of increase (x is a point of increase of F(x)
if F(x + &) — F{x — &) > Ofor every & > () form a set of Lebesgue measure
zero. In fact, it is clear from the construction of F(x) that the total length of
the intervals (4, €), (3, €), (. §), . .. on which the function is constant is

1.2 4 1= 2y
_— -_— R PR — =1.
3ttt 3"=°(3) ©

Let .4 be the set of points of increase of the Cantor function F(x). It
follows from (6) that A(.4"} = 0. At the same time, if z 1s the measure cor-
responding to the Cantor function F{x), we have u(.4"} = 1. (We then say
that the measure is singular with respect to Lebesgue measure 4.)

Without any further discussion of possible types of distributien functions,
we merely observe that in fact the three types that have been mentioned cover
all possibilities. More precisely, every distribution function can be represented
int the form p,F, + p, F; + p3F5, where F, is discrete, ¥, is absolutely
continuous, and F; is singular, and p, are nonnegative numbers, p, + p, +

pa=1

2. Theorem 1 establishes 2 one-to-one cerrespondence between probability
measures on (R, #(R)) and distribution functions on R. An analysis of the
proof of the theorem shows that in fact a stronger theorem is true, one that in
particular lets us intreduce Lebesgue measure on the real line,

Let u be a o-finite measure on ({1, &), where o7 is an algebra of subsets of
0. It terms out that the conclusion of Carathéodory's theorem on the ex-
tension of a measure and an algebra f to a minimal s-algebra a(s?) remains
valid with a o-finite measure; this makes it possible to generalize Theorem 1.

A Lebesgue-Stieltjes measure on (R, #(R)) is a {countably additive)
measure g such that the measure u(I) of every bounded interval [ is finite.
A generalized distribution function on the real line R is a nondecreasing
function G = G(x), with values on {— ¢o, ¢0), that is continuous on the right.

Theorem 1 can be generalized to the statement that the formula

u(a,b] = Gb) — Gla), a<b,

again ¢stablishes a one-to-one correspondence between Lebesgue-Stieitjes
measures i and generalized distribution functions G.

In fact, if G{+ c0) — G(— o) < oo, the proof of Theorem 1 can be taken
over without any change, since this case reduces to the case when G(+ o0) —
G{— o) = 1 and G{—0o0) = 0.

Now let G{+c0) — G(—o0) = o0, Put

Gix}, Ixl<mn
G(x)=3G(n) x=mn,
G{—n), x=—n
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On the algebra o let us define a finitely additive measure g such that
pola, ] = G(b) — G(a), and let u, be the finitely additive measure previously
constructed (by Theorem 1) from G,{x).

Evidently p, T o on o, Now let A,, A,,... be disjoint sets i .o/ and
A=Y A,e o Then (Problem 6 of §1)

pﬁ{A} = EI#G(AN)*

I 30, po(4,) = o0 then po{d) =%, po(4,). Let us suppose that
3 po(A,) < co. Then

Ho(A) = lim p,(A) = lim f LA,

n k=1

By hypothesis, ¥ pi5(A,) < co. Therefare

0.< iold) = 2 #olAy) = lim LZI (A ) — PD(ARJ):I <0,

since g, < Uo-

Thus a g-finite finitely additive measure y, is countably additive on <7,
and therefore (by Carathéodory’s theorem) it can be extended to a countably
additive measure u on of o).

The case G(x) = xis particularly important. The measure A corresponding
to this generalized distribution function is Lebesgue measure on (R, %#(R)).
As for the interval [0, 1] of the real line, we can define the system %#(R) by
writing A € @(R) if there are Borel sets A and B such that A € A € B,
AMB\A) = Q. Then Lebesgue measvure 4 on #(R) is defined by I(A) = A{A)
if A= A< B, e @B(R)and A(B\A) = 0.

3. The measurable space (R", B(R"). Let us suppose, as for the real line, that
P is a probability measure on (R", B(R").
Let us write

Fxy,...,%)=P{{—0o0,x,] x--- % (—00, x,]),
or, iIt 4 more compact form,
F(x) = P(—c0, x],

where x = (x,,...,x,), (—0o0, x] ={—0c0, x;] x --- x (—c0, X,]-
Let us introduce the difference operator A, . : R* — R, defined by the
formula

&a;,biFn(xl! e X)) = Folxp, oo, 0o By X000

= Folxy, s Xm 8 X1 .- 2)
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where g; < b;. A simple calculation shows that

'&ﬂlbl e A%Fn{xl T xn) = P{ﬂ, b]s {?)

where (4, b] = (ay, b,] % -+ % (a,, b,]. Hence it is clear, in particular, that
{in contrast to the one-dimensional case} P(a, b] is in general not equal to
F.(b) — F.{a).

Since P(a, b] = 0, it follows from (7) that

ﬂalbl“'ﬁnnanh(Ih...,xn} - 0 {3)

for arbitrary a = (ay.. .., a,), b = (by, ..., b,).

It also follows from the continuity of P that F (x,,.... x,) is continuous
on the right with respect to the variables collectively, Le. if x® | x, x* =
(x¥, ..., x¥N, then

F(x™) | F(x), k- o0 &)
It is also clear that
Fl+o,...,+o0)=1 {10
and
11111 F(xg...,x) =0, (113
x|y

if at least one coordinate of y is — oo,

Definition 2. An n-dimensional distribution function (on R") is a function
F = F(x,,...,x,) with properties (8}—(11).

The following result can be established by the same reasoning as in
Theorem 1.

Theorem 2. Let F = F (x,,..., x,) be adistribution fimction on R". Then there
is @ unique probability measure P on (R", B(R")) such that

P(ﬂ, b] = ﬁn;b; e ﬁdnann(xls -3 xn-)" (12)

Here are some examples of n-dimensional distribution functions.
let F', ..., F" be one-dimensional distribution functions {(on R) and

Fixg..... x,) = Fl(x,)- - F'(x).

It is clear that this function is continuous on the right and satisfies (10) and
(11). It is also easy to verify that

Appy - - B p FolXp,o X0} = I—_[ [F (b} — FaJ] = 0.

Consequently F.{x,,...,x,) is a distribution function,
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The case when

0 x <0,
Fx)=<x%, 0<x <1,
1, x =1

is particnlarly important. In this case
Fulxg,..,%,) =X, <o Xp-

The probability measure corresponding to this s-dimensional distribution
function is n-dimensional Lebesgiie measure on [0, 1T
Many n-dimensional distribution functions appear in the form

x

F,,(xl,...,x,,)=j f“j;t(tl,...,rﬂ}dtl...dt,,,

==
o

where f.(t,,...,t,) is a nonnegative function such that

J‘:,---jjbmﬁ,(rl,...,tn}dtl---dz"= 1,

and the integrals are Riemann (more generally, Lebesgue) integrals. The
function f = f{t,.....t,) is called the density of the n-dimensianal distri-
bution function, the density of the n-dimensional probability distribution,
or simply an a-dimensional density.

When n = 1, the function

1

O/ 270

- — F4 2
g~ T mN2eT xeR,

f(x) =

with ¢ > 0is the density of the (nondegenerate) Gaussian or rormal distribu-
tion. There are natural analogs of this density when n > 1,
Let R = [l be 2 nonnegative definite symmetric » X » matrix:

n
Z T;jﬂ.;ﬂ.jau, J.‘ER, I = ].,L..,ﬂ, ru=rﬁ,
(=1
When R is a positive definite matrix, | B[ = det B > 0and consequently there
is an inverse matrix A = [la;||-

Pl
Flxys - %) = W exp{—3 E a{x; — mpd(x; — )}, (13)

wherc m; € R,i = 1,...,n has the property that its (Riemann) integral over
the whole space eguals 1 (this will be proved in §13) and therefore, since it is
also positive, it is a density.

This function is the density of the n-dimensional (nondegenerate) Gaussian
or nermal distribution (with vectar mean m = (m,,..., m,) and covariance
matrix R = A~ 1),
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Fipure 28, Density of the fwo-dimensional Gaussian distribution.

When n = 2 the density f3(x,, x;) can be put in the form
1

2a0y0 /1 — p

« exp{— 1 [(xl _1m1)2 _

f?.(xl Xz} =

2

A1 — p% oy
— 2 (% — m;iﬁ;z — my) N (x3 ;gmz}z]}’ (14)

where g; = 0, | 2| < 1. {The meanings of the parameters m;, o; and p will be
explained in §8.)
Figure 28 indicates the form of the two-dirnensional Gaussian density.

Remark. As in the case n = 1, Theorem 2 can be generalized to (similarly
defined) Lebesgue-Stieltjes measures on (R", %(R™) and generalized
distribution functions on R". When the generalized distribution function

G X1,. .., X} 18 Xy ++ - X, the corresponding measure 1s Lebesgue measure
on the Borel sets of R™. It clearly satisfies

Me, B = [1(5: — a2
i=1

ie. the Lebesgue measure of the “rectangle”

(ﬂ, b] = (ﬂli bl] Koo X (an! bn]
Is its “ content.”

4. The mezsurable space (R™, B(R*)). For the spaces R", n = 1, the proba-
ability measures were constructed in the following way: first for elementary
sets (rectangles (e, b]), then, in a natural way, for sets 4 = ¥ (a,, b;], and
finally, by using Carathéodory’s theorem, for sets in 8(R™).

A similar construction for probability measures also works for the space
(R, #(R™)).
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Let
f,,(B)={xER“’:(xl,...,x“)EB}, BE'@(R”}:
denote 2 cylinder set in R™ with base B € A(R"). We see at once that it is
natural to take the cylinder sets as elementary sets in R, with their prob-
abilities defined by the probability measure on the sets of B{(R ™).

Let P be a probability measure on (R™, #(R™)). Forn=1, 2,..., we
take

PAB) = P(F(B)), Be®R). (15)

The sequence of probability measures P,, P,,...defined respectively on
(R, Z(R)), (R?, B(R?)),..., has the following evident consistency property:
forn=1,2,...and B e B(RM,

Fra I{B x R) = PH(B)' (16)
It is noteworthy that the converse also holds.

Theorem 3 (Kolmogorov's Theorem on the Extension of Measures in
(R, 8(R™)). Let P,, P,,...be a sequence of probability measures on
(R, B(R)), (R*, B(R?)), ..., possessing the comsistency property (16). Then
there is a unigue probability measure P on (R™, B{R™)) such that

P(#{B)) = P(B), Be®R"). (17}
Jorn=12 ...

ProOF. Let B" ¢ #Z(R") and let #,(B") be the cylinder with base B". We assign
the measure P{.# (B")) to this cylinder by taking P(.# (B")) = F,(B").

Let us show that, in virtue of the consistency condition, this definition is
consistent, i.e. the value of P{# (B") is independent of the representation of
the set .# (B"). In fact, let the same cylinder be represented in two way:

FABY = F (BT,
It follows that, if (x,, ..., X, € R*'% we have
ety ey X E B e (Xq, ..oy X1 5) € B (18)
and therefore, by (16) and (18),

Pn(.Bh) = Pn+ .I((x.l.? s JC,,+1)I(JC1,- = xﬂ) EBH)
== Pol(x, - Xpad (X - X)) € BT)
= Pyix B"”)-

Let /(R ™)} denote the collection of all cylinder sets B” = .# (B, B"c B(R"),
n=12,....
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Nowlet B,, ..., B, be disjoint sets in «/(R*). We may suppose without loss
of generality that B, = # (B, i = 1,..., k, for some n, where BY,..., B are
disjoint scts in #(R"). Then

P(iiﬁ‘) - P(ilﬁ,,(ﬂ?}) - P..( ) B") = Y P(B) = 3 PE)

i=l

i.e. the set function P is finitely additive on the algebra &/(R™).

Let us show that P is “continuous at zero,” ie. if the sequence of sets
B | &, n— oo, then P(B,) = 0, n —» . Suppose the contrary, ie¢. let
lim P(8,) = 3 > 0. We may suppose without loss of generality that {B,}
has the form

B = [x:(xy,...,x)eB,), B, edR".

We use the following property of probability measures P, on (R, Z(R")
(sce Problem 9): if B, € BA(R™), for a given & > 0 we can find a compact set
A, e @(R™ such that A, = B, and

P(B\A) < 821,
Therefore if
A, = XX, x)e4,),
we have
P(B.\AL) = P(BN\A,) < 6/ 2,

Form the set €, = (=1 A, and let C, be such that

C = {x:(xn....x) € Cn}

Themn, since the sets E,, decrease, we obtain

PBNC) < kglP(E.,\ﬁk) < kglptﬁn\Ak) < &2.

But by assumption lim, P(8,) = § > 0, and therefore lim, P(C,) = /2 > 0.
Let us show that this contradicts the condition C, | .

Let us choose a point 2™ = (x, x{,.. }in C,. Then (7, ..., x¥™MeC,
forn = 1.

Let (n,) be a subsequence of (n) such that > — x§, where x? is a point
in C,. (Such a sequence exists since x{? € C, and C, is compact.) Then select
a subseguence (r1,) of (7, such that (x{, x§2) — (x7, x3) € C,. Similarly It
L. x5 (xY, .., xD) e €. Finally form the diagonal sequence
(m,), where m, isthe kth term of (). Then xt™ - xf asm, > cofori=1,2,...;
and(x?, x3,..)e €, forrn = 1, 2,..., whichevidently contradicts the assump-
tion that €, | &, » — 0. This completes the proof of the theorem.
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Remark. In the present case, the space R™ is a countable product of lines,
R®™ =R x R x ---. It is natural to ask whether Theorem 3 remains true if
(R™, Z8(R™)} is replaced by a direct product of measurable spaces (€2;, &),
i=12....

We may notice that in the preceding proof the only topological property
of the real line that was used was that every set in #(R") contains a compact
subset whose probability measure is arbitrarily close to the probability
measure of the whole set. It is known, however, that this is a property not only
of spaces (R", #8(R"), but also of arbitrary complete separable metric spaces
with g-algebras generated by the open séts.

Consequently Theorem 3 remains valid if we suppose that P,, P,,...i5a
sequence of consistent probability measures on (Q,, F,),

(ﬂl X ﬂ!:fl®f2):*'*:

where (£);, &) are complete separable metnc spaces with g-algebras #;
generated by open sets, and (R, B(R™)) is replaced by

(Q, xQx---, FLRFE )

In § (Theorem 2) it will be shown that the result of Theorem 3 remains
valid for arbitrary measurable spaces (€Y, %) if the measures P, are con-
centrated in a particular way. However, Theorem 3 may fail in the general
case (without any hypotheses on the topological nature of the measurable
spaces or on the structure of the family of measures {F_}). This is shown by
the following example.

Let us consider the space £2 = (0, 1], which is evidently not complete, and
construct a sequence %, € %, < --- of g-algebras in the following way. For
n=12,...,let

() = 1, 0<w<lfn,
PO =% imzw<l,

€, = {Aell: A = {w: pfw)e B}, Be B(R)}

and let & = o{%,,.-.,%,} be the smallest g-algebra containing the sets
%1r.... €, ClarlyF =& =--+. Let F =o() %) be the smallest
o-algebra containing all the &,. Consider the measurable space (£, &)
and define a probability measure P, on it as follows:

. _Jrorq,... 1) e BY
Pn{m' (ml(m)i -y wn(m)} € BH} - {D ﬂthﬁr“’iﬂ&,
where B” = B(R").'It is easy to see that the family {P,} is consistent: if
A e F then P, ,(4) = P (A). However, we claim that there is no probability
measure P ot (£), ) such that its restriction P|#, (i.e., the measure P
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considered only on sets in &) coincides witk P, forn = 1, 2,... . In fact, let
us suppose that such a probability measure P exists. Then

Plo:gyw) = = pfa) =1} = P o gw) = =g} =1} =1
(19)
forn=12,....But

{w:pw) =" =pfw)=1}=(0,1/n)} | O,

which contradicts (19) and the hypothesis of countable additivity (and there-
fore continuity at the “zero™ ) of the set function P.

We now give an example of a probability measure on (R™, &{R*)). Let
F(x), F5(%),... be a sequence of one-dimensional distribution functions.
Define the functions G(x) = F,{x), G.(x;, x,) = F,(x,}F5(x,),. .. ,and denote
the comesponding probability measures on (R, #(R)), (R% #(R?),... by
P, P,..... Then it follows from Theorem 3 that there is a measure P on
(R™, Z(R*Y) such that

PlxeR*:(xy,...,X,) B} = P, (B), B e #(R")
and, in particular,
P{xeR™:X; & Gyyeeey X S a,) = Fy(ay)---Ffa,).
Let us take F{x) to be a Bernoulh distribution,

0, x-=<0
Fix)=1qg 0=x-<]l,
1, x=1.

Then we can say that there is a probability measure P on the space Q of
sequences of numbers x = (x,, x,,...),x; = Qor 1, together with the s-algebra
of its Borel subsets, such that

P{x:xl =dy,---, % = an} = pEﬂlqﬂ'Eﬂr_

This 15 precisely the result that was not available in the first chapter for
stating the law of large numbers in the form (L.5.8).

5. The measurable space (RT, $(R™)). Let T be a set of indicest e Tand R, a
real hne corresponding to the index t. We consider a finite unordered set
T = [t}s...,1,] of distinct indices ¢, t; € T, » > 1, and let P, be a probability
measure on (RY, Z(R7), where R =R, x -+ x R, .

We say that the family {P,} of probability measures, where v runs through
all finite unordered sets, is consistent if, for all sets t = [t,,...,%,] and
o = [§y,---, 5] such that & € 7 we have

P {(x,,- s X (%0, %)€B} = P (X)), ... % )X ... %, ) € B}

(20
for every B € Z(R").
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Theorem 4 (Kolmogorov’s Theorem on the Extension of Measures in
(RT, B(R™)). Let [P} be a consistent family of probability measures on
(R*, Z(R9). Then there is a unique probability measure P on (RT, #(R™) such
that

P(5 (B)) = P{B) (21)

Jor allunordered sets t = [t,,. .., t,] of different indicest, € T, B € B(R") and
F(B)={xeR":(x,,...,x, ) e Bl

Proar. Let the set B e #(R™). By the theorem of §2 there is an at most connt-
able set §$ = {s,,8;,...} & T such that B = {x:(x,,, x,,,...) € B}, where
Be B(R%), RS = R,, x R, x ---. In other words, B = $(B) is a cylinder
set with base B € #(R%).

We can define a set function P on such cylinder sets by putling

P(F(B)) = P«(B), (22)

where Pg is the probability measnre whose existence is guaranteed by
Theorem 3. We claim that P is in fact the measure whose existence is asseried
in the theorem. To establish this we first verify that the definition (22) is
consistent, i.e. that it leads to a vnique value of P(B) for all possible repre-
sentations of B; and second, that this set function is countably additive.

Let B = #5(B,) and B = #,,(B,). It is clear that then B = £, ,5,(B3)
with some B, € G(R5 ~52); therefore it is enoupgh to show that if § = §'
and B € B(R5), then Po(B) = P(B), where

B = {(xy, Xz, .- ):1(x,,, X,,...)EB}

with § = {5\, 55,...}, § = {54, §,....}. But by the assumed consistency of
(20) this equation follows immediatcly from Theorcm 3. This establishes that
the value of P(B) is independent of the representation of B,

Ta verify the countable additivity of P, let us suppose that {8, } is a sequence
of pairwise disjoint sets in B(RT). Then there is an at most countable sct
S = T such that B, = #(B,) for all n = 1, where B, € B(R%), 8ince Pg
is a probability measure, we have

P B) = P} #5(B,)) = P53 B,) = }  Ps(B,)
= 2. PUs(B,) = 3, P(B,).

Finally, property (21) follows immediately from the way in which P was
constructed.
This completes the proof.

Remark 1. We emphasize that T is any set of indices. Hence, by the remark
after Theorem 3, the present theorem remains valid if we replace the real
lines R, by arbitrary complete separable metric spaces . (with ¢-algebras
generated by open sets).
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Remark 2. The original probability measures {P,} were assumed defined
on unordered sets T = [t,,..., t,] of different indices. It is also possible to
start from a family of probability measures {P.} where t runs through all
ordered sets T = (t,, ..., t.) of different indices. In this case, in order to have
Theorem 4 hold we have to adjoin to (20} a further consistency condition:

Pyt Ay, % --- % A4, )= P[l.-l..".l,-";(A,Ej X=X A.'"], (23)

where (i,. .., i) is an arbitrary permutation of (1,...,n) and A,, € #H(R,). As
2 necessary condition for the existence of P this follows from (21) (with

P['I. bl 'n](B) reI)Ia'cﬂlt by P[fl. mamy :u](B):I'

From now on we shall assume that the sets = under consideration are
unordered, If T 1s a subset of the real line {or some completely ordered set),
we may assume without loss of generality that the set t = [fy,...,¢,.]
satisfies ¢, < t, < --- < ¢,. Consequently it is enough to define “finite-
dimensional ™ probabilities only for sets © = [¢,,...,¢,) far which #, <
ty < -ov

Now consider the case T = [0, o). Then RT is the space of all real func-
tions x = (x,),»g.- A fundamental example of a probability measure on
(RIO- =}, @ RIO- Ny} js Wiener measure, constructed as follows.

Consider the [amily {p,(¥]|x)},, ¢ of Gaussian densities (as functions of y
for fixed x):

E-U-IIHZf:‘ }' = R,

ely[x} =

2at
and foreach t = [t,..., 4], ¢, <t; <--- <1, and each set
B=1I,x ---x1I, I, = (a;, by),
construct the measure P(B) according to the formula

P, x---x 1)
=J; “'.[;q‘]u{ﬂl[f})@t:—n(azlﬂl}""[Pr.,—rn—L(an[an—l)dal --da,  (24)

{inl_:egratinn in the Riemann sense). Now we define the set function P for each
cylnder set A, . (I, x -~ X L} ={xeR":x,el,,...,x, el,} by taking

PF ooy % oo X L) = Py gy % oo % E).

The intwtive meaning of this method of assigning a measure to the cylinder
set F,, _(fy x --- x I)is as follows.

Theset .#,, . (Fy x --- x I,}is the set of functions that at times ¢y,.. ., t,
pass through the " windows™ I, , .. ., I, (see Figure 24 in §2). We shall interpret
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@y, — 1, . (O |ax — ;) as the probability that a particle, starting at &, _; at time
t, — &x—1, arrives in a neighborhoed of a, . Then the product of densities that
appears in (24) describes a certain independence of the increments of the
displacements of the moving * particle” in the time intervals

[{)‘i tl]r [th I‘I]:" R ] [tr:—li tﬂ]‘

The family of measures {P,} constructed in this way is easily seen to be
consistent, and therefore can be extended to a measure on (R1% =), B(RI- <%).
The measure so obtained plays an important role in probability theory. It
was introduced by N. Wiener and is known as Wiener measure.

6. PROBLEMS
1. Let F(x) = P{— o0, x]. Verify the following formulas;

Pa, 5] = F(b) — F(a), Fla, b) = F(b—) — Fla),
Pla, 5] = F(b) = Fla=)  Pla, b)=Fp—) — Fla-),
Pix} = F(x) — F(x-),
where Fix—) = lim, ; F(¥)
2. Verify (7).
3. Prove Theorem 2.

4. Show that a distributjion function F = F{x) on R has at miost a countable set of
points of discontinuity, Does a corresponding result hold for distribution functions
on R"}

5. Show that each of the functions
1, x+yp=0Q,
Gix, v) =
b9 {0, x+yp<d,
Gx, ¥) = [x + ¥, the integral part of x + ¥,

s continuous on theright, and continnous in each argument, but isnot a (generalized)
distribution function on RZ.

6. Let p be the Lebespue-Sticlties measure penerated by a continuous distribution
[unetion, Show that if the set A is at most countable, ehen p(4) = 0.

7. Let ¢ bethe cardinal number of the continuum. Show that the cardinal mumber of the
collection of Borel sets in R” is £, whereas that of the collection of Lebesgue measur-
able sets is 2.

8. Let (£, Z P) be a probability space and .« an algebra of subsets of Q such that
a(sf) = F Using the principle of appropriate sats, prove that for every € > 0 and
B € # there is a set 4 € of such that

HAAB) < &
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9. Let P be a probability measure on (R", %(R"). Using Problem 8, show that, for
every ¢ > 0 and B ¢ S(R"), there is a compact subset A of % R") such that Ac B
and

P{B\A) < &

{This was used in the proof of Theorem 1.)
10. Verify the consisizncy of the measure defined by (21).

§4. Random Variables. I

1. Let (Q, &) be 2 measurable space and let (R, #(R)) be the real line with
the systemn %(R) of Borel sets.

Definition 1. A real function ¢ = &) defined on (£}, F) is an #F-measurable
Junction, or & random variable, i

{w:&w)e B} e F (1)
for every B € #(R); or, equivalently, if the inverse image
£7Y(B) = {w: {(w) € B}

is a measurable set 1n {2
When (Q, #) = (R", Z(R™). the #B(R"}-measurable functions are called
Borel functions.

The simplest example of a random variable is the indicator I ) of an
arbitrary (measurable) set A € F.
A random variable € that has a representation

o) = 3 %lafe) @

where ) A, = Q, 4;e &, is called discrete. If the sum in (2) is finite, the
random variable 1s called simple.

With the same interpretation as in §4 of Chapter 1, we may say that a
random variable is a numerical property of an experiment, with a value
depending on “chance.” Here the reguirement (1) of measurability is funda-
mental, for the following reason. If a probability measure P is defined on
(3, #), it then makes sense ta speak of the probability of the event {&(w) e B}
that the value of the random variable belongs to a Borel set B.

We introduce the following definitions.

Definition 2. A probability measure P, on (R, #(R)) witk
PAB) = P{w: £(w) € B}, B e %(R),
is called the probability distribution of & on (R, #(R)).
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Definition 3. The function
Fdx) = Pw: &) < x], xeR,

is called the distribution finction of £.

For a discrete random variable the measure P, is concentrated on an at
most countable set and can be represented in the form

P{By= Y plx) (3)

(% = B}

where p(x,) = P{{ = x} = AF{x;).

The converse is evidently true: If P, is represented in the form (3) then £
is a discrete random variable.

A random variable { is called continuous if its distribution function F(x)
is continuous for x e R.

Arandom variable ¢ is called absolutely continnous if there is a nonnegative
function § = f.x), called its density, such that

Flx) = j )V dy,  xeR, 4)

(the integral can be taken in the Riemann sense, or more generally in that of
Lebespue; see §6 below).

2. To establish that a function & = &(w) 15 a random variable, we have to
verify property (1) for all sets B € #. The following lemma shows that the
class of such “test” sets can be considerably narrowed.

Lemmsz 1. Let & be a system of sets such that o{$) = #(R). A necessary and
sufficient condition that a funciion £ = &w) is F-measurable is that

{w: ) eE}eF (5
forall Ec&.

Proor. The necessity 13 ¢vident. To prove the sufficiency we again use the
principle of appropriate sets.

Let 22 be the system of those Borel sets I} in F(R) for which ¢~ (D) e 5.
The operation “form the inverse image” is easily shown to preserve the set-
theoretic operations of union, intersection and complement:

a—l(g B,) -y E

:-l(m B.) — (& 4B, )
E-Y(B,) = ¢X(B,).
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It follows that 2 is a g-algebra, Therefore

& < @ < @B(R)
and
o(&) = a(D) = 2 = B(R).

But ¢(E) = (R} and consequently & = 28(R).
Corollary. 4 necessary and sufficient condition for § = £(w) to be a random
variable is that

[: &) < x} e F
Jor every x € R, or that

{eo: Een) < x} e F

Jor every x e R.

The proof is immediate, since each of the systems

& ={x:x <c,eekR},
£, ={x:x< ¢ ceR}

gencrates the a-algebra #(R): 7(E,) = o(E;) = B(R) (see §2).
The following lemma makes it possible to construct random variables as
functions of other random variables.

Lemma 2. Let ¢ = @(x) be a Borel function and & = &(w) a random variable.
Then the composition 1 = @ o &, i.e. the finction y{w) = @(&(w)), is also a
random variable.

The proof follows from the equations
{e:#{ew) e B} = {w: plé{w))eB} = {w: () o (B e F (N

for B € #(R), since ¢~ (B) = (R).

Thereforeif £ is a random variable, so are, for exampiles, £, £* = max(¢, 0),
&~ = —min(¢, 0), and [£[, since the functions x°, x*, x~ and [ x| arc Borel
functions (Problem 4).

3. Starting from a given collection of random variables {&.}, we can construct
new functions, for example, 32, |&], im &,, lim &,, etc. Notice that in
general such functions take values on the extended real line K = [ —e0, o0].
Hence it is advisable to extend the class of #-measurable functions somewhat
by allowing them to take the values + co.
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Definition 4. A function ¢ = &w) defined on (Q, &) with values in R =
[—20, o] will be called an extended random varigble if condition (1) is
satisfied for every Borel set B e #(R).

The following theorem, despite its simplicity, is the key to the construction
of the Lebesgue integral (§6).

Theorem .

(a) For every random variable { = {(w) (extended ones inciuded) there is a
sequence of simple random variables &, &5,..., such that | &, < || and
Enlca) — &(o), n — o0, for all w e L),

(0) If aiso &(ew) = 0, there is a sequence of simple random variables &,, &5, .. .,
such that £ {w) T &(w), n — co, for all we )

PROOE. We begin by proving the second statement. Forn=1,2,..., put

¥

k—1
én[m} = kgl Tjk,u[m) + ”I[ﬂm]au}(m)-

where I, , is the indicator of the set {(k — 1)/2" < &(w) < k/27}. Tt is easy
to verify that the sequence &.(w) so constructed is such that £.{w) T £(w)
for all @ € L) The first statement follows from this if we merely observe that
£ can be represented in the form & = €Y — &~ This completes the proof of
the theorem.

We next show that the class of extended random variables is closed under
pointwise convergence. For this purpose, we note first that if £,, £,,...isa
sequence of extended random variables, then sup &,, inf &,, lim &, and lim £,
are also random variables {possibly extended). This follows immediately from

forsup &, > x} =] {w: & > x} e F,

{wiinf €, < x} = Hw: &, < x} e &,

and

lm &, =infsup&,, lim¢, =supinf &,

K mxn n maZhn

Theorem 2. Fet &,, &,,... be a sequence of extended random variables and
Ew) = hm &, (). Then &(w) is also an extended random variable.

The proof follows immediately from the remark above and the fact that
{eo: Elew} < x} = {:lim & (w) < x}
= {o: im () = lim £(w0)} n {lim (o) < x}
= O~ {lim {(w) < x} = {lim {(w) < x} € F.
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4. We mention a few morc properties of the simplest functions of random
variables considered on the measurable space (Q, #) and possibly taking
valucs on the extended real line B = [ — oo, o]t

If £ and # are random variables, & 1+ n, £ — ¥, &, and &/ are also random
variables (assuming that they are defined, i.e. that no indeterminate forms like
o — o0, oofoo, af0 occur.

In fact, let {£,} and {#,} be sequences of random variables converging to
£ and # (see Theorem 1). Then

gt~ &+ m,
&, — &1,
£y &

— —

7

1
Hn -+ H I{liu={l}(m)

The functions on the left-hand sides of these relations are simple random
variables. Therefore, by Theorem 2, the limit functions & + », &y and &/y
are also random variables.

5. Let £ be a random variable. Let us consider sets from & of the form
{w: w)ye B}, Be #(R). 1t is easily verified that they form a g-algebra,
called the o-algebra generated by £, and denoted by #,.

If ¢ is a Borel function, it follows from Lexuma 2 that the function = @o€
is also a random variable, and in fact #-measurable, ie. such that

{w:n{w)e BYe #F,, Be B(R)

(see (7). It turns out that the converse is also true.

Theorem 3. Let # be a F ~measurable random variable. Then there is a Borel
Sunction @ such that n = @ o &, i.e. n(w) = @(E(w)) for every we Q.

Proor. Let @ be the class of F-measurable functions # = n{w) and &,
the class of F-mecasurable functions representable in the form ¢ o & where
¢ is a Borel function. It is clear that @, c ®,. The conclusion of the theorem
is that n fact @, = @,

Let 4 € & and y(w) = I {w). Let us show that 7 € @,. In fact, if 4 € &
there is a B € 4 R) such that A = {w: &w) e B}. Let

1, xeB,
0, x¢B

Then [ @) = y{é(w)) fl'}f. Henceitfollows that every simple Fe-measurable
function Y 1wy ¢id (@), Ay € %%, also belongs to &,

Ya(x) = {

t We shall assumg the vsual conventions about arithmetic operations in B: if 22 R then
g+ m=tomagto=0a-cc=wifa=>0,andg.- 0 = —wifa < 0; 0 {400} =0,
w4 =00, —o0 — = —m.
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Now let # be an arbitrary #,-measurable function. By Theorem 1 there
is a sequence of simple #,-measurable functions {g,} such that #,(w) — #{w),
n— <0, e € L). As we just showed, there are Borel functions g, = ¢,(x) such
that ,(c0) = ¢,({(en)). Then @,(&(ca)) — lw), 1 — o0, w Q.

Let Bdenotethe set {x e R: lim, ,{x)exists}. Thisisa Borel set. Therefore

lim @.(x), xebB,
px) =4 "
0, x¢ B

is also a Borel function (see Problem 7).

But then it is evident that y{e) = lim, ¢, {(&{wm)) = o(E(w)) for all w2

6. Consider a measurable space (€}, &) and a finite or countably infinite
decomposition 2 = {D,,D,,...} of the space : namely, D,e & and
> D; = 0, We form the algebra 7 containing the empty set ¢f and the sets
of the form ' D,, where the sum is taken in the finite or countably infinite
sense. It 1s evident that the system ¢ is a monotomc class, and therefore,
according to Lemma 2, §2, chap. II, the algebra « i1s at the same time a
g-algebra, denoted (2) and called the o-algebra generated hy the decompo-
sition 2. Clearly a(2) = #.

Lemmsg 3. Let ¢ = £(w) be a o(@ymeasurable random variable. Then & is
representable in the form

) = ?: xilp, (o), ®)

where x, € R, k = 1, i.e., E(w) is constant on the elements D, of the decomposi-
tiom, k> 1.

ProOF. Let us choose a set D, and show that the o(2)}-measurable function £
has a constant value on that set.
For this purpose, we write

x, = sup[e: Dy 0 {@: E(w) < ¢} = 1.

Since {w: &) < x}=}y<n, {@:&w)<r), we have D, n{w: w)<
xk} — ﬁ- ¥ rational

Now let e¢> x;. Then D,nfw:f{w)<e} &), and since the set
{w: £{w) < c} bas the form ¥, D,, where the sum is over a finite or countable
collection of indices, we have

D, {w: Ew) < c} =Dy,

Hence, it follows that, for all ¢ > x,,
D, ~w: Elw) = ¢} = &,
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and since {w: &) > x,.} = ,» {en: £(cw} = r}, we have

rrational
Dy {eo: E(w) > X} = &,
Consequently, D, n {w: £(w) # x;} = , and therefore
D, € {w: &(w) = x,}

as required.

7. PROBLEMS

1.

Show that the random variable £ is continuous if and enly if P(£ = x} = 0 for all
xeR.

I{|£|is #-measurable is it true that £ i5 also & -measurable?

. Show that £ = #w) is an extended random variable if and only if {w: é(@) e B} e &
for all B = &(K).
Prove that x" x* = max(x,0), x~ = —min{x, 0), and |x|] = x™ + x~ are Borel
{unctions.

. Il & ardd n are $-measurable, then {a: &lw) = plw)} € F

Let £ and # be random variables on (£}, 5}, and A € & Then the function

fen) = Zle) - 1, + n{ew)M 5

iz also a random variable.

. Let €, ..., &, be random variables and ¢(x,,...,Xx,) a Borel function. Show that

@& (@), . . ., E{w)) is alsa a random variable.

. Let £ and » be random variables, both taking the values 1, 2,. .., N. Suppese that

F. = & Show that there is a permutation (§y, iz, ..., iy) of (1, 2,.. ., N) such that
{w:&=j} = (@i =i forj = 1,2,...,N.

§5. Random Flements

1.

In addition to random variables, probability theory and its applications

involve random objects of more general kinds, for example random points,
vectors, functions, processes, fields, sets, measures, ete. In this connection it is
desirable to have the concept of a random object of any kind.

Definition 1. Let (£2, &) and (E, £) be measurable spaces. We say that a
function X = X(w), defined on O and taking values in E, is F /€-measurable,
or is a random element (with values in E), if

feo: X(eyeBye F (1)
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for every B e &. Random elements (with values in E) are sometimes called
E-valued random variables.

Let us consider some special cases.

I(E, & = (R, 4(R)), the definition of a random element is the same as the
definition of a random variable (§4).

Let (E, &) = (R* @(R™). Then a random element X(¢w) is a “random
point” in R". If m, is the projection of R* on the kth coordinate axis, X (w) can
be represented im the form

X{Eﬂ) = {él{m)l == 'fn(m))! [2)

where &, = 7w, « X.
It follows from (1) that &, is an ordinary random variable. In fact, for
B e @{R) we have

{wedw)e B} = {w:{y(w)eR,.... & 1€R, {eB, ¢y €R,.. }
={m: X(w)e(Rx -+ xRxB»xRx: - xR)}eF

since R X+« X R x Bx R x---x Re@(R".

Definition 2. An ordered set (g,(w), ..., #a{w)) of randorm variables is called
an n-dimensional rondom vector.

According to this definition, every random element X(ew) with values in
R" is an n-dimensional random wvector. The converse is also true: every
random vector X(w) = (&, {w), - - -, £ (w)) is a random element in R", In fact,
if B,e B#(R),k=1,...,n then

fow: X(w) e (By x - X B)} = [[{w: &{w)e B} e &
k=1

But %4(R" is the smallest o-algebra containing the sets B, % .-« x B,.
Consequently we find immediately, by an evident generalization of Lemma |
of §4, that whenever B e @(R"), the set {e: X(w) e B} belongs to F.

Let (E, &) = (Z, B{(Z)), where Z is the set of complex numbers x + iy,
x, ¥ € R, and B(Z)is the smallest o-algebra containing the sets {z: z = x + iy,
a, <x<bhy, a, <y =<b,} It follows from the discussion above that a
complex-valued random variable Z(w) can be represented as Z{w) =
X(w) + i¥{w), where X(w) and ¥{w) are random variables. Hence we may
alsa call Z{w) a complex random variable.

Let (E, &) = (RT, 4(RT)), where T is a subset of the real line. In this case
every random element X' = X () can evidently be represented as X = (&), r
with &, = =, = X, and is called a random function with time domain 7.

Definidon 3. Let T be a subset of the real line. A set of random variables
X = (&), 7 is called a random processt with time domain T.

¥ Cr stochastic process (Translaior).
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If T ={12...} wecall X = (£, &5,...) a random process with discrete
titme, Oor a random sequerce.

If 7=[0,1], (—¢ca,0), [0,00),..., we call X = (&)r a random
process with continuous time.

It is casy to show, by using the structure of the s-algebra %{(R”) ‘{§2) that
every random process X = (£),cr (in the sense of Definition 3) is also a
random function on the space (R, #(R™)).

Definition 4. Let X = (&), be a random process. For each given w e ()
the function (£,(c0)), . r s said to be a realization or a trajectory of the process,
corresponding to the outcome .

The following definition is a natural generalization of Definition 2 of §4.
Definition 3, Let X = (£), .y be a random process. The probability measure
Py on (RT, B(RT)) defined by

Py(B) = P{w: X(e) € B}, B e #(R7),
is called the probability distribution of X. The probabilities

Pl‘j,.....tu(B] = P{m: {5:1: R | gt..) = E}

with ¢, << t; <.-. < i, t;€ T, are called finite-dimensional probabilities
(or probability distributions). The functions

Fooooox)=Plaé, <x,...,¢ =x)

with 1y <ié; <--- <1, ;€ T, are called finite-dimensional distribution
functions.

let (E, &) = (C, 98,(C)), where C is the space of continuous functions
X =(x)eron T = [0, 1] and #4(C) 15 the g-algebra generated by the open
sets (§2). We show that every random ¢lement X on (C, #4(C)) is also a
random process with continuous trajectories in the sense of Definition 3.

In fact, according to §2 the set A = {x e C:x, < a} is open in @,HC)
Therefore

{w: élw) < a} = {w: X(w)e A} e &

On the other hand, let X = {(£(e)), . be a random process {(in the sense
of Definition 3) whose trajectories are continuous functions for every
o £ 5 According to (2.14),

{xeC:xeS,(xM) =) {xeC:[x, —x2| <p},

("

where ¢, are the rational points of [0, 1]. Therefore
{e0: X{w) € S (X %))} = () {o: | &) — &) < pe &,
[+ 1

and therefore we also have {w: X(w) € B} € & for every B e %4(C).
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Similar reasoning will show that every random element of the space
(D, B4(D} can be considered as a random process with trajectories in the
space of functions with no discontinuities of the second kind ; and conversely.

2. Let (£}, #, P) be a probability space and (E,, &) measurable spaces,
where @ belongs to an {arbitrary) set 9L

Definition 6. We say that the F /&, -measurable functions (X (), e U,
are independent (or collectively independent) if, for every finite set of
indices ay, . .., &, the random elements X , ..., X are independent, i.e.

P(X,€B,,..., X, €B,)=PX,eB,) PX,eB,), (3)
where B, &,.
LetA=1{1,2,..., 1}, let &, be random variables, let o € W and let
FelXg,eo00 X ) =P(&, <%0, 6, £ X))

be the n-dimensional distribution function of the random vector

&=(&n.... &) Let F(x) be the distribution functions of the random
variables &,,i=1,...,n

Theorem. A necessary and sufficient condition for the random variables
Eis ..., &, to be independent is that

Foloeg,....%) = Fe (%) -+ Fp (x,) (4)
Jor all(x,,...,x)eR"

PROOF. The necessity is evident. To prove the sufficiency we put
a=1(a,....anb=(h....,0)

Pf(“! b] = P{ﬂ'.}: a; =< él = b]_!""ldﬂ < én = bn}:r
Pela, b] = Pla, < § = &}-

Then
Pele, b1 = T][Fu(b) — Fefad] = [1 Palas, b]
i= i=1
by (4) and (3.7), and therefore

P{alEIlt--':énEIn}= ﬁp{éiEIE}! (5]
i=1

where I, = {a;, b;].
We fix I,,..., I, and show that

P{{,eB, {el;...., én€ L) = P, E-Bl}jl:lzp{fi’éft} (6)

for all B, € #(R). Let # be the collection of sets in #{R) for which (6)
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holds. Then .+ evidently contains the algebra .« of sets consisting of sums of
disjoint intervals of the form I, = (a,, b,]. Hence & = & = #(R). From
the countable additivity (and therefore continuity) of probability measures it
also follows that .# is a monotonic class. Therefore (sce Subsection 1 of §2)

wlef) = A = B(R).

But u(e?) = (=) = B(R) by Theorem 1 of §2. Therclore & = H(R).

Thus (6) is established. Now fix B,, I,,..., I,; by the same method we
can establish (6) with I, replaced by the Borel set B,. Continuing in this
way, we can evidently arrive at the required equation,

P, eBy,....L.eB,) =P{{, e By)-- P, B),
where B; € Z(R). This completes the proof of the theorem.

3. PrOPLEMS

L. Let &,,..., &, be discrete random variables. Show that they are independent if and
only if

P& = xp oo by = x) = [P =)

for all real x,,...,x,.

2. Carry out the proof that every random function {in the semse of Definition 1) s a
random process (in the sense of Definition 3) and conversely.

3. LetX,,..., X, berandom elements with values it (E,, £4),...,{E,. £.), respectively.
In addition let (Ef, &).-...(E,, €} he measurable spaces and let g,....4, he
&\ /&, ..., 8 /& measnrable functions, respectively, Show that if X,,..., X are
independent, the random elements g, - X, ..., g, - X, are also independent,

§6. Lebesgue Integral. Expectation

1. When (€2, #, P) is a finite probability space and ¢ = &(w) is a simple
random variable,

Eo) = ki % Lo (), )
=1

the expeciation E¢ was defined in §4 of Chapter 1. The same definition of the
expectation E of a simple random variable ¢ can be used for any probability
space (), &, P). That is, we define

E¢ = k; %, P(AL). 2
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This definition is consistent (in the sense that E¢ is independent of the
particular representation of & in the form (1)), as can be shown just as for
finite probability spaces. The simplest properties of the expectation can be
established similarly (see Subsection 5 of §4 of Chapter I

In the present section we shall define and study the properties of the
expectation E& of an arbitrary random variable. In the language of analysis,
E¢ is merely the Lebesgue integral of the #-measurable function ¢ = &(w)
with respect to the measure P. In addition to EE we shall use the notation

Jo E(eo)P(dw) or {g & dP.

Let £ = &(¢w) be a nonnegative random variable. We construct a sequence
of simple nonnegative random variables {£,},., such that &.(w) T &(w),
r— o0, for each o € €} (see Theorem 1 in §4).

Since EZ, < E&,,, (cf. Property 3} of Subsection 5, §4, Chapter I), the
limit lim,, E&, exists, possibly with the value + co.

Definition 1, The Lebesgue integral of the nonnegative random varable
& = &(w), or s expeciation, Is

Ef = lim EZ,. (3)

To see that this definition is consistent, we need to show that the limit is

independent of the choice of the approximating sequence {¢,}. In other

words, we need to show thatif &, T £ and #,, 1 £, where {5,,} i5 2 sequence of
simple functions, then

lim E&, =lim Ew,,,. )

Lemma 1, Let y and &, be simple random variables, n = 1, and
én T § 2 ﬂ'
Then
lim B¢, = E#n. (5)

Proor. Let 2 > 0 and
A, = {w: &, =2 n — &}
It is clear that 4, T £ and
Cn=Cula, + Cula, 2 &ula, 2 — 8),,

Hence by the properties of the expectations of simple random variables we
find that

E, = E(n — 8),, =Enl, — P(4,)
=En — Enl; — eP(A,) = En — CP(4) — &
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where C = max,, #(w). Since £ is arbitrary, the required inequality (5) follows.
It follows from this lemma that lim, E&, > lim, Ex, and by symmetry
limn,, E#,, = lim, E£,, which proves (4).

The following remark is often useful.

Remark 1. The expectation E£ of the nonnegative random variable ¢ satisfies

EE= sup Es, (6)
(se8:55E)

where § = {s} is a set of simiple random variables (Problem 1).

Thus the expectation is well defined for nonnegative random variables.
We now consider the general case.
Let £ be a random variable and £* = max{, 0), £~ = —min(¢, 0).

Definition 2, We say that the expectation E€ of the random variable £
exists, or is defined, if at least one of E£Y and EE™ is finite:

min(E&*,EET) < o0,
In this case we defing
E&¢ =E&Y —EE™,

The expectation EL is also called the Lebesgue integral (of the function & with
respect to the probability measure P).

Definition 3. We say that the expectation of & is finite f EE* < o0 and
EE™ < oo,

Since | €[ = & — &7, the finiteness of EE, or |EE| < o0, is equivalent to
E[{] < o0. (In this sense one says that the Lebesgue integral is absolutely
convergent.)

Remark 2. In addition to the expectation E¢, significant numerical character-
istics of a random variable £ are the number E£" (if defined) and E | E], r > 0,
which are known as the moment of order » (or rth moment) and the absclute
moment of order ¥ (or absolute rth moment) of &,

Remark 3. In the definition of the Lebesgue integral |, &(w)P(dw) given
above, we supposc that P was a probability measure (P(Q) = 1) and that
the F-measurable functions (random varjables) ¢ had values in
R = (— w0, o0). Suppose now that p is any measure defined on a measurable
space (€1, #) and possibly taking the value +co, and that £ = &w) is an
Z -measurable function with valuesin R = [ — o0, o0] (an extended random
variable), In this case the Lebesgue integral jﬂ E(aw){deo) is defined in the
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same way: first, for nonnegative simple £ (by (2) with P replaced by ),
then for arbitrary nonnegative £ and in general by the formula

Lé(w)p(dm) = Lé*#(dm) - L:'p(dm),

provided that no indeterminacy of the form 0 — oo arises.

A case that 1s particularly important for mathematical analysis is that in
which (0, F) = (R, Z(R)) and pu is Lebesgue measure. In this case the
integral f £(x)p(dx) is written [ £(x) dx, or [2_, &(x) dx, or (L) [®, &(x) dx
to emphasize its difference from the Riemann integral (R) _[“_”m E(x) dx. If the
measure 2 (Lebesgue—Stieltyes) corresponds to a generalized distribution
function G = G(x), the integral [, £ )u(dx) is also called a Lebesgue—
Stieltjes integral and is denoted by (L-8) [ &(x)G(dx), a notation that
distinguishes it from the corresponding Riemann—Stieltjes integral

(R-S) Lﬁ(x)ﬁ{dx)

{see Subsection 10 below).

It will be clear fraom what follows (Property D) that if E£ is defined then
so is the expectation E(£1,) for every A € #. The notations E{¢; A)or [, & dP
are often used for E(£1 ) or its equivalent, |, £1, dP. The integral [, £ dP is
called the Lebesque integral of & with respect 1o P over the set A.

Similarly, we write [, & du instead of [, & - I, dp for an arbitrary measure
. In particular, if g is an n-dimensional Lebesgue-Sticltjes measure, and
A = {ay,b;] x --- x (a,, b,]. we use the notation

b br
J. --- j E(Xy, oo, Xdpt(dxy - - - dx,) instead of J‘ & du.
ay 4 A

If ;:is Lebesgue measure, we write simply dx, - - - dx, instead of pl{dx,, . . ., dx,).

2. Properties of the expectation E¢ of the random variable £
A. Let c be a constant and let E£ exist. Then E(cE) exists and
E(cf) = cEL.
B. Let £ < n; then
ES < Ey
with the understanding that
if —oo <EE then —coo <Ep and EE <Epny
ar

if En <o then Ef< oo agnd EL <Ex
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C. IfEE exists then
|ES] < E|E]-

D. If EE exists then E(£1 ) exists for each A € & ; if E& is finite, E(E1,) is
finite.

E. If & and n are nonnegative random variables, or such that E|§| < o0 and
E[n| < oo, then

E{{ + ) =E& + En.

{See Problem 2 for a generalization.)
Let us establish A-E.
A, This is obvious for simple random variables. Let & = 0, &, 1 &, where £,
are simple random variables and ¢ = 0. Then ¢, T ¢£ and therefore
E{c{) = lim E(ef,) = elim E{, = cEL.

In the general case we need to use the representation & = &Y — &~
and notice that {e£)* = c¢£*, (e£)™ = ¢~ when ¢ = 0, whereas when
<0, = —cf7, ()" = —c&”.

B. If 0 < £ <%, then E£ and Ex are defined and the inequality E£ < En
follows directly from (6). Now let E£ > —oo;then E&™ < 0. If £ < i,
we have €7 < n™ and £~ = #~. Therefore En~ < EE™ < oo conse-
quently Ey is defined and E& = EEY —Ef~ <En™ — Ep~ =E»n. The
case when Ex < o0 can be discussed similarly.

C. Since — [£] < & < [€], Properties A and B imply

—E|<| = E{ < E|Z],

ie. |EE| < E|£].
D. This follows from B and

(I =71, < &7, (El) =&T <&,

E. Let & = 0,1 = 0, and let {£,} and }n,} be sequences of simple functions
such that £, T € and #,, T ». Then E({, + #,) = E£, + E#, and

E(Ch + ) TE(E + 1), ES,TEL En, TEx

and therefore E(£ + n) =EZ + En. The case when E[£]| < oo and
E|n| < oo reduces to this if we use the facts that

‘f=‘f+_¢_l ﬂ=ﬂ+_ﬂ'_: 'E+ﬁ[§|: ‘J;_Elﬁli
and
nt<yl, 7 <yl
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The following group of statements about expectations involve the notion
of “P-almost surely.” We say that a property holds “P-almost surely” if there
is a set .V e & with P(A") = 0 such that the property holds for every point
to of S\A". Instead of “ P-almost surely ™ we often say “ P-almost everywhere™
or simply “almost surely™ (a.s.) or “almost everywhere” (a.e.).

F. HE=0{as)thenEf =0

In fact, if £ is a simple random variable, £ =} x. 1, (@) and x, # 0,
we have P{4;) = 0 by hypothesis and thereforc E€ = 0.If £ = Qand 0=s =&,
where s is a simple random variable, then 5 = 0 (a.5.) and consequently
Es = 0 and E{ = supy,.5..«q Es = 0. The general case follows from this by
means of the representation £ = % — £~ and the facts that &F < |£],
¢” < [£[,and [{[ = O {as.).

G If £ =y (as) and E|&[ < ¢0, then E|y| < o0 and E£ = Exy (see also
Problem 3).

In fact, let 4" ={m:&#nt Then P(A) =0 and &= I, + El7,
n=nly+nt,=nl,+ & 7 BypropertiessEand F, wehave EZ = EES , +
E¢l =Eniy. But Exl, = 0, and therefore EE = Enf 7z + Enl ;- = En, by
Property E.

H. Let £ = 0and EC = 0. Then & = 0 (a.5).
For the proof, let A = {: &w) > 0}, A, = {e: &w) = 1/n} It 1s clear
that 4,1 Aand 0 < &I, =< £-1,. Hence, by Property B,

n E Efj,l"ﬂEf —_— 0.
Consequently

1
0=ESl, > ;P{An}

and therefore P(A,) = 0 for all » = L. But P(4) = lim P(4,} and therefore
P(4) = 0.

I. Let & and » be such that E|&| < o0, E|y| < o0 and E(ET,) < E{nd 4} for
all Ae % Then £ < g (as.)

In fact, let B = {w: &(w) > nlw)}. Then Eniy) < E(El) < E(nlg) and
therefore E(£1p) = E(#f ). By Property E, we have E((£ — #)lg) = 0 and by
Property H we have (§ — g)fz = 0 (a.s.), whence P(B) = (.

J. Let £ be an extended random variable and E €] < oo. Then |&] < %0
(a.s). In fact, let A = {w|f{w}| = co} and P(A) > 0. Then E|¢&]| =
E{|&]11,) = oo - P(A) = o0, which contradicts the hypothesis E| €] < oo.
(See also Problem 4.}

3. Here we consider the fundamental theorems on taking fimits under the
expectation sign (or the Lebesgue integral sign).



186 [I. Mathematical Foundations of Probability Theory

Theorem 1 (On Monotone Convergence). Let #, &, &y, &;,... be random
varicbles.

(a) Ifé, = nforalln > 1,En > —oo,and &, T &, then
EL TEL

(b If £, < pforalln = |,En < co,and &, | £, then
ES. 1 ES.

PROOE, (a) First suppose that y > 0. Foreach k = 1let {&™},.,  be a sequence
of simple functions such that & 1 &, n — co. Put ™ = max, ;. cn i
Then

(Y < (% — max 4 < max &= G

1sksn 1sksn
Let £ = lim, {*. Since
GO =" =<¢,
for 1 < k < n, we find by taking limits as » — co that
G=l=<{

for every k = 1 and therefore £ = £,
The random variables {*? are simple and ¢{*? T {. Therefore

EZ = E{ = limE{"™ < lim E&,.
Om the other hand, it is obvious, since &, < £, < £, that

lim E&, < EL
Consequently lim EZ, = EZ.

Now let 7 be any random variable with Ey > —o0.

If Ep = oo then B, = E£ = oo by Property B, and our proposition is
proved. Let En < oo, Then instead of En > —o0 we find E|n| < co. It is
clear that 0 < &, — n T & — 4 for all w ef{) Therefore by what has been
established, E(£, — #) T E(¢ — n)and therefore (by Property E and Problem 2)

EE, —E, TEE — En.

But E|#[ < oo, and therefore €&, TE,, r — o0,
The proof of (b) follows from (a) if we replace the original variables by
their negatives.

Corollary. Let {5,},~ , be a seqiience of nonnegative random varigbles. Then

==} m

E z e = Z‘IEH"-

n=1
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The proof follows from Property E (see also Problem 2), the monotone
convergence theorem, and the remark that

k m
2l 2l koo
n=1 n=1

Theorem 2 (Fatou’s Lemuna). Let n, £,, &,, ... be random variables.
(@) If &, = nforalln =1 and By > — o, then

E lim £, < lim EZ,.
() If &, = nforallnz= ) and Ex < oo, then
lim E, < E lim £,.
(¢} If &, =y forallnz | and En < o0, then
E lim &, < lim E&, € ImE¢, < Elim &,. (7
PrOGE (a} Let £, = inf,,, , £,.; then

lim &, = lim inf &, = lim ¢, .

h M=h h

Itisclearthat ¢, T lim &€, and £, = s foralln = 1. Then by Theorem 1

Elim ¢, =Elim{, = himE{, = lim E{, <limE{,,

which establishes (2). The second conclusion follows from the first. The third
is a corollary of the first two.

Theorem 3 (Lebesgue’s Theorem on Dominated Convergence). Let u, &
£1s €5, - .. be random variables such that [£,| < 4, Ey < o0 and &, — € {a.5.).
ThenE|&| < oo,

ES, - ES (&)
and
El{, —£[—=0 )
as n— o0.

Proor. Formula (7) is valid by Fatou's lemma. By hypothesis, lim &, =
lim &, = £ {a.s.). Therefore by Property G,

E lim £, = limE¢, = [im E£, = € Tm &, = E¥,

which establishes (8). It is also clear that | £] < ». Hence E[£]| < oo,
Conclusion (9) can be proved in the same way if we observe that
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Corollary, Let 5, &, &,,... be random variables such that [E, < 4. S» — ¢
(a.5.) and ExP < © for some p > 0. Then E|EF < a0 and E|& — &7 =0,
H— 0.

For the proof, it 1s sufficient to observe that

(Sl = m & — &lF = (&) + [E.)7 < @)™

The condition “[£,] < #, Ep < oo™ that appears in Fatou’s lemma and
the dominated convergence theorem, and ensures the validity of formulas
(N-(9), can be somewhat weakened. In order to be able to state the cor-
responding result (Theorem 4), we introduce the following definition.

Definition 4. A family {£,},., of random variables is said to be uniformly
integrable if

sup [EP{dw) =0, ¢ — oo, (10)
A

or, in a different notation,
sup E[12. 1121291 = G, C— 0. (11)
H

It is clear that if £, n > 1, satisfy |&,| < ¥, Ep < co, then the farmly
{€.}n=1 15 uniformly integrable.

Theorem 4. Let {£.}... | be a uniformly integrable family of random variables.
Then

(@ Elim¢, < hmE¢, < imEZ, <Efmé,.
(b) If in addition £, — & (a.s.) then & is integrable and

E{, =EL, n— 0o,

Elé, — ¢ =0, n-oo
ProoF, {a) For every ¢ > 0

El, = B[S, 1, <-g) + E[S g > —a) (12)
By uniform integrability, for every € > 0 we can take ¢ so large that
sup [E[E, Iy, <-a]] <& (13)

By Fatou's lemma,
lim E[ﬁn‘rl&na --::-] = E[ll_m ‘fn"[.:..z —c:-]- I

But £, {4 = £, and therefore

H_II'!.E[;“I{{"E—E}] = E[]J_I'I'l én]' (14)
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From (12)}-{14) we obtain
I.ﬂEfn = EI:rﬂ gn] — &

Since ¢ = 0 is arbitrary, it follows that im EE, = E lim &,. The inequality

with upper limits, lim EZ, < E im £, is proved similarly.
Conclusion (b) can be deduced from (a) as in Theorem 3.

The deeper significance of the concept of uniform integrability is revealed
by the following theorem, which gives a necessary and sufficient condition
for taking limits under the expectation sign.

Theorem 5. Let 0 < £, » £ and €&, < 0. Then EE, — EE < oo if and only if
the family {£.],., is uniformly integrable.

ProOF. The sufficiency follows from conclusion (b) of Theorem 4. For the
proof of the necessity we consider the {at most countable) set

A= {a: P = a) > 0}.
Then we bave £, I; < q— £ s, for each a ¢ A, and the family

{én I{-f.,-t:a]}nz 1

is uniformly integrable. Hence, by the sufficiency part of the theorem, we have
E&uLie, <o — BN o0y, @ A, and therefore

Elie 2 2 E8lpre, a¢ A n—o> (15)

Take an £ > 0 and choose g ¢ 4 so large that E&Fy. 5 < £/2; then choose
Ng s0 large that

ECudis vy S ES i png +8/2

for all n > Ng, and consequently EE I, .., < & Then choose a, = 4, so
large that EE,, .. < eforalln £ Ng. Then we have

SUpEL, I ooy < &

which establishes the uniform integrability of the family {&_},.. , of random
variables,

4. Let us notice some tests for umform integrability.
We first observe that if {£,} is a family of uniformly integrable random
variables, then
supE|¢,| < o0 {16}
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In fact, for a given € > 0 and sufficiently large ¢ > 0
sup E|&,| = sup [E“fn |f||.:,.|g..-}) + E(]<, ”[|.§.,]<¢-})]

< supE([&, [1s |2aq} + SUPE([L] s <o) =+ 0,

which establishes (16). o
It turns out that {16) together with a condition of uniform continuity 18
necessary and sufficient for vniform integrability.

Lemma 2. A necessary and sufficient condition for a family {£.},5, of random
variables to be uniformly integrable is that € |£,], n = 1, are uniformly bounded
(i.e., (16) holds) and that E{|£,[1,}n > 1, are uniformly absolutely continuous
(i.e. supE{[ £, 1.} — 0 when P(A) - 0).

PrOOF. Necessity, Condition (16) was verified above. Moreover,

E{IEH[IA} = E{Ifﬂlf-ﬂ‘iﬁ"fnlaﬂl'} -+ E{Iénlf.dnﬂf.dﬂc}}
= E{Sal g zal + cPA). (17}

Take ¢ so large that sup,E{|{|I|¢ |2q) < &2 Then if P(A) < &/2c, we have
SupE{|¢, [{4} =&
by {17}, This ¢stablishes the uniform absolute continuity.

Sufficiency. Let £ > 0 and & > 0 be chosen so that P(A4) < 4 implies that
E(|£,114) < & uniformly in # Since

E |¢n| = E [z.u:n[jljd,‘-,,[acj = cP{I'fr:[ = C}
for every ¢ > 0 (cf. Chebyshev's inequality), we have

1
Sup Pil& > ¢} = —supE[5] 0, 00,
and therefore, when ¢ is sufficiently large, any set {[£,| = ¢}, »n = 1, can be
taken as A, Therefore sup E{[E,[I}j¢. =) < & which establishes the uniform

integrability. This completes the proof of the lemma.

The following proposition provides a simple sufficient condition for
uniform integrability.

Lemma 3. Let &, &5,... be a sequence of integrable random variables and
G = G(t} a nonnegative increasing function, defined for t > O, such that

tim 2@ _ o (18)
sup E[G(|£,[)] < oo (19)

Then the family {£,},.- , is uniformly integrable.
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PrOOF. Let £ > 0, M = sup, E[G([£,|}], ¢ = M/e. Take ¢ so large that
G(t)}/t = afort = ¢. Then

1 M
E[Ifﬂlfllfnlzd] = E E[G([':n[) * Iil.f"lap]] = F =£

uniformly for n = 1.

5. If £ and # are independent simple random variables, we can show, as in
Subsection 5 of §4 of Chapter I, that E£y = E£ - Ex. Let us now establish a
similar proposition in the general case (see also Problem 5}

Theorem 6. Let & and 0 be independent random varigbles with E[&| < oo,
Eln| < oo. ThenE|£y| < oo and

Eén =EE-En. (20)
Proor. Firstlet £ = 0, 5 = (. Put
<k
Cn = Z - I{Hng{{m}-ﬂk-l-l].rn]:
k=p 1

* k
H, = Z - I{wns:ﬂm}ﬂiﬂ 1)in) -
k=p "

Then &, < &, |&, — €| < I/nand 5, < 1, [#, — | = 1/n Since EE < oo and
En < co, it follows from Lebesgue’s dominated convergence theorem that
limEE, = €& limExy, = Ex.

Moreover, since £ and » are independent,

kI
E&tn = 2 = Elpmcecnr tyndpmen<y+ um
kim0 it
kI
= E _IEI{Mnﬁf-cIk+1m:} . EIwns.qe:tun:- = E¢, - Erp,-
R =0 i

Now notice that

€8y — &, < Elén — Eunal < ELIEL- Iy — 7]
1 1
$ELnl-1¢ — Gl S SEE+1E(141) =0 n~oo

Therefore E¢y = lim, EZ,n, = mEE, - limEy, = E{ -Ey, and Efn < co.

The general case reduces to this one if we use the representations
E=¢t —E y=p* =y fy=¢*'q" — £t — &' + 7y Thiscom-
pletes the proof.

6. The inequalities for expectations that we develop in this subsection are
regularly used both in prt_}bability theory and in analysis.
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Chebyshev’s Inequality. Let & be a nonnegative random varigble. Then for
epery e > Q

P> ) < % 1)

The proof follows immediately from
ES 2 E[£Ian] 2 8Elny = P > )

From (21) we can obtain the following variant of Chebyshev’s inequality:
If £ is any random variable then

2
P& =e8) < Esiz (22)
and
2
Pt - Bz <5, (23)

where V& = E(& — E£)? is the variance of &,
The Cauchy—-Bunyakovskii Inequality. Let & andn satisfyE&? < o0, Eff* < co.
ThenE [ £y| < oo and

Elen|Y <EE-Ex (24)
Proor. Suppose that E£* > 0, Ex* > 0. Then, with £ = £, /E&2, 7 =
ni/En?, we find, since 2| &j| < £ 4 72, that

2| & < EE* +Eif* =2,

i.e. E| &j| < 1, which establishes (24).

On the other hand if, say, E&* = 0, then & = 0 (a.s.) by Property I, and
then E&y = 0 by Property F, ie. (24) is still satisfied.

Jensen’s Inequality. Let the Borel function g = g(x) be convex downward and
E|&| < co. Then

g(EL) < Eg(d). (25)

Proor. If g = g{x) 1s convex downward, for each x, € R there is a number
A{xy) such that

g(x) = g(xo) + (x — Xo) - A(xo) (26)
for all x € R. Putting x = ¢ and x, = E£, we find from (26) that

g(&) = g€ + (£ — EE)- AES),
and consequently Eg(&) = g(E&L
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A whole series of useful inequalities can be derived from Jensen’sinequality.
We obtain the following one as an example.

Lyapunovy’s Inequality. If 0 < 5 < i,

EIZ < EIZIY" @7

To prove this, let + = t/s. Then, putting ¥ = | £|° and applying Jensen’s
inequality to g(x} = [ x|, we obtain |Ex[" < E|#[, ie.

E[L[)* <E|LT,

which establishes (27).
The following chain of inequalities among absolute moments in a conse-
quence of Lyapunov’s ineguality:

E[S] < €IEF)Y < - < EIEMM™ (28)

Holder’s Inequality. Let 1 < p < o0, 1 < g < o0, and (1/p) + (1/g) = 1. If
E||" < o0 and E|#|? < o0, then E|En| < o0 and

Elfn] < EIEFYVRE|7I)~. (29)

IfE|E|F = 0 or E|n)|% = 0, (29) follows imnmediately as for the Cauchy-
Bunyakovskii inequality (which is the special case p = g = 2 of Hblder’s
inequality).

Now let E| |7 = 0,E|#|? > 0 and

Fo ¢ T
ST EEnT T Eme

We apply the inequality
x < ax + by, (30)

which holds for positive x, y, a, b and a + b = 1, and follows immediately
from the concavity of the logarithm:

Infax + by] > alnx + blny = In x*y%
Then, putting x = |[%, vy = |#|% a = 1/p, b = 1/g, we find that

- 1 . 1. _
|£7] < =|€I° + =|#]%
4 q
whence
- 1 _ . 1 1 1
E|&f| < —E|EIF + -E[Afi=—4+—= 1.
| £l » 1€ p [#] r ¥ 2

This estabhishes (29).
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Minkowski’s Inequality. If E|£]” < o, E[g[F < 00,1 < p < oo, then we have
E[E + %" < o0 and

(E1E + nlP)r < EIE[)YP + En[F)Me. (31)

We begin by establishing the following inequality: if g, b > Qand p 2 1,
then

(@ + by < 227 YaF + bP). (32)
In fact, consider the function F(x) = (@ + x)* — 2~ Yaf + x*). Then
Fix)=pla + x)~1 = 2°71pxr~1,

and since p = 1, we have F'(q) = 0, F'(x) > 0 for x < a and F'(x) < 0 for
x > a. Thercfore

F(b) = max F(x) = F(g) =0,

from which (32) follows.
According to this inequality,

1E + 5P < ([E] + 191)P <207 ([LP + [9]7) (33)
and therefore if E|£[F < oo and E|n]” < oo it follows that E[ & + n|F < .
If p = 1, inequality (31) follows from (33).

Now suppose that p > 1. Take g > 1 so that {(1/p) + (1/g) = 1. Then

1€+ alP =&+ al-1E+4P7 <[E-1E+41°" + [HIE+aP71 (34
Notice that (p — 1)g = p. Consequently
E(S + 0P~ ) =E(E + 5" < o,
and therefore by Holder's inequality

E(LHE + 11~ ") < EIEIVRE (L + g|P~Voie
= E|LDVHEE + 7l < co.

In the same way,
E([511€ + n["™") < E[nPFYPEIE + yir)e.
Consequently, by (34),

EIL + 2l° < (E[£ + yY(E LD + Eln o). (35)

IfE [ + n|? = 0, the desired inequality (31)is evident. Now letE|& + #|# = 0.
Then we obtain

(E[E + ,ﬂp}l—{lm < (E|ff|")”p T {Elqlp)lfp
from (35), and (31) follows since 1 — (1/9) = 1/p.
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7. Let £ be a random variable for which EZ is defined. Then, by Property D,
the set function

Q(A) = fa: dP, Ac# (36)
A

is well defined. Let us show that this function is countably additive.
First suppose that £ is nonnegative. If A,, A,,. .. are pairwise disjoint sets
from # and 4 = ) A,, the corollary to Theorem 1 implies that

QA =EC-T)=E({-Iz4)=EQ & 1,)
= LE(€-1,) =3 Q4.).

If £ 15 an arbitrary random vanable for which E¢ is defined, the countable
additivity of Q({A) follows from the representation

Q(A) = Q*(4) — Q™ (A), (37)

where
M= &P, Q4= | & aP,
Q* () L.f Q(4) La

together with the countable additivity for nonnegative random variables and
the fact that min(Q ™ (€2), Q () < 0.

Thus if E£ is defined, the set function © = Q(A) Is a signed measure—
a countably additive set function representable as Q = Q, — Q,, where at
least one of the measures Q, and Q, is finite.

We now show that Q = Q(4) has the following important property of
absolute continuity with respect to P:

if P(A)=0 then QA)=0 (de#)

(this property is denoted by the abbreviation @ <€ P).

To prove the sufficiency we consider nonnegative random variables. If
& =Y%oy1 x,1, is a simple nonnegative random variable and P(4) = Q,
then

XA =E(€- 1) = Y xP(An A)=0.
k=1
If {£,).5 1 is & sequence of nonncgative simple functions such that &, T & = O,
then the theorem on monotone convergence shows that

Q(A} = E(C - 1} = imE(S,- 1) = 0,

since E{Z,- ) = Oforalln > 1 and A with P{4) = 0.

Thus the Lebesgue integral Q(A4) = [, € dP, considered as a function of
sets A € #, is a signed measure that is absolutely continuous with respect to
P (Q < P). It is quite remarkable that the converse is also valid.
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Radon—Nikodim Theorem, FLet (£, %) be a measurable space, pt @ o-finite
measure, and A a signed measure (i.e.. X = 2, — 2,, where at least one of the
measures A; and A, is finite) which is absolutely continnous with respect 10 He
Then there isan & -measurable function f = fleywithvalvesin R = [— oo, %]

such that

MA) = Lf(mm{dm), deF (38)

The function f{w) is unigue up to sets of p-measwre zero: if b = h(w} is
another F-measurable function such that MA) = |, h(w)(dw), A € #, then
p{w: f(@) # Kw)} = 0.

If A is a measure, then = f(w) has its valuesin RT = [0, w].

Remark. The function f = f(w) in the representation (38) is called the
Radon-Nikodym derivative or the density of the measure 1 with respect to p,
and denoted by di/du or (dAfduXw).

The Radon-Nikodym theorem, which we quote without proof, will play
a key role in the construction of conditional expectations (§7).

8. If & = 7., x;I . is a simple random variable,

Eg2) = . g()P(4) = ¥ glx)AF(x). (39)

In other words, in order to calculate the expectation of a function of the
(simple} random variable £ it is vnnecessary to know the probability measure
P completely; it is enough to know the probability distribution P, or, equiv-
alently, the distribution function F, of £.

The following important theorem generalizes this property.

Theorem 7 (Change of Variables in a Lebesgue Integral). Let (Q, 5) and
(E, &) be measurable spaces and X = X{w)an F j(E-imeasurvable function with
values in E. Let P be a probability measure on (8, %) and Py the probability
measure on (E, &) induced by X = X(w):

Py(A) = Plw: X(w) € A}, Aeéf. {40)
Then
[aopsan = [ gx@ppue),  Aes,  @n
A XA

for every &-measurable function g = g(x), x € E (in the sense that if one
integral exists, the other is well defined, and the two are egual),

ProoF. Let A e & and g(x) = Ig(x), where B € &. Then (41) becomes
Px(AB) = P(X™'(A) n X~ XBY), (42)
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which follows from (40) and the observation that X~ '{4) n X~ 1(B) =
X~YA n B)

It follows from (42) that {41) is valid for nonnegative simple functions
g = g(x). and therefore, by the monatone convergence theorem, also for all
nonnegative &-measurable functions.

In the general case we need only represent g as gt — g~. Then, since (41)
is valid for g* and g~ , if (for example} [, g™ (x)Px(dx) < oo, we have

L " (X(@)P(de) < oo
- ta)

also, and therefore the existence of [, g(x)}P{dx) implies the existence of
[x -1 (X ())P(de).

Corollary. Let (E, &) = (R, #(R)) and let & = &(w) be a randem variable with
probability distribution F,. Thenif gy = g{x)is a Borel function and either of the
integrals [ 4 gOOP{dx) or {;- 14, glE(@)P(dw) exists, we have

Lg(x)&(dx} - [ se)Puw.

£ A

In particular, for A = R we obtain

Eg(&(w)) = Lg(r:(m)}P{dm) - Lg(x)P;(dx). @3)

The measure P, can be uniquely reconstructed from the distribution
function F, (Theorem 1 of §3). Hence the Lebesgue integral [g g(x)P(dx) is
often denoted by [ g{x)Fdx) and called a Lebesgue-Stielijes integral
(with respect to the measure corresponding to the distribution function

Fdx)).
Let us consider the case when F(x) has a density f{x), i.c. let

Feo = [ soan (49

where f; = fy(x)1s a nonnegative Borel function and the integral isa Lebesgue
integral with respect to Lebesgue measure on the set { — <o, x] (see Remark 2
in Subsection 1). With the assumption of (44), formula (43) takes the form

et = | " g0 dx, (45)

- o>

where the integral is the Lebesgune integral of the function g(x)fi(x) with
respect to Lebesgue measure. In fact, if g(x) = I4(x), B € £(R), the formula
becomes

P,(B) = L f0dx,  BeBR); (46)
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1ts correctness follows from Theorem 1 of §3 and the formula

b
Fuby — Fela) = I fex) dx.

In the general case, the proof is the same as for Theorem 7.

9. Let us consider the special case of measurable spaces ({3, ) with a
measure g where O =0, x Q,, F =F, @R F,and y=pu, ¥ yu, 18 the
direct product of measures g, and yu, (i.e., the measure on & such that

B1 X pa(A x B) = py (A )p.(B), Ae &, Bedy;

the existence of this measure follows from the proof of Theorem 8).
The following theorem plays the same role as the theorem on the reduction
of a double Riemann integral to an iterated integral.

Theorem 8 (Fubinr’s Theorem). Let & = &(wy, w,) be an F | @ F ,-measur-
able function, integrable with respect to the measure u; X g,

-[ | §ltmy, )| gy X up) << o0, (47)
L x5

Then the integrals jnl E(co s 2 1 (dew,) and jﬂ; &y, @), (dm;)

(1) are defined for all w, and w,,;
(2) are respectively & »- and F y-measurable functions with

.ﬂz{mz: A | £(co1, 2}l pta{dewy) = O'D} = 0,
‘ (48)

#1{'591: [&(er1, wa) pa(dew,) = ‘Cﬂ} =0
I

and (3)

f Ewr, @) Ay X fig) = f E@ 1, @3)s(deny) |ialdes)
Iy #4x; | « (o

~ - (49)

L43]
E(wy, wy)paldeny) |ualdw,).

2zl.-th -

Proor. We first show that &, (w;) = &w,, @,) is 5 ,-measvrable with

respect to m,, for each @, € 02,.
Let Fe &, @ % ; and &(w,, 025} = Iy, 0,). Let

F, ={w;e0:{w, 0;)e F}
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be the cross-section of F at ey, and let €,,, = {Fe # . F,, € F;}. We must
show that €, = & for every w,.
HF=A4Ax B Ae F,,Be &F,, then

B ifw; e A,

(4 x B, = {ﬁ ifw, ¢ A

Hence rectangles with measurable sides belong to %, . In addition, if
Fe g, then (F),, = F, , and if {F"},,, are sets in &, then (| ) F),, =
|J) F7,- 1t follows that €, = &

Now let &(¢w,, ;) 2= 0. Then,since the function &{w(, w,)is F»-tneasurable
for each w,, the integral [, &(w,, w,)ps(de,) is defined. Let us show that this

integral is an %,-measurable function and

f [ 6{w1,w2)nz(dmz)]#l{dm1)=f E(wy, wa) g, % gz). (50)
Iy [45] 4 x{1y

Let us suppose that &{w,, w;) = 4, g{c0,. w3), A € F,, B e &,. Then since
Ly sy, 03) = L) pleo,), we have

|| ta st diisden) = i) | T@datdwn) 6D
i L)

and consequently the integral on the left of (51) is an %#;-measurable function.

Now let &(co,, w,) = Idw,, a,), Fe F = #, ® F#;. Let us show that the
integral f(e,) = [q, Ir(®,, w3z (dw;) is & -measurable. For this purpose we
put ¥ = {Fe #: f(w,) 15 #F,-measurable}. According to what has been
proved, theset 4 x Bbelongs to € (A € %,. B € ) and therefore the algebra
& consisting of finite sums of disjoint sets of this form also belongs to ¥. It
follows fram the monotone convergence theorem that ¥ 15 a monotonic
class, % = w(¥). Therefore, because of the inclusions & = ¥ = F and
Theorem 1 of §2, wehave F = o(o) = W c p€) =€ = #F,ie.€ = F.

Finally, if &, w,) is an arbitrary nonnegative #-measurable function,
the & ~measurability of the integral [g, (o, wpa(dw) follows from the
monotone convergence theorem and Theorem 2 of §4.

Let us now show that the measure u = p, x p,definedon & = 55 @ %,,
with the property (¢, X pa XA x B) = y,{A)- p(B), Ae &F,, Be #,,actually
exists and is unigue.

For F e & we put

H(F) = [ f le(mljp?.(dml}]pl(dm 1)
LETY B 13

As we have shown, the inner integral is an %;-measurable function, and
consequently the set function p(F) is actually defined for F e & It is clear
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that if F = A x B, then p(4 x B) = u (A)u(B). Now let {F"} be disjoint
sets from % Then

MEFY = |

Ly 1Y

[-th ()4 Fﬂ]m.(f-ﬂz)ﬂz (deoa) |5y (deoy)

= E [I Tn (w2 )pea(deo,) gy (deoy )
Q: |

L1 I
=2 0 [ o Iep, (mz)#z(dwz]]ﬂj{dwl) = 2, W(F7),

1.e. ¢ 15 a {o-finite) measure on F,

It follows from Carathéodory’s theorem that this measure p is the unique
measure with the property that p{A x By = u,(A)u.(B).

We can now establish {(50). If e,, @,) = 144 g0y, ©3), A € Fy, BEF,,
then

L sl @) X g} = G X p)CA X B, (D)

aﬂd Siﬂﬂe IAN B{ﬁ{] 11 l'.r.{.'lz} = Id(ml}.{ﬂ(ﬂiz), we have

.['1 [_[n f.al:-: B(ml.: mz)ﬂz(dﬂ);)]#l(dwl}

=] [I.q{m;) Ia(cul,wz)#z(dwz)]m(d-m:l)=ﬂ;(A)nz(B)- (53)

1]

But, by the definition of g, x .,

(e % ua)(A x B) = p, (A)ua(B).

Hence it follows from (52) and (53) that (50) 18 valid for &ew,, w,) =
I x oy, @)

Now let &, ;) = Te(w,, w;), F € . The set function

i(F) = f @y 0 % p)),  Fef

Sz % Lk

is evidently a g-finite measure. It is also easily verified that the set function

v(F) = [I Ie(w,, mz)ﬂz(dmz)]ﬂl(dml]
o, V0,

is a o-finite measure, It will be shown below that A and v coincide on sets of
the form F = A x B, and therefore on the algebra 5. Hence it follows by
Carathéodory’s theorem that 2 and v coincide for all F € &
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We turn now to the proof of the full conclusion of Fubini’s theorem.
By (47),

J- $M s @wy) dpy % p3) < <0, I & (coy, wp)d(py % py) < o0
£ [y i3 xiis

By what has already been proved, the integral |, &* (o), 0,)ps(des,) is an
F-measurable function of w, and

f [ J. &*(mpmz}m(dmz)]m(dmﬂ = J &V (. wa) dpy X p3) < 0.
& Ll =0

Consequently by Problem 4 (see also Property J in Subsection 2)

5 £ oy, wdua(dw,) < (;-a.5.).

In the same way

. §™{wy, e (dw,) < o (py-a.s),

and therefore
|&(ewry, w)| paldew,y) < oo (uy-a.8.).
ilz

It is ¢lear that, except on a set A" of p~-measure zero,

j e m:)p;(dm:hf E* (01, @)aldwy) — | E (1, o2aldos).
£2a2 1] (w1}
(54)

Taking the integrals to be zero for w, € .4, we may suppose that (54) holds
for all w e Q,. Then, integrating (54) with respect to g, and using (50), we
obtain

Iﬁ

j [ é(ml,mz)uztdmz)]mfdml) =f [ é*(wl,mz)uz(dmz)]m(dml)
L1 0Oy | _w5a

- j £ (o, mz}#z(dmz)]fh(dmﬂ
vy
= J. E* ooy, 0 )d(pty X pa)
13 =1
—f E (@ w2)d(y X i)
0y % (ks

= §(wy, wa)d(py X ).

0, 0,
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Similarly we can establish the first equation in (48) and the equation

I Elwy, w3) djy % py) = J‘ I:Jl Elo,, ﬂ?z).ﬂ:(dw;)]#z(dwz}-
¥y ¥ (1> ol Y

This completes the proof of the theorem.

Corollary. If {o, [fo, |2(0y, @2)|pade;)]u, (do,) < oo, the conclusion of
Fubini's theovewm 15 still valid.

In fact, under this hypothesis (47) follows from (50), and consequently
the conclusions of Fubini's theorem hold.

ExaMPLE. Let (£, y) be a pair of random variables whose distribution has a
two-dimensional density fq(x, ¥), i.¢.

P( ) € B) = Lfg,,(x, Wdxdy, Be@R,

where f;,(x, y) is a nonnegative #(R?)-measurable function, and the integral
is a Lebesgue integral with respect to two-dimensional Lebesgue measure.

Let us show that the one-dimensional distributions for & and » have
densities f{x) and f(y), and furthermore

19 = [l
and (35)

50 = [ fulos ) ax

In fact, if A e #(R), then by Fubin's theorem

PEed) = PULmedx R) = | foln ) dxdy = f [Lﬁ:.,(x. » dy]dx-

A=xR

This establishes both the existence of a density for the probability distribution
of £ and the first formula in {55). The second formula is established similarly.

According te the theorem in §5, a necessary and sufficient condition that
¢ and i are independent is that

Ffu{x: }’) = F&(x)FnU)! {x'r y) € R,

Let us show that when there is a two-dimensional density f;(x, ), the
variables £ and # are independent if and only if

Jek%: ¥) = Jx}NY) (36)

(where the equation is to be understood in the sense of holding almost
surely with respect to two-dimensional Lebesgue measure).
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In fact, in (56} holds, then by Fubini's theorem

Fotx, 5= |

(o, =] x{—ao,¥]

Seu(u, v) dut dv = _[ Jea}f (v) du do

[—mlx] x{—en, ]-']

_ j () du (I FAC) dv) = F(x)F(y)
{—o2,x] {~m.¥]

and consequently & and  are independent.
Conversely, if they are independent and have a density f,,(x, ), then again
by Fubini’s thecrem

f Jeultty ©) dus dv = (I Jelu) du) U 1) dv)
{0, x]x% (oo, ¥l {—oo,x] {—eo. ¥l
= _[ JeW)f, (@) du dv.
{—oo.xlxw(—w,y]
It follows that

[Lfasyrax v = [ sasrno0 axay

for every B € 4 (R}, and it is easily deduced from Property I that (56) holds.

19. In this subsection we discuss the relation between the Lebesgue and
Riemann integrals.

We first observe that the construction of the Lebesgue integral is inde-
pendent of the measurable space (Q, %) on which the integrands are given,
On the other hand, the Riemann integral is not defined on abstract spaces in
general, and for £ = R” it 15 defined sequentially: first for R!, and then
extended, with corresponding changes, to the casern > 1.

We cmphasize that the constructions of the Riemann and Lebesgue
integrals are based on different ideas. The first step in the construction of the
Riemann integral is to group the points x £ R! according to their distances
along the x axis. On the other hand, in Lebesgue’s construction (for £} = R1)
the points x € R* are grouped according to a different principle: by the
distances between the valiues of the integrand. It is a consequence of these
different approaches that the Riemann approximating sums have limits only
for “mildly™ discontinuous functions, whereas the Lebesgue sums converge
to limits for a much wider class of functions,

Let us recall the definition of the Riemann—Stieitjes integral. Let G = G(x)
be a generalized distribution Function on R {see subsection 2 of §3) and p its
corresponding Lebesgue—Stieltjes measure, and let g = g{x) be a boundexd
function that vanishes outside [z, b].
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Consider a decomposition 2 = {Xq, ..., X}
A=1Xp <X < - <X, =D,
of [a, b], and form the upper and lower sums

— T

T =3 G06) — Gts-0l, L= ¥ gl0(x) - i)

Ed

where

go= sup gy, gi= inf g0

Xf—LEyR Xy Kimm] S ¥S X
Define simple functions §g(x) and gs{x) by taking
g.‘?(x) = G: ﬂ:?(x} = s
on x;_; < x < x;, and define go{a) = gala) = g{a). It is clear that then

Y = (L-8) | gokx)G(dx)

&

and
; = {L-8) | g&(x)C{dx)-

Now let {7, } be a seqquence of decompositions such that 2, = &, . ,. Then
ﬁ?[ Egﬂ'zz et g EE.?; 229”

and if [g{x)| = C we have, by the dominated convergence theorem,

im Y = (L-8) | g(x)G{dx),
- ‘ (57)

lim ), = (L-8) | g(x)G(dx),

k—+oo 3y

where §{x) = limy G (x), g{x) = lim, g, (x).

If the limits tim, Zﬂ and lim, } . are finite and equal, and their common
value is independent of the sequence of decompositions {#,.}, we say that g = g(x)
is Riemann—Stieltfes integrable, and the common value of the lintits is denoted
by

(R-S) f FOOG(X). (58)

When G{x) = x, the inicgral is called a Riemann integral and denoted by

(R} fg(x) dx,
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Now let (L-S) [? g(x)G(dx) be the corresponding Lebesgue—Stieltjes
integral (sce Remark 2 in Subsection 2).

Theorem 9. If 9 = g(x) is continuous on [a, b], it is Riemann—Stieltjes inte-
grabile and

b
(R-5) rg(X)G(dx) = (L-5) f g(x)G(dx). (59)

ProOEF. Since g(x) is continuous, we have g(x) = g(x) = g{x). Hence by {57)
limy, o Y, = limy,, Y's,. Consequently g = g(x) is Riemann-Stieltjes
integral (again by (37)).

Let us consider in more detail the question of the correspondence between
the Riemann and Lebesgue integrals for the case of Lebesgue measure on the
line R.

Theorem 18. Let g(x) be a bounded function on [a, b].

(a) The function g = g(x) is Riemann integrable on [a, b] if ond only if it is
continuous almost everywhere (with respect to Lebesgue measurve 1 on

B(La, B1)-
{b) Ifg = g{x) is Riemann integrable, it is Lebesgue integrable and

(R) fg(x) dx = (L) rg(x)l(dx)- {60)
Prookr. (a) Let g = g{x) be Riemann integrable. Then, by (57),
b B b ~
O [ gelien) = ) | gboiTids).

But g(x)} < g{x) < gx), and hence by Property H
g() = g(x) = §lx) (Fas), 1)

from which it is easy to see that g(x) is continuous almost everywhere (with
respect to A),

Conversely, let g = g{x) be continuous almost everywhere {with respect
to A). Then (61) is satisfied and consequently g(x) differs from the (Borel)
measurable function g(x) only on a set A~ with A"y = 0. But then

big)<elt={xgxX) < c}n A + {x:g(x) <c} n A
={x:gx)<eln A +{xgx) el n A

It is clear that the set {x: g(x} < ¢} n .# € %{[qa, b]), and that
{x:9(x) < ¢} n A
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is a subset of .4 having Lebesgue measure d equal to zero and therefore also
belonging to B([a, b)]. Therefore g(x) is #([a, b])-measurable and, as a
bounded function, is Lebesgue integrable. Therefore by Property G.

(L) rE(X)I{dX) = (L) | 9()A(dx) = (L) f g(x)A(dx),

which completes the proof of (a).

(b} Il g = g(x)is Riemann integrable, then according to (a) it is continuous
(1-a.5.). It was shown above than then g(x) is Lebesgue integrable and its
Riemann and Lebesgue integrals are equal.

This completes the proof of the thecrem.

Remark_ Let i be a Lebesgue-Sticitjes measure on @([a, b]). Let # ([, b])
be the system consisting of those subsets A € [a, £] for which there are sets
A and B in &([a, &]) such that 4 € A © B and p{B\ A} = (. Let u be an
extension of u to 9 ,([a, b]) (E(A) = p(A) for A such that A = A = B and
u(B\A} = 0). Then the conclusion of the theorem remains vald if we
consider @ insicad of Lebesgue measure A, and the Riemann-Stieltjes and
Lebesgue—Stieltjes measurcs with respect to f instead of the Riemann and
Lebesgue integrals.

11. In this part we present a useful theorem on integration by parts for the
Lebesgue—Stieltjes integral.

Let two generalized distribution functions F = F{x) and & = G(x) be
given on (R, #(R)).

Theorem 11. The following formulas are valid for allveal aand b,a < b:

b h
F)G() — Fa)G(a) = f Fs-M6E) + [ G drs, (@)

or equivalently

FOIGE®) — F6@ = [ Fo-)66 + f Gis—) dF(s)

+ T AF(s)-AG(s), (63)

a=gsh

where F(s—) = lim, ;. F(), AF(s) = F(s) — F(s-).
Remark 1. Formula (62) can be written symbolically in “differential® form

d(FG) = F_ dG + G dF. (64)
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Remark 2. The conclusion of the theorem remains valid for functions F and G
of bounded variation on [q, b]. (Every such function that is continuous on

the right and has limits on the left can be represented as the difference of two
monotone nondecreasing functions.)

Proor. We first recall that in accordance with Subsection 1 an integral
§% (-) means [, 43 (-). Then (see formula (2} in §3)

B
(FB) — F@)GHb) — G(a)) = f arsy- [ 4600

Let ¥ X G denote the direct product of the measures corresponding to F and
(r. Then by Fubini's theorem

(F(B) — F@)Gb) — Gla)) = f HF x GXs.1)
(6. 8] = (a.B]

- Taafs. 04 X G¥s 0 + | Toeyls DA x )5, )

(b1 > (a4, b] 12, 4] = {a, b]

L3

n

=) {(G{s) — Gla)dF(s) + | (F({t—) — F(a)) dG(?)
via, b {2, 5]

= [ 6@ are + rF(S—)dﬂS) — G{aXF(h) — Fla)) — Fa)(G{b) — G(a)),
(65)

where I, is the indicator of the set 4.

Formula (62) follows immediately from (653). In turn, (63) follows from
(62) if we observe that

b
f(G(s) — G(s=)dF(s) = ¥ AG(s)- AF(s). (66)

a=gzh
Carollary 1. If F(x) and G{x) are distribution functions, then

FOOG(x) = r F(s—) dG(s) + f G(s) dF(s). (67)

If also

F(x) = r fs) ds,
then

FIGE = | P a6 + f' 6ls) f(s) ds. (68)



208 i1. Mathematical Foundations of Probability Theory

Corollary 2. Let £ be a random variable with distribution function F(x) and

E|&[" < oo. Then

me" dF(x) = n f 11 — F(x)] dx,
[H]

L]

Ijm|x[" dF(x) = — me" dF{—x) = n J:x“‘ 1F(—x) dx
and

E|Z]" = J-_m [x["dF(x) = n fmx“_‘[l — F{x) + F(—x) dx.

4]
To prove (63) we observe that

I i x" dF(x) = —E x" d(l — F(x))

o
= — b1 — FB) + n f X"~ Y1 — F(x)) dx.
v}

Let us show that since E|€]" < <o,
b1 — F(b) + F(—b) < ¥"P(|&| = b) —+ 0.

In fact,
o k
EIZ[ = [x|" dF(x) < o0
k=1 k—1
and therefore
Y |x|* dF(x}) =0, n - co.
Eeb+1 viE-1
But
k
Y | 1xrare = peazl 2 o)
kzb+1 —1
which establishes (73).

Taking the limit as b — oo in (72), we obtain (§9).

Formula {70) is proved similarly, and {71) follows from (6%) and {70).

(69)

(70)

(71)

(72)

(73)

12. Yet A(t),t = 0, beafunction of locally boundcd variation {i.e., of bounded
variation on each finite interval [a, E]), which is continuous on the right and

has limits on the left. Consider the equation

Z,—1+ fz _ dA(),
4]

(74)
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which can be written in differential form as
dZ = Z_dA, Zo=1 (75)

The formula that we have proved for integration by parts lets us solve (74)
explicitly in the class of functions of bounded variation.
We mtroduce the function
ELA) = 074 TT (1 + Ad(s))e™24), (76)
D=y
where AA{s) = A(s) — A(s—)for s > 0, and AA{D) = 0.
The function A(s), 0 < s < ¢, has bounded variation and therefore has at

most a countable number of discontinuities, and so the series ZGESE, | AA{s) |
converges. It follows that

[T (1 + Ad(s)e—24
D=5t

18 a function of locally bounded variation.
It A@) = A(t) — Y pcexe AA(S) is the continuous component of A(2),
we can rewrite (76) m the form

&fA) = ¢TI0 TT (1 + AA(s)). {77)
Q=s<t
Let us write
F() = e 410  Giy= [ (1 + Ad(s)).
Gxx=r
Then by (62)

&(A) = FOGE) = 1 + LF[S) dG{sy + J;G(s—) dF(s)

=1+ Y F(s)G(s—)AA(s) + fG(s-)F(s} dA<s)

OS5y

=1+ Jdé"s..(A} d A(s).
¢

Therefore £{A), t = 0,is a (focally bounded) solution of (74). Let us show that
this is the only locally bounded solution.

Suppose that there are two such solutions and let ¥ = Y(z),¢ = 0, betheir
difference. Then

Y() — £ Y(s—) dAs).

Put
T = inf{t = 0: Y() # O},

wherewetake T = 0 if ¥{t) = 0forr = 0.
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Since A(¢) 1s a function of locally hounded variation, there are two
generalized distribution functions A,(t} and A,(¢) such that A{) = A,() —
A,(t). If we suppose that T < oo, we can find a finite T’ such that

[A(T") + AT)] — [A(T) + A (T)] < %.

Then it follows from the equation

Y{i) = fY{s—) d A(s), t =T,
T

that
sup| ¥Y¢)| < Fsup| ¥ (1)

tat’ =T

and since sup| ¥(1)| < <o, we have ¥(t) =0 for T < ¢t < T, contradicting
the assumption that T < oo,
Thus we have proved the following theorem.

Theorem 12. There is a unigue locally bounded sokution of (74), and it is given
by (76).

13. PROBLEMS
1. Establish the representation (6).

2. Prove the following extension of Property E. Let € and # be random variables for
which E{ and En are defined and the susn E¢ + En is meanimgful {does not have the
form oo — co or — o0 + <0). Then

E( +m) =ES + En.
3. Generzlize Property & by showing that if £ = » (a.5.) and E£ exists, then Ex exists and
EZ =En.

4. Let £ be an extended random variable, # a o-finite measure, and [g |&]du < .
Show that || « oo (u-as.) (cf. Property J).

5. Let g be a g-fintte measure, £ and » extended random variables for which E£ and Ey
are defined. If [, & dP < [, ndP for all A € & then & < # (u-a.s.). (Cf. Property L)

6. Let £ and  be independent nonnegative random variables. Show that E&y = E£- Ex.
7. Using Fatou's lemma, show that

P(lim 4,) < lim P(4,)},  P(lim 4,) 2 Im P(4,).

8. Find an example to show that m general it 5 impossible to weaken the hypothesis
“|&,| = 1, Ey < ¢0™ in the dominated convergence theorem.
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15.

16.

17,
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Find an example to show that in general the hypothesis “¢, < #, Eg > —c0™ in
Fatou's lemma cannot be omitted.

Prove the following variants of Fatou’s lemma. Let the family {£; },., of random
variables be uniformly integrable and let E lim £, exist. Then

ImEZ, < E im £,.

Let &, < #,, 1t = 1, where the family {&F},., is uniformly integrable and g,
converges a.s, (or only in probability—see §10 below) to 2 random variable ». Then

ImEZ, < Elimé¢,.
Dirichlet's function

1, i frrational,
i =
) {0, x rational,

is defined on [0, 1], Lebesgue integrable, but not Riemann integrable, Why?

Find an example of a sequence of Riemann integrable functions { .} ... ;, defined on
[0, 1], such that | f,| < 1, £, — f almost everywhere (with Lebesgue measure), but
f is mot Riemann integrable.

Let {(a; ;; i, j = 1) be a sequence of real numbers such that EM- la; ;| < oo Deduce
from Fubini’s theorem that

5= 36e) -3 6m) 2

Find anexample ofa sequence(a;; i, j = 1)for which ¥ ilai;] = coand the equation
m {78) does not hold.

Starting from simple functions and using the theorem on taking lomits under the
Lebesgue integral sign, prove the following result on integration by substitution.

Let i = () be a nondecreasing continuously differentiable function on [a, b,

and let f{x) be (Lebesgue) integrable on [fa), k)], Then the function FEG ()
is integrable on [4, b] and

R{E) i

FOydx = | SN (y) dy.

ki) a

Prove formula (70).

Let &, &;,&,, - . - be nonnegative integrable random variables such that EE, — E£ and
P(¢ — &, > &) — Oforevery g > 0. Show that thenE|&, — &]| =+ 0,n — .

Let &, 1,8 and £, %, €, n = 1, be random variables such that

gﬂ'fbﬁi ﬂl‘lfbﬂt {IIE‘C'I nnéﬁngl:n! "211
El.—E{, En,—En
and the expectations E&, Ex, E{ are finite. Show that then E£, — E£ (Pratt’s lerma).

Ifalso s, = 0 < {, thenE|{, — §| =+ 0,
Deduce that if £, 5 & E|&,| = E|&) and E|¢] < o, then E[£, — £] = O.
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§7. Conditional Probabilities and Conditional
Expectations with Respect to a g-Algebra

1. Let (Q, &, P) be a probability space, and let 4 € & be an event such that
P{A4) > 0. Asfor finite probability spaces, the conditional probability of B with
respect to A (denoted by P(B|A)) means P(BA)/P(4), and the conditional
probability of B with respect to the finite or countable decomposition & =
(D, Dy.. 3 withP(D) = 0,i = 1(denoted by P{B|2)}istherandom variable
equalto P(B|Dpforwe ), i > 1:

F(B|D) = ), P(B|DM,{w).

izl

In a similar way, if £ is a random variable for which E£ is defined, the
conditional expectation of € with vespect to the event A with P{4) > 0{denoted
by E(E| A)y is E(ZI )/P(A) (cf. (1.8.10).

The random variable P{B| %) is evidently measurable with respect to the
g-algebra ¢ = (), and is consequently also denoted by P(B|¥%) (see §8 of
Chapter I).

However, in probability theory we may have to comsider conditional
probabilities with respect to events whose probabilities are zero.

Consider, for example, the following experiment. Let & be a random
variable that is uniformiy distributed on [0, 1]. If ¢ = x, toss a coin for which
the probability of head is x, and the probability of tail is 1 — x. Let v be the
number of heads in n independent tosses of this coin. What is the “ conditional
probability P(v = k|& = x)"? Since P{{ = x) = 0, the conditional prob-
ability P{v = &|£ = x) is undefined, although it is intuitively plausible that
“it ought to be Cix*(1 — xy"~*~

Let us now give a general definition of conditional expectation (and, in
particular, of conditienal probability) with respect to a g-algebra %, ¥ < #,
and compare it with the definition given in §8 of Chapter [ for finite probability
Spaces.

2. Let (Q, # P) be a prebability space, % a s-algebra, ¥ = & (¥ is a o-
subalgebra of %), and £ = &{w) a random variable. Recall that, according to
&6, the expectation EZ was defined in two stages: first for a nonnegative random
variable & then in the general case by

Ef =ELT —ELT,
and only under the assumption that
min{EE, EET) < oo

A similar two-stage construction is alse used to define conditional expecta-
tions E(£|¥).
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Definition 1.
(1) The conditional expectation of a nonnegative random variable & with

respect to the o-algebra % is a nonnegative extended random variable,
denoted by E{£|%) or E(¢|%¥)Xw), such that

(a) E(£|%) is ¥-measurable;
(b) forevery Ae¥

Léf P = LE(&[?) dP. 1)

(2) The conditional expectation E(¥|¥), or E(Z[#¥)(w), of any random
variable & with respect 1o the o-nlgebra %, 1s considered to be defined if

min(E(Z™ [€), E(¢™|¥)) < 0,

P-a.s., and it is given by the formula

E(Z|¥9) =E{LT %) — E(C [9),
where, on the set (of probability zero) of sample points for which E(¢ | %)

= E{{™ | %) = oo, the difference E(&™ | %) — E(&™ | %) 18 given an arbitrary
value, for example zero.

We bepin by showing that, for nonnepative random variables, E(&|%)
actually exists. By (6.36) the set function

Q(A) = Lg dP, Ac%, 2)

is 4 measure on (€2, %), and is absolutely continuous with respect to P
(considered on{Q2, %), ¥ < #). Therefore (by the Radon-Nikodym thecrem)
there is a nonnegative ¥-measurable extended random vanable E{Z|%) such
that

ow=&m%m 3
Then {1) follows from (2) and (3).

Remark 1. In accordance with the Radon-Nikedym theorem, the con-
ditional expectation E(&|%) is defined only up to sets of P-measure zero.
In other words, E(Z|%) can be taken to be any ¥-measurable function f{w)
for which Q(A) = [, f(w)dP, A€ ¥ (a “variant™ of the conditional ex-
pectation).

Let us observe that, in accordance with the remark on the Radon-—
Nikodym theorem,

EE1%) = 2 (o), @
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i.e. the conditional expectation is just the derivative of the Radon-Nikedym
measure Q with respect to P (considered on (€2, #)).

Remark 2, In connection with (1), we observe thaf we eannot in general put
E(£|%) = £, since ¢ is not necessarily ¥-measurable.

Remark 3. Suppose that £ is a random variable for which EZ does not exist,
Then E(£| %) may be definable as a -measurable function for which (1) holds.
This is usually just what happens. Qur defmition E(¢|¥) =E(£™|¥) —
E({” |%) has the advantage that for the trivial o-algebra % = |, Q} it
reduces to the definition of EZ but does not presuppose the existence of EE.
(For example, if ¢ is a random variable withEE™ = o0,EE™ = wo,and ¥ = &,
then E£ is not defined, but in terms of Definition 1, E(Z |%) exists and is simply

(=gt -0

Remark 4. Let the random variable & have a conditional expectation E(¢|%)
with respect to the s-algebra 4. The conditional variance (denoted by V(£ |%)
ot V(£ [¥)(o)) of & is the random variable

V(Z|9) = E[¢€ — EEZI9)°19].

(Cf. the definition of the conditional variance V(&|%) of £ with respect to a
decomposition 2, as given in Prablem 2, §&, Chapter 1.)

Definition 2. Let B € & The conditional expectation E(f z|%) is denoted by
P(B|¥%), or P(B|¥)(w), and is called the conditional probabiliity of the event B
with respect to the c-algebra %, % = F.

It follows from Definitions 1 and 2 that, for a given Be & P(B|%) is a
random variable such that

(a) P(B|¥)is ¥-measurable,

(b) P4 B) = [ PBioNP ©)
for every Ac¥. i
Definition 3. Let £ be a random variable and ¢, the ¢-algebra generated by

a random element #. Then E(£|%,). if defined, means E(Z|y or E(&|n)(w),
and is called the conditional expectation of & with respect to n.

The conditional probability P(B|%,,) is denoted by P(B|#) or P(B|#)(w),
and is called the corditional probability of B with respect to 1).

3. Let us show that the definition of E{¢ | %) given here agrees with the defini-
tion of conditional expectation in §8 of Chapter I.
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Let 4 = {D,, D,,...} be a finitc or countable decomposition with atoms
D), with respect to the probability P (ie P(D)) > 0, and if 4 = D,, then
either P(4) = 0 or P(D\A) = 0).

Theorem 1. If % = o(D) and £ is a random variable for which EE is defined,

then
ECI9) =E([D) (P-as.on b)) (6)
or equivalently
E(£| %) = E;‘ff}”i) (P-a.s. on D).
I

{The notation & = y {P-a.s. on A),” or
“& = n(d; P-as)” means that P{4A n {£ # 1)) = 0)

ProOF. According to Lemma 3 of §4, E(Z|¥) = K, on D, where K; are
constants. But

f gap = [ E@19)dp = K,P(DY,
D i
whence

L gap = EC&M0) g py

5 =rwy ), P(D,)

This completes the proof of the theorem.

Consequently the concept of the conditional expectation E(£|2) with
respect to a finite decomposition 2 = {D,,..., D}, as introduced in
Chapter I, is a special case of the concept of conditional expectation with
respect to the o-algebra ¢ = o(D).

4. Properties of conditional expectations. (We shall suppose that the expecta-
tions are defined for alf the random variables that we consider and that
9o %)

A*. If Cis a constant and £ = C (a.5.), then E(E| %) = C (a.5.).
B¥, If & < y (as.) then E(E|¥%) < E(y|%) (a.s.).

C*. |E¢ (%) < E([[[9) (a.5.).
D*. If a, b are constants and aEE + UEn is defined, then

E(al + by|¥) = aE(£|%) + bE(y|¥) (as.).
E*. Let F, = {¢, (3} be the irivial o-algebra. Then
E(S[#,) =EL (as)
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F*. E({|F) = ¢ (as).
G*. E(E({|¥)) = EL.
H* If &, c %, then

E[E(|¥;)|#,] = E(£]¥,) {as)
I*, If 4, D %, then
E[E(LI¥.)|¥9,) = E(L|¥) (as)

J*. Let q random variable £ for which EE is defined be independent of the
a-algebra % (i.e., independent of [5, B € ¥). Then

E(Z[#) =E{ (as.).

K*. Let  be a @-measurable remdom variable, E|E| < co and E|&n| < co.
Then

E(fn|%) = qE(Z[F) (as.)

Let us establish these properties.

A*. A constant function is measurable with respect to %. Therefore we need
only verify that

J-ﬁdF’=J.CdP, Ae%.
A A
But, by the hypothesis £ = C (a.s.) and Property G of §6, this equation

15 obviously satisfied.
B* If £ < 5 (a.s.), then by Property B of §6

J{dpg fﬂ-dp, Aed,
A A
and therefore
IE(@I@){IF’EJE{?}H&’)&P, Ae®,
A A
The required inequality now follows from Property I (§6).
C*. This follows from the preceding property if we observe that — |£|

< £ <|¢].
D¥*. If A € % then by Problem 2 of §6,

L(a.f + by} dP = Lae: P + qu dP = LaE({[%’) P

) f BEG|F) dP = f LaECE|9) + bECq| 9] dP.
A A

which establishes D#*.
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E*. This property follows from the remark that E£ is an &, -measurable
function and the evident fact that if A = Q or A = then

J;ﬁ dP = LE& dP.

F*, Since & if #~measurable and

f{dF‘=I§dP, Ae#F,
A A
we have E(£| ) = & (a.s)

G*. This follows from E* and H* by taking ¢, = {(J, Q} and ¥, = .
H*. Let A €%, ;then

LE{ﬁlﬁﬁl) P = Lg dp.

Since ¥, = ¥,, we have 4 € ¥, and therefore

J.E[E(‘Elfﬁz)lﬁl] 4P — jE{él%} aP = fﬁdP.
A A A

Consequently, when 4 €%,

fﬂfw i = [ EECI9Ie.1 P
A A
and by Property I (86) and Problem 5 (§6)

E(Z|%,) = E[EC|#.}|1¥,] (as.)
I*. If A e#,, then by the definition of E[E{{|%4,)[%,]

fE[E(ﬂemsmdP - j E(Z|%,) dP.
AT A

The function E(£|%;) 15 #;-measurable and, since %, = %,, also
% -measurable. It follows that E(£|%,) 15 a variant of the expectation
ELE(|¥,)|%, ], which proves Property I*.

J*, Since E£ is a ¥-measurable function, we have only to venfy that

| @0 = [ecar,
B B

ie thatE[{-Ig] =EE-Ef;. HE|&| < oo, this follows immediately from

Theorem 6 of §6. The general case can be reduced teo this by applying
Problem 6 of §6.

The proof of Property K* will be given a little later; it depends on con-
clusion (a) of the following theorem.
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Theorem 2 {On Taking Limits Under the Expectation Sign). Let {&}n=1
be a sequence of extended random variables.

(a) If [&] < 0, En < w0 and , - £ (as.), then
E(£,|¥) > EC[¥) (as)

E([{, — E[#) —~ 0 (as.)
(b)) If & = nEn > —co and €, € {as.), then
E(CI9TEEIY) (a.s)
(c) If £, < 4, En < o0, and &, | € (as.), then
E(C.[¥9) LEL|¥) (as)
(d) If &, =, Ep > —co, then
E(lim £.|%) < lim E({,|¥) (as.)
(e} If ¢, < #, En < oo, then
lim £(£,19) < E(lim £,|9%) (as.).

anid

() if &, = O then

EQ. Lul¥) = 1 EZI9) (as)

Proor. (a) Let {, = sup,..|&. — &l Since &, — £ (as), we have {,]0
{(a.s.). The expectations EZ, and EZ arc finite; therefore by Properties D#*
and C* {a.s.)

|E(L.| %) — ECI9)| = |E(L, — £19)] < E(IL, — CII%) < B9
Since E(L,.+ ( [¥9) < E({.|9) (a.s.), the Limit b = lim, E({,|%) exists (a.s.). Then

UEJ-thEJ.E({,,Ifﬁ)dP=I§,,dP—>0, H— <0,

o o 0

where the last statement follows from the dominated convergence theorem,
since 0 < {, <2y, Ey < co. Consequently [ohdP =0 and then h =0
{a.s.) by Property H.

(b) First let » = 0. Since E(Z,|¥) < E(£,,;|%) (as) the limit {{w) =
lim,, E(£,,|%) exists (a.s.). Then by the equation

Lé,, dP = LE(&,,H@} dP, Aed,

and the theorem on monotone convergence,

IEde: chp, Acd.
A A

Consequently £ = { (a.s)) by Property I and Probtem 5 of §6.
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For the proof in the general case, we observe that 0 < &7 7T &%, and by
what has been proved,

EET 19 TECET |9 (as). (7)
ButQ < &, < £7,EE™ « wo, and therefore by (a)

E¢. |¥) = E(£™ |9,
which, with (7), proves (b).

Conclusion {c)foliows from (b).

(d) Let {, =inf,,, &,; then {, { {, where { = lim £,. According to (b),
E(, (%) TE({]¥) (a.s.). Therefore (a.s) E(lim %) = E({[%) = lim, E({,|%)
— imE(Z,|9) < limE(¢,|9).

Conclusion {&) fellows frem (d).

(F) If &, = 0, by Property D* we have

E(kzléﬂ @) =EZI E({:|¥) {(as)
which, with (b), establishes the required result.
This completes the proof of the theorem.

We can now establish Property K*. Let # = Iy, Be%. Then, for every
Ae¥,

Jarap = [ cap—| Eci9ap- | LECIS®P - | w9 P
A AnB A A

AmB

By the additivity of the Lebesgue integral, the equation

J.fr} dP = J-r}E{ﬂ‘Ff}dP, Ae®, (8)
A A

remaing valid for the simple random variables # = Y 5., yJ5,., BLE%.
Therefore, by Propeity I (§6), we have

E(n|¥) = nE(|¥) (as) ®

for these random variables.
Now let # be any ¥-measurable random variable with E|#| < oo, and
let {s7,},= 1 be a sequence of simple ¥-measurable random variables such that

I1,] < # and #, — 5. Then by (9)

E(Cna|9) = n,E(C]F) (as).

It is clear that |&5, <|En|, where E[£,| < co. Therefore E{n,|%)—
E(¢n|¥) (a.s.) by Property (a). In addition, since E| €] < oo, we have E(&] %)
finite (a.s.) (see Property C* and Property J of §6). Therefore 3, E({[%) —
nE{£|¥) (as.). {The hypothesis that E(£|%) is finite, almost surely, is essential,
since, according to the footnote on p. 172,00 = 0, butif n, = 1/n, 4y = 0,
we have 1jn- 0 4 0.0 =0.)
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5. Here we consider the more detailed structure of conditional expectations
E(£|%,), which we also denote, as usual, by E(Z|#).

Since E({ |#) is a %,-measurable function, then by Theorem 3 of §4 (more
precisely, by its obvious modification for extended random variables) there
is a Borel function m = m{y) from K to E such that

m{n(w)) = E(¢|n)(w) (10)

for all ®e Q. We denote this function m(y) by E(£|f = y} and call it the
conditional expectation of € with respect to the event {5 = y}, or the conditional
expectation of £ under the condition that v = y.

Correspondingly we define

(e = [ecimar = [mmar,  4cq, an
A A A

Therefore by Theorem 7 of §6 {on change of variable under the Lebespue
integral sign)

j ) dP fmo»JrP,,(dy), Be A(R), 12)
[t me B) B

where P, is the probability distribution of #. Consequently m = m(y) 18 a
Borel function such that

J. £dP = | m(y) dP,. {13)
[ o B} B

for every B e %(R).
This remark shows that we can give a different definition of the conditional

expectation E{£|s = ¥).

Definition 4. Let £ and 1 be random variables (possible, extended) and let
E{ be defined. The conditional expectation of the random variable £ under
the condition that = y is any #(R)-measurable function m = m(y) for
which

f ¢dp = fm(y)ﬂ(dy), Be H(R). (14)
{eoc p e A} B

That such a function exists follows again from the Radon-Nikodym theorem
if we observe that the set function

QAB) = I {dP

{AH ¥

is a signed measure absolutely continucus with respect to the measure P,
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Now suppose that m(y) is a conditional expectation in the sense of Defini-
tion 4. Then if we again apply the theorem on change of variable under the
Lebesgue integral sign, we obtain

[ e=[ mpan= iy, Be @R

{w:=neR} | {wineB}

The function sm(y) is %,-measurable, and the sets {»:5e B}, Be #B(R),
exhaust the subsets of %,.

Hence it follows that m(y) is the expectation E{|#). Consequently if we
know E{|y = y) we can reconstruct E{£|#), and conversely from E(£[#) we
can find E(E[# = ).

From an intuitive point of view, the conditional expectation E{£|y = y)
is simpler and more natural than E(&|5). However, E{£|¥), considered as a
%,-measurable random variable, 15 more convenient to work with.

Ohbserve that Properties A*-K* above and the conclusions of Theorem 2
can casily be transferred to E(&|y = y) (replacing “almost surcly”™ by
“P,-almost surely™). Thus, for example, Property K* transforms as follows:
ifE|&| < o0 and E|&f ()] < oo, where f = () is a #B(R) measurable func-
tion, then

EGfIn =y =SOE(CIn=1) (Pyas) (15)
In addition (cf. Property J*), il £ and » are independent, then
E(¢ly = y) =EE (P,as).
We also observe that if B e #(R?) and £ and » are independent, then
ELI(C. 1}y = y] =Elp(c, 1) (P,-as), (16)

and if ¢ = @(x, y) is a B(R?*)ymeasurable function such that E (¢, n)| < <o,
then

ELg{S, n}ln = y] = E[p(S, 3)] (P,as).

To prove (16) we make the following cbservation. If B = B, x B, the
validity of {16) will follow from

j i fig B;(Cr 7)P{dw) = I ES Hy® ﬂz(fa V)P n(‘h’)«
e d} {ve )

But the left-hand side is P{¢ € B,,5e€A4 n B,}, and the right-hand side is
P(£ € B))P(y € A n B,); their equality follows from the independence of £
and n. In the general case the proof depends on an application of Theorem 1,
§2, on monotone classes (cf. the corresponding pait of the proof of Fubini's
thecrem).

Definition 5. The conditional probability of the event 4 % under the con-
dition that ¥ = y (notation: P(A|n = yHisEU, [y = 1.
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It is clear that P{4 |y = y)can be defined as the $({R)-measurable function
such that

PlAn{neB}) = _[P(Am = yP,(dy), BeB(R) (17)

E

6. Let us calculate some examples of conditional probabilities and con-
ditional expectations.

ExampLE |, Tet # be a discrete random variable with P(y = yJ) > 0,
Za°°=1 P(# = y,) = 1. Then

_PUn=w
Pn=yJ ' -

For y¢ {y,, ¥,,...} the conditional probability P(A|# = y) can be defined
in any way, for example as zero.
If & is a random variable for which EZ exists, then

P{A[n = 3)

1

—_— £ dP.
P{H = .]"’k) [ =m}

E€ln=m)=

When y ¢ {v,, ;. ...} the conditional expectation E{{ |4 = y) can be defined
in any way (for example, as zero).

ExamMpLE 2. Let (£, ) be a pair of random variables whose distribution has a
density f.(x, y):

P{{{,y)e B} = Lfﬁ(x, ¥) dx dy, Be #B(R?).

Let f,(x) and f,(¥) be the densities of the probability distribution of £ and 5
(see (6.46), (6.55) and (6.56).

Let us put
fanl19) = %%”—) (18)
taking f,(x19) = 01l £0) = 0
PEeCln =) = [ fufxlnds,  CedR) (19)

i.e. fr,(x|y) is the density of a conditional probability distribution.
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In fact, in order to prove {19) it is enough to verify (17) for B e S#(R),
A = {£ e C}. By (6.43), (6.43) and Fubini’s theorem,

L [J;fﬁlﬂ(xly) dI]Pu(dJ’) = ..:; I:L_ﬂgmfxl}?) dx:lfﬂ(y) dy

3

= SerfX )10 dx dy
Cx B

F-

= Bﬁn(x, y)ydx dy

JE

Pi{.meC x B} =P{{{eC)n(neB),

which proves (17).
In a similar way we can show that if E£ exists, then

=]

E(¢ln = y) = f Xfe el dx. (20)

—_

ExamrLE 3. Let the length of time that a piece of apparatus will continue to
operate be described by a nonnegative random vaniable = #(w) whose
distribution F,{y) has a density f,(y) (naturally, F,.(y) = f,(y} = Ofor y < 0).
Find the conditional expectation E(y — a[n = a), Le. the average time for
which the apparatus will continue to operate on the hypothesis that it has
already been operating for time q.

Let P(y = a) > 0. Then according to the definition (see Subsection 1) and
(6.45),

€L — yyaal _ foln — @)l 4Pd)
P(7 = a) Py = a)

_2 o —anndy

e £ dy

E(n —alyr = a) =

It is interesting to observe that if i is exponentially distributed, i.e.

e, y=0,

£0) = {U Py 21)

then En = E(y[n = 0) = 1/4 and E(y —a|y > a) = 1/4 for every a > 0. In
other words, in this case the average time for which the apparatus continues
to operate, asswming that it has already operated for time g, s independent
of ¢ and simply equals the average time Ez.

Under the assumption (21) we can find the conditional distribution
Pin — a < x[n = ak
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We have

Pla <n <a+-x)
Pl = a)

_ Ffa+x)— Fla)+ P(n = a)

N 1 — F(a) + P(y = a)

_ [1 _ e—).la+x}] _ [1 _ E—M]

a 1 —=[1l —e*
e 1 — e *]

= E-.ln :]'_E

Py —a<xpza) =

ix

Therefore the conditional distribution P(y — a < x|5 = a) is the same
as the unconditional distribution Py < x). This remarkable property
is unique to the exponential distribution: there are no other distnbutions
that have densities and possess the property P(n — @ < x|y = 4) = P(y < x),
az0,0<x < co.

ExamrpLe 4 (Buffon’s needle). Suppose that we toss a needle of unit length
*“at random™ onte a pair of parallel straight lines, a unit distance apart, in
a plane. What is the probability that the needle will intersect at least one of the
lines?

To solve this problem we must first define what it means to toss the
needle “at randem.™ Let £ be the distance from the midpoint of the needle to
the left-hand line. We shall suppose that £ is uniformly distributed on [D, 17,
and (see Figure 29) that the angle € is uniformly distributed on [—=/2, w/2].
In addition, we shall assume that £ and # are independent.

Let A be the event that the needle intersects one of the lines. It is easy to
see that if

B ={(a.x):|a| < g, x &[0, 4cos a] U [1 — Loos g, 1]},

then A = {es: (0, &) € B}, and therefore the probability in question is
P(A) = EI 4(w) = EIp(w), &)).

Figure 29
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By Property G* and formulia (16),
EI(8(w), £(e0)) = E(ELL1(0(w), &(ea))B(w)])

= LE [1s(B(02), &) () IP(des)

i
= LMZE[IB(E@), @) o) = o)Py(da)

#f2

il
=%J‘ EIB{a,ﬁ(m)}da=%f msada=%,

—atf2 — i
where we have used the fact that
Elg(a, ) = P{Ee[0,4 cos a] UL — 4 cos al} = cos

Thus the probability that a “random™ toss of the needle intersects one of
the lines i3 2/n. This result could be used as the basis for an experimental
evaluation of . In fact, let the needle be tossed N times independently.
Define £; to be 1 if the needle intersects a line on the ith toss, and 0 otherwise.
Then by the law of large numbers (see, for example, (1.5.6))

P{ bt 4y

N
for every g > Q.
In this sense the frequency satisfies

Byt e+ 2
Y R-:F(A)_‘II

—P(A)|>s}-u, N - .

and therefore

2N -
Gyt

This formula has actually been used for a statistical evaluation of = In
1830, R. Wolf (an astronomer in Zurich) threw a needle 5000 times and
obtained the value 3.1596 for . Apparently this problem was one of the first
applications {now known as Monte Carlo methods) of probabilistic—
statistical regularities to numerical analysis.

ﬂi

7. W {€,},»1 18 4 sequence of nonnegative random variables, then according
to conclusion () of Theorem 2,

B &%) = L EE,19) (as)

In particular, if B,, B,, ... 1s a sequence of pairwise disjoint sets,

P} B,|¥) =) P(B,[¥) (as) (22)
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It must be emphasized that this equation is satisfied only almost surely
and that consequently the conditional probability P(B|%)e) cannot be
considered as a measure on B for given ». One might suppose that, except
for a set .4 of measure zero, P(-|%)}{e) would still be a measure for e A4
However, in general this is not the case, for the following reason. Let
A(B;, By, .. Jbetheset of sample points w such that the countable additivity
property (22) fails for these B, B,, ... . Then the exctuded set A" is

N =\ JN(By. B, .. ), (23

where the union is taken over all B,, B,, -.. in & Although the P-measure
of each set #(B,, B;,...)is zero, the P-measure of .4 can be different from
zero (because of an uncountable union in (23)). (Recall that the Lebesgue
measure of a single point is zero, but the measure of the set A" = [0, 1],
which is an uncountable sum of the individual points {x}, is 1).

However, it would be convenient if the conditional probability P(-|4){cw)
were a4 measure for each w &£}, since then, for example, the calculation of
conditional probabilities E(£ [%) could be carried out {see Theorem 3 below)
in a simple way by averaging with respect to the measure P(-[%)(cw):

E({[¥%) = L.ﬁ(ﬂ)}P(d{olfﬁ] {(a.s.)
(cf. (1.8.10)).

We introduce the following definition.

Definition 6. A function P(c; B), defined for all w e Q and B & &, is 4 regular
conditional probability with respect to % if

(a) P{w; -)is a probability measure on & for every we £};
(b} Foreach B e % the function P(w; B), as a function of m, is a variant of the
conditional probability P(B|¥)(w), i.e. F{w: B) = P(B|%) () (a.5.).

Theorem3. Let P{w; B) be a regular conditional probability with respect to
% and let £ be an integrable random variable. Then

ECI9)) — [ HOP@:d0) (as) (24)
L]
Proor. If &€ = I, B e &, the required formula (24) becomes
P(B|9}w) = P(w; B) (as),

which holds by Definition 6(b). Consequentty (24) holds for simple functions.
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Now let £ = D and &, 1 & where &, are simple functions. Then by (b) of
Theorem 2 we have E(¢|%)(w) = lim, E(£,| %)) (a.s.). But since P(w;-)
is a measure for every w e £2, we have

tim E(Z,|9){e) = lim Lsﬂ@)ﬁm; 4@ — | H@Pw; dd)
m F) 12

by the monotone convergence theorem.

The general case reduces to this one if we use the representation ¢ =
&t =&

This completes the proof.

Corallary. Let & = ¥, where 5 is a random variable, and let the pair (€, 4)
have a probability distribution with density fe(x, y). Let E|g(&)| < 0. Then

EG@ln =) = | gt fuxly) dx,
where fr,{x|y) is the density of the conditional distribution (see (18)).

In order to be able to state the basic result on the existence of regular
conditional probabilities, we need the following definitions.

Definition 7, Let (E, &) be a measurable space, X' = X(ev) 4 random element
with values in E, and ¥ a g-subalgebra of & A function Q{w; B), defined
for weY and B e & is a regular conditional distribution of X with respect to
Zif

(1) for each e £} the function O(es; B) is a probability measure on (E, £);

(b) for each B e £ the function O{w; B), as a function of ¢, is a variant of the
conditional probability P(X € B[ #)(w), i.e.

- Qlo; B) = P(X e B[¥)(w) (as)

Definition 8. Let £ be a random variabie. A function F = Flw; x), w L},
x & R, is a regular distribution function for & with respect to % if :

{a) F(w; x) is, for each w € £}, a distrbution function on R;
(b) F{eo; x) = P& = x|¥)(w) (as), for cach x e R.

Theorem 4. A regudar distribution function and a regular conditiongl distribu-
tion function ahways exist for the random variable & with respect to 4.
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ProOF. For each rational number re R, define F{w) =P < Fl‘?ﬁ_}(ﬂ’l
where P(¢ < r|9)(w) = E(I;.,,|%}w) is any variant of the conditional
probability, with respect to %, of the event {& < r}. Let {#;} be the set of
rational numbers in R. If r; < r;, Property B* implics that P(¢ < r;|%) <
P(¢ < r;|%) (as), and therefore if A; = {o: F, () < F, (o)}, 4 = J4ip
we have P(A4) = 0. In other words, the set of points w at which the distribu-
tion function £{), r € {r;}, fails to be monotonic has measure zero.
Now let

Bl’ = {(ﬂ': lim Fr1+l‘.lfﬂ](m) £ F”([!J)}, B = U Bi‘
7 m =1
It is clear that {: ., ¢ 1/on | fiz5rg. 1t = 0. Therefore, by (a) of Theorem 2,
F, Lm0 — F.(w)(a.s), and therefore the set B on which continuity on the
right fails (with respect to the rational numbers) aiso has measure zero,
P(B) = 0.
In addition, let

C= {m: lim F{w) # l}u {m: him F, () > U}.

B— oo L En el - ]

Then, since {£ <n}tQ n—co, and {E<n} | &, n— —co, we have

PC)y=10
Now put
i B
Fow: %) = {lrlf:: Fiw), wé¢AuwBUC,
G(x), weduwuBuC,

where G{x) is any distribution function on R: we show that F(w; x) satisfies
the conditions of Defimtion 8.

Let ew¢ A w B v C. Then it is clear that F(w; x) is a nondecreasing func-
tionof x. If x < x" < r, then F{w; xX) < F(w;, x) < F{w; ) = F{w) ]| Flo, x)
when r ] x. Consequently F(w; x) is continugus on the right. Similagly
m, ., Flw;x) =1, lim,.__ Fle;x) =0 Since Flw;, x) = G{x) when
weAvw B uC, it follows that Flw; x) 15 a distnbution function on R for
every w € £}, Le. condition (a) of Definition 8 is satisfied.

By construction, P(£ < r)|¥)w) = F(0) = F{w; ¥). If r | x, we have
F(w; v} | F{es; x) for all we ) by the continuity on the right that we just
established. But by conclusion (a) of Theorem 2, we have P(& =< r| %)) —
P(£ < x[¥)w) (as.). Therefore F(w;x) = P(¢ < x[G)(«w) (a.s), which
establishes condition (b) of Definition 8.

We now turn to the proof of the existence of 4 regujar conditional distri-
bution of £ with respect to 9.

Let F(o; x) be the function construcied above, Put

O(w; B) = LF(m; ),
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where the integral is a Lebesgue-Stieltjes integral. From the properties of
the integral (see §6, Subsection 7), it follows that O(w; B) is a measure on B
for each given w e €. To establish that (e ; B) is a variant of the conditional
probability P(¢ e B[%) (), we use the principle of appropriate sets.

Let € be the collection of sets B in #(R) for which O(w;B) =
P({ € B|¥)(w) (a.8.). Since F(w; x) = P(¢ < x[¥)(w) (a.s), the system &
contains the sets B of the form B = (—w, x], x€R. Therefore ¥ also
contains the intervals of the form (a, b], and the algebra of consisting of finite
sums of disjeint sets of the form (q, #]. Then it follows from the continuity
properties of O{co; B) (w fixed) and from conclusion (b) of Theorem 2 that €
15 a monotone class, and since of = ¥ = FH(R), we have, from Theorem 1

of §2,
B(R) = o(#) = (€)= F) = ¥ = FR),

whence ¥ = @(R).
This completes the proof of the theorem.

By using topological considerations we can extend the conclusion of
Theorem 4 on the existence of a regular conditionat distribution to random
elements with values in what are known as Borel spaces. We need the follow-
ing definition.

Definition 9. A measurable space (E, &) 1s a Borel space it 1s Borel equavatent
to a Borel subset of the real line, 1.e. there is a one-to-one mapping ¢ = p(e):
(E, &) — (R, B(R)) such that

(1) o(E) = {¢p(e): ec E} is a set in B(R);
(2) ¢ is &-measurable (¢ ~(A)e &, A € p{E) n B(R)),
(3) ¢! is B(R)/&-measurabie {p(B) e ¢{E) n B(R), Be &).

Theorem 5. Lat X = X(w) be a random element with valties in the Borel space
(E, &). Then there is a regular conditional distribution of X with respect to %.

Proor. Let ¢ = @(e) be the function in Definition . By (2), ¢(X(w)) is a
random variable. Hence, by Theorem 4, we can define the conditional
distribution Q{e; A) of o{X () with respect to %, A & o{E) N B(R).

We introduce the function ((w; B) = Q(w; @(B)), Be&. By (3) of
Definition 9, @(B)eo{E) n %(R) and consequently O{cw; B) is defined.
Evidently ((c»; B) is a measure on B e & for every w. Now fix Be &, By the
ong-to-one character of the mapping ¢ = @(e),

Q(w; B) = Hw; ¢(B)) = Plo(X)c (B)[¥} = P{X  B|9} (as).

Therefore O(w; B) is a regular conditional distribution of X with respect

to ¥,
This completes the proof of the theorem.
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Corollary. Let X' = X(w) be arandom element with values in a complete separa-
ble merric space (E, &€). Then there Is a regular conditional distribution of X
with respect to %. In particular, such a distribution exisis for the Spaces

(R", B(R")) and (R*, BR™)).

The proof follows from Theorem 5 and the well known topological resuit
that such spaces are Borel spaces.

8. The theory of conditional expectations developed above makes it possible
to give a generalization of Bayes’s theorem ; this has applications in statistics.

Recall that if &2 = {A,,..., A} i1s a partition of the space £ with
P(4;) > 0, Bayes's theorem (1.3.9) states that

P(4,)P(B]4,)
> P(APP(B| A,
for every B with P(B) > 0. Therefore if = ¥ .., a;1 4, is a discrete random
variable then, according to (1.8.10),

2i=1 gladP(AJP(B A) (26)
25=1 P(4)P(B|4) ~

P(4,(B) = (25)

E[(0)|B] =

Qar

_ [® 6ta)P(B|8 = a)Py(da)
"N = e P@I6 = P yae)

On the basis of the definition of E[g(6)| B] given at the beginning of this
section, 1t 1s easy to establish that (27) holds for all events B with P{B) > 0,
random variables § and functions g = g(a) with E[g(8)[ < 0.

We now consider an amalog of (27) for conditional expectations
E[{0)|%7 with respect to a s-algebra ¥, ¥ c &

Let

(27)

Q(B) = Ig(ﬂ)F'(dm}, Bed. (28)
B
Then by (4)
dQ

E[9(6)|¥] = 5 (@) @)
We also consider the g-algebra %,. Then, by (5),

P(B) = J- P(B|%.)dP (30)

0

or, by the formuia for change of variable in Lebesgue integrals,

P(B) = I_ P({B|8 = a)Py{da). (31)
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Since
Q(B) = E[9(6) 5] = E[4(6) - E(/5|%0)],
we have
Q(B) = f gla)P(B|0 = a)P4{da). (32)

Now suppose that the conditional probability P(B|# = q) is regular and
admits the representation

P(BI6 = a) = Lp(w; a)A(dos), (33)

'_..a.rpere ¢ = p(e; a) 18 nonnegative and measurable in the two variables
jomntly, and 1 is a o-finite measure on (£}, ¥).
Let E|{6)| < co. Let us show that (P-a.s.)

= ITD: gla)p(w; ﬂ)Pﬁ(dﬂ)
w1 = w Pl; a)Py(da) G4

{generalized Bayes theorem).
In proving (34) we shall need the following lemma.
Lemma, Let (£, %) be g measurable space.

(a) Let p and A be o-finite measures, and f = f{w) an F-measurable finction,
Then

[rau=[ s a (35)

(in the sense that if either integral exists, the other exists and they are egual).
(b) If v is a signed measure and p, A are a-finite measures v < p, p <€ A, then

dv  dv du

qAdp ai 42s) (36)
and

dv  dv {du

E.I: = / a1 (H-a.s.) (37

ProOOF. {(a) Since

wa = | (%)dﬂ, ded
A

(35) is evidently satisfied for simple functions f = ) f;1,,. The general case
follows from the representation f = f* — f~ and the monotone conver-
gence theorem.
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(b) From (a) with f = dv/du we obtain

dv dvy fdu
A=} (==Vdpu=| [==)-[Z£])-aa
o= [ (o)~ [ () (@)
Then v € A and thercfore
dv
wWA) = Aﬁfﬂq

whence (36) follows since A is arbitrary, by Property I {(§6).
Property (37) foillows from (36) and the remark that

dp J‘ du
w:— =03 = —di=10
'u{ d‘l } [ew: dpefd A = O d‘l

(on the set {ew: dufdAd = 0} the right-hand side of (37) can be defined arbi-
trarily, for example as zero). This completes the proof of the lemma.

To prove (34) we observe that by Fubini’s theorem and (33),

om) - | [ " gl a}Pg{da)]Mdm), (38)
P(B) — _L f _w Ao a)P,(da)]A{dm). (39)
Then by the lemma
Q _ dQdi
ﬁ — m (P-a-S‘)-

Taking account of (38), (39) and (29), we have (34).

Remark. Formuia (34) remains valid if we replace 0 by a random element
with values in some measurable space (E, &) (and replace integration over
R by integration over E).

Let us consider some special cases of (34).
Let the o-algebra ¢ be generated by the random variable £, ¥ = Zs.
Suppose that

PEeAB=a) = f gOc; )Hdx), A BR), (40)
A

where g = g(x; a) is a nonnegative function, measurable with respect to both
variables jointly, and A is a o-finite measure on (R, #H(R)). Then we obtain

» Ha)a(x; a)Pelda)
o 4% Pe(da) @)

EL(O)[E = x] = 1
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In particular, let {6, £) be a pair of discrete random variables, 8 = > ;1 ,,
§=2 x,Ip . Then, tuking A to be the counting measure ({{x})=1,i=1,2,...)
we find from (40) that

— — Zl' ga)P(£ = xj[ﬂ = a, )P(0 = a;)
E[g(@)[¢ = x;] = N PC—xi0 = sy (42)

(Compare (26).)

Now let {f, £) be a pair of absolutely continuous measures with density
Jo.dla, x). Then by (19) the representation {40) applies with g(x; q) =
fr16(x[a) and Lebesgue measure 2. Therefore

_ _ j T ﬂ(ﬂ)qu otx |a) fla) da
Flo@le =x) = 7 xlafuarda (43)

9. PROBLEMS

1. Let £ and # be independent identically distributed randotn variables with E€ defined,
Show that
+
ECIE+ m=En[E+ )= EE—” (a.s.).

2 Let &, &.-.. be independent identically distributed random variables with
E|¢;| = oo. Show that

S
E{ﬁ: [ Srrl Sn"l" 12 -~ -) = ;‘n (H..S.),

WhEI‘ESn= 51 +“‘+£ﬂ'

3. Suppose that the random elements (X, Y) are such that there is a regular distribution
P{B) = P(YeB|X = x). Show that if E|g(X, Y}| «< oo then

E[g(X, Y)[X = x] = jg{x. WP (Pras).

4. Let £ be a random variable with distribution function F{x). Show that

b x dF
EtEle < & < b) =%_—§%
(assuming that F {6} — Fa) > D).

5. Let g = g(x) be a convex Borel function with E|g{f)| < co. Show that Jensen's
inequality
gE(L[S) < EgilH9

holds for the conditional expectations.
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6. Show that a necessary and sufficient condition for the random varjable £ and the
a-algebra % to be independent (i.e., the random variables ¢ and [ {eo) are indepen-
dent for every B %) is that E(g(£)|%) = Eg(£) for every Borel function g(x) with
Elg(&)| < o

7. Let £ be a nonnegative random variable and % a g-algebra, % < &. Show that
E{(£|%) < oo (as.) if and only if the measure Q, defined on sets Ae% by {A) =
{4 € dP, is o-finite.

§8. Random Variables. II

1. In the first chapter we introduced characteristics of simple random
variables, such as the variance, covariance, and correlation coefficient. These
extend similazly to the general case. Let (€2, %, P) be a probability space and
¢ = &(w) a random variable for which E£ is defined.

The variance of & is

VE = E(¢ — EQ*.

The number o = 3., /VE is the standard deviation.
If £ is a random variable with a Gaussian (normal) density

1

2ito

g~ Ux=ml202 c>0, —0 <m=< o, (1)

Jex) =

the parameters m and ¢ in (1) are very simple:
m = EE, o = VL.

Hence the probability distribution of this random variable &, which we cali
Gaussian, or normally distributed, is compietely determined by its mean
value m and variance ¢2. (It is often convenient to write £ ~ A (m, ¢2).)

Now tet (£, ») be a pair of random variables. Their covariance is

cov(¢, ) = E(¢ —E&(n — En) (2)

{assuming that the expectations are defined).
Hcov(é, ) = 0 we say that £ and y are uncorrelated.
K VE > 0and Vy > 0, the number

cov(£, 1)
&) =—m——— 3
P& 1) Ve Vr (3)

is the correlation coefficient of £ and #.

The properties of variance, covariance, and correlation coellicient were
investigated in §4 of Chapter I for simpic mmdom variables. In the general
case these properties can be stated in a completely analogous way.
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Let £ =(¢&,,.... &) be a random vector whose components have finite
second moments. The covariance matrix of £ is the . x n matrix R = [|&;ll,
where R;; =cov(;, £). It is clear that R is symmetric. Moreover, it is non-
negative definite, i.e.

Z Rij'li-lj =0
i, =1
forall 4eR,i=1,...,n,since
n H 2
.Z.R‘jj"'lf = E[Z (& — Ef;ﬂ{l =0
EJ =1

The foliowing lemma shows that the converse is aiso true.

Lemma. A4 necessary and sufficient condition that an n x n matrix R is the
covarignee matrix of a vector € = (£, ..., £,) is that the matrix is symmetric
anid nonnegative definite, ov, equivalently, that there is an n X k matrix A
{1 <k < n)such that

R = AAT,
where T denotes the transpose.
ProOF. We showed above that every covariance matrix is symmetinc and
nonnegative definite,
Conversely, let B be a matrix with these properties. We know from matrix

theory that corresponding to every symmetric nonnegative definite matrix R
there is an arthogonal matrix & (i.e, ®OT = E, the unit matrix) such that

O'R& = D,
where
dy . 0
-G )
is a diagonal matrix with nonnegative elements d;, i = 1,...,n

It follows that
R = @p@T = (OB)(B¥(T),

where B i8 the diagonal matrix with elements b, = 4./d, i =1,..., 1.
Consequently if we put 4 = 78 we have the required representation
R=AA"for R

It is clear that every matrix AAT is symmetric and nonnegative definite.
Consequently we have only to show that R is the covariance matrix of some
random vector.

Let ¥,.%4....,7, be a sequence of independent normally distributed
random variables, 470, 1). (The existence of such a scquence follows, for
example, from Corollary 1 of Theorem 1, §9, and in principle could easily
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be derived from Theorem 2 of §3.) Then the random vector & = Ay (vectors
are thought of as column vectors) has the required properties. In fact,

EEET = E(AR(AR)T = A -Eyn™ - AT = AEAT = AA".

(L = |{,] is a matrix whose elements are random variables, E{ means the
matrix [[EE )
This completes the proof of the lemma.

We now turn cur attention to the two-dimensional Gaussian (hormal)
density

1
R S gy “"{‘ 21— o)
-2 (x — m)(y — ) + v — mz)z]},

0102 L

(4)

characterized by the five parameters m,, m,, ¢y, 63 and p (cf. (3.14)), wheie
[my | < co,|my| < 0,0y > 0,05 > 0, [p| < 1. An easy calculation identifics
these parameters:

m; = EE, ﬂ'% = V¢,
m, =En, a3 = Vg,
p = p(E.m).

In§4 of Chapter I we explained that if £ and 5 are uncorrelated (p{£, ny = 0),
it does not follow that they are independent. However, if the pair (£ 3) is
Gaussian, it does follow that if & and # are uncorrelated then they are
independent.

In fact, if p = 0 in (4), then

i

—{x—m 12207  —llr—mi¥3)f2cd
e F }
2o, 0

JelX, ¥) =

But by (6.55) and (4),

=]

fdx) = ) Jeofx. ¥)dy =

1 E—‘I[x—‘m. F].fz:rf,
nf 2Oy

-]

5A¥) = _ JeglX, ¥) dx =

1 g~ [~ ma)?y203
A AT

Consequently
Sedlx, ¥) = 14X} - £,

from which it follows that £ and #» are independent (se¢e the end of Subsection

S of §6).



£5. Randem Variables. [T 237

2. A striking example of the utility of the concept of conditional expectation
(introduced in §7) is its application to the solution of the following problem
which is conmected with estimation theery (cf. Subsection 8 of §4 of Chapter
I).

Lzt (£, #) be a pair of random variables such that £ is observable but # 1s
not. We ask how the unobservable component » can be “estimated” from
the knowledge of observations of &

To state the problem more precisely, we need to define the concept of an
estimator. Let ¢ = @(x) be a Borel function. We call the random variable
(&) an estimator of 7 in terms of £, and E[# — @{£)]* the (mean square) error
of this estimator. An estimator ¢*(£) is called optimal {in the mean-square
sense) if

A =E[y — o*E]* = inlEly — o(DT, )
where inf is taken over all Borel functions ¢ = ¢(x).

Theorem 1. Let Ey? < oo, Then there is an optimal estimator ¢* = @*(&)
and ©*(x) can be taken to be the function

¢*(x) = E(#[ £ = x). 6)

ProoF. Without loss of generality we may consider only estimators ¢(Z)
for which E@*(£) < co. Thenif gp(¢) is such an estimator, and ¢*(&) = E(y|£),
we have

El7 — o)) =E[ln — ¢*ED + (9*(&) — 9(EN]*
— E[ — ¢*(©)]2 + E[e*(&) — p(&)]?
+ 2E[(r — @*(EN0*(€) — #()] = E[n — ¢*(ET",

since E[p*(¢) — @(£)]* = 0 and, by the properties of conditional expecta-
tions,

E[(y — o*(OMe (8 — ()] = E{E[(n — *EN(e* () — oENIS]}
= E{{p*(&) — o(£E(n — (D[} = 0.

This completes the proof of the theorem.

Remark. It is clear from the proof that the conclusion of the theorem 1s still
valid when ¢ is not merely a random variable but any random element
with values in a measurable space (E, £). We would then assume that
p = @(x) is an &/#(R)-measurable function.

Let us consider the form of p*(x) on the hypothesis that {£, n)isa Gaussian
pair with density given by (4).
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From (1), (4) and (7.10) we find that the density f, (v |x)of the conditional
probability distribution is given by

I - F -_—t
I |x) = Aty =mixN2ed(t—p n {(7)
O = e,

where
mx) = my -+ 2 p- (x — my). ®
1

Then by the Corollary of Theorem 3, §7,

o

(¢ = x) = j W1y %) dy = mix) ©)

and

VrlE = ) = E[tr — EGrIE = 0)21¢ = ]
= " o —mrs 10

= a3(1 — p?). (10)

Notice that the conditional variance V(y|{ = x) is independent of x and
therefore

A =E[y— E@nl)]* = oi(l — g%} (11)

Formulas (%) and (I1) were obtained under the assumption that V& = 0
and Vy > 0. However, if VE > 0 and Vi = 0 they are still evidently valid.
Hence we have the following result (cf. (1.4.16) and {I.4.17)).

Theorem 2. Let (£, n) be a Gaussian vector with V¢ > 0. Then the optimal
estimator of 1 in terms of & is

E(r12) = Bn + 02 - E0) (12)

ond its error is

_ covi{(Z, n)'

A=E[y — E(|&] = vy Ve

(13)

Remark. The curve y(x) = E(|& = x) is the curve of regression of n on ¢
or of n with respect to £. In the Gaussian case E(5j|& = x) = a + bx and
consequently the regression of # and ¢ is linear. Henee it is npt surprising
that the right-hand sides of (12) and (13) agree with the corresponding parts
of {(1.4.6) and (I.4.17) for the optimal linear estimator and its error.
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Corollary. Let &, and &; be independent Gaussian random variables with mean
zere and unit variance, and

£ =ag; + azé,, 7 =08 + by,

ThenE —En = O,VE = & + al, Vg = b? + bl,cOME, ) = ayby + agbs,
and if @ + a3 > 0, then

a; b, + a;b; ¢

Bl = 2 (14)
. (@b — ﬂzba)l
A= p . (13)

3. Let us consider the problem of determining the distribution imctions of
random variables that are functions of other random variables.

Let £ be a random variable with distribution function F.(x) (and density
fe(x). i it exists), let ¢ = @(x) be a Borel fanction and y = (£). Letting
I, = {(—oo, ¥}, we obtain

Ffy) = Py < y) = Ple(D) e L,) = P(Ee o~ '(1,)) = j Fddn, (16)

o= )

which expresses the distribution function F {y) in terms of F{(x} and e.
For example, ify = 2 + b, a > 0, we have

F ) = P(a < %) - FE(}’ — ) (17)

If n = &2, it is evident that F,{y) = 0 for y < 0, white for y = 0

FN =P <) =P(—/y<¥i<./f))
= F/¥) — F{— /N + P& = —/1.  (18)

We now turn to the problem of determining f,{y)-

Let us suppose that the range of ¢ is a (finite or infinite) open interval
I = {(a, b),and that the function ¢ = @(x), with domain (g, b), is continuously
differentiable and either strictly increasing or strictly decreasing We also
suppose that ¢'{(x) # 0, x e I. Let us write Ay} = ¢~ (¥) and suppose for
defmiteness that ¢(x) is strictly increasing. Then when y € o(J),

FA9) =Pl <) =P) < y)=PE < 07%()

¥
=PE<HO) = | fldx (19
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By Problem 15 of §6,

J«ﬂf Ax) dx = r fe(h(2)H'(2) dz (20)
and therefore
£ = ThDH (). (21)
Similarty, if (x) is strictly decreasing,

500 = flh({(—H()).

Hence in either case
£ = fHyNIE(|. (22)
For example, if 7 = a + b, a # 0, we have

) ==L and f:..@n=|—i—|fa(” ;b)-

If & ~ 4 (m,c*)and y = &%, we find from (22) that

1 In{}'fﬁﬂz]
- 1 01

1.0) = A anoy “p[ 227 | V7 23)
0 y <0,

with M = ™.

A probability distribution with the density (23} is said to be lognormal
(ogarithmically normat).

If = @(x) is neither strictly increasing nor strictly decreasing, formula
(22) is inapplicable. However, the following generalization suffices for many
applications.

Let ¢ = {x) be defined on the set Z:ﬂ [ax. b;], contimiously dif-
ferentiable and either strictly increasing or strictly decreasing on each open
interval I, = (a,. b,), and with @'(x) # 0 for xeI,. Let b, = I{y) be the
inverse of p(x) for x € I, Then we have the following generalization of (22):

700 = kiﬁ(hk(y))lhi{y)l A, 24)

where Dy is the domain of k(y).
For example, if 7 = & we can take I, =(—0,0), I, =(0, w0), und
find that k,(y) = —/¥, h:(y) = /v, and therefore

1 ' .
— _— \ {)__‘
£0) = Zﬁmtﬁ)wt NE) R

: (25)
Q, y =<0
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Wecan observe that this result also follows from (18), since P{£ = —\/i} = (.
In particular, if & ~ .4 (0, 1,

-

L 01
fe) =1, f2:-':_1-'€ Y= (26)

0, y=0

A straightforward calculation shows that
_ N+ =), y>0
fia) = {0, e e
2 2 + —y? » U!

fraa®) = {r BT TR0 20 @8)

4. We now consider functions of several random variables.
If £ and # are random variables with joint distribution F,(x, y), and
@ = ¢(x, y) 1s a Borel function, then if we put { = @{&, #) we see at once that

F(z) = f dF o (%, ). (29)

{=, ysoix, yy 51}

For example, f ¢{x, ) = x + y, and £ and » are independent (and there-
fore F,(x, y}) = F{x)- F,(y)) then Fubini’s theorem shows that

F.(z) = dF(x) - dF {y)

Wi, prrtysn

= I[x'!*yﬁz]-(x: J-") an.{(x] dFﬂ{J”)
R2

oo

Ffz — x) dF gx)

=g

- ngix}{ [ Tasysatx) dﬁ,(y)} - |

(30)
and similarly
F.(z) = J- Fdz — ¥) dF,(y). (31)
If F and & are distribution functions, the function
H(z) = F(z — x) dG(x)
-]

is denoted by F * & and called the convolution of F and G.
Thus the distribution function F; of the sum of two independent random
variables & and 1 is the convolition of their distribution fumctions Fg ond F:

F,;' = FE* Fq..
It is clear that F.» F, = F, = F,.



242 [1. Mathemaljcal Foundations of Probability Theory

Now suppose that the independent random variables ¢ and # have
densities f;and f,. Then we find from (31), with aniother application of F ubinr's
theorern, that

re = j 2 du] 1) dy

- [ fw-» du: wa=| UZ fi — D) dy] s,

whence

50 = [tz = nrora, 62
and simitarly
=2 = fj}m Sz — x) fdx) dx. (33)
Let us see some examples of the use of these formuias.

Let &,,&,,..., &, be a sequence of independent identically distributed
random variables with the uniform density on [—1I, 1]:

1
_ )2 |JC[ = 11
o) = {0. x> 1.
Then by (32) we have
2 — |x|
» =
S+ a(x) = 4 Ixl < 2
|0 |x] > 2,
(a3 )
¢ I!ﬁxl) . 1= x| <3,
f E(JC) =473 _ x2
e Bx . 0<|x|=1
l.n"' |I| > 31
and by induction
1 [+ x)1 2] . _
formeg (=126 — 1)1 ,ED (—1FCHn + x — 20, |x| <n,
0. [x] > n.

Nowlet & ~ A (my, e and g ~ A (14, a3). If we write

e i

o) = ——
-
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then

1 — 1 X —
) =— w(x ml), fx) == qﬂ( z).
0oy ry 2] 2
and the formula

1 x — {m, + mi))
ferdo) = (
e \/::rf + o3 \/crl + o
follows easily from (32).

Therefore the sum of twe independent Gaussian random variables is again a
Gaussion random variable with mean m; + m, and varionce 0% + o2,

Let &,, ..., &, be independent random variabies each of which is normally
distributed with mean 0 and variance 1. Then it follows easily from (26) (by
induction) that

1
XD =ML g
Jes o+ 3() = | ZPTCa2) > (34)
0, x <0
The variable £ + --- + #2 is usually denoted by ¥Z, and its distribution
{with density (30)) is the y*-distribution (“chi-square distribution™) with n
deprees of freedom (cf. Table 2 in §3).

If we write y, = +./¥2, it follows from (28) and (34) that

2" 1g X2
AN AT r. e 7 = U:

fuly = 12Ty (35)
{J, x < 0.

The probahility distribution with this density is the y-distribution {chi-
distribution) with n degrees of freedom.

Apgain tet { and 5 be independent random variables with densities f; and
Sy Then

Fof2) = FOS ) dx dy,
= J-:xyﬂz]

Fo@= ([ £0050) dxap
Ix, ]-":x;}' =zx}

Hence we easily obtain

o= [ o= [ s e

and

fu® = [ St ay o
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Putting { = g and ¢ =\/(§f + --- + &3/n, in (37), where fmﬁle*'éﬁ
are independent Gaussian rapdom variables with mean 0 and wariance

g? = 0, and using (35), we find that
I_(n + 1)

FXCEIVER
F(E) (] ; )
2 n

The variable £/[./(1/n}(&3 + - - + ¢2)]is denoted by ¢, and its distribution
is the t-distribution, or Student’s distribution, with n degrees of freedom (cf.
Table 2 in §3). Observe that this distribution is independent of c.

. 1
_ﬁ:m,["r{] I L giul“X) - v/ﬂ__n

5. PROBLEMS
1. Verify formulas (9), (£0), (24), (27), (28), and (34)-(38).

2, Let&,,..., &, n = 2, be independent identically distributed random variables with
distribution function F(x) (and density f(x), if it exists), and let § = max(&y, ..., &)
g = min{'fh Pty érr}l P = E - g- Shﬂw thﬂt

_ RO — (FO) — FOOY, v > x,
Fed0n )= {{F{yn", y<x
n(n — DIFQY) — FOII" 200 vy > x,
f{.;f)’ %) = {ﬂ, ¥ < x,
n = [FO — Fir — )1 'f(dy. x=0,
Folx) = {ﬂ, x < 0,
_ fnn — D §2 L TFO) — Fy — 13y — /() dy, x>0,
a0y = {ﬂ. x <

3. Let £, and £, be independent Poisson random variables with respective parameters
1, and 1;. Show that £, + &, has a Poisson distribution with parameter 4, + A;.

4, Letm, = my = 0 in (4). Show that

a,0,./1 — p?

a3z — 2po107 + 0

ﬁ?.‘n{Z} =

5. The maximal correlation cogfficient of £ and g5 is p"(f, H) = sup,,, plu(g), o(EN,
where the supremum is taken over the Borel hinctions # = u(x) and v = w(x) for
which the correlation coefficient p{u(&), v{£)) is defined. Show that & and # are inde-
pendent if and only if p*(&, ) = 0.

6. Let 7, T3..... 17, be independent nonnegative identically distributed random wvari-
ables with the exponential density

S = de™ %, r=0
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Show that the distribution of 7, + --- + 1, has the density
:tki'.k- 1E—J.r
_ t=0, I <k<n,
G — D! = ZEHER
and that
k-1 AF 1]
Plr, +--+0>0=3 E_M{i_r)‘
i=0 !

7. Let & ~ 40, ¢*). Show that, for every p = I,
E|Z]F = Cpo?,

272 fpl
and I'(s} = [ e~*x*~" dx is the gamma lomction. In particular, for each integern = 1,
E&™ = (2n — 1)1 o™,

where

§9. Construction of a Process with Given
Finite-Dimensional Distribution

1. Let £ = £(es) be a random variable defined on the probability space
(Q, # P), and let

Fux) = P{w: &w) < x}

be its distribution function. It is clear that F,(x) is a distribution function
on the real line in the sense of Definition I of §3.

We now ask the following question. Let F = F(x) be a distribution func-
tion on R. Does there exist a random variable whose distribution function is
F(x)?

One reason for asking this question is as follows. Many statements in
probahility theory begin, “Let £ be a random variable with the distribution
function F(x); then ...”. Consequently if a statement of this kind is to be
meaningful we need to be certain that the object under consideration actually
exists. Since to know a random variable we first have to know its domain
(€2, &), and in order to speak of its distribution we need to have a prebability
measure P on (£}, %), a correct way of phrasing the question of the existence
of a random variable with a given distribution function F(x) is this:

Do there exist a probability space {Q, F, P) and o random variable £ = E(w)
on it, such that

P{w: {(w) < x} = F(x)?
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Let us show that the answer is positive, and essentially contained in
Theorem 1 of §1.
In fact, let us put

Q=R, & =%R)

It follows from Theorem 1 of §1 that there is a probability measure P (and
only one} on (R, #(R)) for which P(a, 5}] = F(b} — F(a).a < b.
Put &(ew) = e Then

P{o: ) < x} = P{w: o < x} = P(— o0, x] = F{x).

Consequently we have constructed the required probability space and the
random variable on it

2. Let us now ask a similar question for random processes.

Let X = (£,),r be a random process (in the sense of Definition 3, §5)
defined on the probability space (€, &, P), withte T € R.

From a physical point of view, the most fundamental characteristic of a
random process is the set {F, ., {(xi.....x)} of its finite-dimensional
distribution functions

Ffl.-..,ln{xl'l | 'xn) = P{(ﬂ: €I‘1 = xll BRI | ﬁln = xﬂ}! (l}

defined for all sets ¢,, ..., ¢, witht, <, <--- < t,.

We see from (1) that, for cach set ¢, ..., t, with t;, <t < --- < t, the
functions F,, (X, ..., %) are n-dimensional distribution functions (in
the sense of Definition 2, §3) and that the collection {F,, _ , {x).--.. X}
has the following censistency property:

Hm Flh...,!..(xlv L | xn} = F!],....Tk,...,!"{xlu LU ) ﬁk! ==y xn.} {2)

Xt o

where ~ indicates an omitted coordinate.

Now it is natural to ask the following question: under what conditions
can a given family {F,, . .(%X:#.... x,)} of distribution functions
Fo oy, ..., x,) {in the sense of Definition 2, §3) be the family of finite-
dimensional distribution functions of a random process? It is quite remark-
able that all such conditions are covered by the consistency condition (2).

Theorem 1 (Kolmogorov's Theorem on the Existence of a Process). Ler
{Fiy t(x1s e o x)h witht,e TS Rty <ty <+« < t,, n = 1, be a given
Samily of finite-dimensional distribution functions, satisfying the consistency
condition (2). Then there are a probability space (Q, Z, P) and o random
process X = (& -+ such that

P{l’:ﬂ: CI‘L £ xlu == élu E xn} = Fh'"tn(xl o xﬂ)' (3)
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Proor, Put
£ = RT, F = BRD,

i.c. take & to be the space of real functions e = (¢3),.r with the o-algebra
generated by the cylindrical sets.

Lett=[t,.... 0]t <ty <--+ < t,. Then by Theorem 2 of §3 we can
construct on the space (R®, 2(R™) a unique prebability measure P, such that

Pllon, . o) o, <Xy 0, Kx) =Fy o 00,....%). (@)

k follows from the consistency condition (2) that the family {P} is also
consistent {see (3.20)). According to Theorem 4 of §3 there is a probability
measure P on (RT, #(RT)) such that

P{w: (&, ..., w )eB} = PAB)

foreverysett=[t;,.. ,t, ). t; <+ < 1,.
From this, it also follows that (4) is satisfied. Therefore the required
random process X = (£,(¢v)),.7 can be taken to be the process defined by

Clw) =, teT. (3)
This completes the proof of the theorem.
Remark 1. The probability space (R, #(RT), P} that we have constructed

1s called canonical, and the construction given by (5) is called the coordinate
method of constructing the process.

Remark 2. 1 et (E_, £,) be complete separable metric spaces, where « belongs
to some set U of indices. Let {P.} be a set of consistent finite-dimensional
distribution functions P,, t = [e;, ..., &,] on

(‘En’: X X Eunngul ®.”®£¢n)-

Then there are a probability space (€, %, P} and a family of % /& ,-measurable
functions (X (w)), .y sSuch that

P{Xe .-, X )E B} = P(B)
forallt =[e,...,x ] and Bed, @---@ &, .

This result, which generalizes Theorem 1, follows from Theorem 4 of §3
ifweput Q@ = [ [, E,, & = Fl, £.and X () = m, foreach w = wlew,), e e

Corollary 1. Let F (x), F3{(x), ... be a sequence of one-dimensional distribution
Junctions. Then there exist a probability space (0, %, P) and a sequence of
independent random varigbles £, &5, ... such that

Plow: {den) < x} = Fi(x). (6)
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In particular, there is a probability space (€2, & P) on which an linﬁnite
sequence of Bernoulli randem variables is defined (in this conmection see
Subsection 2 of §5 of Chapter I). Netice that £ can be taken fo be the space

Q= {w:w="~_(a,as,...),a5=0,1}

{cf. also Theorem 2).
To establish the corollary it is enough to put Fy, _ J(X1::-+5%0) =
Fi(xy)--- F (x,) and apply Theorem 1.

Corollary 2. Ler T = [0, o) and let {p{s, x; t, B} be a family of nonnegative
functions defined for s, t e T,t > 5,x € R, B e &(R), and satisfying the following
conditions:

{a)} s, x:t, B) is o probability measure on B for given 5, x and t;

(b} for given s, t and B, the finction p(s, x; t, B) is a Borel function of x;

(c) for0 < s <t < t and B %B(R), the Kolmogorov—Chapman equation

ps, x; 1, B) = J.p(s. x; t, dy)plt, y; T, B) (7
14
is satisfied.

Also let © = n{B) be a probability measure on (R, #(R)). Then there are
a probability space (Q, &, P) and a random process X = (&), defined on
it, such that

P{ém = Xg» 5:. = Xi, oo ﬁ[n = xr:} = F E(d}'ﬂ} J. l p{n! Yo: t1s d.}'rlj

xp

p(rn— 1> Yn—1 N tm dJ"'n) (8)

—@
forO=1tp <t; < <t
The process X so constructed is a Markov process with initial distribution
x and transition probabilities {p(s, x: ¢, B}.

Corollary 3. Let T=1{0,1,2,...} and let {Px; B)} be a family of non-
negative functions defined for k = 1, xe R, Be #{(R), and such that p(x; B}
is a probability measure on B { for given k and x) and measurable in x (for
given k and B). In addition, let 1 = r(B) be a probabkility measure on (R, B(R)).

Then there is a probability space (€, &, P) with a family of random vari-
ables X' = {£,., £,, ...} defined on it, such that

P, < Xp, & =200, 6 < x,} = r 7(d yo) f_l 20, yo; £y, dyy)

= m

J- p{tﬂ—ly J-'rn—!;'tﬂ'l d.]"n}



§9. Construction of & Process with Given Finite-Dimensional Distribution 249

3. In the situation of Corollary 1, there is a sequence of independent random
variables &,, £,,... whose one<limensional distribution functions are
Fl! F_z - rBSpf:l::ti".'El}'.

MNow let (E,, &;), (E,, &,), ... be complete separable metric spaces and
let Py, P;, ... be probability measures on them. Then it follows from Remark
2 that there are a probability space (L2, 5%, P) and a sequence of independent
glements X, X,,... such that X, is & /&€ ,-measurable and P(X,e B) =
P(B),Be &,

It turns out that this resutt remains vahd when the spaces (E,, &,) arc
arbitrary measurable spaces.

Theorem 2 (Tonescu Tulceas Theorem on Extending a Measure and the
Existence of a Random Sequence). Let (Q,, F L =L, 2, ..., be arbitrary
measurable spaces and Q =[] Q,, & = [ #,. Suppose that a probability
measiire Py is given on {(£),, %) and that, for every set (w,, ..., well x

- % L. n > 1, probobility measures P(w,, . ... w,; )aregivenon (L, 1, %, 1)
Suppose that for every Be F, ., the functions P{w,, --., w,; B) are Borel
Junctions on {w,, ..., ) and let

PlA; x---x A)=| Pldw,) | Plw,;dew,;)

Ay Az
f Pon .. onrida))  AeF, nxl (9)
A,

Then there is a unigue probability measure P on (Q, %) such that
Plas:w, €Ay, ..., med} =PfA; x -+ x 4,) (10)

Jor every n > 1, and there is a random sequence X = (X (w), X, (w),...)
such that

P{e: Xl(m)EAl; s X wye A} = Pld, x -0 x A4,), {11)

WI‘IEPE AI 15 l‘g‘.

ProoF. The first step 18 fo establish that for each n > I the set function P,
defined by (9) on the rectangle A, x --+ x A, can be extended to the
g-algebra 7, ® --- ® &F,..

Foreachn > 2and Be F @ - -- & %, we put

P{B) = A Py(dewy) P('ml deoy) o Plewy, ..., 0y 25 dw, 1)

x f I(y, - . . 0)P(0s, - @y de3) (12)
1,

It is easily seen that when B = A, x --- x A, the right-hand side of (12)
is the same as the right-hand side of (9). Moreover, when n = 2 it can be
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shown, just as in Theorem 8 of §6, that P, is a measure. Consequently it is
easily established by induction that P, is a measure for all v = 2.

The next step is the same as in Kolmogorov’s theorem on the extension of
a measure in (R%, B(R™=)) (Theorem 3, §3). Thus for every cylindrical set
JiB) = {welt:(my,...,0)EB}, BeF, ® - - @ F,, we define the set
function P by

P(J(B)) = P,(B). (13)

If we use (12) and the fact that P(ew,, .. ., w,; -) are measures, it 15 easy to
establish that the definition (13) is consistent, in the scnse that the value of
P(J,.(B)} is independent of the representation of the cylindrical set.

It follows that the set function P defined in (13) for cylindrical sets, and in
an obvious way on the algebra that contains all the cylindrical sets, is a
finitely additive measure on this algebra. It remains to verify its countabie
additivity and apply Carathéodory’s theorem.

In Theorem 3 of §3 the corresponding verification was based on the
property of (R", 2(R")) that for every Borel set B there is a compact set
A = B whose probability measure is arbitrarily close to the measure of B.
In the present case this part of the proof needs to be modified in the following
way,

As in Theorem 3 of §3, let {B,},..; be a sequence of cylindrical sets

B, ={w(w,...,0)eB),
that decrease to the empty set &, but have
lim P(B,) > 0. (14)

=t

Forn > 1, we have from (12)

PB.) = L 1O )P(deoy),

where

f:wll':mﬂ = P(ew, ; dew;) - - J‘mfn,,(mn oy W)P(E0,, .., @y dy).

il

Since B,,, = B,,wehave B, , € B, x 2_., and therefore

IB" * 1(m11 URIER | ﬂ}"+1] = Inn(m], ===a mﬂ)fﬂn+|(ﬂ}ﬂ+1)‘

Hence the sequence {f{'w,)},», decreases. Let £ w,) = lim, M o,).
By the dominated convergence theorem

lim PB,) = tim [ fWwy)Py(der,) = j £ )P, (dewy).
H n 0, £y

By hypothesis, lim, P(B,) > 0. It follows that there is an % e B such that
Sy > 0, since if e, ¢ B, then f*w,) =0forn > L.
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Moreover, for n > 2,

i) = f FO@)P@: doa), (15)
1]

where

Fey) = L P(es?, o33 doas)

T J. Ip (%, 0y, ..., 0 )P0}, 0,, .. ., 3,—y, des,).
0.

We can establish, as for {f(Yw,)}, that {f(w,)} is decreasing. Let
F*w,) = lim, . o, [ e,). Then it follows from (15) that

0 < f1e0) = j F2w,)P(d; deo),
.2

and there is a point @S &€, such that f®%w%) = 0. Then (0¥, wd) & B,.
Continuing this process, we find a point (0%, ..., N e B, for each »n.
Consequently («ff, .. .., ...) e[} B,, but by hypothesis we have ("} B, = (.
This contradiction shows that lim, P(8,) = 0.

Thus we have proved the part of the theorem about the existence of the
probability measure P, The other part fellows from this by putting X ()
=, =L

Corollary 1. Ler (E,, &,)..  be any measurable spaces and (P ), ;. measures
on them. Then there are a probability space ((), %, P) and a family of indepen-
dent vandom elements X, X,,... with values in (E,. &,), (E;,&,). ...,
respectively, such that

P{w: X (e)e B} = P{B), Bed&, n=1

Corollary 2. Let E = {1, 2,...}, and let {p(x, y)} be a family of nonnegative
functions, k = 1, x,ye E, such that ¥, g p{x; ¥ =1, x€E, k= 1. Also
let m = n(x) be a probability distribution on E (that is, x(x) = 0, Z, e E(x)=1).

Then there are a probability space (2, #, Pyand a family X = {&g, £,,...}
of random variabies on it, such that

P{fo = xo, &1 = Xy - -y £y = Xp} = mlip)pr(xa, x1) - -+ PXn-1. X} (16)
{cf. (L1Z4) for all x; e E and n = 1. We may take L2 {o be the space
Q — {: @ = (Xg, X1, -- ) € E}.

A sequence X = {&,, &,,...} of random variables satisfying (16) is a
Markov chain with a countable set E of states, transition matrix {p,(x, V)}
and initial probability distribution n. {Cf. the definition in §12 of Chapter 1.}
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4, PROBLEMS

1. Let © = [0, 1], let & be the class of Borel subsets of [0, 1], and let P be Lebesgue
measure on [§, 1]. Show that the space (£, &, P) is universal in the following sense.
For every distribution function F(x) on (), %, P) there is a random variable £ = &(2)
such that its distribution function F{x) = P{¢ < x) coincides with F(x). (Hin{.
&) = F ¥ (@), 0 < © < 1, where F~*{ew) = supfx: F(x) < @}, when 0 < m < 1,
and £(0), £(1) can be chosen arbitrarily.)

2. Verily the consistency of the families of distributions in the corollaries to Theorems
1and 2.

3. Deduce Corollary 2, Theorem 2, from Theorem 1.

§10. Various Kinds of Convergence of Sequences
of Random Variables

1. Just as m analysis, in probability theory we need to use various kinds of
convergence of random variables. Four of these are particularly important:
in probability, with probability one, in meon of order p, in distribution.

First some definitions. Let &, £,, £,,... be random variables defined on a
probability space (03, #, P).

Definition 1. The sequence &, &,.... of random variables converges in
probability to the random variable & (notation: &, B &) if for every & > 0

Pl —El>e} >0, n-co. (1)

We have already encountered this convergence in connection with the
law of large numbers for a Bernoufli scheme, which stated that

{

(see §5 of Chapter I}). In analysis this is known as convergence in measure.

S
i—p‘}ﬂ)—i[}, n— o0

Definition 2. The sequence £, &,, ... of random variables converges with
probability one (almost surely, almost everywhere) to the random variable

&if

1.e. if the set of sample points w for which £,(ew) does not converge to £ has
prohability zero.

This convergence is denoted by £, — £ (P-as), o1 &, F £ or £, 25 &
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Definition 3. The sequence &,, &,, ... of random variables converges in
mean of order p,0 < p < oo, to the random variabie £ if

Eltfu—ﬁlp—PO, f— CQ. {3]
In analysis this is known as convergence in IP, and denoted by £, LA &

In the special case p = 2 it is called mean square convergence and denoted by
£ = lim. £, (for “limit in the mean™).

Definition 4. The sequence &,,£,,... of random vanables converges in
distribution to the random variable & (notation: &, & £) if
Ef(€) —~Ef(5), n— oo, 4)

for every bounded continuous function f = f(x). The reason for the
terminology is that, according to what will be proved in Chapter III, §1,
condition (4} is equivalent to the convergence of the distribution F, (x) to
F(x) at each point x of continuity of F{x). This convergence is denoted by
Fy,=Fy.

We emphasize that the convergence of random variables in distribution
15 defined only in terms of the convergence of their distribution functions.
Therefore it makes sense to discuss this mode of convergence even when the
random variables are defined on different probability spaces. This con-
vergence will be studied in detail in Chapter III, where, in particular, we
shall explain why in the definition of F, == F, we require only convergence
at points of continuity of F.(x) and not at all x.

2. In solving problems of analysis on the convergence {in one sense¢ or
another) of a given sequence of functions, it is useful to have the concept of a
fondamental sequence (or Cauchy sequence). We can introduce a similar
concept for gach of the first three kinds of convergence of a sequence of
random variables,

Let us say that a sequence {&,},.» ; of rindom variables is fimdamental in
probability, or with probability 1, or in mean of order, p, 0 < p < o0, if the
corresponding one of the following properties is satisfied: P{|&, — & | > &}
— 0, as m, n — o for every ¢ > 0; the scquence {{{w)},., 15 lundamental
for almost all we(2; the sequence {£,(®)},,, is fundamenta) in LF, ie
E|&, — £.|F = Oasn, m— 0,

3. Theorem 1.
(1) A necessary and sufficient cordition that £, — & (P-a.s.) is that
P{suplif,‘ — £ = E}—iﬂ, n — 0. (5)
R=n

for every g > 0.
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(&) The sequence {£,},, , is fundamental with probability 1 if and only if

F{i:lj'én_éﬂzﬁ}_,g, "= o0, (6)

fz=n

Sor every & > 0; or equivalently

P{suplgnﬂk - énl P E} - D& n— 00, (7)

ke O

Proor. (a) Let A% = {w:|&, — &| = &}, 4° =TmA; = (12; Ui 4% Then
o, 48 = A= L;JIA”'“.

20

But

P(4%) = lim P( ¥, Ag),
" kan
Hence (a) follows from the fellowing chain of imphcations:

0=Plw:¢,p &= F'(U AE)#-P(,“T A”’“) =0

&>0

«PAY) =0, m=21=PA)=0, >0,

#P(U Aﬁ)—iﬂ, n—rmwF(SHPI-fk—ﬂfIEE)—*U.

K2 n ke H
n— .
(b) Let
w
B, ={w|&—&lzeh, B=1{) |) B,
n=1 kxn
izn

Then {o: {£(©0)},s1 Is not fundomental}l = | ), BY, and it can be shown
as in (a) that P{w: {£{w)},. 15 not fundamental} = 0 <= (6). The equiva-
lence of {6) and (7} follows frorm the obvious inequalities

Sup|§n+k, - gnl = Supl{:n+ﬁ - ':n-l-ll = zs‘up|6ﬂ+lt - gnl'

kx>0 k=D k=0
120

This completes the proof of the theorem.

Corollary. Since

P{suplﬁk - > z} = F’{U (& — ¢l = E}} < Y P{& —¢él=¢),

kznu ked k=n
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a sufficient condition for £, £ is that
Y P& —¢lze <0 (8}
k=1

is sarisfied for every & > ().

It is appropriate to observe at this point that the reasoning used in
obtaining (8) lets us establish the following simple but important result which
15 essential in studying properties that are satisfied with probability 1.

Let A,, A,,... be a sequence of events in F. Let (see the table in §1)
{4, 10} denote the event imA,, that consists in the realization of infinitely
manyof A,, 4,,....

Borel Cantelli Leinma.

@) If S P(A,) < o0 then P{A, (0} = 0.
(b) If Y P(A,}) = o and Ay, A,, ... are independent, then P{A4, i0.} = 1.

Proor. (a) By definition

{4,i0} =lm 4, = ﬁ | A

g=1 kz=n
Consequently
P{d,i0.} = P{ N U Ak} = lim F'( ) Ak) < lim ) P(A),
=4 k=n k= n kz=n

and (a) follows. L
(b) If 4,, A, ... are independent, so are A,, Az,.... Hence for N = n
we have

N I _
P( q m) = T1 P4,
k=n =th
and it is then easy to deduce that
P( ﬂ ;lk) = H F'(jk)- (%)
k=r k=n

since log(l — x) < —x, 0 =< x < 1,

log [T [1 — P(40] = 3 logll — P < — 3 P(A) = —co.
k=wn kE=pr k=1
Consequently
F(fﬁ ;h) =0
k=

for all n, and therefore P{A4_ 10.) = 1.
This completes the proof of the temma.



256 IL. Mathematical Foundations of Probability Theery

Corollary 1. If 4% = {w: [{, — &| = &} then (B) shows that Y 12, P(A) < -
& > 0, and then by the Borel-Cantelli lemma we have P(A%) = 0, > 0 where
Af = lim A%, Therefore

YP& -zl <0,e>0=PA) =0,6>0
=1 F’{m: ﬁn_f{"ﬁ}} = U,

as we already observed above.

Corollary 2. Let {g,),.,; be a sequence of positive mumbers such that &, 0,
H— co df

ip{l'f., — & = g,} < <o, (10)

then £ =5 £,

In fact, et A, = {|&, — €| = ¢&,}. Then P(A4,i0)=0 by the Borel-
Cantelli lemma. This means that, for almost every w e£}, there is an N =
N{ew) such that [£ () — &w)| < &, for n = N(w). But g, ] 0, and therefore
£ (ea) — &(w) for almost every we ()

4. Theorem 2. We have the following implications:

L3 E=E B¢ (i1)
B e, 58 p>0, (12
LB E=E,5L (13)

Proor. Statement (11) follows from comparing the definition of convergence
in probability with {5), and (12) follows from Chebyshev’s inequality.

To prove (13), let f(x) be a continuous function, let | f (x)| < ¢, let £ = 0,
and let N be such that P(|£| > N) < gfdc. Take & so that | f(x) — f(¥}| <
gf2c for [x| < N and [x — y| < &. Then (cf the proof of Weierstrass's
theorem in Subsection 5, §5, Chapter I)

E[F(Co) = S =E(|f(£) — (D5 1&n — £l < 5, (] < N)
+E(f ) — SO 1L — 1 < 5,14] > N)
+ E(11(&) — £D)1; 1€, — £l > 0)
< 82 + &2 + 2cP{|¢, — £| > 6}
= ¢+ 2cP{|{, — &[] > &}
But P{|{, — ] > &} —» 0, and hence E| f(&,) — f{&)| < Ze for sufficiently

large n; since & > 0 is arbitrary, this establishes (13).
This completes the proof of the theorem.

We now present a number of examples which show, in particular, that the
converses of (11) and {12) are false in general.
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Exampiel (6, B 26,58 £,5 845,58 Let Q=[0,1], # =
%([0, 1]), P = Lebesgue measure. Put

i1 i
AL:[!H !i’]r é:w:IAL(m): I-II,Z,...,H;HEI.

Then the sequence

of random variables .converges both in probability and in mean of order
p > 0, but does not converge at any point e &[0, 1]
Exampre2 (&,%5 =&, B ¢ W E p>0). Again let Q@ =[0,1], & =
210, 1], P = Lebesgue measure, and let

¢, 0<w=l/n,

&) = {D, w > 1/n.

Then {&,} converges with probability 1 {and therefore in probability) to

zero, but
1
E|fn|p=T-+fﬂ, n— oo,

for every p > .

EXAMPLE 3{¢, = & <5 £, 23 &). Let {£,} be a sequence of independent random
variables with

F{i§"= I)=Pﬂ! P(Cu=0)= 1 = Pu-

Then 1t is easy to show that

£, 5 0ep, =0, n—o o (14)

énﬂﬂapn—rﬁ, n— o, (]5)

£50= Y p, < . {16)
n=1

In particular, if p, = 1/n then &, L 0for everty p > 0, but &, ;3' 0.

The following theorem singles out an interesting case when almost sure
convergence implies convergence in L.

Theorem 3. Let (&) be a sequence of nonnegative random variables such that
&S Eand EE, — EE < oo. Then

Ela—~€l—0, n—eo (17)
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ProoF. We have E&, < oo for sufficiently large n, and therefore for such n
we have

E[8— &l =E(L — LMoz H B, — Eizan
= 2E({ — E Mg + E(E — &)

But 0 < (€ — {Mznp) = £ Therefore, by the dominated convergence
theorem, lim, E(¢ — &) ;. = 0, which together with EZ, — EC proves
(17).

Remark. The dominated convergence theorem also hoids when almost sure
convergence is replaced by convergence in probability {see Problem 1).
Hence in Theorem 3 we may replace “Z,*3 £” by “&, 5 £.7

5. Tt is shown in analysis that every fundamental sequence (x,), x, € R, is
convergent {Cauchy criterion). Let us give a4 similar result for the convergence

of a sequence of random variables.

Theorem 4 (Cauchy Criterion for Almost Sure Convergence). A necessary and
sufficient condition for the sequence (£,),. 1 of random variables to converge
with probability 1 (to a random variable §) is that it is fundamental with proba-
bility 1.

PRrOOF. If £, = £ then

sup|&, — & < sup|& — &| + sup|E, — £,

L -1 kz=n i=n
lan

whence the necessity follows.

Now let (£,),», be fundamental with probability 1. Let A" = {w: (£, (o))
is not fundamental}. Then whenever w e Q\. A" the sequence of numbers
(£ ()1 is fundumental and, by Cauchy’s criterion for sequences of
numbers, lim & () exists. Let

_ Jlim & fe), weQ\.A;
Hw) = {0’ we A (18)

The function so defined is a random variable, and evidently £, 25 £.
This completes the proof.

Before considering the case of convergence in probability, let us establish
the following useful resuit.

Theorem 5. If the sequence (£,) is fundamental (or convergent) in probability,
it contains a subsequence (£, ) that is fundamental (or convergent) with proba-
bility L.
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ProoF. Let (£,) be fundamental in probability. By Theorem 4, it is enough
to show that it contains a subsequence that converges almost surely-
Take n, = 1 and define n, inductively as the smailest n >> n,_, for which

P{[& — &l =27 <275
foratlts > n,t > n. Then

;P{lfnm, — el >27F <« Y 27w

and by the Borel-Cantelli lemma
P{l¢n .. — €nl > 27" io} = 0.

Hence

o
Z Ilsﬂk+l. - éﬂkl = o
k=1

with probability 1.
Let A" = {e:} [£,,,, — &, | = oo} Then if we put

oy |5 ki ED (@), wedA,

0, we N,
we obtain £, =3 £
If the original sequence converges in probability, then it is fundamental in
probability (see also (19)), and consequently this case reduces to the one

already considered.
This completes the proof of the theorem.

Theorem 6 (Cauchy Criterion for Convergence in Probability). A necessary
and sufficient condition [or a sequence {£), . , of random variables to converge in
probability is that it is fundamental in probabiiity,

Proor. If &, 5 £ then

P{E — Sul = €} < P{[{, — &l 2 &2} + P{|¢ — ¢l 2 52 (I9)

and consequently (£,) is fundamental in probability.
Conversely, if (£,) is fundamental in probability, by Theorem 5 there are
a subsequence (£, ) and a random variable ¢ such that £_ *3 £ But then

P{I, — &l = e} < P{(&, — L] = &2} + P{|&,, — ¢l = ¢/2);

from which it is clear that &, & £. This completes the proof.

Before discussing convergence in mean of order p, we make some observa-
tions about LF spaces.



260 1. Mathematical Foundations of Probability TheoTy

We denote by LF = LF(Q, 4 P) the space of random variables ¥ = {w)
with E|£]P = Ja |£]F dP < co. Suppose that p = 1 and put

121, = EE|HHe
It is clear that
1€l = 0, (20)
Ic€l, = lelliéll,, ¢ constant, (21)
and by Minkowski’s inequality (6.31)
1€+ #ll, < M€, + (Inll»- (22)

Hence, in accordance with the usual terminology of functional analysis, the
function ||| . defined on L® and satisfying (20}-(22), is (for p = 1} 2 semi-
ROY#,

For it to be a norm, it must also satisfy

IEl, =0=&=0. (23)

This property is, of course, not satisfied, since according to Property H
(§6) we can only say that £ = 0 almost surely.

This fact leads to a somewhat different view of the space L¥. That is, we
connect with every random varjable £ e L” the class [{] of random variables
in £ that are equivalent to it (¢ and & are equivalent if ¢ = 5 almost surely).
It is easily verified that the property of equivalence is reflexive, symmetric,
and transitive, and congequently the linear space LP can be divided into
disjoint equivalence dasses of random variables. If we now think of [L#] as
the collection of the classes [£] of equivalent random variables £ € L7, and
define

[£1+ [1n] =€ + 41
al¢] = [a&), where @ is a constant,

ILEQN, = 1€l

then [ LF] becomes a normed linear space.

In functional analysis, we ordinarily describe elements of a space [L¥], not
as eguivalence classes of functions, but simply as functions. In the same way
we do not actually use the notation [LP]. From now on, we no longer think
about sets of equivalence classes of functions, but simply about elements,
functions, random variables, and so on.

It is a basic result of functional analysis that the spaces L?, p = I, are
complete, 1.e. that every fundamental sequence has a limit. Let us state and
prove this in probabilistic tanguage.

Theorem 7 {Cauchy Test for Convergence in Mean pth Power). A necessary
and sufficient condition that o sequence (£.)..; of random variables in 1.°
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convergences in mean of order p to a random variable in L is that the sequence
is fundamental in mean of order p.

Proor. The necessity follows from Minkowski’s imequality. Let {£,) be
fundamental (| £, — £,.ll, = 0, #, m — o). As in the proof of Theorem 5, we
select a subsequence (&, ) such that &, =5 & where £ is a random variable with

1€, < .
Let ny = 1 and define », inductively as the smallest # > n,_, for which

”ér — gs"p < 2_.:“[
foralls > nt > n Let

A= {w:|&,,, ~ &l = 275
Then by Chebyshev’s inequality

Eld,,, = &nl" 277"
kz-kr = = 2—I|:r

As in Theorem 5, we deduce that there is a random variable & such that
LS E

We now deduce that ||, — ] ,— 0 as n —» co. To do this, we fix g > 0
and choose N = N(g)so that |£, — £,If < cforalln = N, m = N.Then for
any fixed # = N, by Fatou’s lemma,

P(4,) < =2% <2k

Elé, — CFP = E{ lim |, — fﬁml“"} = E{li_m [€n — E,ml"}

= oo Hip 0

< lim E|{, — &, " = lim [, — £, ]I =&

[ Pl s e — 0
Consequently E|&, — £ = 0, n — 0. It is also clear that since £ = ( — €,)

+ &, we have E| €] < <« by Minkowski’s inequality.
This completes the proof of the theorem.

Remark 1. In the terminotogy of functiona analysis a compiete normed
linear space is called a Banach space. Thus L?, p = 1, is a Banach space.

Remark 2. If 0 < p < 1, the function ||¢]|, = (E|Z[7)/* does not satisfy the
triangle inequality (22) and consequently is not a norm. Nevertheless the
space {of equivalence classes) L7, 0 < p < 1, is compiete in the metric
dil, ) =E[L —y~

Remark 3. Let L™ = L*(0, # P) be the space (of equivalence classes of)
random variables { = &w) for which [|£| ., < oo, where [ £],, the essential
supremum of £, 1s defined by

I€]l.. = ess sup|¢| = inf{d < ¢ < co: P{|{] > ¢) = 0}.

The function ||-[[, is & corm, ard L™ is complete in this norm.
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10.

11

12

PROBLEMS

. Use Theorem 5 to show that almost sure convergence can be replaced by conver-

gence in probability in Theorems 3 and 4 of §6.

. Prove that L™ is complete.
. Show that if £, & ¢ and also &, & » then & and # are equivalent (P(& = ) = O).

Leté, 5 g, i# i, and let £ and # be equivalent. Show that
Pl —mlZz8 =0, n- oo,

for every e > (.

. Let £, B¢ 5 % 4 Show that aé, + by, B af + by (a, b constants), |£,| B &,
£t B &n.
Let (£, — £)* - . Show that £ — £2.

Show that if £, % €, where € is a constant, then this sequence converges in proba-
bility:
eho=¢ 8¢

. Let (£.)., have the property that Y= ; E|£,)F < oo for some p > 0. Show that

En—+0(Pus)

. Let (£,).~, be a sequence of independent identically distributed random variables.

Show that
Elf)[ < o=} P{|&)|> ¢ 0} < @

5]

nmj

"

= g} "y m::-é—:[} {P-a.5.).
H F i

Let{f } ., beasequence of random vanables. Suppose that there are a randon varia-
ble £ and a sequence {i } suchthat £, ~ £ (P-as)andmax, _, «j<n 1€ — &, | =0
{P-a.5.) a5 & — oo, Show that then &, — £ {(P-as.).

Let the d-metric on the set of random variables be defined by
& —#l
1+1& —n|

and identify random variables that coincide almost surely. Show that convergence
in probability is equivalent to convergence in the d-metric.

Show that there is no metric on the set of random variables such that convergence
in that metnic is equivalent to almost sure convergence.

§11. The Hilbert Space of Random Variables with

Finite Second Moment

1. An important role among the Banach spaces L, p > 1, is played by the
space L? = LX(Q}, &, P), the space of (equivalence classes of) random varia-
bles with finite second moments.
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If {and e L2 we put
(& my =Edn. (1)
It is clear that if £, 5, £ € L2 then

(@ + b, ) =dl, )+ 6y, L), abekR,
(£, =0

and
(& & =0=£=0

Consequently (£, #) is a scalar product. The space L? is complete with
respect to the norm

Il = ¢, &' 2

induced by this scalar product {as was shown in §10). In accordance with the
terminology of functional analysis, a space with the scalar product (1) i1s a
Hilbert space.

Hilbert space methods are extensively used in probability theory to study
properties that depend only on the first two moments of random variables
(* L?-theory ™). Here we shall introduce the basic concepts and facts that wiil
be needed for an exposition of £.2-theory (Chapter VI).

2. Two random variables ¢ and » in L* are said to be orthogonal (¢ L %)
if (£, #) = E&n = 0. According to §B, £ and g are uncorrelated ifcow(é, n) = 0,
ie if

Efn = EZEn.

It follows that the properties of being orthogonal and of being uncorretated
coincide for random variables with zero mean values.
A set M = L2 is a system of orthogonal random variables if & Ly for

every §,ne M (C # #).
If also |&]] = 1 for every & € M, then M is an orthonormal system.

3. Let M = {ny, ..., n,) be an orthonormal system and & any random varia-
blein £L.2. Let us find, in the class of linear estimators } ..y a;#;, the best mean-
square estimator for £ (cf. Subsection 2, §8).

A simple computation shows that

2

E‘C— _; oMz

|€ - é]l a;¥;

g (ﬁ— i a;fii € — i ﬂf”i)

i=1 i=1

= "‘:"2 - 2 i al{él ?JI) + (g il ‘=i1 HEHE)

i=1 1

=EI*~2Y ad&m) + ¥ &
i=1 F=t
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= el - 3 1P + 3 la— € nal

I=f

2 €17 = 3, [l ()

i=]

where we used the equation

al — 2af&, n) = log — (& n) P — & )~

It is now clear that the infimum of E|& — Y7, aul* over ail real
A1, .-, G, is attained fora; = (&, ) i=1L....n ‘

Consequently the best {in the mean-square sense) estimator for £ in terms
Dfﬂl!"'rﬂn is

¢= 3 G @)
Here
A= infE|¢ - ¥ an Ty T L YIEmE 6
(compare (1.4.17) and (8.13)).

Inequality (3) aiso implies Bessel's inequality: f M = {5, 42,...} 18
an orthonermal system and £ € L2, then

S 1wl < 1% ©

i=1

and equality is attained if and only if
£ =Lim. 3 (& un.. (7
r =1

The best linear estimator of £ is often denoted by E(£]#,, ..., n,) and called
the conditional expectation (of £ with respect to 5, ..., 5,) in the wide sense,

The reason for the termmology is as follows. If we consider all estimators
O = @fy, ... ) of £ in terms of u,, ..., x, (where ¢ is a Borel function),
the best estimator will be p* = E(£|3,, ..., 3, 1.e. the conditional ex pectation
of £ with respect to #,, ..., 4, {cf. Theorem 1, §8). Hence the best lincar
estimator is, by analogy, denoted by E(¢|#,,...,7,) and called the con-
ditional expectation in the wide sense. We note that if 4,,..., 4, form a
Gaussian system (see §13 below), then E(¢|%y, ..., ) and E(¢|#ny, ..., n)
are the same.

Let us discuss the geometric meaning of & = E(¢ T X

Let & = #{5,,...,n,} denote the linear manifold spanned by the ortho-
normal system of random variables 5, .. ., #, (i.6.,, the set of random varia-
bies of the form Y7, a;;, a;€ R).
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Then it follows from the preceding discussion that ¢ admits the “orthog-
enal decomposition™

E=E4 (& —d), ®

where €% and ¢ — £ | & in the sense that £ — £ 1 A for every 1e.%.
It is natural to call & the projection of £ on % (the element of & “closest™
to &), and to say that & — £ is perpendicular to #.

4. Theconcept of orthonormality of the random variables ,, ..., 7, makes 1t

easy to find the best linear estimator (the projection) ¢ of £ in terms of
H1s - - - Ny 1he situation becomes complicated if we give up the hypothesis of
orthonormality. However, the case of arbitrary y,, ..., 5, can in a certain
sense be reduced to the case of orthonormal random variables, as will be
shown below. We shall suppose for the sake of simplicity that all our random
variables have zero mean values.

We shall say that the random vanables x, .. ., 5, are linearly independent
if the equation

Yan=0 (P-as)
i=1

is satisfied only when all g, are zero.
Consider the covariance matrix

R =Eznn"

of the vector ¥ = {1y, ..., 1) It 15 symmetric and nonnegative definite,
and as noticed in §8, can be diagonalized by an orthogonal matrix @:

OTRO = D,

dy 0
=52

has nonnegative elements d;, the eigenvalues of R, 1.e. the zeros A of the
characteristic equation det{R — AE) = 0.

If #y, - .., 4, are linearly independent, the Gram determinant (det R) is
not zero and therefore o, > 0. Let

(.2

0 /4,

where

and
f=B"'0" )
Then the covariance matrix of # is
ESRY = B~ 0TExy"60B~! = B~ '0"ROB ! = E,

and therefore § = (§,, ..., f,) consists of uncorrelated randem variables.
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It is aiso clear that
y = (OB)B. (10)

Consequentlyify,, . . ., 5, are linearly independent there isan orthonormal
system such that (9) and {10) hold. Here

E{Hh'---’?n} = E{.\Bli"ﬂﬁn}'

This method of constructing an orthonormal system §,,..., f, is Ire-
quently inconvenient, The reason is that if we think of #; as the value of the
random sequence (1, .. ., »,) at the instant i, the value f; constructed above
depends not only on the “past,” (9., ...,#;), but also on the “future,”
Giss1s---+ #,). The Gram-Schmidt orthogonalization process, described
below, does not have this defect, and moreover has the advantage that it can
be applied to an infinite sequence of lirearly independent random variables
(i.e. to a sequence in which every finite set of the variables are linearly
independent).

Let 51,, #5. . . . be a sequence of linearly independent random variables in
L2, We construct a sequence &, £,,... as follows. Let £, = 5, /llg,|l. I
Eyy -~ -+ &n— have been selected so that they are orthonormal, then

Ha — ﬁn
g, =" (1)
"ﬂn - ﬁn"

where 7, is the projection of g, on the linear manifold #ig,, ..., E,—1)
generated by

=1
o= 3 Ol 205 (12

Since 1y, ...,7, are linearly independent and #{4,,...,%,~1} =
Pley, -, En- 1}, We have |y, — #,] > 0 and consequently ¢, is well defined.

By construction, |5, = 1 for r = 1, and it is clear that (g,, &) = 0 for
k < n, Hence the sequence &y, €;, .. . is orthonormal. Morcover, by (11),

rliﬂ = ﬂﬂ‘ + bﬂsﬂl

where b, = ||»,, — #,[ and #, is defined by (12).
Now let#,, ..., #, be any set of random variables (not necessarity linearly
independent). Let det R = 0, where R = ||r;ll is the covariance matrix of

(#1; - - -, H), and let
rank B = r < n,

Then, from lincar algebra, the quadratic form
Q(w) = Zl?’ijﬂiﬂp a=1(ay,.--, o
L=

has the property that there are n — r linearly independent vectors g''?,
a* I suchthat Qg =0,i=1,...,n —».

LI |
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But

0a) = E(i%) .

=1

Consequently

Y a'm =10, i=1,....n—vr
k=1
with probability 1.

In other words, there are # — r linear relations among the variables
H1s + 2 N Lherefore if, for example, n,, ..., #, are linearly independent, the
other variables #,, 4, ..., i, can be expressed linearly in terms of them, and
consequently % {i,...., 1.} = #{ey, ..., &}. Hence it is clear that we can
find r orthonormal random variables &,, ..., & such that #,, ..., 4, can be
expressed linearly in terms of them and #{n,,.... 1.} = #{&;, .... &}

5. Let #,, #3,... be a sequence of random variables in L% Let & =
21, 12, .. -} be the linear manifold spanned by 14,95, ...,1.6 the set of
random variables of the form ! ,am;, n=1, a,eéR Then ¥ =
FlMy 2, ...} denotes the closed linear manifold spanned by #,45...-,
1.e. the set of random variables in % together with their mean-square limits.

We say that a set 1y, ., - .. i5 a conntable orthonormal basis (or a complete
orthonormal system) if':

(8) 41, #2s ... is an orthonormal system,
{b} -'?{ﬁ"n i, } = L2

A Flilbert space with a countable orthonormal basis is said to be sepgrable.
By (b), for every £ £ L? and a given & > 0 there are numbers a,,..., a,
such that

- 3] <«
i=]
Then by (3)
“ﬁ - ¥ (& m)*r.-' <&
=1

Consequently every element of a separable Hilbert space L? can be repre-
sented as

£ = Z (€. 7:) - 1, (13)
i=1
or more precisely as

E=1lim. ) (& o

a i=1
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We infer from this and (3) that Parserals eguation holds:

181 = 3 1@l ger (14

It is easy to show that the converse is also valid: if 7y, #,, .. - is an artho-
normal system and either {(13) or (14) is satisfied, then the system is a basis.
We now give some examples of separable Hilbert spaces and their bases.

ExaMPLE L. Let Q2 = R, % = %(R), and let P be the Gaussian measure,

el

1
P(—o0,a] = f e(x)dx,  (x) = ﬁe

Let D = d/dx and
(—1)"Dp(x)
o(x)

H (%) = , nz=0. (15)

We find easily that
Do(x) = —xp(x),
D3p(x) = (x* — Dep(x), (16)
Dip(x) = (3x — *¥*)p(x),

..........................

It follows that H (x) are polynomials (the Hermite polynomials). From (15)
and (16) we find that

Hy(x) =1,
Hy(x) = x,
Hy(x) = x* —1,

Hy(x) = x* — 3x,

nnnnnnnnnnnnnnnnnn

A simple calculation shows that

(H,, H) = J.j H Ax)H (x) dP

= Jm Hx)H (x)p(x) dx = n! G,

where 8., 18 the Kronecker delta (0, if m £ n, and 1 if m = n). Hence if we
put

H,(x)

Jt

hfx)=
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the system of normalized Hermite polynorials {h,(x)},=0 will be an ortho-
normal system. We know from functional analysis that if

lim e*IP{dx) < co, (17

elD J=an
the system {1, x, x%,...} is complete in L2, i.e. every function & = #(x) in L?
can be represented cither as ) 7., a,1(x), where n;(x) = x%, or as a limit of
these functions {in the mean-square sense). If we apply the Gram-Schrnidt
orthogonalization process to the sequence #,(x), 5,(x), . ... with ,(x) = x',
the resuiting orthonormal system will be precisely the system of normalized
Hermite polynomials. In the present case, (17) is satisfied. Hence (h,{*)}},= 0
is a basis and therefore every random variable ¢ = £(x) on this probability
space can be represented in the form

) = Lim. iﬂ &, hohd). (18)

ExaMPLE 2. Let @ = {0,1,2,..} and let P = {P,, P,,...} be the Poisson
distribution
E—Aix

x!

P, = , x=01...; A>0

Put Af(x) = f(x) — f(x — 1) (f{x) =0, x < 0), and by analogy with {15)
define the Poisson-Charlier polynomials
(—1YAP,

P 1

X

I{x) = nz1l, Ilj=1. 1%

Since

(M, TL) = 3 TGPy = CoBran
x=0

where ¢, are positive constants, the system of normalized Poisson-Charlier

polynorgals {m(X)},x 0. ThX) = H,,{x)f\/c_,, .is an orthonormal systern, which
is a basis since it satisfies {17).

ExampLE 3. In this example we describe the Rademacher and Haar systems,
which are of interest in function theory as well as in probability theory.

Let £2 = [0, 1], & = ([0, 1), and let P be Lebesgue measure. As we
mentioned in §1, every x € [0, 1] has a unique binary expansion

Xy X2
x=?+?+“"

where x; = 0 or 1. To ensure uniqueness of the expansion, we agree to
consider only expansions containing an infinite number of zeros. Thus we
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Figure 30

choose the first of the two expansions

t_ 1t 0 0 0 1 1.
3=y Etos =ztEts :

We define random variables £,(x), £;(x), ... by putting
£ax) = X,
Then for any numbers a;, equal to O or 1,
P{x:{, = aq,-.., &, = a,}

(3] d> i, (147 2 5 i, l
= e - - _E —_— - R .t R
F{x2+21+ LX< bt +2,,+2,,,}

cplxel®  BE a1 1
—P{x.xE[2+ +2_“,2+ +2ﬂ+2H:|}_2ﬂ'-

It follows immediately that £,, £,, .. . form a seguence of independent Bernoulli
random variables (Figure 30 shows the construction of &, = &,{x) and

£ = &ax)).

B(x Rax
l( }. 1'[ }jL
I-—nl 14—= ==
i Lo
1 1 1 1
1 [ |
1 1 1 |
1 | 1 |
ol 3 i 13 X
0 1 1| s 0 1 1 ]
1 | T T | 1
1 I | 1 | 1
1 1 | 1 | |
1 1 [
1 1 | 1
1 1 1 1 | 1
. L4
-1+ —|T

Figure 31. Rademacher functions,
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If we now set R{x) =1 — 2£(x), n = 1, it is easily verified that {R,}
(the Rademacher functions, Figure 31) are orthonormal:

1
ER,R,, = f R.OORA(X) dx = Gy
Q

Notice that (1, R,) = ER,, = 0. It follows that this system 15 not complete.

However, the Rademacher system can be used to construct the Hagr
system, which also has a simple structure and is both orthonormal and
complete.

Again et Q@ = [0, 1) and & = @([0, 1)). Put

Hll[x) = 1.
Hy(x) = Ry(x),

-------------------------------------------------------------------------

212R (x) Hk;lﬂx{%, n=2 1k 1lgsk<¥jizl,
H(x) = 2

0, otherwise.

It is easy to see that H, (x) can also be written in the form

2 Qg x 27D
H1m+1(x)={—2""'1, 2“’“4’”‘_:1' {E_W, m = 1., 2,...,
0, otherwise,

.
Hz.,,+j(x)=H2mH(x-f2m ) i=1,...,2m

Figure 32 shows graphs of the first eight functions, to give an idea of the
structure of the Haar functions.

It is easy to see that the Haar system is orthonormal. Moreover, it is
complete both in L' and in L%, ie. if f = f(x)e [P for p = 1 or 2, then

L [f(x) _,-él(f’ H)H (X)) dx — 0, n— SO,

The system also has the property that

n

Y (L HME) - f(x),  no o,

km]

with probability 1 (with respect to Lebesgue measure).

In§4, Chapter VII, we shall prove these facts by deriving them from generat
theorems on the convergence of martingales. This will, in particular, provide
a good illustration of the application of martingale methods to the theory of
functions.
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Figure 32 The Haar functions H,;(x), ..., Hz(x).

6. If 11, ..., 7,18 a finite orthonormal system then, as was shown above, for
every random variable £ e L7 there is a random variable € in the inear mani-
fold & = #{5,..... 1.}, namely the projection of £ on %, such that

1€ ~ &Il = inf{llE — {N: {e iy, - 1}

Here & = 321 (¢, nm- This result has a natural generalization to the case
when #,, #12, - . . 18 a countabie orthonormal system {not necessarily a basis).
In fact, we have the following result.

Theorem. Let 1y, 15, ... be an orthonormal system of random variables, and
L =L{n.n,. ..} the closed linear manifold spanmed by the system. Then
there Is a unigue element € e L such that

1€~ &l = inf{[l& ~ £]: L e 2} (20)

Movreover,

E=lim. ¥ (&0 @
" i=1

and & — £ LU teL.
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PrOOF. Let d = inf{||€ — £||: { € &} and choose a sequence {,, {;, ... such
that [|€ — £,]| = 4. Let us show that this sequence is fundamental. A simple
calculation shows that

Eu + L g

2

It is clear that ({, + {,)/2 e & ; consequently ||[({, + {,)/2] — &? = d* and
therefore |[{,, — £,[1* = 0,1, m - oo,

The space L? is complete (Theorem 7, §10). Hence there is an element &
such that [[{, — £ — 0. But Z is closed, so £ e Z. Moreover, e, — & — 4,
and consequently [|¢ — &|| = 4, which establishes the existence of the re-
quired clement.

Let us show that & is the only element of & with the required property.
Let £ e @ and Iet

18n = Cull® = 208, — £17 + 218, — €I* — 4 -4

-+

1€ =& =1 — & =d.
Then (hy Probiem 3)
1€+ & — 2212 + 1€ — 12 =21 — &I” + 2|€ — &I? = 4d*.
But
1€ + & — 221> = 43 + &) — &I* = 4d™.
Consequently |& — &[|* = . This establishes the uniqueness of the element

of 2 that is closest to &, i B
Now let us show that £ — £ L I, L e &. By (20),

1€ —~&~ctl=1¢-2El

for every c € R. But
1€ — & — <LlI® = [I& ~ 812 + 2ILN* — 2€ — &, D).

Therefore

AL = 2(E ~ & ). (22)
Take ¢ = A& — &, 1), A€ R. Then we find from (22) that
(& — & DN —22) = 0.

We have 22||{]|? — 24 < 0 if 1 is a sufficiently small positive number. Con-
sequently (¢ — £,8) =0,{eL.

H remains only to prove (21).

The set & = Fn,, 1,3, ...} is a closed subspace of 1.2 and therefore a

Hilbert space {with the same scalar product). Now the system 5,, %1, ...
is a basis for .%° {Problem 5), and consequently

¢ = Lim. EZI(E. T (23)
But ¢ — & 1|, k > 1, and therefore (£, i) = (£, n,), k = 0. This, with (23)
gstablishes (21).
This completes the preof of the thecrer.
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Remark. As in the finite-dimensional case, we say that £ is the projection of
¢ on L= Lify, fp....} that & — & is perpendicular to L, and that the
representation

E=¥¢+0¢-9
is the orthogonal decomposition of £ _
We also denote & by E(&[ny, #2, . . .} and call it the conditional expectation
in the wide sense (of £ with respect to ,, #15. .. .). From the point of view of
estimating & in terms of 1, #3., - .., the variable & is the optimal linear esti-
mator, with error

A=EIE~2P = 16— 87 = 121 - 3 1 nl
which follows from (5) and (23).

7. PROBLEMS

1. Show that if £ = Lim. £, then ||&] = 1£€l-

2. Show that if £ = lam. &, and » = Lim. g, then (£,, 1) = ({, 7L
3. Show that the norm ||-|| has the parallelogram property

IE -+ nll? -+ 1§ — gl = 21N> + Nl7)*).

4. Let{&,, ..., £,) bea family of orthogonal random variables. Show that they have the
Pythagorean property,

.3 z n
> {';H = 2 &l
I=1 =1

5. Let 5y, %z, - .. be an orthonormal system and Z = P{g,, v, ...} the closed Lnear
manifﬂﬁi spanned by #4, #2.... . Show that the system is a basis for the (Hilbert)
space X.

6. Let &y, £3. ... beasequence of orthogonal random variablesand §, = £; 4 --- + £,.
Show that if } =, E¢2 < o there is a random variable § with ES? < oo such that
lim. S, = §,ie. |§,— S]12 = E|S, — §|* = 0,n = .

7. Show that in the space L2 = L[ -, x], #({[—n, #]) with Lebesgue measure g
the system {(1/./2m)e'*, n = 0, +1, ...} i3 an orthonermal basis.

§12. Characteristic Functions

1., The method of characteristic functions is one of the main tools of the
analytic theory of probability. This will appear very clearly in Chapter 11T
in the proofs of limit theorems and, in particular, in the proof of the central
limit theorem, which generalizes the De Moivre—Laplace theorem. In the
present section we merely define characteristic functions and present their
basic properties.

First we make some general remarks.
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Besides random variables which take real values, the theory of character-
istic functions requires random variables that take complex values (see
Subsection 1 of §5).

Martty definitions and properties invelving randem variables can easily
be carried over to the complex case. For example, the expectation E{ of a
compiex random variable { = & + in will exist if the expectations EZ and
Ex exast. I this case we defme E{ = E£ + {En. It is easy to deduce from the
definition of the independence of random clements (Defmition 6, §5) that
the complex random variables {, = &, + iy, and {, = &, + in; arc inde-
pendent if and only if the pairs (&,, ,) and (&;, »,) are independent; or,
equivalently, the g-algebras &, . and &, . are independent.

Besides the space L” of real random variables with finite second moment,
we shall consider the Hilbert space of complex random variables { = & + iy
with E[{|? < oo, whete |{|* = £* + 4 and the scalar product {,,{,) is
defined by EL,{,, where [, is the complex conjugate of {. The term “random
variable™ will now be used for both real and complex random variables,
with 4 comment (when pecessary) on which iIs intended.

Let us introduce some notation.

We consider a vector ¢ € R° to be a column vector,

4
a={ )
y
and g" to bearow vector,a” = (a,, ..., a,). Ifaand b € R" their scalar product

(ﬂ, b) 15 Z:'llll ﬂ]’bi. Clcarl}' (ﬂ, b) = ﬂTb.
Ifae R und R = ||r;|| is an n by » matrix,

(Ra,a) =a'Ra= 3, rya;a; (1)
=1
2. Definition 1. Let F = F(x,,...,x,) be an n-dimensional distribution
fanction in (R", Z(R™)). {ts characteristic function is
o0 = [ eNaF),  teR @)

Definition 2, If £ = (£,, ..., &) is a random vector defined on the probability
space (£}, #, P) with values In R", its characteristic function is

Pat) = f ﬂe"['*"* dF {x), te R", (3)

where Fy = Fgx;, ..., X,) is the distribution function of the vector { =

(e.fl: rrey ﬁn)
If F(x) has a density f = f(x) then

o{l) = |. g (x) dx.

o BT



216 [1. Mathematical Foundations of Probability Theory

In other words, in this case the characteristic function is just the Fourier
fransform of f(x).

It follows from (3) and Theorem 6.7 (on change of variabie in a Lebesgue
integral) that the characteristic function ¢t} of a random vector can also
be defined by

@A) =E™D,  reR" {4)

We now present some basic properties of characteristic functions, stated
and proved for # = 1. Further important results for the general case will be
given as problems.

Let & — ¥(ew) be 4 random variable, F; = F(x) its distribution function,
and

1) = Ee**

its characteristic function.
We sce at once that if 4 = af + b then

@, (t) = Ee™ = E oifaE+0) — gitbp glate,

Therefore
P4(1) = g lat). (5)

Maoreover, If &, ¢&;,..., &, are independent random variables and
S, =& +---+ £, then

os.8) = 1] oD (6)
=1

In fact,
@g, = Eg81* e = EQHer .. gt

= Ee"™ .. .EeMn = [] Qe (1),
=1

where we have used the property that the expectation of a product of inde-
pendent (bounded) random variables (cither real or complex; sec Theorem 6
of §6, and Problem 1) is equal to the product of their expectations.

Property {6) is the key to the proofs of limit theorems for sums of inde-
pendent random variables by the method of characteristic functions (see §3,
Chapter III). In this connection we note that the distribution function Fg_
Is expressed in terms of the distribution functions of the individual terms in a
rather complicated way, namely Fg = F, #-- % F; where + denotes
convolution (see §8, Subsection 4).

Here are some examples of characteristic functions.

ExAMPLE 1. Let & be a Bernoulli random variable with P(§ = 1) = p,
PE=0)=¢g,p+qg=1,12>p=>0;then

pLt) = pe" + q.
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¢, -., &, are independent identically distributed random variables like
¢, then, writing T, = (8, — n,)/,/npg, we have

Or, ) = BT = ¢~ IALp VIR 1. g
_ [peir,,nfql‘fi_'npj T qe-u'r.,/ﬂ'{E)]n_ (T)

Notice that it follows that as n — o©

2 S,, -
or—e M, =222 (8)
NLZ
Exampre2. Let & ~ A4'(m, 67), |m| < o0, 6% > 0. Let us show that
QS'g(I) —_ Eilm—rzn:fl (9)

Lety = (£ — m)jo. Then  ~ H(0, 1) and, since

o) = e (o)
by (5), it is enough to show that

o,(t) = e~ "2, (10)
We have
qgn(ﬂ =E = % Lt e;.gxe-xz;z dx
M=
" Z {"x)n e gx =y W jm X~ ¥ dx
\/2_‘.1 —ao =0 n=0 ”! 23’( -
(i (it)" (2m)!
Z (ZH)I (2 _ 1}” — Z {?.ﬂ)' Pl

where we have used the formula (see Problem 7 in §3)

L f xg~¥I2 dy = Eg?" = (2n — 1IN

-..,i"ZTI —en

ExaMPLE 3. Let £ be a Pojsson random variable,

E—J,‘;Lk
kl 7

P(E =F) = k=0,1,....

Then

—4d 9k o ir
Ee't{ — E elﬂi € 'j' _ E—A (A'E )k
k=ﬂ k IC='° k.

—exp{ie* — 1)}, (11)
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3. As we observed in §9, Subsection 1, with every distribution funcﬁm'l_ 1n
(R, #{R)) we can associate a random variable of which it is the distributlc'fn
function. Hence in discussing the properties of characteristic functions (in
the sense either of Definition 1 or Definition 2), we may consider only
characteristic functions @(t) = @) of random variabtes £ = £{w).

Theorem 1. Let £ be a random variabie with distribution function F = F(x) and
@(t) = Ee"*
its characteristic function. Then ¢ has the following properties:

(1) o) < @) =1;
(2) ¢(t) is uniformly continuous for t € R;

(3) o) = e(—1t);

(8) @(t) is real-vakied if and only if' F is symmetric (g dF(x) = {_g dF(x)),
Be#R), —B={—x:xeB};

(5) i E|&]" < oo for some v = 1, then @"Yt) exists for every r < n, and

Pt = j(ix)’e"* dF (), (12)
F
Eer = ‘""Tf”}, (13)
u Gy, (G
p(t) = r;; T EE + FEH{I}! (14)

where |e,(t)] < 3E[E" and e{t) » 0, & - 0;
(6) if o*"X0) exists and is finite then EE?" < oo,
(1) FEIE]" < oo for alin > 1 and

(ElEp
h,l,n n o eR -
then
o =3 e 1s)
a=p H!
Jforall 1| < R.

Proor. Properties (1) and (3) are evident. Property (2) follows from the
inequality

[(t + k) — opft)| = |Ee"He™ — 1)] < E[e™ — 1]

and the dominated convergence theorem, according to which E [¢*¢ — 1| — 0,
h— 0.

Property (4). Let F be symmetric. Then if g{x) is a beunded ndd Borei
function, we have [ g(x) dF(x) = 0 (observe that for simple odd functions
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this follows directly from the definition of the symmetry of F). Consequently
[z sin rx dF(x) = 0 and therefore

@{t) = E cos t{.
Conversely, let (1) be a real function. Then by (3)
P-At) = @ —1) = pt) = @ {t), teR

Hence (as will be shown below in Theorem 2) the distribution functions
F_ . and F, of the random variables — ¢ and ¢ are the same, and therefore (by
Theorem 3.1)

P(eB)= P(—¢feB) = P{fe —B)

for every B € #(R),

Property (5). IfE [£[" < o0, we have E|£]" < oo for ¥ < n, by Lyapunov’s
inequality (6.28).

Consider the difference quotient

@t + ) —gt) e -1
h = EE g(T).

Since

and E |£| < oo, it follows from the dominated convergence theorem that the

tirmit
g _ |
lim E&5( % )
G

) Eih{ -1 ‘ ) = )
Ee" lu'n( - ):IE{ﬁe“":}::J- xe™** dF(x). (16)

b= —en

exists and equals

Hence @'() exists and

@'(t) = KEE"y =i I xe'™ dF(x).
The existence of the derivatives (), 1 < r < », and the validity of (12),
follow by induction.
Formuia (13) follows immediately from (12). Let us now establish (14).
Since
=1 foonk .
e’ =cosy+isiny=) @+(W)n

2 F[msﬂ,y+isin€zy]
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for real y, with |6,]| < 1 and [#,] < 1, we have

elté ="i1 Gy + ey [cos 0, (w)é + isin O,(w)té] (17}

Lo Tk nt
and
g=1 ok .
Eett =3 % e+ 8 [Eer 4 a0 (18)
where

£,(1) = E[&"(cos B (w)t€ + i@ sin Bp{c)tf — 1}].

It is clear that |g,(f)] < 3E[£{"]. The theorem on dominated convergence
shows that £,(t) = 0, ¢t = 0.

Property (6). We give a proof by induction. Suppose first that ¢"(0)
exists and is finite. Let us show that in that case E£2? < 0. By L'Hbpitals
rule and Fatou’s lemma,

ey _ 1 L [9°@R) — @'@)  9'(0) — ¢'(—2h)
") ‘,f‘_".}z[ T 2h
. 2¢°(2h)y — 20'(—2h ] 1
= tim 252D =220 _ iy Lok — 26(0) + (28]
h—+0 fi=rD}
_ o e,z'hx — E-'iﬁx 2
= lim € —f )ar
— -m( 7 ) )
s : 2 v : 2
=l [ () < - [ pm () wore
= —f x? dF (x).
Therefore,

Jm x? dF(x) £ —"(0) < 0.

Now let ¢'* 2(0) exist, finite, and let {2 x** dF{x) < oo, If [ x?*dF(x)
=0, then |2, x™"24dF(x) =0 also. Hence we may suppose that
J2w x* dF(x) > 0. Then, by Property (5),

$2(t) = jm (ix)e™ dF(x)

and therefore,

a

(— () = j &% dG(x),

-l

where G(x) = |* ., v** dF(u).



281

§12. Characteristic Functions

Consequently the function (—1)fe@9(t}G(co)™! is the characteristic
function of the probability distribution G{x)- G~ '(c0) and by what we have
proved,

G~ (e0) ) x2 dG(x) < 0.

" )

But G *{c0) > 0, and therefore

J. x**+? dF(x) = f x% dG(x) < oo.
- bl - 1)
Property (7). Let 0 < t, < R. Then, by Stirling’s formula we find that
— E LRWE 1 - Hakty1in Hpit 'y 1k
Ill‘l‘l( Aap < = lim ————[EI':I t6) {%-t:rlim(Elél tn) < 1.

n ety n nl

Consequently the series ¥ [E|£[eq/nT] converges by Cauchy’s test, and
therefore the series 3 72, [(it)/r1]EE converges for [1] < t;. But by (14),
forn =1,

o) = 3 ST EC + R

r=0D

where | RO < 3([t]"/n)E | £|". Therefore

[=a)

o(t) =Z

for all [¢]| < R. This completes the proof of the theorem.

Remark 1. By 4 method similar to that used for {14), we can establish that if
E[£]" < co for some » > 1, then

- e — S)kf et dF(x) + (‘_ )ns,,{t—s}. (19)

k=0
where |&,(t — )| < 3E|&"|,and et — s) > Qassr —s—= 0.
Remark 2. With reference to the condition that appears in Property (7),

see also Subscction 9, below, on the “uniqueness of the solution of the
moment problem.”

4. The follpwing theorem shows that the characteristic function is uniquely
determined by the distribution funeticen.
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Figure 33

Theorem 2 (Uniqueness). Let F and G be distribution functions with the same
characteristic function, i.e.

f & dF(x) — J:efu dG(x) 20)

for all t € R. Then F(x) = G(x).

ProcE. Choose g and b e R, and £ > 0, and consider the function [ = f{x)
shown in Figure 33. We show that

fm e dEe) = | 50 d6eo) @1

Let n = 0 be large enough so that [z — &, b + £] = [—#, n], and let the
sequence {5} besuch that 1 = §, | 0, n — oo. Like every continuous function
on [ —n, 2] that has equal values at the endpoints, 7 = f%(x)can be uniformly
approximated by trigonometric polynomials (Weierstrass’s theorem), i.e.
there 1Is a finite sum

SEx)=> a, exp(inx g) (22)
K
such that
s 1760 — [39] < &, 23)

Let us extend the periodic function £{x)to all of R, and observe that
sup [ [0 < 2.

Then, since by (20)

| raarwy = [ it o,
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we have

J-j; Fix) dF(x) — J._m FE(x) dG(x)

A

fﬁdF—j 46|+ 23,

P L r]

12 dF — j fﬁdG‘ 425,

A

+ 2F([—n, n]) + 2G(—n, n]),
(29)
where F(4) = {, dF(x), G(A) = [, dG(x). As n— oo, the right-hand side
of (24) tends to zero, and this establishes (21).

Ase — 0, we have f4(x) — I, ;(x). It follows from (21) by the theorem on
distribution functions’ being the same.

o0

I {a, 8] {x) dG(x),

ie. F(b) — F(a) = G(b) — G(r). Since g and b are arbitrary, it follows that
F(x) = G{x)for all x= R.
This compietes the proof of the theorem,

J-_:I @ 470X} dF(x) = J'

5. The preceding theorem says that a distribution function F = F(x) is
uniquely determined by its characteristic function ¢ = ¢(t). The next theorem
gives an explicit representation of F in terms of ¢.

Theorem 3 (Inversion Formula). Let F = F(x) be a distribution function and

o) = r £ JF(x)

its characteristic function.
(a) For pairs of points a and b (a < b) ar which F = F(x) is ¢ontinuouns,

. 1 —~ilg __ —ih
Fo) - Fo=fmg [ S fema; @)
(b) If |2, (o) dt < oo, the distribution function F(x) has a density f(x),
Fo= [ soray 26)
and
1 ™ _.
ey =52 e old. (27)

Ll + ]



284 I1. Mathematical Foundations of Probability Theory

Proor. We first observe that if F(x) has density f(x) then

olt) = r e5f (x) dx, (28)

= 1 ]

and (27) is just the Fourier transform of the (intcgrable) function @{f).
Integrating both sides of (27) and applying Fubini’s theorem, we obtain

b w
F(b) — F(g) = rf(x) dx — -;FJ U & () dt] dx

1 ol b .
=3 | Amfp{t} [L e dx] dt
1 ™ —ia __ ~irh
=5 | e0—F—a

After these rernarks, which to some extent clarify (25), we turn to the proof.
{a) We have

e o=ite __ — b

1- e
ml. @ p(t) dt

1 < —ita __ _—itk @
=5 EI—IE U i dF(x)] dt

1 = :: —ita __ _—ith )
=3 [J. e__ite_ e dt] AF{x)

— &

I

- " oo are )

where we have put
1 ¢ g e _ g i
Le) = 11
&) 27 J. —e it e dt

and applied Fubini’s theorem, which is applicable in this case because

b
f ™ "% dx

g ka _ it

it

E—‘i’:a . E—Irb

it

. Eir.x =

<b—-ua

and

f E“’ — @} dF(x) < 2c(b — a) < o
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In addition,
¥ (x) = i J‘ sin t{x — q) — sin H{{x — b) &
2r g ¢
x—a) x—b} 3
_ 1 J“‘ sin v g 1 sin o 5 (30)
27[ —cix—a) [y 2'.'7. —cix~ b 1
The function

g(s, 1} = Jd*mTu dv

18 uniformly continuous in s and ¢, and

g(s, t) » = (31}

ass | —oo and ¢ T co. Hence there is a constant € such that [P {x)| < € < o0
for all ¢ and x. Morcover, it follows from (30) and (31) that

¥ {x) - F(x), C— 00,
where
0, x<ax>b,
¥(x)=13, x=ax=0>b,
1, a<x<b

Let u be a measure on (R, 4(R)) such that p(a, b] = F(b) — F(a). Then
if we apply the dominated convergence theorem and use the formulas of
Problem 1 of §3, we find that, as ¢ — oo,

P, = r ¥ (x) dF(x) ->r W(x) dF(x)

= ua, b) + sufa} + $u{b}
= F(b=) - F(a) + $[F(a)— F(a—) + F(b} — F(b-}]

_ F(b} + F(h—)} F(a) + Fla—)

7 3 = F(b) — Fla),

where the last equation holds for all points @ and & of continuity of F(x).
Hence (23) i1s established.
(b) Let [, [t} dt < o0. Write

Jix) = % I e~ W ep(t) dr.

=g
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It follows from the dominated convergence theorem that this is a continuous
function of x and therefore is integrable on [a, #]. Consequently we find,
applying Fubinr’s theorem again, that

] oo
_Ef (x}dx = _[ % (J: mﬂ“"‘@(t) dt) dx
= %r -rmmqp(t) [fe‘“'“ dx] dt = 3111 ﬁ J.: o(f) [fe‘ i dx] dt

1 g ite _ it
= Icl_[.]'lmﬁ y — p(t) dt = F(b)y — Fla)
for alt points g and b of continuity of F(x).
Hence it foliows that

F(x}=£ f0)dy, xeR,

and since f{x} is continuous and F{x) is nondecreasing, f(x)} is the density
of F(x).
This completes the proof of the theorem.

Carollary. The inversion formula (25) provides a second proof of Theorem 2.

Theorem 4. A necessary and sufficient condition for the components of the
random vector £ = {&y, ..., &,) to be independent is that its choracteristic
Sunction is the product of the characteristic functions of the components:

n
Eelindr® —*tudul = TT Ee™%,  (t,,...,L,)€R"
k=1

Prook. The necessity follows from Problem 1. To prove the sufficiency we
let F(x,, ..., x,) be the distribution function of the vector £ = (&,,..., &)
and F,(x), the distribution functionsof the &,,1 <k < n. Put G = G(x,,...,x,)
= F,(x,) - F,{x,). Then, by Fubini’s theorem, for all {t,,..., ¢ )e R",

FEnt k) dote ix) = H i JF.(x)
k=1 ¥R

Rr

n
— H E pitile — Epltfir+ - +tulad
k=1

- J‘ GO e R ),

Therefore by Theorem 2 (or rather, by its multidimensional analog; see
Problem 3) we have F = G, and consequently, by the theorem of §5, the
random variables £,, ..., &, are independent.
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6. Theorem 1 gives us necessary conditions for a function to be acharacteristic
function. Hence if ¢ = ¢(t) fails to satisfy, for example, one of the first three
conclusions of the theorem, that function cannot be a characteristic function.
We quate without proof some results in the same direction.

Bochmer—Khinchin Theorem. Ler @(f) be continuous, t € R, with @(0) = 1, 4
necessary and sufficient condition that ¢(t) is a characteristic function is that it

is positive semi-definite, i.e.that for allveal t,, ..., tand alicomplex 2, ..., A,,
n=12...,
Y ot — AT = 0. (32)
i, i=1

The necessity of (32) is evident since if ¢(f) = [©, €™ dF(x) then

f o(t; — t Y4 4; = Im f Ay

i,j=1 ~w|k=1

2
dF{x} = 0.

The proof of the sufficiency of (32) is more difficult.

Pélya’s Theorem. Let a continuous epen function o(2) satisfy o{t) = 0,
a0 =1, p(t) = 0 as t — o0 and let o(t) be convex on 0 < t < co. Then
@(t) is a characteristic function.

This theorem provides a very convenient method of constructing character-
istic functions. Examples are

'??1(1’} = e.. III:

— 1 _Irll ltli: 1:
e2(t) = {u, lt] > 1.

Another is the function ©4(t) drawn in Figure 34, On [ —a, a], the function
©.{t) coincides with ¢,(t). However, the corresponding distribution func-
tions F, and F, are evidently different. This example shows that in general
two characteristic functions can be the same on a finite interval without their
distribution functions’ being the same.

@3{'0‘

~Y




28R 11, Mathematical Foundations of Probability Theory

Marcinkiewicz’s Theorem. If a characteristic function o(t) is of the form
exp &0, where P(t) is a polynomial, then this polynomial is of degree at
most 2.

It follows, for example, that ¢~ is not a characteristic function.

7. The following theorem shows that a property of the characteristic
function of a random variakle can lead to a nontrivial conclusion about the
nature of the random variable.

Theorem 5. Let At} be the characteristic function of the random vaviable E.

(a) If |oto)l =1 for some ty +£ 0, then £ is concentrated at the poinis
a + rh, h = 2xnft,, for some a, that is,

i P{{ =a+ nh} =1, (33)

where a is a constant.
(b) If |pA)] = |oLet)] = 1 for two different points t and of, where o is
irrational, then £ is degenerate:

P{{ =a} =1,
where q is same number.
() If o) = 1, then £ is degenerate.

PROOCF. (a) If | @ tp)] = 1, t, # 0, there is a number g such that ¢{t,) = &%
Then

g8 = J. A dP(x)=1= | £ IF(x) =

1= f cos to(x — a) dF(x) = J' [1 — cos to(x ~ o] dF(x) = 0.
Since 1 — cos ty(x — a) 2 0, it follows from property H (Subsection 2 of
§6) that

1 =cos tg{é —a) (P-as.),

which is equivalent to (33).
(b) It follows from |@#}| = | @:(at)| = 1 and from (33) that

had 2 = 2
) P{¢=a+_“n}= Y, P{é=b+—“m}= L
#m - t m=t—m ot
If £ is not degenerate, there must be at Jeast two pairs of common points:

2 n 2 2w
_ =b — . +_n =b+_m,
a+ ; Ay +mm1 a v % 2
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in the sets
2
{ﬂ+2TnH,HIO,i1,.._} E.Ild {b—l_fm!m:ﬁl il""}’

whence

27 2n
T(“: —ny) = E{ml — my),

and this contradicts the assumption that o is irrational. Conclusion (c)
follows from (b).
This completes the proof of the theorem.

8 Let& =(¢&,,..., &) be arandom vector,
pAt) = BN, 1 =(ty,..., 1),

its characteristic function. Let us suppose that E|&;|" < co for some n = 1,
i=1,...,k From the inequalities of Holder (6.29) and Lyapunov (6.27)
it follows that the (mixed) moments E{(£} --- &*) exist for all nonnegative
Vi .o, Such thatvy + .- 4+ 3, <
As in Theorem 1, this implies the existence and continuity of the partial
derivatives
atr,, R o T

T E——— sk
arn - ag Pl s B

for v + -+ 4+ v, < n. Then if we expand @t,,..., 1) in a Taylor series,
we see that

I-'Ill kbl 4 U

Plis -t = X s el ik 4 o8], (34)

vyt duya Yas o Vil
where |t| = [£,] + --- + || and
mg-.....,m =E& ... &

is the mixed moment of order v = (vy, ..., V).

Now A1, ..., ) is continuous, @0, ..., 0} = I, and consequently this
function is different from zero in some neighborhood (t| < & of zero. In
this neighborhood the parhal derivative

an A by

gty - -« -

exists and is continuous, where In z denotes the principal value of the
logarithm (if z = »¢”, we take In z to be In r + i0). Hence we can expand
In ¢ ¢y, ..., ti) by Taylor’s formula,

i‘\"j Rl 23 77

In ';D:E(th Ty 'tk)

In@gt: -t} =} ST g A o[, (35)

TR T A M
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where the coeflicients s{* =" are the (mixed) semi-invarignts or cumulants
of order v = wv,,...,v)of £ =¢&,, ... &.
Observe that if £ and 5 are independent, then

In @ (f) = In @t) + In ¢,(1), (36)
and therefore
) SR St (37)
(It is this property that gives rise to the term “semi-invariant” for g’ --"))
To simply the formulas and make (34) and (35) look “one-dimensional,”
we iniroduce the following notation.

Ifv = (v, ..., v,) i & vector whose components are nonnegative integers,
we put

vi=v ...yl [¥]=v; +--- + W, Y=ty - - 4R
We also put Sg’.'l — Stﬁ“'““ vul, ml’ﬁﬂ —_ m%"lum va)
Then (34) and (35) can be written
il
et) = 3, — " + olt]"), (38)
|el=n ¥+
il
In @.t) =I,IZ = s+ of £, {39)
Fl=H -

The following theorem and its corollaries give formulas that connect
moments and semi-invariants.

Theoremé. Let E=(&,,...,¢) be a random vector with E|&|" < g,
i=1,...,knz=1l Thenforv=_v,,..., v )ysuchthat [v| <n

i ! a
v — : (teh)
mit = - S
: F Lo} Iy [ P QT 41“}! .- ﬂ,“lq}! p]:l! ? {I[])
. l]'_l 'I q
o) — (—1) vl .
&= w7, (41)
ANV gy A=y q Ay, .. jien p].:[l 5

where 3 i g 1 yw=, indicates summation over all ordered sets of nonnegative
inteqgral vectors A%, | AP = 0, whose sum is v.

PrOOF. Since

@Lt) = exp(ln @A),

if we expand the function exp by Taylor’s formula and use (39), we obtain

" 4] i
s =1+5 1( ¥ L)+ ol (42)

g=1 q! 1=<|il=n
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Comparing terms in t* on the right-hand sides of {38) and (42), and using
|A8] + -0 + [A®] = | 4 ... + 1D, we obtain (40).

Moreover,
il
In ¢,(t) = In [1 + 3 mPtt + o(_|t|"}] 43)
L=]A|<n ";LI
For small z we have the expansion
1 3
in(1 +2) = 3 L o o)
g=1

Using this in (43) and then comparing the coefficients of t* with the cor-
responding coeflicients on the right-hand side of {38), we obtam (41).
Corollary 1. The following formulas connect moments and semi-invariants:

1 v!

T, |(_1{1}|)r, e A‘x}i)nrl_[ [siliil}]n {44)

ml’.{\-'} _
fra a0 £ Frealed =y P!

(=1 (g — 1! v! H L

N =
s 1
(AR o oy 265wy "1! . rx! (1{ 1!)r| . (‘l(ﬂll)’x ;

(45)

WHEFE ) 2t g 4puatimy; deNoles summation over all unordered sets of
different nonnegative integral vectors A2, | % > 0, and over all ordered sets of
positive integral numbers r; such that v 2 + - + 1, AP =y,

To establish (44) we suppose that among all the vectors A!'}, . ¥
that occur in {40), there are r, equal to AV, . . r_equal to 2% (r; > 0,
ry + - + r, = g), whereall the 2% are different. There are g1/(r, ! . . . ¥ Ddif-
ferent sets of vectors, corresponding (except for order) with the set {A'Y, ...
A9, Butif two sets, say, {1'", ..., ¥} and {21V, __, 19} differ only in order,
then [J2_, s = []2-, sf‘”} Hence if we 1dcnuf}f sets that differ only in
order, we nbtam {44) from (40).

Formula (45) can be deduced from (41) in a similar way.

Corallary 2. Let us consider the special case when v = (1, ..., 1). In this case
the moments ¢t = E&, -+« &, and the corresponding sewi-invariants, ave
called simple.

Formulas connecting simple moments and simple semi-invariants can
be read off from the formulas given above. However, 1t 1s useful to have them
written in a different way.

For this purpose, we introduce the following notation.

Let & = (£,,..., &) be a vector, and [, = {1, 2, ..., k} its set of indices,
If I < I,, let £; denote the vector consistng of the components of £ whose
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indices belong to I. Let x(f) be the vector {yy,. .., x,} for which x; =1 if
iel and y; = 0if i ¢ I. These vectors are in one-to-one correspondence with
the sets I < I,. Hence we can write

m{(ﬂ _ mf:x}{ﬂ, SQ(I) = S%x{l}l_

In other words, m,(I) and s/(I} are simple moments and semi-invariants
of the subvector &; of &

In accordance with the definition given on p. 12, a decomposition of
a set I is an unordered collection of disjoint nonempty sets f, such that
.1, =L

In terms of these definitions, we have the formulas

a

mD)= 3 [] sdi,) (46)
E?:p::ijp:II p=1
3:(” = Z (—1)*“(@ — 1} ﬂ mg(Ip). (47)
Ig:l.[pﬂf P='I'

where Zt;.?=1 r,=¢r denotes summation over all decompositions of I,
1 < g < N, where N{{} is the number of elemenis of the set 1.

We shall derive (46) from (44). If v = p(I) and 2 + ... + 1% =y, then
AP = x(1,), I, = I, where the A are all different, A*! = v! = |, and every
unordered set {x{{,),..., x(I;}} is in one-to-one correspondence with the
decomposition f = } 9., I,. Consequently (46) follows from (44).

In a similar way, (47) follows from (35).

ExampPLE 1. Let § be a random variable (k = 1) and m, = m{® = E&”,
s, = s, Then (40) and (41) imply the following formulas:

My = 54,
_ 2
m,; = §5; + 57,
my = 53 + 35,5, + 53,

My = 8 + 33% + 43133 + ﬁs%sl + S‘;‘, {48)

------------------------------------

and
s = my = EE,
5; = My — mii = V¢,
S3 = My — 3mym, + 2md,

Sq = my — 3m} — Amymy + 12mim, — 6mi, (49)

...........................................
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ExamreLE 2. Let & ~ A (m, 62). Since, by (9),
]

In @) = itm — IZT“

we have s, = m, 5, = g2 by (39), and all the semi-invariants, from the third
on, are zero: 5, =0, n = 3

We may obscrve that by Marcinkiewicz's theorem a function exp 2%(t),
where £ is a polynomial, can be a characteristic function only when the
degree of that polynomial is at most 2. It follows, in particular, that the
Gaussian distribution is the only distribution with the property that all its
semi-invariants s, are zero from a certain index onward.

ExampLE 3. If £ is a Poisson random variable with parameter 2 > 0, then
by (11)

In @t) = A" — 1).
It follows that
5, = A (50)
foralln = 1.

ExampLE 4. Let & = (&,,..., £,) be a random vector. Then

mAl) = 541),
mgl, 2) = sf1, 2) + s(1)s,(2),
me(l, 2, 3) = 541, 2, 3) + s:(1, 2)54(3) + (51)

+ 5.(1, DsA2) +
+ 542 3)541) + 51)5(2)s.(3)

-----------------------------------------------------

These formulas show that the simple moments can be expressed in terms
of the simple semi-invariants in a very symmetric way. fweput &, = ¢, =
-« = &, we then, of course, obtain (48).

The group-theoretical origin of the coefficients in (48) becomes clear
from (51). It also follows from (51} that

si1, 2) = my(1, 2} — m(1yme(2) = €L, &, — EELEE,, (32)

i.e., 5¢(1, 2) is just the covariance of ¢, and £,.

9, Let £ be a random variable with distribution function F = F(x) and
characteristic function ¢(t). Let us suppose that all the moments m, = E£",

n = 1, exist.
Tt follows from Theorcm 2 that a characteristic function uniquely deter-

mines a probability distribution. Let us now ask the following question
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(unigueness for the moment problem): Do the moments {m,},», determine
the probability distribution?

More precisely, let F and G be distribution functions with the same
MNOMENts, 1.e.

J‘_m x"dF(x) = J‘_m x" dG(x) (53)

for all integers # = . The question is whether F and & must be the same.
In general, the answer is “no.” To sec this, consider the distribution F

with density
ke™™ x>0,
so={ 0

where e > 0,0 < A < 4, and k is determined by the condition [§ f(x)dx = 1.
Write f = o tan Ax and let g(x) = D for x < 0 and

ox) = ke™™[1 + esin(BxV)], Jel<1, x>0
It is evident that g(x) = 0. Let us show that
I x"e ™™ sin fx*dx = 0 (54)

o

for all integers n > 0,
For p > 0 and complex g with Re g > 0, we have

J- Pl dt = F(E}
o q
Takep =(n + 1)/4, g = w + iB,t = x* Then

e o
I 3 Mlin + lﬂli—l]e-fd+im:c"'ax.i—-l dx = AJ‘ an—{u+imx?. dx
1} 0

=] w
=1 j x"e™™*" cosfx” dx — il J x"e " sin fx* dx
0 o

R+ 1
r( A ) (55)

= a[n+llfl(1 + itan h){n-i- (Y11

But
(1 + itan Ar)"* % = (cos da + i sin Am)** Wi{cos Am)~ 0+ B2
= " P(pog Axr)~ 1ot DIA
= cos m{n + 1) - cos(An) ¢+ 13,

since sim w(n + 1) = 0.
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Hence right-hand side of (55) is real and therefore (54) is valid for all
integral n > 0. Now let G{x) be the distribution function with density g(x).
It follows from (54) that the distribution functions F and G have equal
moments, e, (53) holds for all integers n = 0,

We now give some conditions that guarantee the uniqueness of the solu-
tion of the moment problem.

Theorem 7. Let F = F(x) be a distribution function and p, = [, | x|" dF(x).
If

lim

fim 22

n

< o, (56)

the moments {m,},. ,, where m, = [®_ x" dF(x), determine the distribution
F = F{x) uniquely.

ProoF, It follows from (56) and conclusion (7) of Theorem 1 that there is a
ty > O such that, for all |¢| < 1, the characteristic function

o= [ e dF()
can be represented in the form
o= 3 m,

and consequently the moments {m_.},., uniquely determine the character-
istic function {7} for |t| < tg.

Take a point 5 with |s| < £,/2. Then, as in the proof of (15), we deduce
from (56) that

¥ PR Y
o = 3 P g

k=0

for [t — s| < ty, where
p®(s) = i -[ xke* dF(x)

is uniquely determined by the moments {m,},.. ;. Consequently the moments
determine ¢{t) uniquely for |¢| < 2t,. Continuing this process, we see that
{m,},» determines ¢(f) uniquely for all 1, and therefore also determines
F(x).

This completes the proof of the theorem.

Corollary 1. The moments completely determine the probability distribution
if it is concentrated on a finite interval,
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Corollary 2, A sufficient condition for the moment probiem to have a uhigue
solution is that

112n
fim % < co. (57)

For the proof it is enough to observe that the odd moments can be
estimated in terms of the even ones, and then use {36).

ExampLE, Let F(x) be the normal distribution function,

Fi{x)=

1 j o™ gy,
af 2.':"!0'2 - oo

Then mi,,. , = 0, m,, = [(20}1/2"n1e?", and it follows from (57) that these
are the moments only of the normal distribution.

Finally we state, without proof:

Carleman’s test for the uniqueness of the moment problem.

(a) Let {m,},. be the momenis of a probability distribution, and let

= 1

——— = X
n=0 (mln)lfzn

Then they determine the probability distribution uniguely.

(b) If {m,}.n1 are the moments of a distribution that is concentrated on
[0, o), then the solution will be unique if we reguire only that

= 1

“gﬂ (m"}lfzn = 0.

10. Let F = F(x) and G = G(x) be distribution functions with character-
istic functions f = f(t) and g = g(1), respectively. The following theorem,
which we give without proof, makes it possible to estimate how close F
and G are to each other {in the uniform metric) in terms of the closeness of

fand g.

Theorem (Esseen’s Inequality). Let G(x) have derivative G'(x) with
sup|G'(x)| < C. Then for every T > 0

S — o) : 20| 4 4 Tsup |G (x)].  (38)

sup | F(x) — G{x)| < — -[
a

(This will be used in §6 of Chapter III to prove a theorem on the rapidity
of convergence in the central limit theorem.)
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11. PrOBLEMS

1.

Let & and # be independent random variables, f{x) = f;(x} + ifx{x), g(x) = g,{)
+ iga{x} where fi(x} and g,{x} are Borel functions, k=1, 2 Show that tffE| f(£)[«< 00
and E[g(n)| < oo, then

ElAS)g(m} < oo

and

Ef (Saln) = EF () - Egly)-
Leté ={&, ..., Jand E[|&|" < oo, where |El = + £2, Show that

oty = T 23 E6. & + &0l
k=g s
where! = (ty,....0)and 5 (N =0, t = 0.

Prove Theorem 2 for »-dimensional distribution functions F = F,(x,, ..., x,) and
Gn{xl‘.! "=y -xn)‘

. LetF = F(x;, ..., x,}bean n-dimenstonal distribution functionand ¢ = ¢{t,, -- -, 1)

its charncteristic function. Using the notation of (3.12), establish the inversion formula

. l n -E'.rkﬂk - E'—h‘bﬁ
P{a, ¥] _fﬂ&?ﬁfrg i e (ST A Y| ST [
{We are to suppose that (o, b] is an interval of continuity of P{a, b], ic. for k = 1,
. .., i the points a, b, are points of continuity of the marginal distribution functions
Fiy{x,) which are obtained from F(x,,...,x,) by taking all the variables except
X equal 1o +o00.)

Let (1), k = 1, be a characteristic function, and [et the nonnegative numbers A;,
k = 1,satisly 3 4, = 1. Show that ) 1, ¢,(0) is a characteristic function.

If (t} is a characteristic functior, are Re ¢t} and Im (¢} characteristic functions?

Let p,, ¢¢; and ¢4 be characteristic functions, and ¢ ¢, = ©,¢;. Does it follow that
Pz = @37

Construct the characteristic functions of the distributions piven in Tables 1 and 2
of 3.

. Let £ be an mtezral-valued random variable and ¢ (¢) its characteristic function.

Show that

P(ﬁ=kl=;—ﬂfﬂe_'"'¢t{r}dr. k=0,x1,x2....

i

§13. Gaussian Systems

1. Gaussian, or normal, distributions, random variables, processes, and
systems play an extremely important role in probability theory and in
mathematicai statistics. This is explained in the first instance by the central
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limit theorem (§4 of Chapter III and §8 of Chapter V1I), of which the De
Moivre-Laplace limit theorem is a special case (§6, Chapter I). According
to this theorem, the normal distribution is universal in the sense that the
distribution of the sum of a large number of random variables or random
vectors, subject to some not very restrictive conditions, is closely approxi-
mated by this distribution.

This is what provides a theoretical explanation of the “law of errors™ of
apphed statistics, which says that errors of measurement that result from
large numbers of independent “elementary™ errors obey the normal distri-
bution.

A multidimensional Gaussian distribution is specified by a small number
of parameters; this is a definite advantage in using it in the construction of
simple probabilistic modets. Gaussian random variables have finite second
moments, and consequently they can be studied by Hilbert space methods.
Here it is important that in the Gaussian case “uncorrelated™ is equivalent
to “independent,” so that the results of L2-theory can be significantly
strengthened.

2. Let us recall that (see §8) a randoem variable £ = ) 15 Gaussian, or
normally distributed, with parameters m and o2 (£ ~ A (m, 02)), |m] < oo,
¢? > 0, if its density f{x) has the form

E—u—m}z,fzﬂ-z, {l)

Sy = —=
NP
where 0 = +./c

As o | 0, the density f{x) “converges to the d-function supported at
x = m" It is natural to say that £ is normally distributed with mean m
and 62 = 0 (£ ~ A (m, 0)) if £ has the property that P({ = m) = 1.

We can, however, give a definition that applies both to the nondegenerate
(6 > 0)and the degenerate (¢* = 0) cases. Let us consider the characteristic
function ¢ (f) = E¢*, te R.

H P(& = m) = 1, then evidently

pdt) = ™, (2)

whereas if £ ~ A#(m, 0%), 6% = 0,
pt) = gm 2R 3

It is obvious that when ¢” = 0 the right-hand sides of (2) and (3) are the
same. It follows, by Theorem 2 of §12, that the Gaussian random variable
with parameters m and ¢ (|m| < oo, 62 = 0) must be the same as the random
variable whose characteristic function is given by (3). This is an illustration
of the “attraction of characteristic functions,” a very useful technique in the
multidimensional case,
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Let £ = (¢,,..., &) be arandom vector and
(P‘E(f} = Eg'n?, t ={y,...,1,)ER’, 4)
its characteristic function (see Definition 2, §12).

Definition 1. A random vector & = (&, ..., &) I8 Gaussion, or normaily
distributed, if its characteristic function has the form

@ {(t) - Eitt. m) = {1/ 2}{[EL, l'], (5)

where m = (m,, ..., m,), |m,| < o0 and R = ||r,[ is a symmetric nonnega-
tive definite n x » matrix; we use the abbreviation { ~ A(m, R).

This definition immediately makes us ask whether (5) is in fact a character-
istic function. Let us show that it is.

First suppose that R is nonsingular. Then we can define the inverse
A = R~! and the function

| 442 1
fx) = Gyl exp{ —(A(x — m), (x — m))}, (6)

where x = (*;, ..., X,) and |A| = det 4. This function is nonnegative. Let
us show that

f el'{l‘. x}f(x) dx = elit,m]d{!ﬂ}[lﬁr.,ﬂ.

or equivatently that

i IAll"z — (1 2)([RL. )
e!tl.x~m]_ﬁe-ilﬂ}idh—ml.[x“mh dx = e~ (UL 0
Rn (2m)

i, =

Let us make the change of variable
x — = Ou, t = i,

where @ is an orthogonal matrix such that

OTRG = D,

d, 0
o=t )

is a diagonal matrix with &; > 0 (see the proof of the lemma in §&). Since
|R| = det R # 0, we have d; > 0,i =1, ..., n. Therefore

and

| Al = IR~ | =dit--d " &)
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Moreover {for notation, see Subsection 1, §12}

Kt, x — m) — HA(x — m), x — m)) = {Ov, Ou) — F{AO, Ou)
= (O Ou — L(Ou)T A(Ou)
= jufu — 4t T Ay
= jo*u — D"

Together with (8) and (12.9), this yields
1, = Qn)~"%d, - d )1 f exp(iv® — 3u™D™ 'u) du

n

n -+ 2 n
= [[ (2=d,)~ 2 J. exp(iukuk - ;Tk) du, =[] exp( — 3vi d.)
k=1 - i

=1
= exp(—1vTDv) = exp(— 3v"0 ROV} = exp(— 3t TRE} = exp(—3(Re, D)
It also follows from (6) that

fix)dx = 1. {(9)
Rn

Therefore (3) is the characteristic function of a nondegenerate n-di-
mensional Gaussian distribution (see Subsection 3, §3).

Now let R be singular. Take & > 0 and consider the positive definite
symmetric matrix (& = R + &E. Then by what has been proved,

@ty = expli(t, m) — R, £)}
is a characteristic function:
O = | e ar )
Rn
where FAx) = F{xy, ..., X,) 18 an p-dimensional distribution function,

As e — 0,
@) —~ o(t) = exp{it, m) — (R, 1)}.

The limit function ¢(t) is continuous at {0, ..., 0). Hence, by Theorem 1
and Problem 1 of §3 of Chapter III, it is a characteristic function.
We have therefore established Theorem 1.

3. Let us now discuss the significance of the vector m and the matrix
R = |y} that appear m (5).
Since

]I]. QJ,E(I) = i(t, m) -_ %(HI, I) = i i (S TR ’—% i rHIhI;, {lu)

k=1 k=1
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we find from (12.35) and the formulas that connect the moments and the
semi-invariants that

", = SE]'D"'“W _ Eﬁl, ey My = slrl].....u. 1) — Egﬁ--
Similarly
ry = séz'['"“'[” = ng Fiz = Sqll.l.ﬂ..,.l ==CDV{§1, gz),
and generally

P = COV(Ey, &p)-

Consequently m 18 the megn-valie vector of ¢ and R is its covariance
ALTIX,

If R is nonsingular, we can obtain this result in a different way. In fact,
in this case £ has a density f(x) given by (6).

A direct calcutation shows that

EE = kaf(x) dx = my, (11)

cov(Ey, &) = f (% — MY — m)f(x) dx = .

4, Let us discuss some properties of Gaussian vectors,

Theorem 1

{a) The components of a Gaussian vector are uncorrelated if and only if they
are independent.

(&) A vector & = (€, ..., &) is Gaussian if and only if, for every vector
A=1(4,,.... 4. &R, the random variable (&, Ay = A& + --- + A&,
has a Gaussian distribution.

Proor. (a) If the components of ¢ = (&, ..., &) are uncorrelated, it follows
from the form of the characteristic function @.(¢) that it is a product of
characteristic functions. Therefore, by Theorem 4 of §12, the components
are independent.

The converse is evident, since independence always implies lack of cor-
relation.

(b) If £ is a Gaussian vector, it follows from (5) that

2
E exp{if(€,A; +--- + A0} = EKP{MZ Ay % (Z "nrlklr)}: te R,
and consequently
(£, 4) ~ -"V(z Ay gy z Prr Ay Af)
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Conversely, to say that the random variable (&, A} = &4, ++-+t Enlln
is Gaussian means, in particular, that

F ﬁxp{iE(ri. L ’D} = expli ¥ AEE, — 4 T AcdcoviGo ).
Since 4y, ..., 4, are arbitrary it follows from Definition 1 that the vector
&= (&, ..., &) is Gaussian.

This compietes the proof of the theorem.

Remark. Let (8, &) be a Gaussian vector with 8 = (f,, ..., 8} and £ =
(£1,..-, &) IF 8 and & are uncorrelated, ie.cov(8;, ) =0, i =1, cos kg
j=1,..., [, they are independent.

The proof is the same as for conclusion (a) of the theorem.

Let &£ = (£,, ..., £,) be a Gaussian vector: let us suppose, for simpiicity,
that its mean-value vector is zero. Ifrank R = r < n, then (as was shown in
§i1), there are » — r linear relations connecting £,, ..., ¢,. We may then
suppose that, say, &,,..., £, are linearly independent, and the others can
be expressed linearly in terms of them. Hence all the basic properties of the

vector £ = £, ..., &, arc determined by the first r components (£,,...,¢,)
for which the corresponding covariance mateix is already known to be
nonsingular.

Thus we may suppose that the original vector £ = {£,, ..., {,)had linearly
mmdependent components and therefore that |R[ > 0.
Let @ be an orthogonal matrix that diagonatizes R,

0RO = D,

The diagonal elements of D are positive and therefore determine the inverse
matrix. Put B = D and

p =B "¢
Then it is casily verified that
Ehf = Eeif™t — e—~{1rzx£:.u‘
i.e. the vector f§ = (§,, . .., B,) is a Gaussian vector with components that are
uncorrelated and therefore (Theorem 1) independent Then if we write

A = @B we find that the original Gaussian vector € = (&,,..., £,) can be
represented as

¢ = AP, ) (12)

where fi = {fi;, ..., f,} is a2 Gaussian vector with independent components,
By ~ A0, 1). Hence we have the following result. Let £ = (£4,..., & }bea
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vector with linearly independent components such that B, =0, k=1,
..., h. This vector is Gaussian if and only if there are independent Gaussian
variables f,,..., B,, B, ~ A0, 1), and a nonsingular matrix A of order n
such that € = AfS. Here R = AAT is the covariance matrix of £.

H|R| # 0, then by the Gram-Schmidt method (see §11)

‘:’k=£k+bh£hr k=1,...,ﬂ, (13)
where since &£ = (&,, ..., &) ~ A0, E) is a Gaussian vector,
k—1
‘Ek = ‘Z (‘fk! EI)Eh (14)
-1
b= 1& ~ &l (15)
and
Ly, &)= F(e), ..., B0 (16)
We see immediately from the orthogonal decomposition (13) that
€ = E(&lEkmys -1 L0 (17)
From this, with (16) and (14), it follows that in the Gaussian case the con-
ditional expectation E{&,|&,_ 1, ..., £,) 15 a linear function of (&4, ..., &_1):
k=1
E(lul8i-1y---2 C1) = Za.-é.-- (18)
=1

(This was proved in §8 for the case k = 2.)

Since, according to a remark made in Theorem 1 of §8, E(&, [ &1, .14 E1)
is an optimal estimator (in the mean-square sense) for &, in terms of
Cgs v ena by, it fOllows from (18} that in the Gaussian case the optimal
estimator 1s finear.

Weshall use these results in looking for optimal estimators of 8=(8,,...,0,)
in terms of & = (£, ..., £,) under the hypothesis that (8, £} is Gaussian. Let

m, = EB, my = E¢
be the column-vector mean values and
Ve =cov(l, 8) = |lcov(d,, )1, 1<i,j<k
Vo =cov(B, £) = [cov(;, &, lgsigsklgji<l,
Vg =cov(, &) = eow(Z, £,  1<ij<!

the covariance matrices. Let us suppose that V., has an inverse. Then we have
the following theorem.

Theorem 2 (Theorem on Normal Correlation). For a Gaussian vector (8, £),
the optimal estimator E(8| &) of B in terms of £, and its error matrix

A = E[0 — E(B1}I[6 — E(S)]T
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are given by the formulas
E(O|8) = mp + VeV '(E — my), (19)
A= Vg — Vo VSV o). (20)

Proor, Form the vector
= (8 — mg) — Ve V' (£ — my). (21)

We can verify at once that Ex(f — m )T = 0, i.e. 5 is not correlated with
(£ — my). Butsince (8, £) is Gaussian, the vector (7, £} is also Gaussian. Hence
by the remark on Theorem 1, p and { — m; are independent. Therefore y and
& are independent, and consequently E(s| &) = E = 0. Therefore

E[P — mgl&] — Vﬁgvﬁ_ﬁl{‘: - mg) = 0.

which establishes (19).
To establish (20) we consider the conditional covariance
cov(, 8]€) = E[(8 — E(B|HE — E@]EYI£]. (22)

Since 8 — E(#|{) = », and 5 and £ are independent, we find that

cov(®, 0| &) = E(yn"|&) = Eny*
= Voo + Var' Ve Vi Ve — 2V VE Vo V'V,

Since cov(0, 0] &) does not depend on “chance,” we have

A = Ecov(f, 8|8 = cov(d, 8| &),
and this establishes (20).

Corollary. Let (8, ¢4, ..., £,) be an (n + 1)-dimensional Gaussian vector, with
E1vvrr, &, independent. Then

= covd, &)

E@B[&;, ..., &) —EB + El VE, (& — EC),
.ﬂ. = ve o = Gﬂvz(ﬂ, 6£)
a; Ve

(cf. (8.12) and (8.13)).

5. Let £4, &,, ... be a sequence of Gaussian random vectors that converge
in preobability to €. Let us show that & is also Gaussian.

In accordance with (b) of Theorem 1, it is enough to establish this only for
random vartables.
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Let m, = E{,, o = V&_. Then by Lebesgue’s dominated convergence
theorem
lim eftme= (423" - [im Eel*n = Eo'™%,
It follows from the existence of the limit on the left-hand side that there are
nurabers m and o? such that

m=limm, o= lim g’
A+ n—=aog

Consequently
Eelts = gitm— (1121022

ie & ~ A(m, 6.
It follows, in particular, that the closed linear manifold #(&,, £,, ...}

generated by the Gaussian variables £,, £,, .. . (see §11, Subsection 5) consists
of Gaussian variabies,

6. We now turn to the concept of Gaussian systems in general,

Definition 2. A collection of random variables £ = (&), where « belongs to
some mdex set A, is a Gaussian system if the random vector (&, ..., £, ) i5
Gaussian for every # = 1 and all indices a,, ..., &, chosen from 9L

Let us notice some properties of Gaussian systems.

(a) If £ = (&), e ¥, is a Gaussjan system, then every subsystem & = (&),
o e W = MU, is also Gaussian.

(b) If &£, e W™, are independent Gaussian variables, then the system
& = (&), ne ¥, is Gaussian.

(©) H& = (&), a e, is a Gaussian system, the closed linear manifold Z(£),
consisting of all variables of the form Y, ¢, £, together with their
mean-square limits, forms a Gaussian system.

Let us observe that the converse of (a) is false in general. For example,
let £, and #, be independent and &, ~ A0, 1), 5, ~ 470, 1). Define the
system

Em e {m, b & =0, 23

(€1 —Imel) & <0

Then it is easily verified that £ and » are both Gaussian, but (£, ) is not.

Let £ = (£,)..n be a Gaussian system with mean-value vector m = (m,),
ae W, and covariance matrix R = (r,p)y geq. where m, = EL,. Then R is
evidently symmetric (r,z = rg,) and nonnegative definite in the sense that
for every vector ¢ = (¢,),.o With values in R¥, and only a finite number of
nonzero coordinates c,,

(Re, €)= ) ropc,cy = O, (24)
a8
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We now ask the converse question. Suppose that we are given a par E-IIIEt_Ef
set 9 = {o}, a vector m = (m,),.o and a symmetric nonnegative definite
matrix R = (r.p). g Do there exist a probability space (£, %, P) and a
(Gaussian system of random variables & = (£,), .9 On it, such that

El. = m,,
GDU(&E, éﬂ) = rg.ﬂ: &, ,BE m?
If we take a finite set &, ..., &, then for the vector m = [m,,,_. N
and the matrix B = (r,0), & f =@y, ..., ®,, we can construct in R” the

Gaussian distribution F,, . (X;, ..., X} with characteristic function

o) = exp{i(t, M) — HRe. )}, t = (g5 L)
It is easily verified that the family
{FapoaX1s - a XY 0y € U

is consistent. Consequently by Kolmogorov's theorem (Theorem 1, §9,
and Remark 2 on this) the answer to our question i5 positive,

7. If W= {1, 2 ..}, then in accordance with the terminology of §5 the
system of random variables & = (£,), .« 18 a random sequence and is denoted
by & = (&, €;,...) A Gaussian sequence is completely described by its
mean-value vector m = (my, m,,...) and covariance matrix R = [ry,
ry = cov(fy, £). In particular, if ry = 6}d;, then &= (£,,&,...) i a
Gaussian sequence of independent random variables with & ~ A (m;, ¢?),
P> 1.

When U = [0, 1], [0, c0), (—<c0, c2), ..., the system £ = (£}, te®, 152
random process with continuous time.

Let us mention some examples of Gaussian random processes. If we take
their mean values to be zero, their probabilistic properties are completely
described by the covariance matrices ||r,ll. We write (s, ) instead of ry
and call it the covariance function.

Examreie 1. If T = [0, co) and
r(s, £) = min(s, 1), . (2%)

the Gaussian process £ = (£,);. ¢ with this covariance function (see Problem
2) and &, = 0 is a Brownian motion or Wiener process.

QObserve that this process has independent increments; that is, for arbitrary
ty << ty < +-- < ¢, the random variables

ﬁlz - lﬁll! ey g:n - gln—l

are independent. In fact, because the process is Gaussian it 18 encugh to
verifly oniy that the increments are uncorrelated. But if s < [ < 4 < v then

E[ﬁl - 'ﬁs] [éu - ‘:u] = [?"(I, U) - .?'(L u}] - [?"(S, U} - I'(S, H)]
={t—f—(s—5)=0.
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ExampLE 2, The process £ = (&), 0 < ¢ < 1, with {5 = 0 and
r(s, 1) = min(s, 1) — st (26)

is a conditional Wiener process (observe that since #{1, 1) = 0 we have
P, =0)=1)

ExaMPLE 3. The process & = (&), — o0 < t < c0, with

Hs, 1) = e~ k=l (27}
is 4 Gauss—Markov process.
8. PROBLEMS
i. Let {,, £z, &5 be independent Gaussian random variables, &; ~ A0, 1). Show that
ﬁl + EZ':'a — ‘4/-{0‘ 1)

1+ &

(In this case we encounter the interesting problem of describing the nonlinear
transformations of independent Gaussian variables &, ..., €, whose distributions

are still Gaussian.)

2. Show that (25}, (26) and (27) are nonnegative definite {and consequently are actually
covariance functions).

3. Let A be an i x n matrix. An » x m matrix A® is a pseudoinverse of A if there are
matrices UF and V such that

AA®A = A, A® = AT = ATV,
Show that A% exizsts and is unique.

4, Show that (19} and (20} in the theorem on normal correlation remains valid when
V, is singular provided that V,,' is replaced by V.

5 Llet (8, &)= (By,..-, Bp: €4, .-, &) be a Gaussian vector with nonsingular matrix
A = Vg — VIV, Show that the distribution function

PO <ald)=P,£a,....8h £a[d) '
has {(P-a.5.) the density p{ay, . .., a,| ) defined by

|A~ 17
(2m)*2
6. {S. N.Bernstein). Let £ and 5 be independent identically distributed random variabies

with finite variances. Show that if £ + # and & — » are independent, then ¢ and 5
are (Gaussian.

exp{—Ha — E(|£)'A™ Ha — E(BI1{N}-




CHAPTER 1II
Convergence of Probability Measures.
Central Limit Theorem

§1. Weak Convergence of Probability Measures and
Distributions

1. Many of the fundamental results in probability theory are formulated as
limit theorems. Bernoulli’s law of large numbers was formmuilated as a limit
theorem; so was the De Moivre—Laplace theorem, which can fairly be calied
the origin of 4 genuine theory of probability and, in particular, which led the
way to numerous investigations that ctarified the conditions for the validity
of the central limit theorem. Paisson’s theorem on the approximation of the
binomial distribution by the “Poisson” distribution in the case of rare events
was formulated as a limit theorem. After the example of these propositions,
and of results on the rapidity of convergence in the De Moivre—Laplace and
Poisson theorems, it became clear that in probability it is necessary to deal
with various kinds of convergence of distributions, and to establish the rapid-
ity of convergence comnected with the introduction of various “natural”
measures of the distance between distributions. In the present chapter we
shall discuss some general features of the convergence of probability distribu-
tions and of the distance between them. In this section we take up guestions
in the general theory of weak convergence of probability measures in metric
spaces. The De Moivre—Laplace theorem, the progenitor of the central limit
theorem, finds a natural place in this theory. From §3, it is clear that the
method of characteristic functions 15 one of the most powerful means for
proving limit theorems on the weak convergence of probability distributions
in R”. In §6, we consider questions of metrizability of weak convergence.
Then, in §8, we turn our attention to a different kind of convergence of
distributions {stronger than weak convergence), namely convergence in vari-
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ation. Proofs of the simplest results on the rapidity of convergence in the
central limit theorem and Poisson’s theorem will be given in §§10 and 11.

2. We begin by recalling the statement of the law of large numbers {Chapter
I, §5) for the Bernouili scheme.

Let &, &,,... be a seguence of independent identically distributed
random variables with P(&; = 1) =p, P, =0 =g, p + g = 1. In terms
of the concept of convergence in prebability (Chapter 11, §10), Bernoulii’s
law of large numbers can be stated as follows:

S o
_n._;. —r 1
" v, H— o0, (1)

where S, = €, + --- + &,. (It will be shown in Chapter IV that in fact we
have convergence with probability 1.)
We put

F.ix)= P{% < x},

I, x=p,
F o)
x) {[}, X < p,

(2)

where F(x) is the distribution function of the degenerate random variable
£ = p. Also let P, and P be the probability measures on (R, #(R)) correspond-
ing to the distributions ¥, and F.

In accordance with Theorem 2 of §10, Chapter I, convergence in probabil-
ity, S,/ B p, implies convergence in distribution, S,/r % p, which means that

Ef(%)-—rEf(p), H— o0, (3)

for every function f = f{x) belonging to the class C(R) of bounded continu-
ous functions on R.
Since

ef(2) = [ repan  err= [ roran,

(3) can be written in the form

J;_, J(x)Pfdx) - L fOOP(dx),  feC(R), (4)
or (in accordance with §6 of Chapter II) in the form
I J(x) dF (x) - L f()dF(x), feC(R) (3)
R

In analysis, (4) is called weak convergence (of P, to P,n — co) and written
P, = P, It is also natural to call (5) weak convergence of F, to F and denote
it by F, 5 F.
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Thus we may say that in a Bernoulli scheme

ﬁ—':rp:Fn—?rF. (6)
H

It is also easy to see from (1) that, for the distribution functions defined
in (2},
F(x) — F(x), n— o,

for all points x € R except for the single point x = p, where F(x) has a dis-
continuity.

This shows that weak convergence F, — F does not imply pointwisc
convergence of F(x) to F(x), n — oo, for all points x £ R. However, it turns
out that, both for Bernouili schemes and for arbitrary distribution functions,
weak converpence is equivalent (see Theorem 2 helow) to “convergence
in general” in the sense of the following definition.

Definition 1. A sequence of distribution functions {F,}, defined on the real
line, converges in general to the distribution function F {notation: F, = F)
ifasn = oo
Fx)—~ F(x), x€PAF),
where P(F) is the set of points of continuity of ¥ = F(x).
For Bernoulli schemes, F = F(x) is degenerate, and it is easy to see
{sce Problem 7 of §10, Chapter IT) that

L]

{Fn*::-F]==-(ﬂ—Ebp).

Therefore, taking account of Theorem 2 below,

n

(B2 0) =2 Do =n=(E)) )

and consequently the law of large numbers can be considered as a theorem
on the weak convergence of the distribution functions defined in (2).
Let us write

F(x)} = F{S" i P :-:},

~/ heg

F(x) = L f e dy, (8)

Jn

The De Moivre-Laplace theorem (§6, Chapter I) states that F {x) — F(x)
for all xeR, and consequently F, = F. Since, as we have observed, weak
convergence £, > F and convergence in general, F, = F, are equivalent,
we may therefore say that the De Moivre-Laplace theorem i1s also a theorem
on the weak convergence of the distribution humctions defined by (8).
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These examples justify the concept of weak convergence of peobability
measures that will be introduced below in Definition 2. Although, on the
real line, weak convergence is equrvalent to convergence in general of the
correspondmg distribution functions, 1t 18 preferable to use weak convergence
from the beginning. This is because in the first place it is easier to work with,
and in the second place it remains useful in more general spaces than the
real line, and in particular for metric spaces, including the especiaily impor-
tant spaces R", R™, C, and [ (see §3 of Chapter II}

3, Let (E, £ ) be a metnic space with metric p = p(x, ) and c-algebra &
of Borel subsets generated by the open sets, and let P, P,, P,, ... be proba-
bitity measures on (E, &, p).

Definition 2. A sequence of probability measures {P_} converges weakly to the
probability measure P (notation: P, = P) if

Lf(x)P..(dx} - Lf{x)F'(dx) ©)

for every function f = f(x) in the class C(E) of continuous bounded func-
tions on E.

Definition 3. A sequence of probability measures {P,} converges in general
to the probability measure P (notation: P, = P) if

PAA) = P(4) (10)
for every set A of & for which
P(8A) = 0. (11)
(Here #A4 denotes the boundary of A:
84 = [A] n[A],

where [ 4] is the closure of A.)

The following fundamental theorem shows the equivalence of the con-
cepts of weak convergence and convergence in general for probability
measures, and contains still another equivalent statement.

Theorem 1. The following statements are equivalent.

M P,%P.

D Hm PA) < P(A), A closed.
(IID) lim P{A) = P(A), 4 open.
av) P, = P.
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Proor. (I)=-(II). Let A be closed, f{x) = { (x)and

f(x) = 9(% o(x, A)) , &=0,

where
plx, A) = inf{p(x, y): ye 4},

1, t =<0,
gty =31 —¢, 0= <1,
0, t = 1.

Let us also put
A, = {x: p(x, A} < &}

and observe that 4, [ Aase] 0.
Since f(x) is bounded, continuous, and satisfics

PLA) = L 1P () < Lﬁ(xmdx),
we have
jim P (4) < Tim f [P (d) = J L) < P(4) | P(A), 200,

which establishes the required implication.

The implications (I} = (III) and (IIT) = (II) become obvious if we take
the complements of the sets concerned.

(IIT) = (IV). Let A° = A\8A4 be the interior, and [4] the closure, of A4.
Then from (I1), (IIT), and the hypothesis P(8A4) = 0, we have

lim P (A} < fim P,({A]) < P(LA]) = P(4),
lim P.(A) 2 lim P,(A4%) 2 P(4°) = P(4),

and therefore P.(4) — P{A) for every A such that P(84) = 0.
{IV) = (I). Let f = f(x) be a bounded continuous function with | f(x)] <

M. We put
D={teR:P{x.f(x) =1t} # 0}
and consider a decomposition T, = (f;,¢;,.--, H)of [—M, M]:

M=t <ty cte=M, k=1,

with r;¢ D, i =0, 1, ..., k (Observe that D is at most countable since the
sets f ~1{t} are disjoint and P is finite.)

Let B; = {x: t; < f(x) < £;,4} Since f{x) is continucus and therefore
the set £~ (t;, t;4;) is open, we have 28, = f~*{t;} v f " {t1+1} The points
£, ti+1 ¢ D; therefore P{(ORB)) = 0 and, by (IV),
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El tP.(Bo — kg t: P(By). (12)
But

k-1

‘ f Jx)P (dx) — f f (x)P(dx)| < 1 J FOOPLEx) — 3 ;P (B)
E £ E i=¢

+ kf 4P B;) — hf t;P(B)
i=0 i=0D

+| 5 6P@) — | e

<2 max (., —1)
Dsigk—1
k=1 k=1
E_Z;,) LPAB) — 3 [iF(Bi)‘r

=D

+

whence, by (12), since the T, (k = 1) are arbitrary,

lim J- FOOP (dx) = J JSxIP(dx).
# vE E
This completes the proof of the theorem.

Remark 1. The functions f{x) = I {x) and f(x) that appear in the proof
that (I} = (II) arc respectively upper semicontinuous and uniforinly continuous.
Hence it is easy to show that cach of the conditions of the theorem is equiv-
alent to one of the following:

(V) [E JFOOP(x) dx — IE FOP(dx) for all bounded uniformly continuous
Jx);
(VD) Tim [ f(x)P,(dx) < g f(x)P(dx) for all bounded f(x)} thar are upper
semicontinuous (IIm f{x,) < f{x), x, — x);
(VID) lim [ f (eI (dx) = [ FOP(dx) for all bounded f(x) that are lower
semicontinuous (hm f(x,) = f(x), x, = x).

Remark 2.Theorem 1 admits a natural generalization to the case when the
probability measures P and P, defined on (E, &, p) are replaced by arbitrary
(not necessarily probability} finite measures p and u,. For such measures
we can introduce weak convergence p, —u and convergence in general
H, = p and, just as in Theorem 1, we can establish the equivalence of the
fellowing conditions:

%) > 5

{I1*¥) him p(A) < KA), where A is closed and 11, (E) — p(E);
(III*) tim p(A) = (A), where A is open and p,(E) — ({E);
(IV¥) ptp = 1.
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Each of these is equivalent to any of (V*), (VI*), and {VII*), which are
(V). (VI), and (VII}) with P, and P replaced by y, and p.

4. Let (R, #B(R)) be the real line with the system @(R) of sets generated by
the Euclidean metric p(x, ¥} = |x — y| (compare Remark 2 of subsection 2
of §2 of Chapter H). Let Pand P, r = 1, be probability measures on (R, B(R}}
and let F and F,, n = 1, be the corresponding distribution functions.

Theorem 2. The following conditions are equivalent:

(1) P, 5P,
(2) P,=P,
{3} Fﬂ‘._‘-‘; F!
{(4) F,=F.

PrOOF. Since (2) <+ {1) <= (3), it is enough to show that (2) < {4).
If P, = P, then in particular

P,{~ o0, x] = P(—c0, x]

for all x e R such that P{x} = 0. But this means that F, = F.

Now let F,= F. To prove that P, = P it is enough (by Theorem 1) to
show that lim,P,{A4) > P(A4) for every open set A.

Il A is open, there is a countable collection of disjoint open intervals
1, 15, ... (of the form (a, b)) such that 4 = ;2 I;. Choose & > O and in
each imterval I, = (a,, b,) select a subinterval I} = (a, B.] such that 4,
b, € P{F) and P(I,) < P(I;) + £-27* (Since F(x) has at most countably
many discontinuities, such intervals I, ¥ = 1, certainly exist.}) By Fatou’s
lemma,

lim P,(4) = lim 3" P13 > 3 lim P,y

n =1 k=1 =»
> 3. LimP,[})
k=1 n

But
P(Iy) = F by} — Fla)— F(b) — Fla,) = P{IL).
Therefore
lim P, {4) = CZD: P} = i (PU) —5: 275 =P4) — e
e k=1 k=1

Since & > 0 is arbitrary, this shows that lim, P(A4) = P(A4)if A is open.
This completes the proof of the theorem.

5. Let (E, £) be a measurable space. A collection ,(E) = £ of subsets is
a determining class whenever two probability measures P and Q on (E, &)
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satisfy
P(A)=Q(4) forall AeAHE)
it follows that the measures are identical, 1.2,
PA)=Q(A) Jforall Aed

If (E, & p) is a metric space, a collection J#(E) < € is a convergence-
determining class whenever probability measures P, P,, P,, ... satisfy

P (4) — P(A) Jor all Ae (E) with P{@A) =10
1t follows that
P (4) = P(4) forall AeE with P{&A4) =0,

When (E, €) = (R, #(R)), we can take a determining class 5,(R) to be
the class of “elementary” sets # = {(—o0, x], xe R} (Theorem 1, §3,
Chapter II). It follows from the equivalence of (2) and {4) of Theorem 2
that this class 3 is also a convergence-cletermining class.

It is natural to ask about such determining classes in more general spaces.

For R”, n = 2, the class 5 of “clementary™ sets of the form (—co0, x] =
{~e0, %] x -+ x {—o0, x,], where x = (x,,..., x,)€R" is both a deter-
mining class (Theorem 2, §3, Chapter II) and a convergence-determining
class (Problem 2).

For R*® the cylindrical sets % (R™) arc the “elementary™ scts whose
prebabilities uniquely determine the probahilities of the Borel sets (Theorem
3, §3, Chapter II). It turns out that in this case the class of eylindrical sets is
also the class of convergence-determining sets (Problem 3). Therefore
A" (R*) = H ((R®).

We might expect that the cylindrical sets would still constitute deter-
mining classes in more general spaces. However, this is, in general, not the
case.

i
|
|
I
|
|
|
|
|
|
|
|
|
}

I 2fn 1
Figure 35
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For example, consider the space (C, #,(C), p) with the uniform metnc
p (see subsection 6, §2, Chapter ). Let P be the probability measure concen-
trated on the element x = x(t) =0, 0 < ¢ < 1, and let P,, n = 1, be the
probability measures each of which is concentrated on the element x = x,(2}
shown in Figure 35. It is easy to see that P,(4) — P(A) for ail cylindrical
sets A with P(84) = 0. But if we consider, for example, the set

A={aeC:lof)] <3,0<1 <1} ed(C),

then P(2A4) = 0, P,{A) = 0, P(A) = I and consequently P, = P.
Therefore 547 ,{(C) = Bp(C) but K ({C) = () (with strict inclusion).

6. PROBLEMS

1. Let us say that a function F = F(x), defined on R*, is confinuous at x € R provided
that, for every £ = 0, there is a & > 0 such that [F(x} — F())| < efor all y € R" that
sattsfy

x—de<y< x4+ dg

where ¢ = (1,...,1) € R". Let us zay that a sequence of distribution functions {F,}
converges in general to the distribution function F (F, = F) if F, (x) - F(x), for all
points x € R® where F = F(x) is continuouns.

Show that the conclusion of Theorem 2 remains valid for R", k> 1. {Seethe remark
on Theorem 2.}

2. Show that the class ¥ of “elementary " sets in R* is a convergence-determining class.

3. Let E be one of the spaces R, C, or I, Let us say that a sequence {P,} of problem
measures (defined on the s-algebra & of Borel sets generated by the open sets) con-
verges in general In the sense of finite-dimensional distributions to the probability
meastre P (notation: P, £ P)if P,(A) — P(A), n = oo, for all cyfindrical sets A with
P(3A) = 0.

For R=, show that

(P, L P)=(P,=P).
4. Let F and G be distribution functions on the real line and let
LF.G)=infih > 0: F(x — ) — h < G(x) < F(x + ) + H}

be the Lévy distance (between F and G). Show that convergence in general is equiva-
lent to convergence in the Lévy metric:

(F, = F}<L{F,, F} — 0.

5. Let F, = F and let F be continuous. Show that in this case F (x) converges uniformly
to F{x):

sup |F (x) — F(x)] =0, »n- co.

6. Prove the siatement in Eemark 1 on Theorem 1.
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7. Establish the equivalence of (1*)~(TV*) as stated in Remark 2 on Theorem 1.

8. Show that P, 5 P if and only if every subsequence {P,.} of {P,} contains a sub-
sequence {P,~} such that P_.. 5 P.

§2. Relative Compactness and Tightness of Families
of Probability Distributions

1. If we are given a sequence of probability measuvres, then before we can
consider the question of its (weak) convergence to some probability measure,
we have of course to establish whether the sequence converges in general
to some measure, or has at least one convergent subsequence.

For example, the sequence {P,}, where P, = P,P,,,., = Q,and Pand Q
are different probability measures, is evidently not convergent, but has the
two convergent subsequences {P,, } and {P;,.4 -

It iz easy to construct a sequence {P,} of probability measures P, 1 2 1,
that not only fails to converge, but contains no convergent subsequences at
all. All that we have to do is to take P, n = 1, to be concentrated at {n} (that
is, P, {n} = 1).Infact, sincelim, P, {a, &#] = 0 whenever # < b, a limit measure
would have to be identically zero, contradicting the fact that 1 = P (R) 4 0,
n — oo, It is interesting to observe that in this example the corresponding
sequence {F,} of distribution functions,

Fix) = {1’ X2

0, x<n

is evidently convergent: for every x € R,
F(x) = G(x)=0.

However, the limit fumction G = G(x) is not a distnbution function (in the
sense of Defmition I of §3, Chapter IT).

This instructive example shows that the space of distribution functions is
not compact, It also shows that if a sequence of distribution functions is to
converge te a limit that is also a distribution function, we must have some
hypothesis that will prevent mass from “escaping to infinity.”

After these introductory remarks, which illustrate the kinds of difficulty
that can arise, we turn to the basic definjtions.

2. Let us suppose that all measures are defined on the metric space (E, £, p).

Definition 1. A family of probability measures @ = {P,;ae W} is relarii:efy
compact if every sequence of measures from @ contains a subsequence which
converges weakly to a probability measure.
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We emphasize that in this definition the limit measure is to be a probability
measure, although it need not belong to the original class &8 (This is why the
word “relatively™ appears in the definition.)

It is often far from simple to verify that a given family of probability
measures is relatively compact. Consequently it is desirable to have simple
and useable tests for this property. We need the following definitions.

Definition 2. A family of probability measures & = {P,; « € U} is right il
for every e > 0, there is a compact set K = FE such that
supP(ENK} < & 0y
sl
Definition 3. A family of distribution functions F = {F,; o € Y} defined on
R". n = 1, is relatively compact {or tight) if the same property is possessed by
the family 2 = {P,; « € W} of probability measures, where P, is the measure
constructed from F,.

3. The foliowing result is fundamental for the study of weak convergence of
probability measures.

Theorem 1 (Prokhorov’s Theorem). Let = {P,;x e U} be a family of
probability measures defined on a complete separable metric space (E, &, p).
Then P is relatively compact if and only if it is tight.

We shall give the proof only when the space is the real line. (The proof can
be carried over, almost unchanged, to arbitrary Euclidean spaces R”, n > 2.
Then the theorem can be extended successively to R¥, to s-compact spaces;
and finally to general complete separable metric spaces, by reducing each
case to the preceding one.)

Necessity. Let the family & = {P,: a € ¥} of probability measures defined
on (R, $(R)} be relatively compact but not tight. Then there is an g > 0 such
that for every compact K = R

sup P,(RA\K) = &,

and therefore, for each interval f = (q, b),

sup P{R\J) > &

It follows that for every interval I, = (—n, 1), n = 1, there is a measure P,
such that

P, (R\1)) > &

Since the original family 22 is re]atwely compact, we can select from {P, },.
a subsequence {P,_ } sach that P, * Q, where Q is a probability measure.
Then, by the aqunralence of conditions (I) and (I) in Theorem 1 of §1, we
have

im P, (R\L) < Q(R\L,) @

k=
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for every n = 1. But Q(R\I )} | 0, n = oo, and the left side of (2) exceeds
¢ = (. This contradiction shows that refatively compact sets are tight.

To prove the sufficiency we need a general resuit (Helly's theorem) on the
sequential compactness of families of generalized distribution functions
(Subsection 2 of §3 of Chapter IT).

Let % = {G} be the collection of generalized distribution functions
¢ = G(x) that satisfy:
(1) G(x) is nondecreasing;
(2) 0 < G(—o0), G(+0) < 1;
(3) G(x) is continupus on the right.

Then # clearly contains the class of distribution functions % = {F}
for which F(—o) = 0 and F(+o0) = L

Theorem 2 (Helly’s Theorem). The class # = {G} of generalized distribution
functions is sequentially compact, i.e., for every sequence {G,} of functions
Jrom # we can find a function G e . and o sequence {n,} © {n} such that

G, (x) » Hx), k-,
for every point x of the set PAG) of points of continuity of G = G(x).
ProoF. Let T = {x, X,,...} be a countable dense subset of R. Since the
sequence of numbers {G{x,)} 15 bounded, there is a subsequence N, =
{n'M, ni", ...} such that G,5(x,) approaches a limit g, as i — <. Then we
extract from N, a subsequence N, = {n{® ni? ...} such that G,m(x,)

approaches a limit g, as i — oo and so on.
On the set T & R we can define a function G.(x) by

G{x) = ai, x; T,

and consider the “Cantor” diagonal sequence N = {ni), nt?, .. .}. Then, for
gach x; € T, as m — <o, we have

Gmi(xg) — G(x)-
Finally, tet us define G = G(x) for all x € R by putting

G(x) = inf{Gy): ye .y > x}. 3

We claim that G = G(x) is the required function and G .(x) — G{x) at all
points x of continuity of G.

Since all the functions G, under consideration are nondecreasing, we have
Gk X) £ Gyra(y) for all x and y that belong to T and satisfy the inequality
x = y. Hence for such x and y,

Grlx) < Gl(y).

It foliows from this and (3) that & = G{x} is nondecreasing.
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Now et us show that it is continuous on the right, Let x, | x and d =
lim, G{(x,). Clearly G(x) < d, and we have to show that actuailly G(x) = d
Suppose the contrary, that is, let G{x) < d. It follows from (3) that there 15
ayeT, x <y, such that G{y) < d. But x < x, < y for sufficiently large k,
and therefore G(x,)} < GH{y) < d and lim G(x;) < d, which contradicts
d = lim, G{x,). Thus we have constructed a function G that belongs to .#.

We now establish that G m{(x®} — G(x°) for every x° & P{G).

If x° < ye T, then

lim G“gnm(xnj = lim Gn{gﬂ(.}"} = GT[P)u

Ly )

whence
Im Gyra(x°} < inf{G7(y}: ¥ > x°, y € T} = G(x"). 4

On the other hand, let x! < y < x° y e T. Then
G{x'} £ G7(3) = hm Gu(y) = lim Go(y) < Lim G gl(x")-

Hence if we let x! T x* we find that
G(JC“ )= lle G,,;w(xﬂ)v (5)

But if G(x® —) = G(x°) we can infer from (4) and (5) that G p.{x?) = G(x),
m—s oo,
This completes the proof of the theorem.

We can now complete the proof of Theorem 1.

Sufficiency. Let the family 22 be tight and let {P,} be a sequence of prob-
ability measures from 22 Let {F,} be the corresponding sequence of distri-
bution functions.

By Helly’s theorem_ there are a subsequence {F,, } = {F,} and ageneralized
distribution function G € .# such that F, (x) = ({x) for x € PAG). Let us
show that because 9 was assumed tight, the function G = G{x) is in fact a
genuine distribution function (G{—o0) = 0, G{+ a0} = 1).

Take e > 0, and let I = (g, £] be the interval for which

sup P{R\I) < g,
or, equivalently, )
1 —g < PJab], n =l
Choose points &', b’ € PAG) such thata’ < g, " > b. Then | — 5 < P, (a,}b]
< P,a, b] = F, (b)) — F, (&) — G(b') — G{a'). It follows that G(+ co) —

G{—o0) = 1, and since 0 < G{—o0) < G(+o0) < 1, we have G{—c0)} =0
and G{+w) = L
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Therefore the limit function G = G{x) is a distribution function and
F,, = G. Together with Theorem 2 of §1 this shows that P, * Q, where Q
is the probability measure corresponding to the distribution function G.
This completes the proof of Theorem 1.

4. PROBLEMS
1. Carry out the proofs of Theorems 1 and 2 foxr R, n = 2,

2. Let P, be a Gausslan measure on the real line, with parameters m_ and ¢2, a ¢ W,
Show that the family 2 = {P_; @ ¢ 9} is tight if and only if

lm[<a ai<bh aecll

3. Construct examples of tight and noatight families # = {P,; « ¢ U} of probability
measures dafined on (R, Z(R=).

§3. Proofs of Limit Theorems by the Method of
Characteristic Functions

1. The proofs of the first tunit theorems of probability theory-—the law of
large numbers, and the De Mavie—Laplace and Poisson theorems for
Bernoulli schemes—were based on direct analysis of the limit functions of the
distributions F,, which are expressed rather simply in terms of binomial
probabilities. (In the Bernoulli scheme, we are adding random variables that
take only two values, so that in principle we can find F, explicitly.} However,
it is practically impossible to apply a similar direct method to the study of
more complicated random variables.

The first step in proving limit theorems for sums of arbitrarily distributed
random vasiables was taken by Chebyshev. The inequality that he discovered,
and which is now known as Chebyshev's inequality, not only makes 1t
possible to give an elementary proof of James Bernoulli’s law oflarge numbers,
but also lets us establish very general conditions for this law to hold, when
stated in the form

S, ES
P{ L L

n n
for sums S, = &, + -+ + &,, 1 = 1, of independent random variables, (See
Problem 2.)

Furthermore, Chebyshev created {and Markov perfected) the “method of
moments” which made it possible to show that the conclusion of the De
Moivre-Lapiace thecrem, written in the form

P{ufix}—-r 1 f e T gy ')
VS, S22 -

zs}—rﬂ, n—co, everye>0, (1)
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is “universal,” in the sense that it is valid under very peneral hypotheses
concerning the nature of the randomm variables. For this reason it 18 known as
the central limit theorem of probability theory.

Somewhat later Lyapunov proposed a different method for proving the
central Hmit theorem, based on the idea (which goes back to Laplace) of the
characteristic function of a probability distribution. Subsequent develop-
ments have shown that Lyapunov’s method of characteristic functions is
extremely effective for proving the most diverse limit theorems. Consequently
it has been extensively developed and widely applied.

In essence, the method is as follows.

2, We already know (Chapter I, §12) that there is a one-to-one correspond-
ence between distribution functions and characteristic functions. Hence we
can study the properties of distrtbution functions by using the corresponding
characteristic functions. It 15 a fortunate circwmstance that weak convergence
F, 5 F of distributions is equivalent to pointwise convergence ¢, —» ¢ of
the corresponding characteristic functions. Moreover, we have the following
result, which provides the basic method of proving theorems on weak con-
verpence for distributions on the real line.

Theorem 1 (Continuity Theorem). Let {F,} be a sequence of distribution
Junctions F = F (x), xe R, and let {¢,} be the corvesponding sequence of
characteristic fitnciions,

@) = I e"* dF (x), te R

(1) If F, 5 F, where F = F(x) is a distribution function, then o t) = ¢X1),
t € R, where ¢{t) is the characteristic fimction of F = F(x).
(2) If lim, ¢ (t) exists for each t € R and @(t) = lim,_ ,[t} is continwous al
t = 0, then p(t) is the chargcteristic function of a probability distribution
F = F(x), and
F,5 F,

The preof of conclusion (1) is an immediate consequence of the definition
of weak convergence, applied to the functions Re ™ and Im %~
The proof of (2) requires some preliminary propositions.

Lemma 1, Let {P,} be a tight family of probability measures. Suppose that
every weakly convergent subseguence {P,} of {P,} converges to the same
probability measure P. Then the whole sequence {P,} converges to P.

Proor. Suppose that P, 4 P. Then there is a bounded continuous function
f = f{x) such that

ff(x)Pn(dx) 4 f SOIP(x).
B R
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It foliows that there exist £ > 0 and an infinite sequence {n'} < {n} such
that

=& 0 (3)

Lf(xm-tdx) - Lf(x}F'{dx}

By Prokhorov’s theorem (§2) we can select a subsequence {F,.} of {P,.} such
that P,- 5 Q, where Qisa probability measure.
By the hypotheses of the lemma, Q = P, and therefore

[ 1P | seapin,

which leads to a contradiction with (3). This completes the proof of the
lemma,

Lemma 2. Let {P,} be a tight family of probability measures on (R, ZB(R)).
A necessary and sufficient condition for the sequence {P,} to converge weakly
ro a probability measure is that for each t € R the limit lim,_ o (t) exists, where
@, (1) is the characteristic fumction of P,:

20) = [ € ()

R
Proor. If {P,} is tight, by Prohorov’s theorem there is a subsequence
{P,.} and a probability measure P such that P,. > P. Suppose that the whole
sequence {P,} does not converge to P (P, % P). Then, by Lemma 1, there is a
subsequence {P,.} and a probability measure @ such that P,- 5 @, and

P#Q
Now we use the existence of lim,, ¢, (¢} for each ¢t € R. Then

lirn f 5P (dx) = lim f P, (dx)
" R " R
and therefore
f e"*P{dx) = I é*QMdx), reR
R R

But the characteristic function determines the distribution uniquely
(Theorem 2,§12, Chapter II). Hence P = Q, which contradicts the assumption
that P, % P.

The converse part of the lemma follows immediately from the definition
of weak convergence.

The following lemma estimates the “tails” of a distribution function in
terms of the behavior of its characteristic function in a neighborhood of
Zero.

Lemma 3. Let F = F(x) be a distribution function on the real line and let
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@ = @{t) be its characteristic function. Then there is a constant K > 0 such
that for everya > 0

f dF(x) < K r[l — Re g(2)] dt. (4)
|%]=1f2 a Jn

Proor. Since Re ¢(f) = [®,, c0s tx dF{x), we find by Fubini’s theorem that

é I:[l — Re ¢()] dt = % J:h - {1 — cos x) dF{x}] dt

--.-.m

_ j e J'“ﬂ — cos 1) dt] AF(x)
—m _ﬂ L1]

_ J"” (1 _sin ax) JF()
. ax

> inof (1—w)-f dF(x)
Iylz1 L4 lax] 21

_1 dF (),

|%]=1f2

where

1 LY
— = inf(l—m)zl—sinlz%,
K =1 y

so that (4) holds with K = 7. This establishes the lemma.

Proof of conclusion (2) of Theorem 1. Let ¢,(1) — (t), 2 — o0, where
©(t) is continucus at 0. Let us show that it follows that the family of prob-
ability measures {P_} is tight, where P, is the measure corresponding to F,,.

By (4) and the dominated convergence theorem,

11 K re

K
— = J:[l — Re ¢(r)] dt

45N — &0,
Since, by hypothesis, (r) is continuous at 0 and o(() = 1, for every & > 0
there is an @ > 0 such that

pn{nx(— ’ ;]'-)} <z

for all n = L. Consequently {P,} is tight, and by Lemma 2 there is a prob-
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ability measure P such that
P, = P.

Hence
o ff) = J. e P {dx) — J. " P(dx),

but also ¢, (t) — o). Therefore o(t) is the characteristic function of P.
This completes the proof of the theorem.

Corollary. Let {F,} be a sequence of distribution functions and {¢@,} the
corresponding sequence of characteristic functions. Also ler F be a distribution
function and @ its characteristic finction. Then F, 5 F if and only if @, (1) —
ot} for ali t € R.

Remark. Let #, #,, 1,, . .. be random variables and F,_ 5 F,. In accordance
with the definition of §10 of Chapter IL, we then say that the random variabies
H1. 72, - - CORVErge t0 1 in distribution, and write 57, S 4.

Since this notation is seli-explanatory, we shall frequently vuse it instead
of F, 3 F, when stating limit thcoicms.

3. In the next section, Theorem 1 will be applied to prove the central limit
theorem for independent but not identicalty distributed random variables.

In the present section we shall merely apply the method of characteristic
functions to prove some simple limit theorems.

Theorem 2 (Law of Large Numbers). Let &, &, , . .. bea seguence of independent
identically distributed random variables with E|&)| < o0, 8, =&, +--- + &,
and EE, = m. Then §,/n 5 m, thar is, for every ¢ > 0

F’{ %—m‘zs}—rﬂ, H — O,

ProOF. Let o(f) = E€* and @, ,{t) = E¢™. Since the random variables

are independent, we have
t L

by (IL12.6). But according to (IL12.14)

@(t) = 1 + itm + o(t), t — 0.
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Therefore for each given r e R
(5} =1+ im o)
¢l-)=1+i-m+eo|=-), nr—oo,
n K n
and therefore
At} = l+f£m+o nr gm
Ps = " n .
The function @{t) = ¢"™ is continuous at 0 and is the characteristic function

of the degenerate probability distribution that is concentrated at m. Therefore

Snd

— —
n

and consequently (see Problem 7, §10, Chapter II)

This completes the proof of the theorem.
Theorem 3 {Central Limit Theorem for Independent Identically Distributed
Random Variables). Let &,, &,,... be a sequence of independent identically
distributed (nondegenerate) randowm variables with E& < o and S, =
&y + -+ &, Thenasn — co

P{-Si‘—'ﬂ < x} 4 ®(x), xeR (5)

A NP

whepe
“x) = E J. g u |I' du.
PrOOF. Let EE, = m, V&, = ¢? and
() = Eg"t5r =,
Then if we put
5, —ES
@t} =E exp{ir —-_}
_ VS,
we find that

)



§3. Proofs of Limit Theorems by the Method of Characteristic Functions 327

But by (11.12.14)

2.2

o) =1-Z—+ o t-0

2 H
Pa(0) = [1 — % + n(%)] — e PR,

as n — oo for fixed ¢

The function e~ /% is the characteristic function of a random variable
(denoted by A0, 1)) with mean zero and unit variance. This, by Thearem 1,
also establishes (5). In accordance with the remark in Theorem 1, this can
also be written in the form

Therefore

s, —ES, ,
s A0, 1). (6)

"

This completes the proof of the theorem.

The preceding two theorems have dealt with the behavior of the prob-
abilities of (normalized and symmetrized) sums of independent and identically
distributed random variables. However, in order to state Poisson's theorem
(86, Chapter I) we have to use a more general model.

Let us suppose that for cach n > 1 we are given a sequence of independent
random variables £,,, ..., ... In other words, let there be given a triangular

array
11
i?,l: 622
531:« 5311 633

of random variables, those in each row being independent. Put
Sn =Lpr + 0+ L

Theorem 4 (Poisson’s Theorem). For each n > 1 let the independent random
variables £, . . ., &, be such that
F(énk = 1) = pnk! P(é.uk = ﬂ) = an1

P + @ = L. Suppose that

HAX Py, — 0, n— o0,
1sk=n
Hm!'ﬂ:.l Pa— A >0, 0 co. Then, for eachm=0,1,...,
ﬂllm
F"{JS‘,,=mr1)_,,"5"mI . n— o, )

ProOOE. Since
Ee““* = pue + gx
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for | < & < r, by our assumptions we have

@5, () = Ee™™ = [] (" + 4

k=1

= ﬁ(l + Fnl:(‘gir - 1)) - EXP{A(E‘E' _— 1)}-:| H — O,

k=1

The function @(t) = exp{Me” — 1)} is the characteristic functicn of the
Poisson distribution (11.12.11), so that {7) is established.

I n{A) denotes a Poisson random variable with parameter 4, then (7) can
be written like {(6), in the form

S, 5 n(d).

This completes the proof of the theorem.

4. PROBLEMS

1. Prove Theorem Lfor R\ n > 2.

2 Let &£, &,... be 2 sequence of independent random variables with finite means
E{¢,| and variances V¢, such that V¢, < K < oo, where K is a constant, Use
Chebyshev’s inequality to prove the law of large numbers (1)

3. Show, as a corollary to Theorem 1, that the family {¢@,} is uniformly continuous and
that g, — @ uniformly on every finite interval

4. Let £,, n = 1, be random variables with characteristic functions g, {t), » == 1. Show
that £, % 0 if and only if @, () — 1, n — <o, In some neighborhood of ¢ = Q.

5. Let X,, X;,.. . bea sequence of independent random vectors (with values in R¥) with
mean zero and (finite) covariance matrix I'. Show that

X, 4+ X

Jn

"4 470, I,

(Compare Theorem 3.)

§4. Central Limit Theorem for Sums of Independent
Random Variables.

I. The Lindeberg Condition

1. In this section, the central limit theorem for (normalized and centralized)
sums of independent random variables £,, &,, ... will be proved under the
traditional hypothesis that the classical Lindeberg condition is satisfied. In the
next section, we shall consider a more general situation. First, the central
limit theorem will be stated in the “series form™ and, second, we shall prove
it under the so-called ronclassical hypotheses.
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Theorem 1. Let £,, &,, ... be a sequence of independent random variables with
finite second moments. Let my=E, oy =V§>0, S,=¢ +-+ ¢,
D} =3"_, 62, and let F, = F,(x) be the distribution function of the random
variable &,.

Let us suppose that the Lindeberg condition Is satisfied: for every e > 0

1 n
{L] D_;fkg'l J‘{x=|x—m:¢|2r:l)n} b= mk}z dFk[x) =0 S {1}
Then
S, — ES, a
— A0, 1).
S (0, 1} (2)

n

Proor. Without loss of generality we assume that sy = 0 for k& = 1. We set

lt) = Ee* T, = 8,1\ /NS, = 5,/D,, 5, (8) = Ee¥, 7, () = Eet™
Then

p7. (1) = B — Ef®PS, — o (Di) = L[l %(_;_"), 3)

and for the proof of (2) it is sufficient (by Theorem 1 of §3) fo establish that,
foreveryt e R,

orH =7 noso. 4

We choose a t € R and suppose that it is fixed throughout the proof. By
the representations

. A, y*
2
. . J’z Hz[PP
iy — -
e 14+ iy 2+ 37

which are valid for all real y, with 8, = 6,()) and 8, = 6,(3), such that [6,| <
1, 18,] < 1, we obtain

g

B (£x)*

@ () = Ee™x = I (1 + itx + )dﬂ{x}

—ed

e aF ) = |
[xzeDy,
3
+ (1 + itx — rzf + & I;xl )dFk{x}
]l =&Dy,

12 tz

145 8,52 dF{x) — f x? dF{x)
2 Jpsyzen,, 2 J<en,,
|¢]*

el J' 6, |xI? dE.(x)
| = ey

(here we have also used the fact that, by hypothesis, m;, = |=_, x dF,(x) = O).
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Consequently,
‘;DJ:(L")_].— t x% dE.{x) + t? j- 8, x% dE.(x)
D, 0] e, T T 2D diaem,
L j' B, x]° dE(%) (5)
603 )icp,
Since
1 4 1 2
- I 8, x* dR(x} < m_[ x* dF(x}
2 Jix12e0, 2 Jizep,
we have
1 -
3] eofdRm =8| xR, (6)
2 || 2= £D x| zel2,,
where 8, = 8,(t, k, nyand |8, | < 1/2.
In the same way,
1 1 D 1
‘— j B, [x[® dFx)| < —I 0 xPP dF(x) < —f eD,x* dF,(x)
6 Jix <2, 6 i <en, 1% 6 Jy <en,
and therefore,
1 o
| elPaRe=8] s dRe, (7
6 lx| <zity, |x] < &D,
where 8, = 8,(t, k, n) and |8,] < 1/6.
We now set
1
A, = Bij x* dF(x),
n Vx| <D,
1
Bu=pz| X dR)
n x|z,
Then, by (5)(7),
t 24 x ~
Gf’k(‘ﬁ") =1- T'm + t20, By, + [tPeb, A, = 1 + C,,.. (8)
We note that
;;1 (A, + B} =1 (9
and by (1)
Y B0, noc. (10)

Consequently, for sufficiently large »,
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max |G| < £2&° + &t (11)
1=k=n
and
Y Gl <% + g (12)
k=1

We now appeal to the fact that, for any complex numbers z with [z] < 1/2,
In{l + z) =z + 8|z,

where B = 8(z) with |8] =< 1 and In denotes the principal vatue of the loga-
rnithm.* Then, for sufficiently large n, it follows from (8) and (11} that, for
sufficiently small E > 0,

4

where |8, < 1. Consequently, by (3},

tz t:- " r tz I n
~tner{f)=—-+ Z Infpk(—-) ==+ Z Con + Z ﬂk.-,|cﬁn[2-
2 2 k=1 D,, 2 k=t k=1

But

" e
= + AZ C., = (1 — Z A,m) 1 t? E B (t, ke, B, + e[t]? Z B, (t, k, 1} Ay

and by (9) and (10), for any & > 0 we can find numbers n, and & > 0, with n,
so large that for all n = n,

. d
C _
2t “"‘52

In addition, by (11) and {12), we can find a positive number £ such that

< max |Cpl z 1G] < (8282 + leP)(t? + ele]®).

1=k=n

Z Ohrl Coal®

k=1

Therefore, for sufficiently large #, we can choose & > 0 5o that

Y 6l Cpl?

km

and consequently,

y.

% + In @4 ()| < 4.

*The principal value Inz of the complex number z is defined by Inz=In|z} +iargz,
— X < 2rf Z < 7.
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Therefore, for any real &,
orHe™ =1, n-w
and hence,
er{ty~> e 2, n-ow,

This completes the proof of the theorem.

2. We turn our attention to some special cases in which the Lindeberg
condition (1) is satisfied and consequently, the central limit theorem is valid.
a) Let the “Lyapunuv condition” be satisfied: for some 6 > 0

Dz-:-a Z El& —m[*** =0, R — 0. {13)
Let £ > 0; then

El, — my2* =j 1% — >+ dE(%)

o

[ I — [+ dF00)
{xz x|x—myl =D}

> ¢0D? j (x — m)? dF(x)
{x: |=~mp|=eDg}

and therefore,

2|
Dy {34 J e pomp) 26D

(x — my)? dF(x) < _-1}1"‘5 Z E|&, — m [P

Consequently, the Lyapunov condition implies the Lindeberg condition.
b) Let &,, £,, ... be independent identically distributed random variables
with m = E£, and variance 0 < ¢® = V&, < w. Then

1 & 5
x —m|® dF.(x
Fﬁ k;l J..w:lx—-mlatl},.} [ I k{ }

1
et {x: |Jx—m|zee2, fu)
since {x: |x — m| = ea®/n} | &, n - o0, and ¢* = E[¢; — m|* < oo
Therefore, the Lindeberg condition is satisfied and consequently, Theorem

3 of §3 follows from the proof of Theorem 1.
¢) Let &,, &;, ... be independent random variables such that for all n > 1

|x — m[? dF(x) =0,

Iékl EK{ 'm'.l

where K is a constant and D, — oo, 1 — o0,
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Then by Chebyshev’s inequality

| b — myl? dE(x) = EL(Ew — mu1([& — mi] > eD,)]
{x: e—my|=eD, }

2

< (2K)*P{|&, — my| = &D, A < (2K)* 525 ZDZ

and therefore,
(2K)?

zZ [ — | dﬁ{x}{—fao, n— oo.
ﬂ k=1 o {o: =y | 2 8D}

Consequently, the Lindeberg condition is satisfied again and therefore, the
central limit theorem is verified.

3. Remark 1. Let 7, = (8, — ES,)/D, and Fy {x} = P(T, < x). Then proposi-
tion (2} shows that for allxe R
Fr (x) » ®(x), H — CO.

Since D(x) is continuous, the convergence here is actually uniform (problem
5,§1):

ilEl]f:: [ Fr. {x) — ®(x}| - 0, R — o0, (14)

In particular, it follows that
m&g@—¢c
This proposition is often expressed by the statement that for sufficiently large

n the value 8, is approximately normally distributed with mean ES, and vari-
ance DZ = VS,

— ES
")—DU, H— o0,

[}

Remark 2. Since, according to the preceding remarks, Fp (x) = ®(x} as
n— oo, uniformly in x, it is natural to raise the question of the rate of
convergence in (14). In the case when the numbers &,, £,, ... are independent
and uniformly distributed with E|&,|* < oo, this question is answered by the
Berry-Esseen inequality:
El¢, — E&,
53\/1_1 ’
where the absolute constant C satisfies the inequality
1/,/2m) < C < 08,

The proof of (15) will be given in §11.

sup | Fy, () — B(x)] < C (15)

Remark 3. We can state the Lindeberg condition in a somewhat different
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{and mare compact} version which is especially convenient in the “series
form.” _

Let &,, &, ... be a4 sequence of independent random variables, with
my, = E&,, 6f = V&, >0, D2 =¥1, of, and &, = (£, — m,)/D,. In this nota-
tion, condition {1} assumes the following form:

(LY 2 ELEGI(Exlz&]—>0, n-—c. (16)
k=1
IfS, =F,++¢&,, we have VS, =1 and Theorem 1 can be given the
following form: if (16} is satisfied, we have
S5 .40, 1),

In this form the central limit theorem is valid without the assumption that £,
has the special form (£, — m )/ D,. In fact, we have the following result whose
proof is word for word the same as that of Theorern 1.

Theorexn 2. For each n = 1 let

5;:11 5;;2! rrey ‘fm.

be a sequence of independent random variables for which E€,, = 0 and VS, =1,
where 5, =&, + - + &
Then the Lindeberg condition (16) is a sufficient condition for the conver-
d
gence 8, — A0, 1}.

4. Since
max By < &2+ Y E[ERI(1Zul = &)],
l=k=n k=1
it is clear that the Lindeberg condition (16) implies that
max E£Z -0, n— 0. (17)
1=k=n

It is noteworthy that when this condition is satisfied, it follows automatically
from the vahdity of the central limit theorem that the Lindeberg condition is
satisfied (Lindberg—Feller theorem).

Theorem 3. For eachn > 1 let

gnh ﬁnzr SRR gm

be a sequence of independent random variables for which E£, = 0 and VS, = 1,
where 8, =&, + - + &, Let (17} be satisfied. Then the Lindeberg condi-
tion is necessary and sufficient for the validity of the central limit theorem,
S, —= A0, 1)

The sufficiency follows from Theorem 2. To establish the necessity we need
the following lemma (compare Lemima 3, §3, Chapter III),
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Lemma. Let & be a random variable with distribution function F = F (x),
E€=0,V& =y > 0. Then foreverya = 0

J x% dF{x) < Eli[Re f{ﬁa} — 1 + 3ya?], (18)
x| 1fa
where f() = Ee™ is the characteristic function of &.

Proor. We have

Re f(t) — 1 + 3y =1y —I [l — cos tx] dF(x)

= Lyp? —j [l — cos tx] dF(x) — _[ [1 — cos ix] dF(x})
|| = Lfa |x|= La

= Ey? — 12 .[

x2 dF(x) — 2a% J‘ x* dF(x)
1%l < 1/a

[x]z= 1ja
— (42 — 24%)- x* dF(x).
Ix|z=1ja

Ifwesett = \/t:m, we obtain (18), as required.
We now turn to the proof of the necessity in Theorem 3.

Lat
Fox) =P < x), Lot} = Ee'tome,
B =0, Vi,=7;>0, (19)
i Tk = 1, max 'P.m_:’u, H— 0.
=1 1<k<n

Let In: z denote the principal value of the logarithm of the complex number z.
Then

In [T ) = 3 In folt) + 2mim,

k=1

where m = m(n, t) is an integer. Consequently,

Reln ;gl L8 = Ro i‘i In £, (£) (20)
Since
ﬁ Jadt) = e~
k=1
we have

_y gmi12102

(lj; Ful®)
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Therefore,
Reln A];! £ty =Reln L[l f,ﬁtj.c)‘ - =12 (21)
For|z[ <1
2z z?
ln(l+z}=z—§+§—'" (22
and for |z] = 1/2
In(l + 2) — 2| < |z~ (23)
By (19), for each fixed ¢, all sufficiently large nand allk = 1, 2,..., n, we have
|} — 1] < 330" < 3. (24)

Hence, we obtain from (23) and (24)

z fnl1 + (fult) — O] — (fult) — 1)}‘ < ¥ Uful) - 17

- max ?"kkzl }’nk__ méa