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PREFACE

THE object of this book is to give a more systematic account of the
elements of the theory of Fourier integrals than has hitherto been
given. I have, however, not attempted to deal with a number of
important topics of recent growth: Wiener’s Tauberian theorems;
applications to almost periodic functions, quasi-analytic functions,
and integral functions; Stieltjes integrals; harmonic analysis in
general; and Bochner’s generalized integrals, and the theory for
functions of several variables, of which an account is given in
Bochner’s book.

The reader requires only a general knowledge of analysis, though
he will presumably be familiar with the elements of the theory of
Fourier series. The book may be read as a sequel to my Theory of
Functions.

A great variety of applications of Fourier integrals are to be found
in the literature, often in the form of ‘operators’, and often in the
works of authors who are evidently not specially interested in analy-
sis. As exercises in the theory I have written out a few of these
applications as it seemed to me that an analyst should. I have
retained, as having a certain picturesqueness, some references to
‘heat’, ‘radiation’, and so forth ; but the interest is purely analytical,

and the reader need not know whether such things exist.
B. C.T.
NEW COLLEGE, OXFORD,

1937.
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I
CONVERGENCE AND SUMMABILITY

1.1. Fourier’s formulae. THE origin of the theory of Fourier
integrals is to be found in Fourier’s Analytical Theory of Heat.}
Fourier’s argument, which would not now be called a proof, is sub-
stantially as follows. Suppose that a function f(z), of period 22, is
represented by the Fourier series

< n . NT
flx) = }ay+ ,Zl (an cos 7-{- b, sin T)
The coefficients a,,, b, are obtained formally by multiplying by
cos(mx/(A) or sin(mxf)), and integrating term-by-term over (—aA, 7wA).
This gives :

mA mA
1 mt 1 . mi
Uy = — J; f(t)cos—x dat, b,= - J; f(t)smT dt,
and the formula may be written
.omA A
_ 1 -1 n(x—t)
flx) = X J;f(t) dt +;1r_)\ f/\ f(t)cos————,\ dt.

Putting n/A = %, 1/A = du, and making A -> oo, the sum passes
formally into an integral, and we obtain

1 © -]
fx) ==\ du | f(t)cosu(x—t) dt. (1.1.1)
Al

This is Fourier’s integral formula.
It may also be written in the form-(analogous to that of the
Fourier series) @
flx) = f {a(u)cos xu + b(u)sin xu} du, (1.1.2)
)

where . @
| a(u):Tlr J Fltyoosut dt, b(u)=7—lT f fWsinut de. (1.1.3)

If f(¢) is an even function, then

a(u) = -Z J f(t)cosut dt,
g

t See list of books and monographs, pp. 370-1.



2 CONVERGENCE AND SUMMABILITY Chap. I

while b(u) vanishes; and the formula becomes

fl) = 12; f coszu du f Fft)cos ut dt. (L1.4)
0 0

This is Fourier’s cosine formula. Similarly, if f(x)is odd, a(«) vanishes,
and we obtain Fourier’s sine formula,

@

J(@) =—72;fsinxu duff(t)sinut dt. (1.1.5)'
0 0

We can also regardb (1.1.1) as merely a combination of (1.1.4) and
(1.1.5); for write

@) = H@H— H@)—f(—2)) = g@)+hz),
so that g(x) is even and %(z) is odd. Then

J' Sf(t)cos u(z—t) dt

= 2cosux f g(t)cos ut dt +2sinux J h(t)sinut dt,

and (1.1.1) gives
9(x)+h(z)

L=}

= 2 f cosxu du f g(t)cos ut dt —}—% f sinxu du f h(t)sin ut dt,
™
(1} 0- 0 0

i.e. the cosine formula for g(x) added to the sine formula for A(x).

The above formulae were discovered independently by Cauchyt in
his researches on the propagation of waves. The formal basis given
by Cauchy is as follows. The right-hand side of (1.1.1) is, formally,
the limit as § — 0 of

o«

11-; f e~ dy f f(t)cosu(z—t) dt = 1—1_; f f(&) dt f e~ cos u(x—t) du
0 — 00 -0

0
©

1
= Jf S

The factor multiplying f(f) tends to 0 except when ¢ — z. We should
T Cauchy (1), (2); see list of references at the end of the book.
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therefore expect the value of the integral to be unaltered if we replace
f(¢) by f(x); and this would give

f@ [ 8 g4
7 [ sremmt=te

again verifying (1.1.1).
Another equivalent formula, given by Cauchy, is

flx) = 51- f e~tm dy ff(t)e‘“‘ dt. (1.1.6)
T .
Putting f(x) = g(x)-+h(x), where g is even and A odd, as before,
f J@)ew dt = 2 f g(t)cosut dt +2¢ f h(t)sin ut dt,
— H 0

and the right-hand side of (1.1.6) is

=24 -]

2 f coszu du f g(t)cos ut dt +g f sinzu du f h(t)sin ut dt
ks ky
? 0 0 0

= g(2)+h(x) = flx).
We shall call (1.1.6) the exponential form of Fourier’s formula. .
A formula of a slightly different type is obtained by expressing the
outer integral in (1.1.1) as the limit of an integral over (0,A), and
inverting the order of integration. The result is

fl@) = lim ~ f foySmAE—t) }‘(x —) 1. (1.1.7)
The same result may be obtained in the same way from (1.1.6). Th1s

formula is known as Fourier’s single-integral formula.

1.2. Fourier transforms. It was pointed out by Cauchy that
these formulae lead to reciprocal relations between pairs of functions.
If we write

F(u) = A/(—f—r) ~fof(t) cos ut dt, (1.2.1)
then (1.1.4) is ,
flx)= J( ) f F(u)cos xu du, (1.2.2)

and the relation between f(z) and F(x) is reciprocal. Such functlons
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were called by Cauchy reciprocal functions of the first kind. We shall
call functions so related Fourier cosine transforms of each other. Thus

2 1
-z 2y -
e J (w) 1422

are a pair of Fourier cosine transforms.
Similarly, from Fourier’s sine formula, we obtain

= - sl 2.
f = - i . L.

These were called by Cauchy reciprocal functions of the second
kind. We shall call them Fourier sine transforms of each other.

Thus e, J (g) % __ are Fourier sine transforms.
. w 1422
The formula (1.1.6) leads similarly to the unsymmetrical formulae
‘ 1 - .
Flu)= -1 f e i, 1.2.5
= Jam J 10 (1.2.8)
1 o .»
x) = —— | Flu)etzudy. 1.2.6
fl@) 4(2”)_{, ® (1.2.6)

We shall call such functions simply Fourier éransforms of each other.
Thus N 1
=] _l | == ) —
foy=ew, 1@ = [F) 1
are Fourier transforms of each other.
If f(x) is even, F(x) = F,(x); if f(z) is odd, F(x) = iF(x).

1.3. Generalized Fourier integrals. The existence of the in-
tegral defining F(u) implies a certain restriction on f(z) at infinity.
Even if F(u) does not exist, the functions

Fow) = \7(%;) f Fityeret dt, (1.3.1)
1]

F(w) = I/(‘l:z?) f fiteist a, (1.3.2)
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where w = u-+iv, may exist, the former for sufficiently large positive
v, the latter for sufficiently large negative ». For

Fyw) = \/'(;%;) f F(t)e—vtetnt d, (1.3.3)

so that F,(w) is the transform of the function equal to f(t)e—* for
t > 0, and to 0 for ¢ < 0. The formula reciprocal to (1.3.3) is

{ e (z>0)
0

1 F 1 )e—tTu —
Wf—)_f F, (utv)e = dy = @ < 0),

1 st f@ (@>0)
—tx(u+1v) —
or \/__*(21,-) f F (u+iv)e i@+ dy { 0 (x < 0).
There is a similar formula involving F_. Adding, we may write
i+ b+
flx) = 4(2 ] f F (w)e—=w dw —|— 7 2 ) f F_ (w)e-1 dw,

(1.3.4)
where a is a sufficiently large positive number, b a sufficiently large
negative number.

For example, if f(z) = €%, then

11 11

F _—— —

+() @) 14+’ Fw) = J@m) T+’
In this case (1.3.4) is at once verified by the calculus of residues.

In this form Fourier’s integral formula may be applied to a
periodic function. Let f(2) have,the period 2#. Then for v > 0

w 2mtlm
w z)ew dy = ————— x)elxw dx
Fy(w) = (2)ff() )Z ft@)

nw

l

o 27
57 > [ rreesmone ag = T 2 5 f 16) S O
- 0

__1  ¢w
T J@n) 1—e2mi’
2

where dw) = [ f(&)ew dg.

0
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. 1 w
Slmllal’ly, F ('M)) == —Wﬂ i—ﬂe—éz’lw (U < 0).
The reciprocal formula is therefore
; ia+wo o) ) bto $w) »
—_ w —ixw _pw —txw
f (x) D 1_e2mwe dw — 27.‘. 1— e2mwe dw.
ia~o th—w

Here ¢(w) is an integral function. If it behaves at infinity so that
we can evaluate the right-hand side by the calculus of residues in
the obvious way, we obtain

f)) =g > $mei

We have thus returned to the Fourier series for f(x).

1.4. The formulae of Laplace. The formula
#(s) = f f(@x)e—s= da: (1.4.1)
0

is known as Laplace’s integral. If f(z) is the given function, ¢(s) is
in general analytic for R(s) > 0. The reciprocal formula is

' k+io
= s J@) (z>0)
2mkf $ls)e” { 0 (x<0). (14.2)

From a formal point of view the formulae are a particular case of
those of § 1.2, as is seen on putting s = o-it.

As a still more special case we obtain a reciprocity between two
analytic functions. Let

flzx) = Za zn

and suppose that the integral (1.4.1) can n be evaluated by term-by-
term integration. Then

° 7 = nla,
é(s) =nzoan f e dx = z prRY
- 0

n=0

<. or Zdl=) = ! n,
5 ¢‘(8) nzon a,s

If f(x) is suitably restricted, ¢(s) will be an analytic function
regular in the neighbourhood of s = o0; and, if C is a closed curve
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surrounding the origin, but lying sufficiently far from it,

1 IS T e
éﬁf‘ﬁ(w)e dw = %Z nla, | 5%
¢ n=0 ¢

= S a,2" = f(2). (1.4.3)
n=0

The function f(z) may therefore be represented as a trigonometrical
integral, but now along a closed curve.

1.5. The formulae of Mellin. Still another pair of formulae
embodying the same formal idea is given by

&(8) = j“of(w)ac"‘1 dz, (1.5.1)
0
1 c+ico .

f@&) = 5 f (o) da. s

The idea of such a reciprocity occurs in Riemann’s famous
memoirt on prime numbers. It was formulated explicitly by Cahen,}
and the first accurate discussion was given by Mellin.|| We shall call
the formulae Mellin’s inversion formulae.

These formulae arise naturally in the theory of Dirichlet series in
the following way. The particular case

© ¢+ i

N = [eswrds,  eo= gl [ Taerds >0
) |

is well known. Now let ¢(s) be a function expressible as a Dirichlet

Beries, ) a
$(s) = > 2.
n=1
Then we have formally
1 .
= -zl o — Nags~1
d(s) = ;I‘ e—"Zys-1 g G J.f(az,).z:s dx,
0
where flx) = i a,e "%,
n=0

1 Riemann (1). " 1 Cahen (1). || Mellin (1), (2).
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and reciprocally

¢+t c+1io
1 f $(s)T ()~ ds — z o f T'(s)(na)-* ds
= 2“ e = f(x).

The forms (1:5.1), (1.5.2) are obtained by putting ¢(s)I'(s) = F(s).

Mellin’s formulae may also be obtained by a substitution from the
exponential form of Fourier’s formula. In fact, puttmg z = ¢ and
8= ¢+, (1.5.1) becomes

Bletit) = [ fieeberndg,

and (1.5.2) becomes
1 ; .
£) — — it)e-Ec+id)
J(e?) o f F(c+1t)e dt.

The functions J@m)etf(ef), F(ctit)

are thus Fourier transforms of each other.
Suppose that, in Mellin’s formulae, the function f(z) is analytic at
the origin and in a region containing the positive real axis. Consider

integral
the integra ff(z)(—z)“l iz,
T

where I' is a loop coming from infinity on the positive real axis,
encircling the origin in the positive direction, and returning to
infinity. We define (—z)*-! as e®-1l°2(-2), where log(—z) is real on the
negative real axis.

Suppose I' compressed into the real axis on both sides. The part
of the integral above the real axis gives

— f f(x)eE-10gz—im) doy — g—ism f fla)as-1 da,
0 ]
and that below the real axis gives
ff(x)e(s—l)(log.an) da — —eism f fla)as-1 de.
[\] ¢

Hence f fN—2)1tdz = —2isins» F(s).
P



1.5-1.7 CONVERGENCE AND SUMMABILITY 9

Let mx(8) = F(s)sinsm.
Then we obtain the reciprocal formulae
1 .
x(8) = — i f f@)(—2)tdz, (1.5.3)
r
1 c+1io ( ) .
_1 x(8)z~
flz) = 5 fi e ds. (1.5.4)
c—1000

A simple example is f(z) = e~*, x(s) = 1/T'(1—s). Such formulae
have important applications in the theory of functions of a complex
variable,t but we cannot consider them further here.

1.6. For the early history of the Fourier-Cauchy formulae we may
refer to the article by Burkhard{ in the Encyklopidie.

The theorems of this chapter are in the main analogous to classical
theorems in the theory of Fourier series. We do not actually assume
. a knowledge of the theory of Fourier series, though the reader will
presumably be familiar with it. Almost all theorems on Fourier series
have some sort of analogue for integrals. In some cases the theorems
are so similar that the extension from series to integrals is hardly
worth making. In other cases there are new points of interest in
the integral case, which is even sometimes the simpler.

1.7. Notation. We use
j flz) dz
0

to denote the Lebesgue integral of f(z) over (0,00) in the strict sense,
implying that the integral is absolutely convergent, i.e. that

[ 1f@) do
(]
also exists. If f(x) is integrable over (0, X) for every X, and
: X
lim f f(x) de
X— e

exists, we denote the limit by
[ f do.
[}

t Ca,rl_son (1).
B



10 CONVERGENCE AND SUMMABILITY Chap. I

Such an integral is known as a Cauchy integral. A similar notation
is used in the case of other limits. Thus

[roe
—0

1
denotes the limit of f Jf(x) dz
S .

as 8 - 0 through positive values.
In ‘formal’ analysis we.use f f(x) dz to denote that the integral
0

exists in some sense or other. There is generally little risk of confusion
between this and the Lebesgue sense.
We say that f(x) belongs to, or is, L?(a, b) if f(x) is measurable and

b
[ f@)pde < co.

a

We write L for L. X
By | Lim. (J" f(@, o) dz

(limit in mean) we denote a function ¢(x) such that
b X

lim [|9(0— [ flore) d

a, b, and p having prescribed values.

As complex variables we use

z2=gz+y, w=utiv, 8=o+it, {=Ef+in.
If f(x) is a given function, we denote by
F(z), F(z), Fi(z), Fo(w), F_(w), Fs),

the functions defined in (1.2.5), (1.2.1), (1.2.3), (1.3.1), (1.3.2), (1.5.1)
respectively. In each case it is assumed that the integral referred
to exists in some sense or other. The ambiguity of the expression
‘e Fourier transform’, arising from the asymmetry of the formulae
(1.2.5), (1.2.8), is avoided by standardizing the use of small and
capital letters as in these formulae.

Similarly with other letters (¢, @, G, G-, etc.).

‘We denote by 4 an absolute constant, not necessarily the same
one at each occurrence; K is used in a similar way for a constant
depending on the data of the problem in hand.

P
do == 0,



1.7,1.8 CONVERGENCE AND SUMMABILITY 11

We say that the convergence of a sequence f,(x) to a limit f(x) is
bounded if |f,(x)| < K for all n and z; and that it is dominated if
|fa(x)| < ¢(x), where ¢(x) is L over a prescribed set. It is knownt
that .

* lim [ f,(e) dz = [ f(z) da

-if the convergence is bounded or dominated.

1.8. Fundamental theorems. The theorem of Riemann-Lebesgue
is fundamental in the theory of Fourier integrals, as it is in the
theory of Fourier series. We shall state it as follows.

THEOREM 1. Let f(x) belong to L(—o00,00). Then the integrals
f f(x)cos Az da, f fapinhde, - (L81)

tend to zero as A —> co.
Consider the cosine integral. Let ¢ be a given positive number.
Then we can choose X so large that

© . -X
[f@ldz<e [if@)de<e
X —

Hence

5! J(x)cos Az dxl <e

-X )
f f(z)cos Az dx‘ <e

for all values of A.

Next, we can define a function ¢(x), absolutely continuous in the
interval (—X, X), such that

X
[ f@)—4(@)] dz < .
-X

X
Then | f {f(@)—(x)}cos h dx| < €
-X

for all values.of A. Finally

x
_ f ¢(x)cos Ax dx
-X ’

. . . X
_ ¢(X);m>\X +¢(—X))\8m7‘X__% f ' ¢'(@)sin Az d,

, -x
and (for a fixed X)) we can choose A, so large that the modulus of this

1 Titchmarsh, Theory of Functions, §§10.5, 10.8.
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is less than e for A > A,. Then

}0 f(z)cos Az dxl <4 (A>A).

This proves the theorem for the cosine integral; a similar proof
applies to the sine integral.

THEOREM 2. Let f(x) belong to L(—oo ). Then a necessary and
sufficient condition that

l

— du f(t)cosu(x—t) dt=a _ (1.8.2)
18 that, for any fixed 8,

8

lim [ {fe-+9)+fte—9)—20)

S“;"y dy = 0. (1.8.3)

Since |f(f)cosu(z—t)| < |f(¢)], the integral
f f(t)cos u(z—1) dt

converges uniformly with respect to u over any finite interval.
Hence

fdu f ft)cosu(z—1t) dt = f f(&) at f cosu(x—t) du

[y sinA@—1)
- f f220 g

Since f(t)/(x—t) is integrable over (—oco0,2z—38) and (x+8,00), it
follows ﬁ‘om the Riemann-Lebesgue theorem that, for a fixed 3,

llm f(t)smA(x t) dt hm ff(t)sm)\(x t) dt =
_m $+8

ff(t) Al gy = f {f(z+y)+f<x—-y>} M 4y,

and 5
lim 2as—m—@—/dy=lim2a -———dv—2 fgl—lﬂ)dv—an
0

A—>o Yy A—o
1]

‘These equations together show that (1.8.2) and (1.8.3) are equivalent.
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1.9. We are now in a position to extend all the ordinary conver-
gence tests for Fourier series to Fourier integrals. We shall, however,
content ourselves with proving the two following theorems, corre-
sponding to the tests of Jordan and Dini respectively.

THEOREM 3. Let f(t) belong to L(—o0,0). If f(t) 8 of bounded
variation in an interval including the point x, then

—>0

%{f(x+0)+f(x—0)}=}rf du ff(t)cosu(x—t) dt. (1.9.1)
0 —

If f(2) is continuous and of bounded variation in an interval (a,b),.
then

1 —>0 «© i
fxy== | du | f(t)cosu(z—1) dt, (1.9.2)
)

the integral converging uniformly in any interval interior to (a,b).

Let $(y) = fle+y)+Hfe—y)—fle+0)—f(z—0).
Then y(y) is of bounded variation over (0,3), if 8 is small enough,
and §(y) > 0 as y > 6. We may therefore write

$(y) = i(y)—e(y),

where ,(y) and y,(y) are positive non-decreasing bounded functions
in (0, 8), which tend to 0 as y — 0.

Given any positive number ¢, there is a number 7 such that
() < < e for y < 7. Let

f ~/'1(y)81~n—Ay dy = f () SmAy dy + f ¢1(y)s 03 gy

By the second mean-value theorem, the first part is equal to

bl )fsm*ydy—:ﬁl( )fﬁi“—”dv 0 < £< 1),

and the last mtegral is bounded for all A and £. Hence |

f¢1( )E‘P_)ﬁ?!d <Ae,
for all values of A. Havmg fixed 7, ¢1(y)/y is integrable over (7, 3),

so that 5
i s1n)\yd —0
tim [ 40) 25 ay
"
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Since € is arbitrary, it follows that .

sm)ty dy =0

]
lim j h(®)

Similarly, the integral mvolvmg ¥(y) tends to 0. This proves the
first clause of the theorem.

If f(z) is continuous in (a,d), ¥{f(z+0)+f(x—0)} = f(x); and, the
function being uniformly continuous in any interval interior to
(@,b), the conditions used in the proof hold uniformly, and so the
convergence is uniform.

THEOREM 4. Let f(t) belong to L(—o0,0). Then, for a given z,
(1.9.2) 18 true if 5

f f(x+y)+f(;"y)_2f(x) dy (1.9.3)
[}

exists for some positive 8; in particular it holds if f(x) 18 differentiable
at the point x.

This follows at once from Theorems 1 and 2 2, with a = f(zx). If
f(x) is differentiable, the integrand in (1.9.3) is bounded, so that
the condition is plainly satisfied. '

TueorEM 5.1 Let f(t)/(1+ |¢]) belang to L(—00,00); let

ay(e) = - f f(y)sm”‘?’ dy, (1.9.4)
1 - - .
1 1—cosay 1 coszy
by(x) = ;i @) v dy——;(i + ! )f(y) ; dy
- (1.9.5)

be absolutely continuous over any finite interval 0 < 8 < z < A, and
let a(x), b(x) be their respective derivatives. Let f(t) satisfy the condsi-
tions of Theorem 3 or Theorem 4 in the neighbourhood of t = x. Then
'%{f(x—i—O)-l—f(x—O)} = f {a(u)cos xu--b(u)sin zu} du.
—0
Suppose.first that f(z) = 0 for [z| > 1. Then
z 1 1
1 1 i
[ [ rwreostyay =2 [ 1= ay = ay
T 7 Y
0 -1 21

-+ Hahn (2).
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: 1
so that a(x) = % J fy)coszy dy
-1
almost everywhere. Similarly,
b(x) =~ f f(y)sinzy dy

almost everywhere. The result then follows from Theorem 3 or
Theorem 4.

Suppose next that f(x) = 0 for || <1. Then f(z)/=z belongs to
L(—o0,00). Hence, by Theorem 3 or 4,

E;{f(x+0)+f(x—-0)} =2 f {—by()co8 zU+ay(w)sin zu} du.
Now. °

sinxu

]ﬁ; é Tb(u)sinx; du

Tbl(u)oosm du = [bl(u)
(1]

=—= f b{u)sin zu du,

gince bl(u) - 0 a8 % — 00.
Also

=00 B —>00

6‘. a,(u)sinzu du = [-—a,(u) coizu]:+£ J; a(u)coszu du

= al: '[ a(u)cos xu du,
—0 v
since a,(u) tends to 0 as % — 0 or u—><c0. The result in this case
thus follows.
The general result now follows by addmg functions of the two
classes considered.

1.10. Monotonic functions.t The next theorem is based on the
fact that, even if j f(t) dt does not exist, the integrals
0

_r f(t)cos ut dt, To f(t)sin ut dt

exist for u > 0 provided that f(f) > 0 steadily as ¢ co. Here it
1 Pringsheim (1).
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seems slightly more convenient to take the cosine and sine integrals
sepa.rately

THEOREM 6. Let f(t) be non-increasing over (0, 0), integrable over
any finite interval beginning at 0, and let f(t) > 0 as t—> . Then for
any positive x

Hf(x+0)+f(z—0)} = 7-21-_ f coszu du f Sf(t)cos ut dt.
>0 0

We have, by the second mean-value theorem,

- T -
A(T+0) [ cosut dt’ < ng#?,
T

-
f J(®)cosut dt| =
7

Hence the't-integra.l converges uniformly with respect to u over
0 <A< %< u Hence
’l —»00 -0 B
f cos 2u du f Sf(t)cos ut dt = f f@t) dt f cos xu cos ut du
A 0

A

f(t) {sm;z.(x —1) sm)\(x—t) +

z—t x—1

sin p(z+-1) sm)\(a:+t)} it

1
2 z+t z+t

eg_‘l

Now

f f(t)s—ifmﬂ_’if-ﬁ dt! = < Af(T+0),
T

.
fir-+o) [ 22 g,
T

and similarly for the integrals involving A and x+4¢. We can therefore
choose 7' so large that

sin u(zx—t) }

J f(t){———t—- dt
T -

for T > Ti(e), for all values of A and u. Having fixed 7' > =,

<€

T - .
lim [ 7022220 6t — gmifia-+0)fw—0)
] x—i ’ )
0
by the analysis of Theorem 3, and

hm J’f(t)smp,(x-l—t) dt
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by the Riemann-Lebesgue theorem. Also

T T
ff(t)?‘-n—gi_“’T—th g}\ff(t)dt—w
0 0

as A - 0; and similarly for the remaining part.
TrEOREM 7. If f(t) satisfies the conditions of Theorem 6, then for
any positive x o
Hf(x+0)+f(z—0)} = = f sinzu du f Sf(t)sinut dt.
As u—> 0 o o

‘;.- lf(1+0) J’ sin ut dt‘

cosu — cosuT)| < 2f(1+0)
= ’
u u

= f(14+0)
and J} f(@)sinut dt = O(1).
A .

Hence the u-integral is absolutely convergent at the lower limit.
Apart from this, the proof is the same as that of Theorem 6.

Fourier’s formulae may be established under still more general
conditions by adding a function of the type of Theorem 3 to one of
the type of Theorem 6. The results of this process are sufficiently
obvious.

1.11. Functions containing a periodic factor.t

THEOREM 8. Let f(t) = g(t)cosat (a > 0), where g(t) 8 non-
increasing, inegrable over (0,1), and g(t) >0 as ¢t->co. Tken for
any positive x

—op =2 d dt.
Hf(x+40)+f(x—0)} ‘"'(of +__L)cosxu N (! f(t)cf.)sut

The inner integral is
To g(t)cos at cos ut dt,
which is uniformly convoergent over any finite interval not including
or ending at ¥ = a. We may therefore invert the integral
Ta coszu du ng(t)cos at cos ut dt
(1} 0

t Pringsheim (1).
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for every 8 > 0. To prove that
—a —® —®  —a
coszudu | g(t)cosatcosutdt = | ... | ...
| |1
it is therefore sufficient to prove that

— a .
lim t)cosat dt | cosxucosuidu = 0.
Mof g(t)o is 8

This is clearly true for the part 0 < ¢ < 7', with any finite 7'. It is
therefore sufficient to prove that

—>»0 a
. . _
?.ﬂ Tf g(t)cosat di f cos xu cos ut du = 0,

Far f g(t)cosat {Si““(‘”“t);imt(a'—S)(x—t) "
T

-+

sina(x+t)—sin(a——8)(x+t)} it =0
: x-t ' )
Clearly, if T > =z,

f g(t)cos at {sin a(x—t)—sin(a—s)(x—t)}(;L_t+ ;) dt >0,
) _

since this integral converges uniformly with respect to 3. Similarly
for the integral involving z--¢. -Hence it is sufficient to consider

f g(t)cosat{sma (x4-t)—sin(@a—38)(z+£t)—

—sina(x—t)+sin(a—38)(x—t)} d¢
g(t)cosat
2 f oiiconcs

T

{cos ax sin at— cos(a—8)x sin(a— )t} dt.

Now
)

2 [ Qoosatsina—syedt = [ 2O sin(ea—sy—sinsg s,
T T }

which converges uniformly with respect todasd—>0, since

T,
[[%hinst — ofoiry f s—‘“—s‘dt} oIy
T ’
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Hence f g()cosatsm(a d)t dt — f g()cosatsmatdt

and the result follows.
A similar argument apphes to the integral over (a+8,A). It
therefore follows that

| (of +—;[ )cos.'cudu Jf(t)cosutdt

=% T f(t){sin)\(x—-t) +sinA(x+t)} @
]

r—t x4t
Finally
s A -z .
[eonatIED @~ [ conate+ T2 gy
I'—-= v
-z . -z .
= Ccosax f Wdy_sinaxf WJy
T-z y I—z y

is bounded for fixed @ and «, T' > 2z, A > 2a. Hence, by the second
mean-value theorem,

[ otreosat™22E0 &t — oy,
T .
and the proof concludes as in Theorem 6.

THEOREM 9. Let f(t) = g(t)sinat (a > 0), where g(t) satisfies the
same conditions as in Theorem 8. Then for any positive =

a—8§

Hf(@+0)+flx—0)} = —llm( f + I )cosxu du J f(t)cos ut dt.
If, in addition, j 9(_;”) dx exists, then |

Hf(x+0)-+f(x—0)} = %(T—l— -]P)cos zu du _r Sf(t)cos ut dt '
0 —a 0

Proceeding as in Theorem 8, we find that, in the first repeated
integral, the integral over 0 <{ u < A (A > a) may be inverted if

f g(t)S;in at {cos(a+8)z sin(a+-8)t—cos(a—8)x sin(a— )t} dt —> 0
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a8 8 >0, i.e.

CO8 ax cos O f g(ti)sinatcosatsin& dt —
T —>®
—sin ax sin 8z f @sin’atcosb‘t dt - 0.
T
The first integral — 0 by uniform convergence. In the second,

.

f g(Tt)cothcosb‘tdt
T

is uniformly convergent, and so tends to a finite limit; and
—® 1/ £
f 9®) o5t dt = o( J' th)-l—O{Sg(%) f cos it dt}
T ! T 18
— 0(log 1/8)+0{g(1/8)} = O(log1/3),
and sin3dzlog1/3 - 0. This proves the first part.
In the second part of the theorem we have to consider

Tg(z)sinat
3 t

and this involves uniformly convergent terms, as before, and terms
involving ©

J'Z(i‘_)dz.

T
This proves the second part.

There is also a similar pair of theorems in which sines and cosines
are interchanged.

THEOREM 10.1 Let f(t) = g(t)h(t), where g(t) 18 ultimately steadily
decreasing to zero, g(t)/(14-|t|) belongs to L(—oo,00), and h(t) is
periodic (with period a) and integrable over a period. Let f(t) be of
bounded variation, or satisfy one of the alternative conditions in the
neighbourhood of the point t = x. Then Fourier’s formula holds in
the sense that

{cos azsin at — cos(a—8)x sin(a—3)t} dt,

© —>(2n+2)n/a —>c0
Wetotfe-0)=>2 [ @ [ freosuiz—n .
=0 _onnla —-—® :

t Hahn (2).
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If g(t) is steadily decreasing,
(n+1) (n+l)a
J‘ lf(t)l J‘ lg®R(t)| di
1+t = 14t
} ( ;w‘"“)“ (na) gt
< 9\"2) g
<) f wey e < K L <K( fl) 1+tdt

Hence f(t)/(1+ |t|) belongs to L(—o0,c0). Hence, as in Theorem 5,
%{f(x—l—_O)—lj (x—0)} = 1-17 f {—b,(w)cos zu-+ta,(u)sin xu} du,

0
where a,(u), b,(u) are defined by (1.9.4), (1.9.5).
Also n (vtla n O
s f h(z)eizv dg = 3 f R(x)etva+ow dy
y=m v=m 0
eimay__gin+l)ay

2t fh(x)e“”dx

which is bounded in any interval not containing one of the points

y=0, ;[;7, ;!:—a—,.... Hence the integrals
Xy
cos
f W) oy do

are bounded, for all z; and z,, in any such interval of values of y.
It then follows from the second mean-value theorem that the
integrals.

1 cos
- f g@)h(@) ; @y dx
are uniformly convergent in any such interval, to a(y), b(y), say;
a,4(y), b,(y) are the integrals of a(y), b(y) in the interior of such an
interval; and

(2n+2)nja
b,(u)cos xu du

2nnla
(en+2nla 1 —{(2n4-2)7/a

[bl( )s‘“”‘] - f blu)sin v du,

2nrla

I —2nn/a
and similarly for a(u).
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Also a, and b, are continuous, so that, on summation, all the inte-
grated terms cancel, and the result follows.

1.12. Oscillating functions. In the above theorems our con-
ditions on f(x) are mostly restrictions on its oscillations. We shall next
obtain a case of Fourier’s theorem which depends on the oscillations
of f(x) being sufficiently rapid, provided they are of a regular kind.

THEOREM 11.7 Let f(t) = ¢(t)cosy(t) or ¢(f)siny(t), where $(t) is
integrable over any finite interval, continuous and of bounded variation
in any inierval not containing the origin, and ultimately monotonic.
Let i(t) be twice differentiable, ' (t) and ' (t)/P(t) ultimately increasing
steadily to infinity, and

@) = o{tVp(2)}- (1.12.1)
fo) =2 f % du f 0N

0
if (i) P"(f) s non-decreasing, y"(t+1) = Ofp" (t)}, $(t+1) = O{$(t)},
or (ii) " (t) is decreasing, tJ"(t) > K, $(2t) = O{$(t)}.
We use the following lemma.
LEMMA Ifk (t)/h'(t) 13 monotonic, and ¢(t) steadily decreasing, then

f ) oht) &t = Ofg(amax 2T}

Then

°°sut dt (1.12.2)

Using the second mean-value theorem repeatedly, we have, if
k(2)/W (¢) increases,

»
f E(t)g(t)cos h(t) dt — }’:,((‘t)) kO o on t)cos he) ds

k (b)

- f g ()cosh(t) dt (a < o < b)

}’:,((Z)) () f K(t)cosh(t)dt (x<B <b)

£ () dinh
= g einh(8)—sin h(e),
and similarly for the other cases. Hence the result.
1 Suggested by Landau, Vorlesungen tiber Zahlentheorie, Satz 413.
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The inner integral in (1.12.2) is convergent if
T’ B
cos
¥$JWQJW&Mﬂ—Q (112.3)
Now $1) _ ¢ v

FOxu FOFOx’
and the first factor tends steadﬂy to 0, while the second factor is

1¢Wmiu

" and the last term is steadily decreasing in absolute value. Hence

(1.12.3) follows from the lemma; and the convergence is plainly
uniform over any finite range of values of ». Hence

A —> —>0 A .
f coszu du f J(t)cosut dt = J' ) ds J' cos zu cos ut du.
o ° 0 0

As in previous cases, it is now sufficient to prove that

L sinAz—1)
lim f f222ED 4 — o

for a sufficiently large 7'.
Take Case (i), and suppose that ¢(¢) is non-decreasing for ¢ > T,
and consider, e.g.

o to—98 to+ ©
29 coetpiy+ra—tyae = [ + [ +
J. Ij. i! to"J" tojs
= Gt dyt- Iyt dy

where /() = A. Now ¢(t)/{A—y'(t)} is steadily increasing for ¢ < ¢,;
hence, by the lemma,

i = fgmiam) = levam) =0

_ $te—3) | _ of 8l | _ of_slto
= O{to{‘/"(to)_‘/”(to—s)}} O:to3¢”(to—s)} 0 to&/f’(to)}
(1.12.4)

provided that 8 = O(1). Fort > t,

RO CIR
O ¢m{+wm—J

is decreasing, and J; also satisfies (1.12.4).
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3¢(to)’
t |’
Taking & = {)"(t,)}~}, the required result follows from (1.12.1). The
corresponding integral with —A instead of A is simpler, there being

now no need to introduce #,. The result therefore follows in this case.
If ¢(t) is decreasing, we obtain instead of (1.12.4)

_ o[_¢7)
5= oS
and the result follows with 6 = 1.
The argument in Case (ii) is substantially the same. Examples
are ¢(t) = e¥, Y1) = ¢ §(t) = 1, $(t) = tlogt. |
1.13. The constant in Fourier’s formula. The constant =
enters into Fourier’s formulay according to our proof, through the
formula v o
[oeai
(1}
If we take the value of this integral as our fundamental constant,
and denote it by C, Fourier’s cosine formula, for example, is

-0 @

flx) = %, f cos U du f cosut f(t) dt.

Lastly, Jy = {
to'—

The values of other familiar integrals are then obtained in terms
of C; for example, taking f() = e, and z = 0, we obtain

—>00 ® @
1 ) 1 du
l_afdufcosute dt——b- T+
0’ 0
r du
so that I e C.

0
Taking f(z) = ¥ (z > 0), we obtain (by Theorem 6)

—>0

1 1 T cos ul
%0 j cosxu du Vi dt
0

—>00 —»00
=1
- C

4]

J‘cosyd ovx(f cosy )
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—>00
€08
so that cosy dy = ~C.
vy

Many other such examples may be derived from the formulae
of Chapter VII.

Later, §1.27, we shall give another proof of a case of Fourier’s
formula, in which the constant 7 comes from the theorem of residues.

1.14. Fourier’s single-integral formula. This is the formula
(1.1.7). Conditions for its validity are suggested by several of the
foregoing theorems; but it holds still more generally, since now it is
not necessary for the Fourier transform of f(z) to exist.

THEOREM 12.1 The formula

’{f(x+0)+f(x—o)}__hm f f(t)smh(x )

dt

holds if
i(a) f(z)/(1+|z|) belongs to L(—c0,00),
or i(b) f(z)/x is of bounded variation in (@,00) and (—o0, —a) for
some positive a, and tends to 0 at infinity,

or  i(c) % f #(t) dt is of bounded variation in (a,%0) and tends to 0

at infinity, and a similar condition holds in (—oo, —a);

and (i) in an interval including z, f(t) is of bounded variation, or
satisfies one of the other conditions for the validity of
Fourier’s series or integral.

After the analysis of § 1.9 it is sufficient to prove that we can choose

T so large that
(.. sin Alx—1)
[ro=2E2 d‘, <
T

for all values of A > A, with a similar condition for (—oo, —7"). This
is clearly true if i(a) holds, It follows from the second mean-value
theorem as in § 1.10 if i (b) holds.

To prove that i (c) is sufficient, let

Bz) = 2 f 7t dt.

1 Prasad (1), Prmgshelm (1), Hobson (1), -
' c
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Then fl@) = xd' (x)+¢(x),
and x¢'(x) satisfies i (a), while ¢(x) satisfies i (b). Hence the result.
Condition i (¢) includes i (a); for

@ >—@——ff<t)dt

The first term belongs to L(1,00) if i(a) holds; and so does the
second, since

¢ @ ¢ ¢
dx __1 1
lfﬁljlf(t)[dt— §f|f<t>1dt+1jx|f(x)ldm

~|f@)| de < K

"‘%—‘m
&2 b

as £ >o0. Hence ¢'(x) belongs to L(1,00), and hence i(c) holds. On
the other hand, i(c) does not include i (b).

1.15. Summability of integrals. We say that the integral
f f(x) dx is summable (C,«), where « 2> 0, to the sum I, if

Jim i (1—_) H) ds = 1.

p ]

The case « = 0 is ordinary convergence. In the case « = 1 we have

A ‘ Az

z 1

[(=5)reraz =3 [a= [ s v

0 0 [} :
a form analogous to the sum

8;+85+ ... 48,
n

in the definition of (C, 1) summability of a series. The whole process
is analogous to the C-summation of series, which is too well known
to need much discussion here, The main points are (i) the process is
more general than ordinary convergence; for example,

A
lim | sinaxdz (a > 0)

A—®© o
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does not exist, but

A

lim | (l—f)sinax de = lim(l—M) = 1;
A= A Ao \& a?A a
and (ii) that it is consistent with ordinary convergence, in the sense
that, if an integral is convergent, it is summable (C,«) to the same
value for every o > 0. This is a particular case of the following
theorem.

If an integral is summable (C, o), where o > 0, it is summable (C, B),
where B > a, to the same value.

Let $(,a) = f (1-%’)“}'@) dz.
Then if B > «, ’ |
f (1—%)3-.“' A2\, o) dA = f (1—_) ‘“_lxa dx (1-%‘)“f(x)dx
o 1]
f fl@) dz f (1—-)8_“ (1— X) A= d
_2@%(%)2%"'_.” et f f(x)(l__)ﬁ
ie.

__ DY 1 ff Ay
$o ) = gt of (12" res0m

~ Hence

®
PN (25 IS W R\ e NSO
O e f (-3 00— an

If ¢(A, «) > I, suppose that |¢(A,a)—I| < M for all A, and < ¢
for A > A. Then

: B
€ B-a~
BB —1| < gt ) { | (1—,’_:) "Xedr 4
A

P(B—a)(a+t1) |p
A e ;
+ éj—fi of (1— 3)5 pr d)\}.
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The first term is < € (it is € if A = 0), and the second is O(u—*-!) for
a fixed A. It follows by choosing first A and then p that ¢(u,8) - I,
the required result.

1.16. Summability of Fourier integrals. We have formally

}rf(l_;) du f f(t)cos u(z—t) dt
=1 f f() at f (1—%‘)cosu(x—t) du

== J‘f()m’1 Zsin*Aa—1) g (L16.1)

This integral is analogous to Fejér’s integral in the theory of Fourier
series. We shall deal with it as a particular case of the following
theorem.

THEOREM 13. Let
K(x,y,8) = o(%) (loe—y| < 8) (1.16.2)

_ 0(_5_‘1_1) (lo—y| > 8) (1.16.3)

le—y|*+
for some positive «, and let

;isﬂ;[K(x,g,S) dy =1, }is_%_LK(x,y,S) dy = }.
Let f(z)[(14 |x|*+) belong to L(—o0,0). Then
’ai_‘ﬁ_L K(x,y,8)f(y) dy = 3{p(@)+d(x)} (1.16.4)
wherever

h h
[ Ife+o)—¢@ldt=o), [ ifa—t)—d() dt =o(k)

(1.16.5)
as h—> —+0. The result therefore holds (i) with ¢(x) = f(x+-0),
P(x) = f(x—0) wherever these expressions have a meaning, (ii) with
() = () = f(x) wherever f(x) is continuous, and (iii) with

$(x) = P(z) = f(x)

_ for almost all values of x.
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It is sufficient to prove that

tim [ Ky, 3ift0)— (@)} dy = 0,

together with a similar result with ¢(x); and by (1.16.2) and (1.16.3)
this is true if 2+

lim £ f /)~ () dy = 0

30
x
and limse [ WO—$@I, _
A : rwe lr—y|eH
z+§

The first part follows at once from (1.16.5). Next, let

h
xh) = [ Iflz+0)—$(z)| dt < b
for h < 7. Then °

o T’ff(y)—qs(x) Ly — 5 f fetn—4) ,,
z+8 s

Ix_yla-i-l ta+1

K

= X0 +esme [ 20
)

{a+l to+2
3
¢t 1
: Setelat)sr | < e(1+°%‘_).
Having fixed 7, plainly 8

o

i o |f(y)—‘/’(x)| — 0.
o [ SR a0

Tty
This proves the theorem.
As a particular case, let § = 1/A, and
- 2sin?}A(z—y)
K(z,y, S)A— a—yP
The conditions of the above theorem are satisfied (with o = 1). We
therefore deducet the analogue of Fejér’s theorem on Fourier series:

‘THEOREM 14. Let f(t) belong to L(—c0,0). Then the integral
1 f du f f(t)cos u(z—2) dt |
ks
0 —©

1 Hardy (5).
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18 summable (C, 1) to 3{f(x+0)+f(x—O0)} wherever this expression has
a meaning; to f(x) wherever f(z) is continuous; and to f(x) for almost
all values of x.
~ An obvious corollary is that ¢f f(t) ¢8 L(—c0, ), and a(u), b(u),
defined by (1.1.3), are O for all u, then f(x) = 0 for almost all x.
- As another particular case, let
A
K(x, y,;) = lj (l-—-;—‘)acosu(x—y) du

m
0

ER

I

1
j (1—v)*cos dw(z—y) dv
0 .

1 .
o .
= 1—v)*-1gin Av(x—y) dv
e f (1—0)=-tsin do(a—y)
ANz—yl |
_ o sin{A|z—y|—w} dw.
- 'ﬂA"‘Ix—y]"“'l wl—o
H

The second formula shows that K(z,y,1/A) is O(d), and the fourth
that it is OA-*|z—y|-*1) for 0 < «a < 1. Also
-0 —>0 1 .
1 o« dy a1 .
f K(x,y,;\-) dy = - f mf(l v)*-1gin Av(y—x) dv
x x o

. 1 —300 1
2 f (1—v)2-1 do f “’“t"”‘ &t = }a J' (1—v)x-1do = k.
w
0 0 0 .

Hence

TaEOREM 15. Theorem 14 is still true if (C, 1) is replaced by (C, a),
where 0 < a < 1. »

1.17. Cauchy’s singular integral.t In the theorem of the pre-
vious section we have replaced Fourier’s formula by a limit of the form

%1_13)% f $(5u) du f F(t)cos u(@—t) dt. (1.17.1)
0 — 00
-For summability (C, «) we take
$(u) = { f)l"“)a gz;”l‘f 1), (1.17.2)

+ Cauchy (1), Sommerfeld (1), Hardy (4), (5).
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Next let d(u) = e (1.17.3)
'The integral in (1.17.1) is then formally

f b0} dtje-a“cosu(x—t) du = = f f(t)Sz—{-(x 7 de.
(1.17.4)
3
T (1175
and the conditions of Theorem 13 are again satisfied, with « = 1.
In particular it follows that (1.17.4) tends to f(z) almost everywhere.
This result is the rigorous form of Cauchy’s argument givenin §1.1,
and the integral (1.17.4) may be called Cauchy’s singular integral.
The type of summability obtained is analogous to ‘summability 4’
for series.

Here K(z,y,8) =

1.18. Weierstrass’s singular integral. Now let
H(u) = e,
The integral (1.17.1) is then
71-r f f@) de f e~ cosu(x—t) du = N f(t)exp{-—(—x‘i:—sj)z} dt.
S F fit
Here K(z,y,8) = l\/ exp{ (”"4_87?/)3}, (1.18.1)
and the integral is known as Weierstrass’s singular integral.t
The conditions of Theorem 13 are satisfied for any positive «; but
in fact the result holds still more generally. ,
THEOREM 16. If K(z,y,3) s defined by (1.18.1), the results of
Theorem 13 hold if e~C=f(x) belongs to L(—c0,0) for some positive
value of C (and so for all greater values).
We argue as in §1.16, with o« = 1 say, for the integrals over
(z,2+38) and (z+8,2+7). It then remains to prove that, for fixed
z and 7, ®

.1 (z—y)? 2 A _
}sl_r};g f eXP{— o T }g(y) dy = 0,

z+n
where g(y) is L. Now
(x 3/) - (—y)? : Y (=92, (z—y)*
— < — 4
+0y 483 +C(x 3/) (x_y)z ~ 483 i 882
1 Weierstrass (1), Hobson (1), Lebesgue (1), Hardy (6).
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. 1 g
it C< 85 @

Hence the modulus of the above expression does not exceed

1 [
s [ ol ay,
+7 '

T

and this tends to 0.

1.19. General summability. If we merely require to deal with
the case in which f(z+0) and f(z—0) exist, we can use the following
simpler theorem.

THrOREM 17. Let K(z,y,8) > 0,
b z
lim | K(z,y,8)dy = %, lim | K(x,9,8)dy = }; (1.19.1
fo(xy)y% sgi(xy)y 3; (119.1)
and let lim K(z,y,8) = 0 (1.19.2)
3—0

uniformly for all x and y for which |lx—y| = € > 0, and also, in the
case @ = —, b = o, :

&%_L K(z,9,8) dy = 0, ?ﬁzieK(x,y,S) dy =0 (1.19.3)

for any fixed positive .
Let f(x) belong to L(a,d). Then

b
lim f K(z,y,8) f(y) dy = Hf(x+0)+flz—0)}  (1.19.4)

wherever the right-lia'nd side exists.
If f is continuous at the point z, (1.19.1) can be replaced by

lim f K(z,y,8)dy = 1. (1.19.5)
80 o .
We have to prove that
' b
[ K@y, 8)}(f)—f(z+0)} dy 0,

with a similar result for (a,z). This integral does not exceed in
absolute value
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max |f(y)—f(z+0)| f K(z,y.8)dy +

T<Y<sT+

+ max K(z,,5) f f@) dy + |fz+0)] f K(,y,%) dy,

z+e z+€
which tends to 0 by choosing first € and then 8. Similarly for the
other part.
~ The relevant parts of the summability theorems are clearly cases
of this theorem. They may, however, be exhibited as direct conse-
quences of the form of the summability factor; the general result is
as follows.

TrEoREM 18. Let ¢(x) belong to L(0,00) and have only a finite
number of maxima and minima n (0,00); let $(+0) = 1; and let ¢(x)
be the integral of ¢'(x), which is ultimately negative non-decreasing.
Let f(x) belong to L(—o0,0). Then ’

lim [ gowdu | foosue—1) dt = 3{fle+0)+fie—0)

wherever the right-hand side exists.
This follows from the previous theorem if

K@,y,8) = }r f $(du)cos u(@—1y) du
(1]

has the properties stated.
Suppose first that ¢'(:c) is negative non-decreasing for all . Then

K(z,y,3) =

f {—¢'(Bu)}sin u(@—y) d

(a+1)mr
w 1Z=ul

{—¢'(du)}sin ullx—yl du.

(x )

x_
wl yl &, J
lz—vl
The sum is positive, and its value does not exceed that of the first

term. Hence
< K(x,9,8) <

n/lz—y|

3 {—¢'(5u)} du

wle—y|

= et o452
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which tends to 0 as 8§ — 0, uniformly for [r—y| > e. Hence (1.19.2)
holds. Also

3l

fK(x,y, d)dy = —— - fﬂf¢ (Su)smu(x—y) du
0

-y

_ 8 3 sin u(z—y)
= | ¢'(3u) du dy
T ! f z—y

T
@

= —15 [ ¢'(5u) du = 4(+0) = 4,

the inversion being justified by dominated convergence, since ¢’(du)
belongs to L(0,00). Similarly for (—oo,z), and (1.19.1) follows.
Similarly,

© S c , wsinu(x——y)
K(z,y,8)dy = — - du)du | ————==d.
J(xy)y ﬂofsb(u)uf AW ay

Y

= 0(8 [ sy du)+0(% [ —vou du)

= O{¢(+0)—¢(3)}+0(Y-1),
and (1.19.3) follows from (1.19.2) on choosing first Y sufficiently
large, and then 3 sufficiently small.

In the more general case, we can write ¢(z) = ¢,(x)—dy(x), where
¢; and ¢, are negative non-decreasing. Let K, K, be the correspond-
ing K-functions. Then K, and K, are positive, and satisfy (1.19.2);
the integrals o w

| [ Eswy,8)dy, [ Kuz,y,8)dy

are bounded; and (1.19.1) holds as before. These conditions are
clearly sufficient for the theorem.

1.20. In all the particular cases considered, we have
K(x,y,8) = K(x—y,8),
where K(u,8) is an even function of u,

f K(,8) du = 1,

and lim f K(u,8)du =0
3—0 2
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for every positive . With these conditions, not only does
x(@38) = [ Kz—y,8)fty) dy

tend to f(x) at particular points, but in the sense of the following
theorem it tends to f(x) on the average.

TaEOREM 19. If K(u,8) 18 positive and satisfies the above conditions
and f(x) 18 L(—c0,0), then

b [ |x(@, 8)—f(@)| de = 0.

For .
x(@8)—fz) = l K(u,8){f@—u)—f(x)} du,
_E Ix(@,8)—fi@)| do <_f:: dx_E K(w,)|fe—1)—f(@)| du
- _j: K,5) du_f: fe—w)—fi@)| de.
Now ¥ = [ lfte—u)—f) s

-

is bounded for all %, and tends to 0 with u. Let |f(u)| < € for

|#| < n. Then

f K (u, 8)p(w) du' € j K(u,8) du = e,

and, if {Y(u)] < M ,

fK(u, 3)(u) du| < MfK(u,b‘) du,
] 7

which by hypothesis tends to 0 with 3. Similarly for (—o0, —7).
Hence the result. :
For example, in the case of (C, 1) summability,

1— cos)\(x y)
f IO —a—yr A(x () %

converges to f(x) on the average, in the above sense, as A —+ o0, (Take
A =1/8.)
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1.21. Further summability theorems. In all the foregoing
theorems we have imposed on f(f) conditions which ensure the
existence of the inner integral in Fourier’s formula in some sense
or other. We shall next prove a theorem in which, without imposing
any particular condition, we merely assume that the inner integral
exists.

Here we are not particularly concerned with the behaviour of f(z)
in finite intervals, and for the sake of simplicity we shall suppose
that it is continuous.

THEOREM 20.1 Let f(t) be integrable over any finite interval, con-
tinuous at t = x, and let

f J(®)cos u{x—1t) dt

converge uniformly over any finite interval of values of u. If the limit is

g(x, u), then A

;1_210% (1—%)9(:1:, u) du = f(x).
0

We have

(l—;—) gz, u) du = ‘—fwf(t) di f (1— ;) cos u(z—t) du
o

O%,

-7 T —>0

2sin*j\(z—1) _ .
ff()sm SamUp TR f+f+Tf Jit-dot- o,

—_— -7

say, where 7 > |x|. The inversion is justified by uniform con-
vergence.

¢
Let ) = [ fo) dv.
’ 0

By the case u = 0 of the data, f,(¢) is bounded, say |f,(¢)| < M. Now

T
= PR

J’fl(t)sm)\(w t) dt — ffl(t)4sm2%)\(a;8— at

+ The analogue for Mellin integrals was proved by Hardy (8). See Macphail and
Titchmarsh (1).
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on integrating by parts. Hence

oM 5M M
sl < S NT— aT—ap Y j = x)2+ f Ni—zF — aNT—=) T T—="

This can be made arbitrarily small by choice of 7', for all X > A; and
a similar argument applies to J;. Having fixed T, J, - nf(x) as in
§1.16. This proves the theorem.

1.22. The general result of the above type appears to be that, if
the inner integral is summable (C, k), the outer integral is summable
(C,k+1). The above theorem is the case k = 0, and we shall next
prove the case k = 1. The proof of the general case does not seem
to require any new idea, but it would be rather laborious to write out.

THEOREM 21. Let f(t) be integrable over any finite interval, continuous
at t =z, and let

lim (1 — i) f(¢)cos u(x—t) dt
po K

0
and lim ( 1¢ l) f(t)cos u(x—t) dt

oo

exist, uniformly over any finite interval of values of w. If the sum of
these limats 18 g(x, u),

= %f (“?)29@’ u) du =f<¥).

It will be sufficient to conslder the case where f(¢) = 0 for ¢ < 0.
By uniform convergence

y,—»ao

‘f (l——-) g(z,u) du = lim (l——) du f (l—i)f(t)cos u(x—*) dt.

The repeated integral is equal to
“

oj (l—ﬁ)f(t) dt of (l—g)zcosu(xf—t) du

- [ttt a [+ [ - s
0 . 0 T
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say, where 2| < T < p. ‘Define fi(t) as before, and let
t . t
fult) = f fuv) dv = ¢ f (1—§)f(v) dv.
0 0

Then f,(t)/t is bounded, as a particular case of the data.
On integrating by parts twice, we obtain

5= = (1= )T + S B T+

+(1—§)f2<2’)¢'<1')— 2 Tf £ @) dt + ! (1— l-t;)fz(t)qﬁ”(t) &,

where )
2 2sin A(z—¢)
#) = 2cosA(x—t) 6sinA(z—t)
T Az—tE " Ar—t)F N@—i)t

() = 12 2sinA(z—?) | 12cosA(x—¢) 24sinA(z—1?)
Alz— t)3+ (x—1t)3 A(x—t)t prr— L

Making p — o0, we obtam
> f Fo) dt,

Jy> (D) T (T)+ j F6)$"(0) dt.

We can choose T so large that the last two terms are arbitrarily
small for all A > A,. Having fixed 7', f(T)¢(T') > 0 as A -0, and

T
[ F)$(6) dt - nf(a)
[}

i)y the theory of Fejér’s integral, § 1.16, and the consistency theorem
for C-summability, §1.15. This proves the theorem.

1.23. We have seen that the (C, 1) of Theorem 14 can be replaced
by (C, a), where « is arbitrarily small. This is not true of Theorem 20;
in neither Theorem 20 nor Theorem 21 can the order of summability
of the outer integral be reduced. We shall now prove this by means
of examples.

: A
Let I(At) = f (l—;) cos ut du.
0
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Asin§1.18,if 0 < a < 1,

At
1
a(A t) A"‘t‘“" J‘ v“"lsm(kt—-v) d'v O(W')
o .

as A —> o0, t >o0. Also
A

l-a
0 0
at-x

(1}
= T(at 1)A-2¢-1-200g(\— }rma)) + O(-2).

Suppose that we try to prove Theorem 20 with (C,«), where
0 < a < 1, instead of (C,1). We encounter a term

J, = f FOLM, z—t) dt
T

= —AOLAa—T)+ [ fOZ L0z d.
T

Take T fixed (>|z|). Then everything is bounded except possibly
the term :

- D(a1)A1-2 ffl(t)t'l-“cos()\x—)«t—- $ra) di.
, _ > ,
Let fit) = 2v-%in2% (vr <t < (v41)w),

forv = 1,2,..., and f(t) = 0 elsewhere. Then

filt) = v3(1—cos2%) (v <t < (v+1)m).
Clearly '

T . 7

J- f@)cosu(x—1t) dt = fi(T)cosu(x—T)—u f fit)sin u(z—12) dt — limit
0 o ° :

as T — oo, uniformly with respect to u, so that the conditions of

Theorem 20 are satisfied.
Let A = 2°. Then

de.

3 =1 "7 (1—cos 27t)c0s 2
—CO8 cO8

f fltptocosxdt = > % f el

ki3

w2
=1 &
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The term v = p is

(p+1)m (p+1)m
1 cos 2°¢ dt 1 14-cos 2°+1¢ d
;5 o+l - 2_’,2 el ¢
pm : pm
1 1
R | iy |
S pF 1o (2,,)

The remaining terms are

Z J‘ cos2Pt—%cos(2" 2P}t — %cos(2”+2l’)t
2

fo+l

-2 O(W) = °fg)

Similarly, f (fosinke (1)

v#p

gt %

Hence |Jy| > A |cos(Ar—4ma)|Al-*(log A)-*-24-0 (1),

for A = 2¢. Finally, the sequence cos(2’x—}na) does not tend to 0,
since, if one term is small, the next is approximately —cos}ma.
Hence J; is unbounded.

Also, by Theorem 15, J, tends to a limit. It follows that,in Theorem
20, (C, 1) cannot be replaced by (C, «), if & < 1.

If1 < a < 2, we can write

(x—1) ¢
o o(ax—
“(A t) Mz Aata+1'

0

v2-2cos(At—v) dv.

Hence 921/0t* contains a term

A
—1)2
—o—l(a—t&?}—a f v2-2cos(Al—v) dv
0

= et X in o) + o(%), |

| and, in the argument with (C, «) analogous to that of § 1.22, we
"obtain the term

(a1 f fat)t--1sin(\z—\— }rar) dt.
T

Let fi&) = 22208 2% (v <t < (v+1)m)
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for v = 1,2,..., and f(f) = 0 elsewhere. Then

fa(t) = v¥1—cos2%) (vr <t < (v+1)m).
Since

»
[ (1= D) rercosuia—t) ae = gy =) _
JU 7

3 2u t
_ 5[ fz(t){-’:sinu(x——t)—l—(l—;)u’cos‘u(x—t)} dt,

which clearly tends to a limit as u — oo, the conditions of Theorem 21
are fulfilled.
The proof that the selected term is unbounded now proceeds as
before. The remaining terms are easily seen to be bounded, and the
desired result follows.

1.24. The integrated form of Fourier’s formula. It is well
known that the result of formally integrating a Fourier series term-
by-term is true, whether the original series is convergent or not.
The corresponding theorem for integrals is as follows.

Tmnomm 22. If f(x) belongs to L(—c0,00), then

j f(:c)dx_— J' 7 f fe)sinu(E—t)+sinus) di, (1.24.1)

A ©
f f@) de = %r lim -1, f f(t)et™ di (1.24.2)
0 - iy
for all values of ¢&; and.
¢ - o
J fz)de = 2 f sinéu 4, f F(t)oos ut de, (1.24.3)
0 0

ff(z)dx == j —i—“gi‘duff(t)smut dt  (L.24.4)
0

Jor £ =
The formulae correspond to (1.1.1), (1.1.6), (1.1.4), (1.1.5) respec-
tively. Consider for example (1.24.2). We have

f = f fityet dt = ff(t) d f D

mw
2 -2
D .
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by uniform convergence. The inner integral is

9 f sin fu—sin{t—§&)u du

u I

0
which is bounded for all £ and A, and, as A — oo, tends to 27 (0 < ¢ < &),
0(t<0ort>¢). The result therefore follows by dominated con-
vergence. The other formulae are easily deduced from this, or proved

in a similar way.

1.25. The complex form of Fourier’s integral. The theory of
the complex form of Fourier’s integral is substantially the same as
that of the forms already considered. We shall state briefly the most
important results.

We have so far supposed that all the functions are real. There is,
however, no additional difficulty in dealing with complex functions
of a real variable, and it is natural to apply the complex form of the
theorem to these. The extension of all the definitions is immediate;
a complex function f(z) is integrable, of bounded variation, etc., if
its real and imaginary parts separately have these properties.

TaEOREM 23. Let f(t) belong to L(—o0,0), and let it be of bounded
variation in the neighbourhood of t = x. Then

A ©
i{f(x+0)+f(x~0)}=2—t-r§i£° f e=iou du f Fltyei de. (1.25.1)
—A -

If f(t) satisfies the conditions of Theorem 4 in the neighbourhood of
t = z, the left-hand side may be replaced by f(x).
We may invert by uniform convergence, and obtain

A © © A
—tru tub Jf — d —iu(z—L)
_fA e—ix du_ l, f(tyei dt _!o f() t_]; e du

—9 f f(t)s—————inifft_t) dt,

and the result follows as in the proof of Theorem 3.

As a particular case, suppose in addition that f(z) is analytic for
¥ >0, and f(z) > 0 as |z| > co uniformly for 0 < argz < #». Then
by Jordan’s lemma (Whittaker and Watson, Modern Amnalysis,
§6.222) F(u) = 0 for % > 0. The formulae reduce by a change of
variable to those of Laplace, (1.4.1), (1.4.2).



1.25,1.26 CONVERGENCE AND SUMMABILITY 43

If we use the functions F, (w) and F_(w), we obtain a theorem in
which f(z) is less restricted at infinity.

THEOREM 24, Let e—Wf(f) belong to L(—c0,0) for some positive c,
so that F (w), F_(w), defined by (1.3.1), (1.3.2), exist for v >c,
v  —¢, respectively. Then, if f(t) satisfies conditions corresponding
to those of Theorems 3 or 4 in the neighbourhood of t = z,

ia+A
Hfw+0)+fw—0) = \/(%n f Fw)e-i= dw +
ib+A
—tow
+J(2w)x f F_(w)e—t= dw,

where a =2c b —c
Let g(z) = e-“j(x) (x> 0), 0 (x < 0). Then by the previous
theorem .

%{g(x+0)+g(:v—0)} = —-—hm f e=iz% dy J‘ g(t)ei dt

"‘>

et du f Ft)eHuria¥ g
0

A .
J. e~=uF (ut1a) du,
-A

«/(2‘"))« ®
ia+A
o Belglet0)+ale—0)} = o lim s [ Fwerer o
Similarly, if h(z) = €*f(z) (x < 0), 0 (x > 0), then
b+A
e {h(x+0)+R(z—0)} = 4(2‘”) lim F_(w)e—= duw.

th—

The result stated follows on addition.

1.26. Perron’s formula.t The formula known as Perron’s formula
in the theory of Dirichlet series can be deduced from Theorem 24.

THEOREM 25. Let f(s) = f a, e

be convergent for o > a,, where the )\,, are real and steadzly mcreasmg
to infinity, and let A(z) = z a,.

1 See Hardy and Riesz, The Gmeral Theory of Dirichlet's Series, 12-14,
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Then if k > 0, k > oy, -

) k+iT
HA(z+0)+4@—0)) =.§117_i Jim f ﬂ_f_)esz ds.
) k—iT
Let Ay=0, A,=a,}a,}+ .. +ta,.

If B > o 5“: a,e-MF is bounded for all m, and hence, if also 8 > 0,
1
4, = i a,eHB eMB = O(eMB).
v=1

Hence, if N is the greatest n for which A, < «,
A(x) = AN = O(GANB) = O(Jz)
Hence for ¢ > B,

f(8) =n21(Aﬂ—An—1)e;ﬁ‘“s =ﬂ§1An(6‘Aﬂ'—e‘Aﬁ+13)

" Ant1 ©
=Y 4,8 J' edy =3¢ f A(y)e*v dy.
n=1 A 0

Since A(y) is of bounded variation in any finite interval, the result
follows from Theorem 24.

1.27. Fourier’s theorem for analytic functions. The following
form of Fourier’s theorem applies to a class of analytic functions.
THEOREM 26. Let f(z) be an analytic function, regular for
~ —a<y<b,
where a > 0,b > 0. In any strip interior to —a < y < b, let
O(e %) (x>0
7= { Gsny (2> oo

for every positive e, where A > 0, u > 0. Then F(w), defined by (1.2.5),
satisfies conditions similar to those tmposed on f(z), with a, b, A, p
replaced by A, p, b, a; and

fz) = \7(;—") f F(w)efiz‘” dw (1.27.2)

(1.27.1)

Jor every z in the strip —a < y < b.

We have F(w) = :/(;—") f J@)ettw dt,
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and the integral converges uniformly for —A < v < u. Hence F(w)
is analytic in this strip. By an obvious application of Cauchy’s
theorem we may take the integral along any line of the strip parallel
to the real axis. Thus

F(w) = a\/_(;—‘n'—) J- f(§+,in)e¢(£‘+i1))(u+iv) dt = 0(8"’1“), |

and by takmg 7 arbitranly near to —a or b the order-results for
F(w) follow.

The reciprocal formula (1.27.2) can be deduced from Theorem 23;
it can also be proved directly by the theorem of residues. Let
— < —a<y<pB<b. Then

@ © if+o
1 1
= | F(w)e-**dw = — | e~ dw FQ)eitw dg
V(2m) 6'. 2n ! f

f 0% f e-te-Dw dop

f(l)
z—§

the inversion being justiﬁed by absolute convergenoe Similarly,

— f(C)
4(2») f F(w)e—o di — Zm f d;,k

—ix—c0
and, by an obvious application of the theorem of residues, the sum
_ of the right-hand sides is f(z).

1.28. Summability of the complex form. The various sum-

mability theorems have obvious extensions to the complex form of

the theorem. It will be sufficient to state one of them. |
THEOREM 27. Let f(t) belong to L(—c0,0), or, more generally, let

T rewar

converge umfmmly n any finite interval. Then

— lim i (l—l%l)e-‘z‘_‘ du f f@)etvt dt ‘

211' p —
- ——0
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18 equal to {f(x+-0)-f(x—O0)} wherever this expression has a meaning;
to f(x) wherever f(x) 18 continuous; and to f(x) for almost all values of x.

On inverting the order of integration the integral reduces to (1.16.1),
and the result then follows from Theorems 14 and 20.

1.29. Mellin’s inversion formula. Theorems on Mellin’s formula
may be obtained from theorems on Fourier’s formula by a change of
variable, as the formula itself was obtained in §1.5; and of course
there is no difficulty in adapting the arguments to give a direct proof
in each case.

We shall state only the most important theorems.

TeEOREM 28. Let y*~1f(y) belong to L(0,00), and let f(y) be of
bounded variation in the neighbourhood of the point y = x. Let

Fs) = :Ff(:zz:):c*’-1 dz (s = k-+it). (1.29.1)
° ) k+iT
Then Hf(@+0)+f(z—0)} = 2—17;]1'1_?; f Fs)z—2ds. (1.29.2)
k=iT

THEOREM 29. Let F(k-iu) belong to L(—c0,00), and let it be of
bounded variation in the neighbourhood of the point w = t. Let
k+1io
f@) = %@ f F(s)o—s ds. (1.29.3)

k~io

Then : A
FeA-it-+ O} §lle+i¢—0))] = lim [ fla)at+-1 da.
’ B (1.29.4)
Both theorems are obtained by changes of the variable in
Theorem 23.
In some examples the following theorem is required.

TuEOREM 30. Let
’ F(k+it) = P(t)evd,
where $(t) and J(t) satisfy the conditions of Theorem 11, both as
t—>co0 and t > —o0; or let
| ekefier) = g(z)e b,
- where ¢ and  satisfy such conditions. Then Mellin’s formulae hold,
the integrals being non-absolutely convergent.
This follows from Theorem 11 by the usual substitutions.
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TarorEM 31. Let f(2) be an analytic function of z = re, regular
for —a<0<B, where 0 <a<m 0B n and let f(z) be
O(Izl‘““c) for small z, and O(|z|~+¢) for large z, where a < b, uniformly
in any angle interior to the above.

Then F(8), defined by (1.29.1), 18 an analytic function of s, regular for
a <o <b;and [0~ (t > o)

&le) = {O(e(“-f)') (t > —o0)

for every positive e, uniformly in any strip interior to a < o < b; and
(1.29.3) holds for a < k < b.

Conversely, if F(s) is a given function satzsfymg the above cond?,t-zons
and f(x) s defined by (1.29.3), then f(x) satisfies the conditions. pre-
viously imposed on it, and (1.29.1) holds.

This follows from Theorem 26, or it may easﬂy be proved by an
analogous argument.

THEOREM 32. Let f(x)x*-1 be L(0,00); or, more generally, let
.fwf(x)x'—l dx = §(s) (1.29.5)
be uniformly convergent_}to)r 8 = k-1it, t in any finite interval. Then
Lan B

2m A—>w
k—iA

18 equal to 3{f(x+0)+f(x—O0)} wherever this expression has a meaning,
and in particular to f(x) wherever f(z) is continuous; and fo f(x) for
almost all x.

In the inverse form the assumption is that F(k-it) is L, and the
conclusion

M
. [log z| 1 gy —
lim (1— 1og,L) f@st de = (o)

p>o

almost everywhere.

This follows from Theorem 27 by the usual changes of variable.
A particular caset is that, if

[fapetas, | fapda,

where a < b, converge, then the result holds for a < k < b; for then
t Hardy (8).
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(1.29.5) converges uniformly in any finite region interior to the strip
@ < o < b. In this case F(s) is analytic in the strip.

1.30. The Laplace formulae. The simplest theorem on the
formula (1.4.3) is

THEOREM 33. A necessary and sufficient condition that f(z) should

be of the form 1
f&) = 5— f p(w)e dw, (1.30.1)
r

where T" 18 a closed contour surrounding the origin, is that it should be
an integral function of exponential type, i.e. such that f(z) = O(ec"‘)
for some c.

The formula (1.30.1) plainly defines an integral function of z; and,
if |w] < c on the contour, f(z) = O(e#). Hence the condition is
necessary.

Conversely, suppose that it is satisfied, and let

fiz) =2 a,z"
n=0
Then by Cauchy’s inequality

lon| < =
for all values of r. Taking r = n,
la,| < Ken—.

n! a,
wn+1

Hence the series d(w) = Z

n=0 - .
is convergent if w is sufficiently large, say for jw| > M. Let I" be a
simple closed curve surrounding the origin, and lying entirely outside
the circle [w| = M. Then by uniform convergence

1 < nla, [ eV
3 j d(w)e* dw = n Gy T —dw = z a,z" = f(z), |
.

“ 2m

the required result.
The reciprocal formula, is

d(w) = f Sflx)e= da

as in § 1.4, but in general this holds for R(w) > ¢ only.
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For f(z) in (1.30.1) to vanish identically, it is plainly not necessary
for ¢(w) to vanish; it is sufficient for ¢(w) to be regular within I.
Hence, if we are given f(z) and T', (1.30.1) does not determine ¢(w)
uniquely. It does so, however, if $(w) is given to be regular and zero
at infinity; and there is a more general result of the same kind.

THEOREM 34. Let $(w) be regular for sufficiently large w, except for
a pole of order n at infinity, and let

f (w)ert dw = 0
r .

Jor all t, T" being a simple closed contour surrounding the origin. Then
$(w) = ay+a, w+...+a, wr,
Let P(w) = $(w)—ay—...—a, w,
where @y+...+a, w™ is the principal part of ¢(w) at infinity. Then
f P(w)e dw = 0,
r

and ¢(w) - 0 as |w| a—>oo
Multiply by e-#, where R(z) > max R(w), and integrate over
r

(0,00). 'We obtain 1

lf«ﬁ(w)z_w dw = 0,

and this holds by analytic continuation for any z outside I
Hence, by the calculus of residues, if I is a circle of radius

B> e,
40 = o [ £ au,
) o

—zZ

and, making R -> o0, the right-hand side tends to 0. Hence P(z) = 0.



II
AUXILIARY FORMULAE

2.1. Formalities. Ir F(x) and G(z) are the Fourier transforms of
Jf(z) and g(z), we have formally

© _ _]__—_ © @ y
] i F@)eE) de = o :[ q(x) dz —i Ft)eiet dt

1 o« Q o0
=L [ joya f G(x)ei do = f fg(—t) dt.  (2.1.1
T i o | e [ soena @1y
If g(t) is replaced by §(—t), G(z) is replaced by G(z), so that an
equivalent formula is

@

f F()0(x) dz = f f@)j(x) da. (2.1.2)

-0

If g = f, we obtain

0 @0

j |F(z)[? de = f If @) ? de. (2.1.3)
For even functions the formulae reduce to
[ Fi@)G@) dz = | flz)o(a) d, (2:1.4)
[} ) 0
and | f {F(x)}? do = f{ f(x)}? de; (2.1.5)
[} 0
for odd functions they reduce to
[ F@)6.) dz = [ f@)g(z) do (2.1.6)
0 0
and .F{F,(alc)}’z dx = jio{f(:a:)}2 dx. (2.1.7)
0 0

These formulae are analogous to Parseval’s formula

2w
[ ey de = gt 3 @von
[}
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in the theory of Fourier series. They will be known generally as the 4
Parseval formulae.t Again,

1 i gy — 1 [ izt F i?
e f POG@et=dt = - f F(t)e—i=t i f g(w)ets du

-
@

1

=5 .[ g(u) du f F(t)e~thz—w) gt

-~ @ -0

=‘/(%") f gw)fz—u)du.  (2.L.8)

Thus the functions N -
4(—;;3 f gu)fz—u)du,  F(z)G(z), (2.1.9)

are Fourier transforms. The integral obtained is called the resultans
of f(x) and g(x).
The process may clearly be repeated. The functions
%r f h(v) dv f guf@—u—v)du, F(z)Gx)H(z)

A A (2.1.10)

are transforms. So generally are
l -] 0

W f fn(’"’n) d”'n f fn-l(un—l) dun-l'" X 1

@ b (2.1.11)
x f fiw)f@—1y — ... —u,) duy

-~ @

and F(z)F,(2)...F,(z). o
There are analogous formulae for Mellin transforms, which may be

obtained by transformation from the above, or directly as follows.
If F(s), ®(s) are the Mellin transforms of f(x) and g(z),

k+io k+io

1 1 g
o Fe)®(1—s8)ds = — | G(1—s)ds | f(x)x*-tdx
2mk—L 2mk-:[au !
@© k+io ©
- f f@) da:k f Sl de = of fa)@) e, (2.1.12)

t The earliest reference to the formulae of which I know is in Rayleigh (1). See
also Hardy (3-5), Ramanujan (1).
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or, alternatively,
k+1io k+1ico

o | B@S0—0de= o | Ble)ds f glop de
k—io k—1io
1 © kj-.iao J’
= | g dz | Flo)rds = | ga)f(e) de.
. . m! k—io 0
Similarly,
1 kj:tco J‘ lcj‘ico
Fo)6(s) ds = — | g(x) dx F(e)a* ds
%k-—tm k~1iw
— f g(:r)f(-:-;) i: (2.1.13)
(1}
If g = f, and both are real, (2.1.12) with ¥ = } gives
5 [ watiora= [ ey (2.1.14)
Also ® - © ’ k+iw
f f@)g(z)x*-1 dx = %@ J‘ g(x)x*-t dx f 3(w)sz dw
k—iwo
° 1 k+teo
- J' Bw) duw f g(z)zt—>-1 do
k—iw
1 k+io
=5 F(w)®(s—w) dw, (2.1.15)
k—io
1 k+io
ie. few@), o f ()6 (s—w) duw (2.1.16)
are Mellin transforms. Frie
Again,
1 k+io 1 © k+io
-3 8=1,0—8
2ka; Be)Sle)e ds = of g(w) duk:!; Blopur-ia-tdo

f () %, (21.17)

another sort of resultant.’
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Hence we obtain as Mellin transforms v

fg(u)f(z) %u y  F6)B(s). (2.1.18)
0

Repeating the process, we obtain as Mellin transforms ‘
du, du
f Folag) 2 f Tty ) Bncs f f«ul)f(ul )

Ug ... uy’
(2.1.19)

&(8)F1(8) ... Falo)-
From the Laplace integral formulae we derive similarly the

formulae s
2; f P(8)p(s)e** ds = 5 j P(s)es ds f f@evdy

k-1

- f 1) dy [ s ds

x

= [ f@)(z—y) dy, (2.1.20)

0
and

5 | HeW(—aeds = L [ECL” f Y—s)ere da

= | fwey—)dy. (2.1.21)
mar(z,0)
We can also introduce parameters into the formulae without altering
them essentmlly Since

1 - a | -
e f Sy dy = s | flaneiee du — ;”’(a)’
the transform of f(ay) is éF(z) Thus e.g.

f flat)g(—bt) dt = a-% ( F(E)G(‘g) da. (2.1.22)

Similar changes may be made in the other formulae; e.g.

o

[ oy de = a-e [ o100 a,

[
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80 that the Mellin transform of f(az) is a—*g(s). Thus
© k1o
f flaz)g(ba) dz = 5711—; f F(6)G(1—s)a—tbs-1ds, (2.1.23)
0 k—io

and similarly in the other formulae.

2.2. Conditions for validity. We shall now give some sets of
conditions for the validity of the above formulae. Some of the most
important conditions depend on the theory of mean convergence, and
must be postponed until later chapters. The conditions which we give .
here depend on analysis resembling that of Chapter I.

We begin with (2.1.1) and its special cases.

TaEOREM 35. If f(x) and G(z) belong to L(—o0,00), and F(z) and
g(x) are their transforms, then (2.1.1) holds.

For the inversions used in obtaining (2.1.1) are justified by absolute
convergence. The theorem implies that f and G are the given func-
tions, and F and g defined in terms of them.

The theorem of course includes the corresponding theorems for
cosine and sine transforms.

It follows also that, if f(z) and g(z) are L(—o0,00), and G(x), defined
as the transform of g(z), is L(—o0,00), then (2.1.1) holds. For, by
Theorem 27, g(z) is the transform of G{(x). :

2.3. We next take some cases of Parseval’s formula suggested by
Theorem 6. Here the conditions are more appropriate to the half-
line (0,00), and we consider cosine and sine transforms separately.

THEOREM 36.1 Let f(z) belong to L(0,00), and, in some interval ending
at 0, tend steadily to a limit as x — 0. Let g(x) be the cosine transform of
G,(x), which is integrable over any finite interval, and tends steadily to
0 as x »>oo. Then '

[ Fi)Gole) do = [ fz)g(z) do. (2.3.1)
0 —0 :
We have to justify the inversion

[ 6.y)dy [ fz)ooszy dz = [ fla)dz | G(y)cosay dy.
0 0 —0 0 (2.3.2)
t Hardy (5).
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- Now

f G.(y) dy f f@)cosay dz = f f@) dz j G (y)coszy dy,
(2.3.3)

for every finite A, by uniform convergence. By the second mean-value
theorem

—wac(y)cosxy dy = G,A) }:coswy dy = O{%?‘)}
A A
Hence }ixg 5i‘?f(:zr:) dx —;fw G(y)coszy dy = 0, (2.3.4)
and (2.3.3), (2.3.4) give
[awma f fia)oosy de = f sy [ Gugyonzy dy
for every 3>0. It is now suﬁiclent to prove that

lim f G.(y) dy f f(x)cos zy dz = 0. (2.3.6)
If, eg., f(x) is steadﬂy decrea,smg in (0, 8),

f G.ly) dy f f@)cosay dz = f f) dz f G(y)coszy dy
% 0 0 L

¢ Us
= f(+0) [ dz [ G (y)cosay dy
0 "

Vs . .
= f(+0) f G,(9) ““;fy dy,

where 0 < ¢ < §; and

Vs . . n .
f &) 2 gy — ) f ey 4y — o{a,T))
J y J
for all £, while, for a fixed Y,
b g
f G.(y) m;_gy dy > 0

as ¢ — 0. The result therefore follows on choosing first ¥ sufficiently
large and then & sufficiently small.

(2.3.5) -
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THEOREM 37. The corresponding theorem for sine transforms holds
provided that, in addition, Gy(x)/x belongs to L(1,00).
In this case we encounter ‘

Vs
f Gs(y)——l—c;s Y gy

at the last stage of the proof, and the extra condition is required here.

2.4. In the above theorems the functions on which the conditions
bear are on opposite sides of the Parseval formula. We next prove
a theorem in which they are on the same side.} '

THEOREM 38. Let f(x) belong to L(0,00). Let g(x) be positive, non-
increasing, and tend to 0 as x — co, and let

1 - t
f .‘.f(.t.‘ﬂ dt f g(w) du < . (2.4.2)

Then f F(2)Q,(x) dx = f flz)g(x) de, (2.4.3)

—0

and similarly for sine transforms.
We have
X

f @ dz = [(2) [ e da f ftycosat
f
J( ) J-f(t) dtJ- G.(x)cos xt dx
J f@) dt f cosxt dx J g(u)cos xu du
X

] f@)de J g(u) du’ f cos xt cos xu dx
0 ¢

()

3

Il

ERE

:nw

j F@la(t, X)—g(t, ) +9(—1t, X)—g(—1,6)} dt,
° o (2.4.5)

sin x(u t) du.

where gt,x) = - f g(%)

0
1 See Hardy and Titchmarsh (5).
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The inversion of the z and ¢ integrations is justified by the uniform
convergence of the ¢-integral, and that of the z and u integrations by
that of the u-integral.

Since g(#) is non-increasing, g(¢, X) - g(¢) as X - co for almost all
positive ¢, and g(—¢,X) > 0. Also as £ >0

U .
96,8 = [ g0 L0 au o))
0

U
—of¢ fotw au)+0{U)} = o(1)

by choosing first U and then §.
N ow

’y@t+0) f A

t
< Agth) <4 f glu) du < f o(u) du,
0 0
and it it i
sin 2(u—t) g(u) 2 »
fg<u)7:t__du' <f¢_—ud" < ;fg(u)du
[} 0 . (/]
<2 f g(u) du.
Hence If@g,z)) <4 L1 If (‘)l f g(u) du,

which belongs to L(0, 1), by hypothems, and it belongs to L(1,c0),
since f(t) belongs to L(1,0), and

—:—fg(u) du — 0.

The result now follows from (2.4.5) on making X -0, £ >0, by
dominated convergence.
' Immediate corollaries are :
(i) If f(x) belongs to L(0,00), and g(z) is of bounded variation in
(0,0), and tends to 0 at infinity, then (2.4.3) holds.
(ii) If f is L and g bounded in (0, 1), then (2.4.2) holds and the

theorem follows.
E
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(iii) If f is bounded and g(x)log(1/x) is L in (0, 1), (2.4.2) holds and
the theorem follows.
Apparently f bounded and g L in (0, 1) is not sufficient.

2.5. In a later chapter we find some examples of Parseval’s
formula which evade all the above theorems. These are cases where
the existence of the transforms and the convergence of the integrals
involved is obvious enough, and all that is needed is to prove the
equality of the two sides of Parseval’s formula. We can deal with
some such cases by means of the following theorem.

THEOREM 39. Let f(x) and g(x) be integrable over any finite interval.
Let

F(z,a) = f foed, G@a) = ;/(_;;) f g(t)e dt,

«/(2 )

and x(@,a,b) = f g(u)f@—u) du
be all O(ec\™) for some positive ¢, independently of a and b, and tend to
F(z), Q(z), and x(x) as a » o0, b - 0, for almost all x. Then

A
im [ Fe)6(e) de = Hx(+0+x(—0)}

provided that the limits indicated exist.
Let A > 0. Then by dominated convergence

f F (t)c-i“l)#iul dat = 11m I F (t a)e-i“/ﬂ+ud dt

-0

— 1 — 1A it +4
-t g e [ oo

= lim /(2)) f f(@)eMe+u) dg,

and the convergence is uniform over a finite »-interval. Hence
b
f g(u) du f F(t)e-tiviut gg — hm J(2A) f g(u) du J’ f(ax)e-Ne+wr dy;
-b S
atu
= lim y(2)) f gy du | fle—uete do

-b —a+tu
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a+b min(z+a, b)

= :1_{2 V(@A) f e dy f g(u)f(x—u) du
~a—b max(z—a, —b)

=2 f ey (x, b,b) de,

by dominated convergence. Also we may invert the left-hand side,
by uniform convergence, and obtain

J(27) f F(t)G(¢, b)e-1'A d,

Hence, making b - oo, and using dominated convergence,

f F)Q(t)e-¥N dt = J(%) f V() da.

—a

Making A -> 0o, the result now follows from Theorem 16.

In particular, the result holds if f and g belong to L(—c0,00), and
one of them is bounded.

2.6. Transform of a resultant. We now turn to (2.1.8), giving
the Fourier transform of a product, or of a resultant. From one point
of view this is merely a case of Parseval’s formula, since f(z—u) is the

transform of F(t)e-i#, A new problem arises, however, when we
consider all values of x at once. We then ask whether (2.1.9) are
transforms belonging to one of the general classes already considered.

THEOREM 40. Let f(x) be the transform of a function F(z) of
L(—00,00), and let g(x) belong to L(—o0,0) (80 that its transform G(z)
18 bounded). Then \/(2m)F(x)G(z) belongs to L(—o0,0), and its trans-

orm 18
¢ k(z) = f 9w\ f(x—u) du.
For the inversion in (2.1.8) is justified by absolute convergence.
THEOREM 41. Let f(x) and g(x) belong to L(—00,0). Then so does
k(z), and its transform s /(2n) F (x)G(x).
For a a @
'f k(u)ei=¥ dy = f eiT¥ dy, f J@)g(u—v) dv
—a —

—a
] a

= f J(@) dv f g(u—v)etur dy

-~a
@ a—v

f f)ei dv f g(t)et= dt.

—a-—-v
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The inner integral converges boundedly to \/(2m)G(x). Hence
f k(u)eiws du = \J(2m) f f@)e2Q(x) dv = 2nF ()G ().

2.7. Mellin transforms.

THEOREM 42. Let x¥-1f(x) be L(0,c0), and G(1—k—it) be L(—0,00),
or alternatively let §(k4-1t) be L(~—c0,00), and x~*g(x) be L(0,00). Then
(2.1.12) holds.

For the inversion which gives the formula is justified by absolute
convergence.,

THEOREM 43. Let f(x) and g(x) be integrable over any finite interval
not ending at x = 0. Let

a a
F(s,a) = f flx)zs1 de, G(s,a) = f g(x)x*-1 dx
1/a 1l/a
tend to F(s), ®(8) for o = k, o = 1—Fk respectively, for almost all ¢,
in such a way that e—<¢J(s,a), e=¥G(s,a) are, for some positive c,
bounded independently of a. Let

x)g(éx) dzx.
e f f@)(e)
be bounded for all a, b, £, and, as a — 0, b — 00, converge to a continuous

limat in the neighbourhood of ¢ = 1. Then
k+1iA

o lim f F(5)B(1—s) ds = f Soto)

provided the left- hand szde exists.

This follows by a change of variable from Theorem 39.
The analogue of Theorem 41 is

THEOREM 44." Let x¥f(x) and xké(x) belong to L(0,0), and let

ha) = f f(y)g(g)%—’

Then xkh(z) belongs to L(0,00), and its Mellin transform is F(8)®(s),
with o = k+1.

2.8. Poisson’s formula. This is
BEO+ 3 Fop) = a1fO+ 3 fna)),  (28.1)

where off = 27, « > 0.
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We shall provet

THEOREM 45. Let f(x) be of bounded variation in (0,00), and tend
toO0asx—oo. Then

Vﬂngln(nﬁ) (M+ 1)
= Y lim [%f<o+0)+mﬁlw(ma—owf(maw)}—§ f 1 dt].

. (2.8.2)
If also [ f(t) dt ewists, then
0

BEEO+ 3 Emp))

=A[10+0)+  Hfma—0)+fmato))].  (283)

If also f(x) 18 continuous, then (2.8.1) holds.
Since f{(t) is the difference between two non-increasing functions,
each of which — 0 as x — co0, we may take it to be one such function.

The integral ) — J (1_2r) Iw fQ@)coszt dt

exists for z > 0, and

8 3 Fmp)

= J (%TE) ‘—fmf(t)mélcos mpBt = J (276) Imf: kﬁ{%ﬁ;&?ﬁt—%} dt,

which is the limit as M — oo of

2mm/B
2mn/B

5 T e
wlglom 3 -
m=1 (2M+1)m/B

_ A/(zﬁﬂ) f fiydt. (2.8.4)

t Ido not know whether this version of the theorem has been published previously.
I obtained it by combining one of my own with one communicated to me by Dr. W. L.
Ferrar. For other methods see Linfoot (1), Mordell ( 1).
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Now
amnmt 2mm sin(n4-4)pBt
i {f O ( B +0)} emift
- Tl e
- o) T

by the second mean-value theorem. The last integral is bounded

for all » and £, e.g. as
=B

(n+¥)m
. : 1 1 1 sinu
gf sin(n+4)Bt (m— l?t) dt +B f 0 du,

(n+9)BE
2m+1)m 2mr
ond S5
is convergent. Hence the first series on the right-hand side of (2.8.4)
is convergent as M -> co, uniformly with respect to n; and each term
tends to 0 as » —o00. Hence the limit of the sum is 0. Similarly for
the second series. This proves (2.8.2); and (2.8.3) and (2.8.1) clearly
follow from (2.8.2) in the cases stated.
There are also more ‘complicated formulae of the same type. For
example, Ramanujant gives
VB{F(B)—F(3B)—F(5B)+ F(7B)+ -}
= Voff(x) —f(8x) —f(Bx)+...},
where o = }m; and
VB{F(B)— F(5)— F(1B)+ F,(118)+ F,(13f)—...}
= Voff(a)—f(Bx)—...},
where of = 3=, and 1, 5, 7, 11, 13,... are the numbers prime to 6.
These formulae are easily verified by the above method.

2.9. There is another interesting formal method of I;iooedure.j:
Suppose that f(x) is represented by Mellin’s integral
c+io
f6@) = 5r; | Blo)ade
. c—iw

1 Ramanujan (2). } Ferrar (2).
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Then formally y
Sre=s [ s@Z@maa >0
1 °Zl°3@
— 5 | e e

Move the line of integration from o = ¢ to 0 = —b, where & > 0;
{(s) has a simple pole at ¢ = 1, with residue 1; and

SO Fees - PR
Fle) ==+ f {f@)—f(O)}*-1 do + f flx)r-1 da
0 1

has in general a simple pole at s = 0, with residue f(0). Since
{(0) = —1 we obtain

H(O)+ 3 fino)—a (1)

~b-+1w

1 -8
~5 f o)l (e)or da
14+b+iw
=5 F1—s)(1—s)at-1 ds
1+b—%0
1 14+b+1i o) -2
=— J ‘{g(l—s)l‘(s)cos:}sn{(s)(f) ds
1+b—1i0
1 o 1+b0+14d0 s
_—.a—m:zl f 8(1—8)1"(8)008%877(-2—3'3) ds.
=114p—io

But by (2.1.23), with f and ¢ interchanged, and
g(x) = cosx, G(s) = I'(8)cos }sm, b=1,
1 k+io
)= o f F(1-—8)T'(s)cos hsma~ ds.
k—io
We have therefore obtained (2.8.1) again.
We shall not attempt to justify this process here. The main interest

of it is that it suggests a method of dealing with sums such as

3 dwifm),
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where d(n) is fhe number of divisors of #. This sum, for example,

gives
¢+io

5 | B d
o | e
= HO+F W25+ 5 [ 316 de
~b—iw

and the last term is
1+b+iw

| BU—ar0—sde
1+b—1w0
1+d+io

== 1% F(1—8)['2(s)cos}sm 2-2r—2872(s) ds
1+b—io
© 1+b+i

=> ?.f?‘i’i)_ f %(1—8)T"%(s)cos2hem (dmn)* ds.

=1 14b—i

From (7.9.7) and (7.9.11) we deduce

9 1 k+ico

- — —_ 2 2 80 —8

Z Ko —Xfe) = 5 f T2(ds)ooston 22t ds (b > 1),
ki '

and, proceeding as before, the result is
3 dmifn) = HO+F D230+

+n§1d(n) ff @)K of4my(nx)}—inYo{4m|(nx)}] de.

2.10. Examples. (i) Let f(z) = %, F(x) = J (—3) ﬁ;—z. Then

it ) = )b+ ;——1+sz2)- |
(ii) Let f(x) = e, F(x) = e~#'. Then
«/«(Hnge—ww) - Vﬁ(%-l-”zle-*ﬁ"").
(iii) Let f(x) = e-t*'coskx. Then Fy(x) = e-¥*'+=cosh kx. Hence

«/cx(%—l— i e~ta'n’cog kan) = B e‘*"’(i—}- Sle—*ﬁ‘"’cosh kﬁn).

n=1
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(iv) The function f(z) =
45, but does not belong to L(0,00).
(v) Let f(x) = z%in% (1 < o < 2). Then

F(z) =

J(z Tam T (A—osin for @ —Ylz—2p-'—flz+21) (2> 2)

F(0) = I'(1—sg)sin }sm(—2°-1).

«/(?m)
Hence, taking o« = 3, 8 = 4,

JEE ()™

T'(1—s)sin fom %‘”’{ —28-2+él((m)s—l—;(m—m’—‘—%(4n+2)"‘)},

=27 Jem

or

1+3l,+5l, + ... = I(1—s8)sinjamms-1 x

X [‘%J“‘Zl((zr;“‘% (2,,_11)14—% (2%4:1)14)}'
This is the functional equation for (1—2-*){(s).
(vi) Let
fle) =
Thent

T +1})(1—x’)"‘* 0<z<l), 0 (x=1).

Ffo)=zJf@) (®>0), F0)=2-"T(p+1).
Hence

1 AW 21-v N
PTG 2, ohr ~/ () rern rerplt,Z.0mr)

where, in the case v = }, the term n = 1/«, if it occurs, is to be
halved.

This is a case of Theorem 45if v > 1. Actually it is easy to see that
the same proof applies if —} < v < }, provided that « is not the
reciprocal of an integer.

t See (7.1.11).
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2.11. Sine transforms. The corresponding theorem is
THEOREM 46. Let f(x) be integrable over (0, 8), of bounded variation
over (3, oo), where 0 < 8 < 3w, and tend to 0 at mﬁmty Then
VB{E,(B)—F,(38)+...}
= Vo[ ¥{f(a+0)+f(a—0)}—3{f(38a+0)+f(8a—O0)}+...], (2.11.1)
where off = 4.

In this case the right-hand side is necessarily convergent.
Proceding as before, we obtain

VBLF(B)—Ey(3B)+ ...+ (—1)"F{(2n+1)B}]
_ (—1)*B J‘ ) sm(2n+2)ﬂt

J(27r) " cosft
_ (=DM i sin(2n+2)Bt ;.
~Jen [t

m=1 (m—mr/p

=‘7(§1;,3‘)1,Zl(_—1)m—1 ff{(m %)‘n'-i-'v} sin(2n+2)y

sinv

—sm

This differs from the right-hand side of (2.11.1) by

5 s i e st

'H_,‘ 1)m-1 f [f=(m—/%3)w+v} _f{(m;%)w_o}] sm(:lr:l;l)—2)v ,
and the result f;:;ws as before.

ExampLE. Let f(z) = 2% (0 < o < 1). Then
F(x) = J (%) I'(1—s)cos 48w xs-1,

and

A/ (2—713)1"(1——s)cos fsn{B-1—(3B)-1+...} = Vofa—*—(3a)~*+...},
| or (%)'_II‘(I——s)cos%wL(l——s) = L(s), L(s) = l'—§l§+51;-—....

2.12. More general conditions. The next theorem is a more
general one, in which f(z) is not necessarily of bounded variation.
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THEOREM 47. Let f(x) be integrable over any finite interval, let
aff = 2n, and

xuly) = 3 fly-+ne) > x(0), (212,
and |xy(®)| < $(y), where (y) is L(—da, 3a). Then
9 —0
FnB) = [(-] | fix)cosnpz dz (2.12.2)
J6

exists for every n, and
lim vB{1E(0)+ 3 Fnfle] = Jaf(-+0)-+x(+0)+x(—0}

(2.12.3)
provided that the right-hand side exists.t
We have
(N+ia N (mida
| f@osnprde=73 [ flz)cosnpr dz
o 7=1 (m=pa
N ia
=2 rf(y—kma)cos nBydy = [ xuly)oosnfy dy.
m=1 _ja ~J
N4De i
Hence Sf(@)cosnfxr dx| < f d(y) dy.
o —ia
Also, if (N+3)a < X < (N+§)o,
.4 (N+#)a
| faroosnpzdz| < [ |f@)l do
(N+He (N+Pa
i o
= [ Ixwn@)—xn(@) dz < 2 [ $y) dy.
—ta il ]
X
Hence f fl@)cosnBx dx
0
is bounded for all » and X. Also
(N'+ o .
f@eosnpr dz = [ {xy(y)—xn(y)}cosnBy dy
(N+$)a —ja

tends to 0 as N —> oo, N’ - o0, by Lebesgue’s convergence theorem;
and similarly
(N+a T
f(z)cos nfz dx — 0, J f(x)cos nBz da — 0
T N'+DHa

1 Borgen (1).
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if (N—3a<T<V+dHa, V+3e< T < (N'+3)e, T->o0,
T’ - oo. Hence (2.12.2) converges boundedly for every n.
In (2.8.1) with o and B interchanged, take f(x) = e®*cosxy. Then

1 5 8
Felf) = V(2m) {32+(y—t)2+52+(y+t)2} ’

and we obtain

B {Héle-snp cosnﬁy} = J (%)nimmrwimz

= \/(%om')K(y, %),
say. Hence
Y © Y
«/ﬁlﬁ—ﬂ) oj s ay+ [(2) 2. f cos nfy(y) dy}

= o f fW)K(y,9) dy.
0

By the bounded convergence of (2.12.2), the left-hand side tends
to that of (2.12.3) as ¥ —»oco. Also since K(y,8) is periodic, with
period «,

(m+ Do

ff(y)K(y,S) dy = { J+3 }f(y)K(y,S) dy

Tm=pa

k = f f)K(y,3) dy + 2 ff(y+ma)K(y,8) dy

i _}a

= f /@)K (y,9) dy + f X(¥)K(y,8) dy,

—}o
by the dominated convergence of the series, K(y,8) being bounded
for a fixed 8. The result now follows from Theorem 17, with 2 = 0,
a = —}a, b = o, and K(0,y,8) = K(y,3).




II1
TRANSFORMS OF THE CLASS L2

3.1. Plancherel’s theory of Fourier transforms. TuE formulae
(1.2.1), (1.2.2), connecting a pair of Fourier cosine transforms f(x),
F(x), express a relation between these functions which is formally
symmetrical. But in all the theorems which we have proved so far,
the two functions satisfy quite different conditions, so that the
symmetry is only formal.

A theory of the reciprocity which is completely symmetrical was
first given by Plancherel. It depends, not on ordinary convergence
or summability, but on mean convergence.

For complex transforms Plancherel’s theorem is

THEOREM 48. Let f(x) be a (real or complex) function of the class
L*(—o0,0), and let

F(z,a) = J f@)eie dy. (3.1.1)

«/(2 )

Then, as a - o, F(z, a) converges in mean over (—o0,0) to @ function
F(x) of L* —o0,0); and reciprocally

flz,a) =

converges in mean lo f(x).
The transforms f(x), F(x) are connected by the formulae

Jen )lF(y)e"Wdy (3.1.2)

1 d [, ew_1
F(z) = «/»(27)179«’_[0 f(y)T dy, (3.1.3)
l d ¢ P . |

for almost all values of z.
It will be seen from the proof that we might replace F(z,a) by

dy, (3.1.4)

b .
F(z,a,b) = J(%ﬂ) f f@)e= dy,

where a — c0, b - 00, in any manner.
1 Plancherel (1), (2), (3), (4).
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At the same time we obtain

THEOREM 49. If f(x), F(z) and g(x), G(x) are Fourier transforms
as in the above theorem, (2.1.1.), (2.1.2), and (2.1.3) hold.

For cosine and sine transforms the theory is as follows.
THEOREM 50. Let f(x) belong to L2(0,00), and let

Ra) = /() f f@)cosy dy.

Then, as a > o, F(z,a) converges in mean over (0,00) to a function
F(x) of L*0,00); and reciprocally

rea = /() f Efy)eosay dy
0

converges in mean to f(x). We have almost everywhere

re = /B % f O A ORI f Fy) B gy,

THEOREM 51. The analogue of Theorem 50 for sine transforms holds,
with cos xy replaced by sinzy, and sinzy by 1—coszy.

THEOREM 52. (2.1.4), (2.1.5), (2.1.6), and (2.1.7) hold for transforms
of L2

The cosine and sine theorems may be obtained by taking f(x) even

or odd in the ‘complex’ theorem.
We shall give several different proofs of these theorems.

3.2. Fourier transforms, first method.{ This is suggested by
Fourier’s formal process (§1.1). Let
@+1)/A

o, = [ f@)dz (v=0,x1,.), |
viA |
and D, (x) = i a, evid,

- —n ‘

Then if b6 > 0 and n = [Ab]—1,

b
lim®, (@) = fb f@)ei=v dy

t Titchmarsh (1), (2).
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uniformly in any finite interval. For

w+1)/A
0u)— j iy =| § [ o= ay —
" b -
[ twemay— | sweera)
(n+1)/A -b
b —n/A
j 1)l dy + f fwldy+ [ lw)dy>o,
(n+1)/A —b
since |e“'x”‘—eW| < z/A in each integral.
Also w+1D/A w+1/A 1 v+1)/A
@< [ e f do=2 [ lf@pd.
vl) viA vIA
Hence, if X <
A n n
f 10, (2)[2 dz < f |0, (x)|? dz = f ( a, v > a,,e-tﬂzlh) dz
-X —aA Vv=-n p=-n
(n+1)/A b
=2m 3 < [ f@Pd <[ lf@)de.
—nJA -b

Keeping X fixed and making A — o0, it follows that

2 b :
Yeizy dyl dz < 2n f If(x)|? de.
: b

Making Xv—>oo
j j fy)e= dy] < 2n fb \f@)I? da. (3.2.1)
- - -b )

If we take f(y) = 0 for —a < y < a, this gives

[ 1Feo-Fearda< ([ + f )@ da,
—© ' -b a

which tends to 0 as @ >0, b >co. Hence F(x,a) converges in
mean, to a function F(z), say, of L? —o0,0); and, making b - o0 in
(3.2.1), © ®
f |F@)2de < f If() 2 dz. (3.2.2)

A similar argument now shows that f(z,a) converges in mean, to
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#(z) say. We have to prove that ¢(x) = f(z) almost everywhere,
and for this it is sufficient to show that

¢ ¢ '
[ $@) dz = [ f(z) do

for all values of £ Now

f #(e) do = lim f(x @) dz = lim «/(21r) f dz J' F(y)e-tov dy

e~ if!l._ e ifv_
—l‘..mwzw)““ 4(2)f

On the other hand, Theorem 22 (1.24.2), with f(x) = 0 for |x| > a,
gives ¢

© —itu__
f @) d = J(;”) f o Fwa)du (€] <a)
0 —®

c ~ifu___ ~ —ifu__
But lim | & 1 F(u,a) du = f el F(u) du,
a—»>o 4

since (e~%*—1)/u belongs to L?*(—c0,0). The result stated therefore
follows. ’

Incidentally we have proved (3.1.4); since we may now argue
similarly with (3.1.2) instead of (3.1.1), (3.1.3) also follows.
Also we may interchange f and F in (3.2.2). Hence in fact

[ rrerae= | .

If G(x) is the transform of g(x) in the same sense, F4@ is the
transform of f+g; hence

f |F@)+G@) P de = [ |f@)+g@)]* d,

ie.

[ {IF@)1*+16@)*+ 2RF()F(2)} da

= [ (f@)P*+|9)*+ 2Rf)j()} do.
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Hence R j F)@z)dz =R J’ f(@)j(x) de.

Arguing in the same way with f+ig, we see that the imaginary parts
are also equal. Hence '

| Fa)die) = = f f@)ie) d.

3.3. Fourier transforms, second method.{ Let f(x) belong to
L¥*—o0,00). Then we can construct a sequence of functions f, (),
each of which is continuous and of bounded variation over a finite
mt.erval and zero outside this interval, and such that

f f@)—Fole) | dz > 0.

Let () = \/lewi [ #utetes an.
Then -

1

A
£ |Fye)itdo = o-

3

dz f £ (w)e= du f J.(v)e-=v do

eiu=0) gy

l

¥l

»;_: >

-

¥l

folw) du j ﬁ(v)ﬁ‘%ﬁ,‘—”’ av.

-

A
J
f fulw) du f Fulo) do
J

By the theory of § 1.9, the inner integral tends to 2xf,(«) uniformly
over any finite range, as A - c0; and hence

[ E@de= [ (fu)?du.
Similarly w
[ 1B —F@)tde = [ |fulw)—fuw)l? du,

-0

1 Bochner, Vorlesungen iber Fouriersche Integrale, § 41.
F
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and the right-hand side tends to 0 as m and n tend to mﬁmty
Hence F, (x) converges in mean, to F(z) say; and

f |F(z)[? dz = lim f \F(2) |2 do

=lim | |fy@)Pde= | |fz)]*da.

This function F(x) is the Fourier transform of f(x). It is of course
not yet obvious that it is equivalent to the transform obtained before,
or even that it is unique, since the sequence f,(x) is not unique.
However, we have

— LT U d —_—
f E @) dr = s j ds f e du = s f fay
(the range of mtegra,txon being really finite). Making n — oo,

fF(x)dw ) ff()

gince (eiv— l)j(m) belongs to L2. Hence

1 d 3 eizv ]
@) = o2 [ 1= a
almost everywhere. Hence F(x) is unique (apart from sets of measure
zero), and is equivalent to the transform obtained by the first method.
In the first method we deduced the Parseval formula from the
reciprocity; in this method we have proved the Parseval formula

already, and we deduce the reciprocity from it. As before, the
Parseval formula gives

[ F@)8@) dz = [ f@)(z) de. -

Let g(x) =1 (0 <—:< £), g(x) =0 (x < 0 or > £). Then |

ef —1,

ef“

1 d
J(@n) dx

G(x) = du

T

°;ﬂm

1 d j_xeiu._l d 1 eifz—
— U =
0

= Jem) dx Jem i
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Hence (2 j f dx ff(x)dx

so that f(z) is the transform of F(z).
Again, let h(z) = f(z) (—a < z < a), 0 (|z] > a). Then

70 = o )dxff‘

with the usual notatlon. Hence the tra.nsform of F(z)—F(z,a) is
f@)—h(z), ie. it is 0 (|z| < a), f(x) (Jz| > a). Hence

[ 1P Feaprds = [ + [ ) ae

which tends to 0 as @ -> 0. Hence
F(z) = lim. F(z,a).
a—>0

eia:u___ 1

izu —_—
du = \/(2 ) f fu)ees du = F(z,a),

3.4. Fourier transforms, third method.t Suppose first that
f(x) belongs to both L and L2, and let

f f(t)ei= dt.

Then

J‘ e 12| P(2)|2 dox =

-0

2—1-' e~ 12 g f fu)eizs dy f J@)e-tzv dyp
1
§1—7

8'-—-.3 8'——33

f(w) du f fw) dv f etz Hiz(u-v) Jp

- w—(lz;) f Fw) du f Fo)e-iw—o® @y, (3.4.1)
and by Schwarz’s inequality for double integrals
[ [ fafwe-ss—sr quay

- —

j? f flu)e—tu—ori® F(p)g~Hu-v13* dydy

-—C0 =00

1 F. Riesz (2).
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<{Z

@ o

flf (u) | 2=~ dudy f _[ |f(w)[2e-tu—vris* dudv}%

-0 -—0 =
© @

=I f |f () Pe~ ¥ dudy

= fm If(w)|? du fme‘*"/s' dt = 8,/(2m) fo[ f(u))2 du.

Hence f e 2| F(2) 2 dor < f If () |? du,

and, making & — 0, it follows that F(x) belongs to L?(—c0,0).
Also (3.4.1) is equal to

1 «© (-] -
Wi ) du:[ Fut-t)e-8 d

I S A D WY
3«/(2")_16 dt—!; Fu)futt) du 8‘/(2”)_'[0e (1) dt

say. Since f belongs to L2, ¢ is bounded and continuous. Hence

f |F@)[tdz = lim f -9 | P(z)|* dz = lim

-0

e~¥'%(¢) dit

i |
= §(0) = f HOE

by the theory of Welerstrass 8 smgular integral (§1.18).
The existence of F for any f of L?, and the reciprocity, may now
be proved as in the previous method.

3.5. The Hermite polynomials.tf The Hermite polynomial of
degree n is defined by

B,8) = (~1re (L) e, (35.1)
and we write
n
¢n(x) = e ¥ H, (2) = (—1)"elr$‘(%;) e, (3.5.2)
The interest of these functions for our theory is that they form an

orthogonal sequence, each member of which is, apart from a trivial
factor, its own Fourier transform.

t See Wiener, The Fourier Integral, 51-71.
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We have
v A\P o [\ d“+2_,.}w
z,xx)— “"”{‘””“)(d—,;) e z+2x(a—x) ¢ +(d-x) o) etor
an

oo 4] e o=t o

Hence d\» d\»
» = 2 el -zt __ 2} p—z*\ phx?
#nlz) = ( 1)"{(:& +l)(dx) e 2(n+l)(dx) e }e
= (22—2n—1)¢,(z). (3.6.3)
Thus y = ¢,(x) is a solution of the differential equation
dzy —x%y = —(2n4-1)y. (3.5.4)
Putting y = e-*z'u,i we obtain
d?u du
2 = 5.5
7o 2 Tz 2nu, (3.5.5)

so that H,(z) is a solution of this equation.
Further, it is the only polynomial solution. For let

U = @y+ta,z+4 ...
be a solution. Then

2arr—1)ar2—2Yare = —2n Saua.
Hence (r+-1)(r+2)a, ., = 2(r—n)a,,
and the general solution is the sum of two series, of which the one
in which r has the same parity as n terminates, and the other does not.
The Hermite functions ¢,,(x) form an orthogonal set. For by (3.5.3)

P (@)pn (%) — S (2)Pm(®) = 2(n—m)(@) o ().

Hence
f I@Wbnle) de = o [, @)~ @M,
. o
ifm £ n.
3.6. THEOREM 53.} Ifltl<1
etesn) Byt eyt
; st @ H,(y) = 4(1 vxp{ Ly } (3.6.1)
We have | e = 4—117 f f‘“‘”"’“ du,

—®

1 See Watson (3).
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and hence H,(x) = (___?n_e_z’ f whe—w+2izu gy
™

Hence
2 e—¥z'+vY)
. 27pl

ne=0

t"H,(x)H,(y)

n!

© @ @
_ e}(z’+u)z J‘ J’( —2UV)" s v sizuizive oy

. I e—(l-—t')u‘+2i(:t—ul)u du

-®

1 —yf)?
= =t — )

The inversion is justified by the convergence of

J‘ J‘ z (2P“”) e-w'~v"+24u+2Bv dydy

% — 2=0

ifp<l.
THEOREM 54. The functiom
form a normal orthogonal set over (——oo,oo), i.e.
1 (m=n)

[ dmeram s =4 ="

For m # n the result follows from §3.5. Also, putting x =y

in (3.6.1),
petE@P_ 1 -
2 Zonive (1-t2)}exP( 2”‘5)‘_

=0

b}

Hence

2t | T = gy [ o) o

- a5~ e £
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Equating coefficients of ¢*,
J’ {$a(@)}? dx = f e~ {H,(x)}? dx = 2"n!Vm,

— 00

and the result follows.
3.7. TeEOREM 55. If f(x) i8 any function of L%*—c0,0), and

a,, = ff(x)z/;m(x) dex (m=0,1,2,..), (3.7.1)
then lim f |fa)— ioamz/:m(x)]gdx =0. (3.7.2)

We can write (3.6.1) as

—y2 _ 2
3 et = e (5552 619

Denote the right-hand side by K(z,y,t). Then K (:v, y,t) > 0, and
(putting y = 2xt/(1+z2)+u)

f K(z,y,1) dy =

Hae % 1is
21+t‘
€ & H-B" gy

Jm=m ) ¢

2 1 l"t:a:'
= Je) e

as ¢ > 1. The conditions (1.16.2), (1.16.3) are also plainly satisfied.
Hence, if f(x) is any continuous function, va.mshmg outside a finite
range, by Theorem 17

lim [ K(z,y,0f(y) dy = fl(z). (3.7.4)

-Hence,; multiplying (3.7.3) by f(y) and integrating over (—o0,0),
3 ant™(a) = [ K(a,y, /) dy > @)

as t—> 1, and the convergence is plainly bounded. Hence, multi-
plying by f(x) and integrating again,

200 [ ey e,

o«

so that “Zoa,ﬁ e f {f(x)}? de.

—0
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Now let f(x) be any function of L% —o0,0). Let f,(z) be a continu-
ous function, vanishing outside a finite range, such that

@

[ V@) —f @)1 d <

-0
0

and let a,, = j 1@ () da.
Then -

-]

[ @)=y, (@)= ... —a, (@)} da

-0
@

= __’; {f(x)}? dx + éa?h,v_2 i T,y O

-] @

> [(epis—Sat = [ fo)—ahie)— .. —aupu@) da,
and also
<2 [ @-LE@P a2 [ ) —m @) — . @)} do

<242 [ {f,@) de—2a},— ... —23, < 3¢

for » sufficiently large. This proves (3.7.2).

THEOREM 56. If a,, a,,... are given numbers such that > a2 is
convergent, there is a function f(x) of L3(—o0,00) such that (3.7.1),
holds. ’

This is the Riesz-Fischer theorem for the set ¢, (x). By Theorem 54

VN a y o
J' l 2 am‘l'm(x)l de = 2 Ams
o m=n m=n
which tends to 0 as » and N tend to infinity. Hence, as n -> o,
| D G (@)
m=0
converges in mean, to f(z) say; and

[ fapn@)de =lim [ 3 apdu(@hy(z) de

= Q.
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3.8. THEOREM 57. The Fourier transform of @ () 18 i, (z).
For

f $n(@)eiss dz = (—1)» f emm-(d%)”e-z- dz

@© d\n ‘
= f e-z’(d— elzv iz dy
x

= et f e—x’(d_‘i)”e}(xﬁw'dx

= (—1)melv* f e“z'(i)ne‘(“‘")' dx
dy

- (_,-),.ew(%)”
= (_,')new(%)"\/@ﬂ.)e—u'

= 1"/(2m)$,(¥).
Alternatively, let o

O,.(y) = ;-/é—"—) f b, (x)eixv da.

@«
f e~ +Hizv-iv* gy
— @

Then O(y) = — \_/é_;) f 2%, (2)eieV d.

— 0

Also, integrating by parts twice,
0.(4) = ~#~2ﬂ) [ #at@ree aa.
Hence -
(1) — YD, (5)+ 20+ 1)D, (y)
= T | B2 e+t (el do

= 0.

Thus @, (z) satisfies the same differential equation as ¢,(z); and it is
. easily seen that, if et*'$, (x) is a polynomial, so is ei**®, (z).
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Hence D, (x) = c, ().
Now ®
1
et — _— e~y dy
Jem) _i Y
d\» 2 3 .
fhedl -3zt ~dyymeizy
(dx) e NE —-[e y"et*v dy,
and also (‘—Z—v)ne‘w = {(—=1)ra"+...}e- 1=,
Hence \/_g—) f e Wymeiny gy = {(—1)"an+-.. }e- 1%,
s

-0

and hence
\ﬁ f $aly)e™ dy = ﬁ f (2ryn - ...)e~Weiev dy

= (2" 4. )e 1=,
Hence c, = 1"

3.9. Fourier transforms, fourth method. Take, for example,
an even function f(x) of L%0,00), and let

0, = | fl@)p()da.
Then 4, =08y=..=0,

Agp = 2 f f(x)'llzn(x) dz,
1]

and S at, =2 [ {f) dz.
. n=0 o
By Theorem 56 there is an even function g(x) such that

(—1)ay, = 2 [ gl@Wpa@) dz (0= 0,1,...);
0

and [ {g@)de =S al, = [ () de.

The relation between J and g is plainly reciprocal.
We now identify g(x) with the Fourier cosine transform of f(z)
previously obtained.
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We have

of gt dy = (-1 /(2 f = gy of banlt)oosyt i

= /(Y f anlt) f e eostay = -1, /(3) fsm(t) a,

since y,,(¢) belongs to L(0,c0) and the y-integral converges boundedly.
Hence

g sin N

y D, (b dy

f y(y)ﬂ;ﬂ dy = lim
0 X

0

= Jim /(3 ) Z aznfnﬁ,n(t)dt J6 )ffu)dt

so that f and g are Fourier transforms in the ordinary sense.
Similarly, by taking f(z) odd, we obtain the theory of sine trans-
forms.

3.10. Convergence and summability. We can now prove
theorems for L? functions corresponding to Theorems 3 and 14.

TueoreMm 58. If f(t) belengs to L*—c0,0), and is of bounded
variation in the neighbourhood of t = x, then

Hf(z+0)+f(z—0)} = lim f Flu)e—izv dy,

«/(2 ) ds
The transform of Q(u) = e~ (ju| < }), 0 (ju| > A), is

g(v) = ‘/(%") _jj T J(ﬂ) smif::.v)

Hence, by Parseval’s formula,

f Flu)e-i=s dy — J (%) f f(v)Si_";‘(_”_v“'?? .

The result now follows from the theory of Fourier’s single integral
(Theorem 12, case i(a)).
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THEOREM 59.1 If f(t) belongs to L*(—o0,00), then

A
1) = 75 2") lim J ( —%)F(u)e‘i““ du
wherever j |f(x+t)+f(x—t)—2f(x)| dt = o(h)
0

as h—> 0, and so for almost all values of x; and Fourier’s repealed
~integral for f(x) holds almost everywhere, if both integrals are taken in
the (C, 1) sense.

The transform of G(u) = ( 'j(')e—w (Il <), 0 (Ju] > ), is

T i

Hence by Pa.rseva.l’s formula

J;(l-u)lf’(u)e—izudu— /() ff(v)sz%?«__(x)—v)d

and, as in § 1.16, the result follows from Theorem 13.

The result also holds with f and ¥ mterchanged and this gives the
second part of the theorem.

We also deduce

THEOREM 60. If

f@) = Lim. f dtye= di,

«/(27')
where | belongs to L?, and also

fla) = ﬁﬂ j x(Be-= dt,

where x belongs to L, then § = .
For by the above theorem

A
. 1 [t|)
lim — t)ei= dt
rv J(27) fA ( e
is equal to y(x) almost everywhere; and by Theorem 14 it is equal to

x(x) almost everywhere.
t+ Plancherel (3).
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3.11. Convergence almost everywhere. If f(f) belongs to L2,
the integral

f f)e= dt

converges in mean; it is also summable (C, 1) almost everywhere, by
Theorem 59, since in this theorem f and F are interchangeable,

It is not known whether the integral necessarily converges in the
ordinary sense almost everywhere. As in Theorem 58 it would be easy
to make it converge almost everywhere by imposing extra conditions
on F(z). The object of the next sections is to state simple additional
conditions on f(z) itself which make the integral converge almost
everywhere.

THEOREM 61.1 If f(t) belongs to L¥(—ao0,0), then
A
[F(®)ei= dt = o (log)) (3.1L.1)
22

wherever A } :
x(#) = [ |F(z+y)+ Fz—y)—2F(z)| dy = o(h)
0

as h — 0; and so almost everywhere.
As in the proof of Theorem 58

_f Ft)yeiet dt = J (%) _ f Fla+y) Si’;"y dy.

Now

f F<x+y)°i“"”dy]a< f |Fe-+y)[2 dy f % < f |F(t)[2 dt
1 y 1 1 ys -

and similarly for the integral over (—co0, —1). Also

f F<x+y)“m"-" dy = f (Flae-+y)+ Fa— y)}s‘“” dy

| = [ (Fet+Fe—y—27@)™2¥ 4y 1 o)
[

1 Plancherel (3).
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if F(x) is finite. The modulus of this integral does not exceed
1A

A j |F(o+y)+ Fla—y)—2F (@) dy + j \P-+y)+Fla—y)— 2F(x>|
1/A

If x(k) = o(h), the first term is o(1), and the second is

fl x'(y) [x_(?/_)]m+ J'x(y )dy = 0(1)+0 7[ Y= o(logA).

1/A
This proves the theorem.

THEOREM 62.1 If f(t) and also f(t)log(|t|+2) belong to L*(—o0,00),
then

«/(27*) f fit)e= di — F(a) (3.11.2)

almost everywhere.
We have

A A
g = [ (1) e
_! o fA (1= R e+ fltxfa)em it

- The first term tends to ,/(27) F(x) almost everywhere, by Theorem 59.
Hence it is sufficient to prove that

)
[ 101 @ei= dt = o)
2
almost everywhere. By Theorem 61
A
$() = [ f)log(t-+2)ei dt = o(logh)
(1}

almost everywhei‘e If x is a point where this is true, then

o
J i)t di = f Tog(i+2)
0

té(t) 1" 1 .
[108(t+2)] f {log(t+2)_(t+2)10gz(t +2)}¢(t) dt
__ Ao(logd)
~ logd+2)

and the theorem follows.
1 Plancherel (3).

+ | oy dt = o),
J
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3.12. Inspite of the satisfactory appearance of the above analysis,
it is possible to improve on the result.

THEOREM 63. If f(f) and also f(t)Vlog(|t|+2) belong to Lz(—oo o),

then (3.11.2) holds almost everywhere.t
A(z)
Let O(z) = j ft)eizt dt = f fOw(, t)ei= dt,
—A@) - —o

where A(x) is any function of x such that A(z) < a, and where
o(z,t) = 1(lt| < A@®)), 0 (]| > A(z)), so that w(z,t) = 0 for [t| > a
and every z. Then

f f . @ ©
[@@) dz = [ dz [ f@ate,netdt = [ sy Qlog(itl+2))x(t) dt,

where

1 N
() I — x,t)ei*t d.
X0 = JogtinTen f @& et de
(the t-range being really finite). Hence

3 © ©
[o@as| < [ vomog(i+2)a | xopea
Now - -
F Fooa ;
IxOFdt = | ———— | w@tedz | wy,t)e-"dy
_l f log(|t|+2>f .,f
- f f J‘ w(®, Yy, ?) oi-u¥ g
J Tog(If[+2)
£ —)\(z

Wz —y¥
= [ i f d f e
f Y ) Tog(iiiE2)
—Az,y)
where A(z,y) = nun{}\(x),)\(y)} Writing A(z,y) = A, we have, on
integrating by parts twice,

'\cos(x—y)t __ sin(z—y)A

- 1—cos(z—y)A
log(t+-2) (z—y)log(A-- 2)

=yt 2)logpnr2) T

log(t+2)4-2
f = cos = G o oger 3y &

+

(x y)’
=+t

t The theorem for series is given by Plessner (2).
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say. We now observe that if F(z,y,t) = F(y,z,t), then

£ ¢ £ ¢
[ | Py Mz 9 dxdy] <2 [dz | |Fizy @) dy.
00 0 0

For let Q be the square 0 < 2 < ¢, 0 < y < £, and let
Q= Q=) <A@}, €= Q) >Ay)}
Then in Q,, A(z,y) = A(z), and in Q,, A(x,y) = A(y). Hence
l ] f Fiz,y,Mx,y)} dxdy,
j f Pz, y, M)} dady + j j | Pz, y,\y)}| dedy

<2 f dx f | F{z, y, M)} dy
0 0

by symmetry.
It follows that
£ ¢ 4 ¢
' : sin{(x—y)A(x)}
dedy| < 2 | dx dy.
[ f Raady| <2 [ s [ |22 keS| a0
00 [1] 1]
Nowif 0 < 2 < ¢,
é EA(x) £A) +2}
f sin{(z—y)A(z)} dy <2 smu| du < 2{ J‘ du +1}
z—y
0 1

0

— 2[1-log é+log{Az)+2}].

¢ ¢
14-log {-+log{A(z)+2}
[ | ety ‘< f e 4 <K
0

¢ ¢
da 1—cos{(z—y)A(z)}
f Jy dxdy‘ S2 ! P@)+2og*R=)+3 e
[ ] ’

A(z)
<4 of {Xz)+2}log2{A(x)+-2} dz < K(£).
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Also

¢ ¢ © é
log(z+2)4-2 l-—cos(x~y)t
f f dedy | < (t+2)2log3<t+2)‘”f dxf Ty ¥
00 0
t{log(t+2)-+2}
=< K‘f)f Feyogare) L

Hence, for every Az),
j 0(e) da| < K@) [ {f0)ogt1+2) &t
0 —®

Az)
Let dz,T,7T") = max J f(t)cos xt dt.
T<ADLT 4,

Then ¢(z, T, T") is the difference between the real parts of two
integrals of type ®, in which f(f) = 0 for t < 7' and ¢ > 7". Hence

)dxr

< K@) f {fO))log(e+2) dt < K(£) f {f®)}log(t-+2) de.
As T - o0, @)
(=, T,T') > ¢z, T) = max Tf f(®)cos t di,

AMz)
and ¢(z, T, T") > 0, since [ f(t)cosxtdt = 0 if A(x) = T. Hence}
’ T

¢ s o
[ .71 dof < K@) [ trormoge+2) .

It is then clear that, given ¢, we can choose a sequerice 7, 7T,
such that ¢(x,7,) > 0 except when z lies in a part of the mterval
(0,€) of measure less than e. A similar argument applies to the
function ¢(z, T') defined with ‘min’ instead of ‘max’. Since

' ff(t)cosxt dt| =

¢ ) —(,T,)
if T, < u </, it follows that f S(t)eosxt dt converges for 0 < x < ¢
except for a set of measure less than e.

t By Fatou’s theorem ; Titchmarsh, Theory of Functions, § 10.81.
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—>00 ‘
Hence f J(@t)cosxt dt
0

exists for almost all 2. Similarly, the sine integral converges for
‘almost all z. Hence the limit (3.11.2) exists almost everywhere ; since
the limit and limit in mean of a sequence are equal almost every-
where, by Theorem 48 its value is almost everywhere F(x).

3.13. Theorems on resultants.

THEOREM 64. I 'f f(x) and g(x) belong to L¥(—o0,00), then (2.1.9) are
transforms in the sense that (2.1.8) holds for all values of .

For a fixed ¢, the tra,nsform of f(u-+t) is
a+t

10
@) -[t f)et= dv

= F(zx)e-i=,
The result therefore follows from Parseval’s formula, Theorem 49.
TuEOREM 65. If f(x) belongs to L¥(—0,0), and g(x) to L(—o0,00),
then (2.1.9) are transforms of the class L2

Since F belongs to L2 and @ is bounded, FG belongs to L. The
integral of its transform is

Li e du = Lim. o
1m~/(2 ) ff(u-[— eizv dy, = 1m4

T/Z%?) f Flu)@wE (3.13.1)

Now the transform of G(u)(e~**¥—1)/(—1u) is

—1
Li A m. ————e-W“ du
W%)f
a _fxu 0
=limg. [ T ewean [ gt
—a -

8

=lim. f 9(€) ¢ f Sin(x-l-y—f)z—sin(y—f)u o

-
z+y

= [9®&)dt (@>0),
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the ordinary limit existing by dominated convergence. Hence
(3.13.1) is equal to :

™ -y
1
oo | S dy | g(é) d¢
N(2m) _i _fy
l @ T
== | ) dy | g(u—y)du
o [ 10

1 -
= ——— | du | fly)9(u—y)dy,
«/(2fr)of _i

this inversion being justified by absolute convergence. The theorem
now follows on differentiating with respect to z.
The direct proof that, if f is L2 and g is L, then

We)= [ fl)gle—y)dy

is L?, follows from the inequalities

k@E< [ 1f@)Plge—yidy [ lg—y)| dy
= [ VoPlee—y)l dy [ lgw) du,

- 0

[ h@rde< [ gwid [ fe)edy | lge—y) do

o «© 2
= [ Veorrdy( [ g o)’
TuroREM 66. If f(x) is positive and L(—o0,0), and F(x) is its
- transform, then F(xz) is of the form
F@)= [ gipe—tdt, (3.13.2)
where ¢ is L*(—o0,00); and conversely, if F(x) is of this form, then it is
the transform of a function f(x) which is positive and L.
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If f(x) is positive and L, J/f(x) is L?; let G(x) be its transform. Then
G is L2, and by Theorem 64

__(;-—) f G()G@—t) dt

is the transform of JAf =1
' Conversely, if (3.13.2) holds, then f/J(21r) is the square of the trans-
.form of ¢, and so is positive and L.

Tagorey 67. If f is L, then F = [ $(ehp(@—1) dt, where ¢ and
are L?; and conversely. -
For f = 4/|f|x J/|fIsgnf.

3.14. Special theorems. THEOREM 68. If both f(xr) and f'(x)
belong to L2, then both F(x) and xF(x) belong to L?; and conversely.

Wehave  {f@)*—{f(O)} = 2 [ fO)f () ds,
. (1}

which tends to a limit as x 0. Since {f(ac)'}2 belongs to L, it can-
not tend to a limit other than 0, and so tends to 0 as x - c0. Now

[ paeedu = et ~is | fped

As a -> 00, the left-hand side converges in mean square, to ,/(27)®(x)
say. The first term on the right tends to 0, uniformly in z. The
second term on the right converges in mean square to —./(2m)izF(z),
at any rate over a finite interval. Hence

O(x) = —1xF (),

and since ®(x) belongs to L? the result follows.
Conversely, if xF(x) is L2, let ¢(x) be its transform. Then

o

e~tou—1
f H du = s f wF ) et du

? -ty —_
m—l F(u)e—i=* du—C

say, F(u) being L(—o0,00), since F and xF are L?. But the first term
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on the right is if(z) almost everywhere, and we may take it as the
definition of if(x) everywhere. Then

[ $(u) du = if(@)—C
0
everywhere, and the result follows.

The result can obviously be extended to any number of derivatives.

3.15. TurorEM 69. If f(x), Fi(x) are cosine transforms of L2,
80 are x © ~
1 Eft) o,

;[roa  [E0q

1] x

and similarly for sine transforms.

That the second pair of functions belong to L2 is a theorem of
Hardy. (See Titchmarsh, Theory of Functions, p. 396.)
To prove that they are transforms, we have

! f 1=/ & f F)B g
0 0

The cosine transform of this is

2d <ms:in:c'u, 3 sin zy
s S [ BT gy
0 0

=giJ‘Fc(y) lyfsinxusinxydx
7 du y z?
V] 0

_d[Fg) .
= —y—mm(u,y)dy
0
_afr [ Ey) _ [Ew)
~£{fﬂ(y)dy+uf7dy}—f y dy,
V] u 13

almost everywhere.

The inversion is justified by absolute convergence. In fact,ify < u,
© 1u

o 1y ®
J‘smxu:mx?/ dnguydx-}- ydx—{-fif
z z

v 0

1/u 1y

= y+ylog¥ =(2 10"_{)’
Z/?/gy+!/ +gy?/
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and, similarly, if < y; and the integral
u -]
f |Fc(?/)|(2+10g$) dy +u f IF%H@-I—log%) dy
0 I .

is convergent if F, belongs to L2.

3.16. Another case of Parseval’s formula.
TaEOREM 70. If f is L, and g is L* and bounded, then

A ©
lim (l—l;"—l)F(x)G(x) dr — f f@)g(—z) dx.

A=

We have

' f ( '”')F(x)G(x) da = (2 e f ( )G(x) do ff(t)e"“dt

=,\/(_;;) _L 1) de __[ (1—l?’_l)a(x)ewdx

inverting by uniform convergence. As in the proof of Theorem 59,
the inner integral is equal to

sin?§A(z-+w)
JUJ(’Awwvd
This is bounded if g(x) is bounded, and tends almost everywhere to
J(27)g(—=). The result therefore follows by dominated convergence.

3.17. Mellin transforms. We shall say that f(z) belongs to 22 if
[ v <o
0 .
THEOREM 71. Let x*f(x) belong to £2. Then
F(s,a) = j f@as-tde (R(@8) = k)

1/a
converges in mean square over (k—ico, k4-10), to F(s) say;
k+ia
flz,0) = =— J F(s)x—2 ds

k—m
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converges in mean to f(x), tn the sense that

tim [ |fte)—fe,a) 22 ds — o

95

and [ 1 ds = o f I3 (k-+it) 2 de.
mw
0 —®
This follows from Plancherel’s theorem by the usual trans-
formation.
THEOREM 72. Let o*f(x) and x'-*g(x) belong to L2. Then
@© ki
1 «
[tenErde= o [ s@6a—a)ds.
0 k—iw

This is the corresponding transformation of Theorem 49.
THEOREM 73. Let 2*f(x) and x°—*g(x) belong to Q2. Then

k+ i

i, g [ BwISE—w) dw
k—iw

are Mellin transforms in the sense that

@ k+1io
ff(x)y(x)x’-l dx = 2_11; f F(w)G(s —w) dw
0 k—iw :

for all values of t.

This is obtained by replacing g(z) by g(z)2*-! in the previous

theorem.
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TRANSFORMS OF OTHER L-CLASSES

4.1. Transforms of functions of L?. PLANCHEREL’S theorem can
be extended from the exponent 2 to a general exponent p. Through-
out the chapter we write p’ = p/(p—1), and similarly for other
letters.

THEOREM 74.1 Let f(x) belong to LP(—c0,00), where 1 < p < 2
Then, as a - o0,

Flz,a) = f flt)eiet dt (4.1.1)

«/(2 )

converges in mean with exponent p’. The mean limit F(x), called the
transform of f(x), satisfies

g 1@-1)
IIF(w)lﬂ' <@ )h,_l{ f |f(x)|pdx} (4.1.2)

The Fourier reciprocity holds in the sense that

1
F(z) = Jen @ f f() (4.1.3)
flz) = «7(2-_) ;i F(t)gg—;—1 dt, (4.1.4)

almost everywhere. -

As in the L2 case, we might repla,ce F(x a) by

Flz,a,b) = f foyeie d,

\/(27;)
where @ — 00, b -> 00, in any manner.

4.2. The most obvious source of such results is in the formulae
(2.1.11). If k is an integer, the transform of {F(z)}* is formally
(2ar)~¥k+igh, (x), where

i) = [ flotp) Qg oo [ fl)f@—str— . —vpy) dny.

We can deal with such integrals by means of the following lemmas.}
t Titchmarsh (2). 1 See Hardy, Littlewood, and Pélya, Inegualities, pp. 198-203.
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LemMA «. (Young’s inequality.) If f(x) and g(x) belong to LVA-»
and LVA-1) respectively, where A > 0, u > 0, A4-p < 1, then

[ tods

< ([ mevgponaa) ™ [ ipenaa)'( [ gpem e’
Holder’s inequality for three functions is
[ ¢¢xdx|<( [ speaa) ([ o as)( [ e as),

where a-B+y =1, > 0,8 > 0,y > 0. Putting

Bl = |p|YBx Yy, Pl = [f], |x[t+o = |g],
and y = A, B = p, the result follows.

Levua . Lot S(f) = ( [ e dx)"”

If $(@) = [ fygle—1)ds,
then Sua-1-w#) < Jua-0NJa-p(9)-
Young’s inequality gives

$()| < ( f (&) [YaD]g (r— 1) [Yt-s) dt)H_"X

X S-S g (@),
Hence

j}) () VA2 dap r (&) |Va-D dt f lgte—t)[Ya- da

—

X {31/(1—f\)(f)}“/a'Axl‘)"“){Sm_ﬂ)(g)}"l(l—#xl-k—p)

1 B 1 fy A
= S gyt ]
and the result follows.
LeMMA y. If f(x) belongs to L¥*/2k-Y, then ¢,(x) belongs to L2, and

f {u(@)}) dz < ( f |fa) 2= dx)”‘“

’
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We have $@) = [ fOpestr—1) e,

and, applying the previous lemma repeatedly,
31/(1—1'c ) () < Sl/("“ir) (¢k—1)31/(1—n_) ()

< 315 -8 (- O < - < [Byya- )
the result stated.

4.3. Proof} of Theorem 74 for p = 2k{(2k—1). Suppose first
that f(z) and g(x) belong to L2, and are zero outside a finite interval.
Then

\/(—;ﬂ—) j g(u)flw—uy) duy

satisfies the same conditions, and (e.g. by Theorem 64) its transform
is F(x)G(x).

Repeating the argument k—1 times, and making all the functions
equal, we see that the functions {F(x)}* and (27)-+i¢,(x) are trans-
forms of the class L2. Hence

ko)

f | Pl)[% do = ﬁc— f (@) 2 do

This proves (4.1.2) for the special class of functions considered, and
p = 2k/(2k—1).

Now let f(z) be any function of the class L#/2-D, The function
equal to f(z) if @ < |x|] <b and [f(x)| < n, and to O elsewhere,
belongs to the special class. Applying the above result to it, and
making n — oo, we obtain

f e T f ) s daf
5T

The right-hand side tends to 0 as @ -0, b - 0. Hence F(z,a) con-

+ The argument is-analogous to that of W. H. Young for Fourier series. For a list
of Young’s papers see Zygmund’s bibliography.
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verges in mean, to F(z) say. We have

j | F(x)|% do = f |F(z,a)|% dz

-0

< .,“ifi@q?l)r( f aysee-n da)

- gy [ e aa)™
Also

¢ ¢ ¢ a
of F(z)de = lim | F(z,q) de = lim —(;;7 f dx:[ ft)e s

a-»0 a—>o
0

il P et
Mw(z)ff(t)"' Lo _Wgﬂjme La,

go that F(z) = 7(—;;) d%: f f(t)e—m%l- dt

almost everywhere. Again, if 0 < { < a,

o a @w
1 e#u—1 1 e#v—1 .,
T J‘F(u,a)-tfa—du—%ff(t)dt f Tl
—_a0 —a

—®

¢
- of o,

the inversion being justified by the bounded convergence of the
u-integral. Making a — co, we obtain

(27) IF( w1 du—ff(t)dt
since (e“f"—l)/(—m) belongs to L2/2k-1  Hence
VR f Pa) "L du = f@)

almost everywhere (x > 0). Similarly for x < 0.
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4.4. Extension to general p. To extend the theorem to other
values of p we first prove the corresponding theorem for trigono-
metrical polynomials.

LemMma 8. For any given numbers ¢, (—n < m < n),

113 et s
-7

We give two proofs, the original proof of Young and Hausdorff
and a later one of Hardy and Littlewood.

(1)} Let f(¢) be a function of L(—m,n), and let

n 1Yp—
3 leal) T (4a)

m=—n

€y = 51_ f fO)e-mds (m=0,41,..). (4.4.2)
T
) 1 < Yp
We write L(f) = (Zr f MO dt) (4.4.3)
and 8,(f) = (§ eml?) (4.4.4)
We have to prove that, for any trigonometrical polynomial f(z),
J, <8, (1<p<2). (4.4.5)

If p is of the form 2k/(2k—1), this follows from the argument for
sums parallel to that just given for integrals. If

f@) =23 ene™,  g) =3 y,em,

then flx)g(x) = 3 d,em,
where & =2 C¥mr
The analogue of Lemma B is therefore
Sya-r-w(f9) < SlKl—A)(f)Slﬂl—;o(g)a (4.4.6)

and, as in Lemma y, it follows that
. Sz(fk) < {Sll(l—gk)(f)}k (4.4.7)
But for any trigonometrical polynomial ¢

' Sy($) = Jo(¢). (4.4.8)
Thus Sy(f*) = Jo(f*) = {Jax(N}*,

and (4.4.5) with p = 2k/(2k—1) follows.
To extend it to other values of p we consider maximal polynomials,
viz. those for which J%' is a maximum for a given value of S%, and
1 Hausdorff (1).
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a given n. Since S8, JZ are continuous functions with continuous
partial derivatives Wlth respect to the components x,, ¥, of the
coefficients ¢,, = 2,,+1Y,,, maximal polynomials exist; and we can
determine them by the ordinary method of the differential calculus.

Let

b= 3 Ghtuw, =5 f O de.

Then the condition for a maximum is

o
éi%i a?{;"—-)\ (m = —n,..,n).
% o
Hence -——-———ay"'—A (m = —n,..,n).
B
Ym

Nowt

a¢ +z % _ p(xm+iym)(x3n+y3n)"'“ = ple,|Ptsgney,.

P

Also O = FOF0),

2Lf(t)|axim £ =f<t>52;f<t)+f(t>-a:—mf(t)
= Jyemi-fe)e-m,

and similarly 21f(9)] ;- 2 )] = Jpiem—fi@ie-sn.

Hence

2lf(t)|( +a@) FO)] = 2ft)e-m,

(55; +i 3—y— 1f(t)] = e-mtsgn f(o).

Hence &[: + ) ;;/' ? f If@®) | sgn f(t) e—tmi dt,

Hence

’

z j Q-2 sgn f(t) e-imi dt = AploP-tsgne, (m = —n,

t sgnz = M (z # 0), sgn0 = 0.

s ).

(4.4.9)
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To find A, multiply by c,, and sum. We obtain

%; f fOP dt =23 leal?,

-
ie. p'JB = ApSB. (4.4.10)
Now (4.4.9) gives the first 221 Fourier coefficients of the function
|f(2)[?"-1sgnf(¢). Hence Bessel’s inequality for this function gives
n

2 o, o-1sgne,

m=—n

"<y [ ver-sngora,

m

ie. ";p z e, (2p~2<%1 f f() (22~ d,

m=-—n
ie. A2p?83E=2 < P2t (4.4.11)
From (4.4.10) and (4.4.11) it follows that
Iy _ T
oS %, (4.4.12)
for every maximal polynomial.
Let ' = 2p'—2, r = 2/(3—p).
Then it follows from Holder’s inequality that
SP-1 L 88,2, 852, (4.4.13)

and (4.4.12) and (4.4.13) give

{Q,)p' (f]_r,)p'—l
( A <{g - (4.4.14)

Now suppose that (4.4.5) holds for p’ = r and all polynomials.
Then it follows from (4.4.14) that it holds for p” = 4’41 for maximal
polynomials, and so a fortiori for all polynomials. We have already

proved it for p’ = 2k. Hence we deduce it in succesgion for
k+3 k+7
p' = k+1, + -—-t—, s

i.e. for all rational numbers whose denominators are powers of 2.
Since these numbers are everywhere dense, the general result now
follows from the continuity of S, and J,,- as functions of p.

(ii)f We again consider maximal polynomials; but, instead of the
‘general condition for a maximum of a function of many variables,

1 Hardy and Littlewood (1). See also F. Riesz (1).
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we use the theorem that, in Holder’s inequality
S b < (3 10, P)2( 3 b7V,
the case of equality occurs only if the |a,,|? and |b,, 1P are propor-
tional. Also this proof is independent of the lemmas of §4.2.
We define §, and J, as before, and write
fn(x) = ﬁ c1:161;1'“"'
m=—n .
For given n and p, let the upper bound of 8, (f,)|Jp(f) for all
be denoted by M = M(n) = My(n); and let the upper bound of
o (fa)8p(fn) for all sets of ¢,, be M’ = M’'(n) = M (n). We first
show that these bounds exist for every =.
We may suppose on grounds of homogeneity that Slfn) = 1.
Then |c,, [P’ > 1/(2n+1) for some value of m. Hence

ent )W < el < - [ V@) do < T,

and 8o M,(n) < (2n+ 1)¥r’,

Again, let g(x) = |fulz) [P sgnfo(®),
and let o = -21; f g(z)e-im da.
Then ” -

) =5 [fienE@dz= 3 enrm< 3 lonval

< Sp(fn)‘gp'(gn) < M Sp(f n)J_p(g) = MSp(fn)le)Kp—l)(fn)’
| , (4.4.15)
and, dividing by JY®-3(f,), it follows that M’ is finite, and M’ < M.
Again, if n
. ho(@) = Y lcalP-legnc,e™,
m=—-n

* we have (by an obvious term-by-term integration)

S = 55 [ fele) de < LGV (h) < MINSGR)

= M'J,(N)SF(fn),
and hence M < M'. Hence in fact M = M’'. The example f(x) =1
shows that M > 1.
Suppose now that f,(x) is a polynomial for which the maximum M’
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of J,(f,)/8,(f,) is attained (since it is a continuous function of the
variables c,,, there is such a polynomial). Since M = M’, the extreme
terms of the chain (4.4.15) are then equal, and so all the terms are
equal. The case of Holder’s inequality used is therefore an equality,
andhence oo < Aylr (=1 <m <),
where A is independent of m. Hence

85(fa) = AS5(g,)-
But, since f, is a maximal polynomial,

8fa) = 3plf) = 37 I540) = M-8571(g,),

the last step depending on the equality of the 5th and 6th terms of
(4.4.15). Hence A= M-#'85-p-7(g,).

Let = 2p"—2, r = 2/(8—p).
Then by Bessel’s inequality

Si0) <. [ loldw = J2() < MFSIG)

» f ) L- » —pr T (p—l" )
= Mr ’\p{Ser—l)(gn)}phl = M" ‘Mpp {Sp’(gn)} -1 {Sf/(p l)(gn)}p -1
. _r _ »-1 _p_\2(2-p)
Since S lynl1 < (3 lyalH( 3 lyali) 5 s
the product of these S-terms on the right-hand side does not exceed
Sg(gn) . Hence Mr’ M -pr'

and so M, = M2 > M,
We can now repeat the argument with p replaced by r, and r by
8 = 2/(3—r); and so on indefinitely. We thus obtain a sequence of
values of p tending to 1 (since r'—2 = 2(p’ —2) etc.) through which
M, is non-decreasing. But
Mym) < 2nt170 1
as p -1, p’ > o, for a fixed n. Hence M,(n) = 1.

4.5. We can now prove Theorem 74 by the method used in § 3.2.
Let f(x) belong to L?, 1 < p < 2, and define a, and ®,(z) as in § 3.2.
Then

A T, n
[ @@ dz =2 [ | 3 a,e
—7A g =R

)ll(p -1

Tde <2 3 o,
v=—n
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by the above lemma; and
v w+DIA
wl< [ ifep dx(

w+1)/A -1 w+1)/A
dx) =
vIA

| e

vIA viA

7A b (p-1)
Hence f (D, ()P de < 2"( '[ |f(x) [ dx)
—7A -b

It follows as in § 3.2 that

r F(z,b)— F@,a)|" dz < (2m)i-17 -8 Yp-1
| Fen—Faap e < @o- {(_£+ |

e de

a
Hence F(x,a) converges in mean as a -0, to F(x) say, with ex-
ponent p’. The remainder of the proof is the same as in the special
case where p’ = 2k,

Still another proof of Theorem 74 can be obtained from a general
theorem of M. Riesz on functional operations. See Zygmund, § 9.2.

4.6. The Parseval formula.

THEOREM 75. If f(x) and G{(x) belong to LP(—w,0), 1 < p < 2,
and F(x) and g(x) are their transforms, then (2.1.1) holds.

We know that if ¢(x) is L», and (z,a) converges in mean to
() with exponent p’, thent

lim [ {(z)—(, )} (x) dz = 0. (4.6.1)

Jen)

—a

Now
b b a
f Flz,a)G@) do = — - f O(z) dx f ft)eit ds
-b b
b

a a
1 .
- tdzfaxewtdx=f 1)g(—t,b) ds.
Wz—")if() J oo 1w
Making @ — 00, and applying (4.6.1) to the left-hand side, we obtain

b ©
[ F@)@@) de = [ ftyg(—t.b) de.
-b —®

Making b 00, and applying (4.6.1) to the right-hand side, we
obtain (2.1.1).
There are also obvious extensions of Theorems 58-62.

+ Titchmarsh, Theory of Functions, § 12.53.
H
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4.7. Theorems on resultants.

TurorEM 76. If f(x), F(x) are transforms of L?, L¥, and g(x),
G(z) of L¥, L?, then (2.1.9) are transforms in the sense that (2.1.8)
holds for all values of x.

Proof similar to that of Theorem 64.

TarorEM 77. If f(x), F(z) are transforms of L?, L?', and g(z) 1s L,
then (2.1.9) are transforms of L?, L¥'.

Proof similar to that of Theorem 65.

TurorEM 78. Let f(x), F(x) be transforms of L?, L¥, and g(x),
G(x) of L2, LY, where

1,1
—4->1L 4.7.1
2Tq (4.7.1)

Then F@)@(), f fu)a—y) dy

1
Jem J
are transforms of classes L¥', LF respectively, where
=_ P71
P+9—p9
That the resultant of f and g belongs to L¥ follows from Lemma B8

of §4.2, with 1-2 = 1/p, 1—p = 1/g. That FG belongs to LF
follows at once from Holder’s inequality in the form

f ]FG']P'dx <(I IFI”'dx)P‘Ipl(f I,qu,dw)t’la"

The condition (4.7.1) implies that p < ¢’, ¢ < p’. Suppose that
p <gq. Thenp <p', ie. p <2
Suppose that 1 < P’ < 2. Then F@ has a transform, the integral

of which is ®
1 e
— | Fw)@
T _£ (W6

Now G(u)(e-**—1)/(—iu) belongs to L and to L7, and so to L?;
and, by Theorem 74,

z+y

[ oterae = 4(2)f 6w

. v
i.e. it is the transform of G(u)(e-***—1)/(—4u). Hence, by Theorem 76,

! du.

e‘"’“ du,
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Ly = f f@) dy j g(6) dg

= f fy) dy j glu—y) du = fdu f fyu—y) dy,
—® 0 0 — @

and the result follows on differentiating.
Suppose next that 1 < P < 2. Then

f f@)gx—y) dy

f F)ew)E

4(2 )

has a transform, the integral of which is

L L gu f fW)gtu—y) dy.

px

" This is the limit as @ - oo of

1 e"
2

—

Ldu f f@)gu—y) dy

(since_i o dy = I:PI)n Ja) )
=— f J) dy _f g(u—y) —1 4,

-~ O

and by the Parseval formula (for ¢, ¢’) the inner integral is equal to:

J(2m) fG(v)e"”” dv.
0

Hence we obtain
l a x . 1 x a i
7(—27')_! @) dyof G(v)e™ dv = J(z—ﬂ)f G(v) dv [ fy)ev dy

> j G(®)F(v) dv,

since G(v) belongs to L? over (0,x). Hence the result.
If p=1and ¢ = 1, then P = 1; see Theorem 41.

4.8. Another extension of Plancherel’s theorem. We shall
next obtain a generalization of Plancherel’s theorem in a different
direction, due to Hardy and Littlewood.}

1 Hardy and Littlewood (1).
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TaroreM 79. If |f(x)|929-2 (¢ > 2) belongs to L(—o0,0), then F(z),
the transform of f(x), exists, and belongs to L4; and

f |F (@)l de < K(g) f f@)lefesle- de.

—~®©

(i) Consider the case ¢ = 4.
Suppose first that f(x) belongs to L2 and vanishes outmde a finite
interval. Then F(z) is L? and bounded, and /(27){ F(x)}? is the trans-

form of

$(@) = [ fy)fe—y)dy,
which also belongé to L% Hence
o [ [F@)itde = [ |$(2)] de.

-

Now f(z) = |z|g(x), where g(z) belongs to L*. Hence

_ T 99 9=—y) 4, _ [ 9@ g—y) 1 i
) T e R T
F @) o=yt [ dy
B ) “WF Rwr _i 9T
_A [ @l ey
7 e
Hence

_l e < A__ =ty tlz—yl?

-

_4 f WPyl loe—)e—yl* 5

[zt |lz—y ¥ | y|#

-

JJ

g tlylt | lgE—y)tlz—yl} 4
[le*lw—yl* Ryl | dady

A
b

-
-]

| 9 loE—9I* 1.z

—4 | sty I?p"%lwd":“‘ [ wwrea.

—®
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. @ @
Hence f |F(z)|tdz < 4 f f ()[4 22 dz.
The proof now follows the usual lines. Let f(x) be any function
such that {f(x)}%x? is L. Approximating to f(z) over (a,b) by a
sequence of functions of the special type, we prove as in § 4.3 that

-]

[ Fwa—Feords <4 [+ [ )i ds
—a0 -b a
Hence F(x,a) converges in mean with exponent 4, and the theorem
follows in the usual way. .

(ii) It is possible to prove the theorem when ¢ is any even integer
by an extension of the above method, but, as in the Young-Hausdorff
theorem, the other values remain to be filled in.

The simplest procedure is to begin by proving the corresponding
result for series, and we shall quote this from Zygmund.t The case
we require is that if f(z) has the Fourier coefficients c,,, then

| @)edz < K@) 3 lenla(im|+ 1),

-7

Defining a, and ®,(x) as before, it follows that

7 T n
— Tv:
fA [@u(x) |2 d = A _.[7 |v_z_“a,e 2

¢ dx

<A@ 3 oo+ 1)

-

Ifv>1, . @+ ! W+
wi<gn [ fere<gn [ e
v/A vIA
There is a similar inequality for v < —2; and
1A

jag] = | [ fla)t-Hozte-1 do
0

1jA 1A _
< (J' 1f(x) jaaa-2 dx)w( f z(2la—~1all@—1) dx)l Ha = o (A-Va),
(1] . 0
and similarly for a_,. Hence, making A -0, we obtain

f |F(z,b)—F(z,a)|t dz < K(q)( T + f ) @) 2|z |e-? d.
: -b a

The theorem now follows as in previous cases.
+ Zygmund, Trigonometrical Series, § 9.4.
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4.9. THEOREM 80.1 If f(x) belongs to L? (1 < p < 2), then

[ 1F@)plai2de < K(p) [ If@)? de.

Let g(x) be a function of L#, vanishing outside a finite interval
(a,b), where @ > 0. Then it also belongs to L?. Hence, by Theorem 75,

[ Fene & = [ f@)0@) de.
Also, by Theorem 79, with ¢ = p’,
[ 16@P dz < K(p) [ lg@)1 2P -2do.

Hence

f F(x)g(zx) de

< (_f: f)lP dx)yp(j: |G() [P’ dx)""'

< K(P)(_f: If(x)[® dx)”p(—f: lg(2) [P’ |z|7'~2 dx)"" '

Let  g(x) = |[F(z)P-'sgn Fz)[zjp~? (@ <z < b).
Then

[ IF@pzr-tas < K [ @ dx)l'”( [ 1F@par-2 dx))"”',

b -2}
and hence f | F(x)|PaP-2 dx << K(p) f [f(z) P de.

a

Making a - 0, b > oo, we obtain the desired result for the integral
over (0,00); similarly for the integral over (—a0,0).
- 4.10. Another case of the Parseval formula.

TuHEOREM 81. Let f(x) be LP, and let |G(z)|?'|x|?-2 be L, where
1<p<<2 Then if F and g are the transforms of f and G, (2.1.1)
holds.

The proof is similar to that of Theorem 75, but now

b
[ {F@,a)— F@)}6(z) de = f {F(x, a)— F(@)}ja|@-27 . Q(x)|a|*-27" dac
b b

tends to 0 because, by Theorem 80, F(z, a)|x|®-2/? converges in mean

1 Hardy and Littlewood (1).



4,10, 4.11 TRANSFORMS OF OTHER L-CLASSES 111

to F(z)|x|®-9/», with exponent p. The proof concludes as before,
but is justified by Theorem 79 instead of Theorem 74.

4.11. Failure of Theorems 75 and 79 for p > 2. That the
Young-Hausdorff theorem fails for p > 2 follows incidentally from
Theorem 80. For, if f(x) belongs to L?, not only is | F(x)|”" integrable,

‘but so is |F(x)|?|x[?~2; and hence so is

|[F@)Irei™-t (p<7<P) (4.11.1)

Call the class of functions with this property L%, so that L% is a
sub-set of L*’ v

If f(x) belongs to L2 (g > 2), it does not necessarily belong to L{,
and is therefore not necessarily the transform of a function of L7,

However, we can show by means of examples that even if f(x)
belongs to L{ (g > 2), f(x) is not necessarily the transform of a func-
tion of the class L¢. Presumably no condition which merely states
the existence of an integral involving |f(x)| is a sufficient condition
for f(x) to be the transform of a function of L7,

Consider the functiont (0 <a < 1,a < b)

flz) = »./(%) f t-2-1cost—bcoszt dt

—0
1 1
1 1\ dt 1 1\ d¢
== 3(2—77) J. cos(a:t+t—5) _t“—"'1+:/_(—2:r3 J cos(xt—t—s) t—a:i
—0 —0
1 .
= :/—(-2—1r){¢(x)+¢(x)}. . (4.11.2)
Let » :
(5 _ f)ll(Hl) (g + é)ll(ul) 1
s@= [+ [ 4 [ =dtbtds
) —0 (g _E)lmn) (% +§)1m+n
where ¢ = o(1/x) as > 0. Then
__ [ dsin(xt4-¢7?)
b= ztai_pta—d’
and here (ba-—xt3+1)-1 is positive, steadily increasing, and less than
) b—a
o (b /x)bfl:l
< .
x

t Titchmarsh (2).
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Hence, by the second mean-value theorem,
a—-2h—1
¢y = 0(5—1,”—5:1“ )

In ¢, (xt2+1—bta-b)-1 is positive and steadily decreasing, and we
obtain the same result as for ¢,. Finally

bl < (g +§)l/(b+1)— ((l B g)l!(bﬂ)

—— =

) ~1J(b+1) b
= 0(x a++ jt:f) = 0(§xa5++41~1').
x b¥1

-
o
_3b+2
Taking ¢ = & 2+2_ it follows that, as z - 00,
2a—b
$(z) = 0(:1;27”‘2).

d sin(a:t—t-i)
Fe e
Now (xt+1{-bt*~?)-1 increases steadily from 0 to a maximum of the

Again, P(x) =

a—b
form Kzb+1 where K depends on @ and b only, and then decreases
steadily. Hence the second mean-value theorem gives

¥(e) = 0(FH).
22—b
Hence as x > o0 f(zx) = O(xﬁ”),

and plainly f(z) = O(1) as > 0. Hence, if ¢ is a given number
greater than 2, f(z) belongs to L{ if b is large enough.
If f(x) were the transform of a function F(x) of L7, we should have

F(z) = J (1%) -(% f su;xu f(u) du.
1]

If we can insert (4.11.2) for f(u) and invert the order of integration,

we obtain
F(x) = z-2tcosz® (0<z<]l), 0 (x>1),

which does not belong to L~ for any r > 1. This gives the desired
result.

The inversion is justified if we may invert

—© 1

J‘ SIn xu du f t-%-lcost-%(1—cos ut) dt,
]

u
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and we may if

1 —©

lim | ¢-%-lcost~? dt f ilg_x,q”(l_;c_oi@ du = 0.

A->0 1
0
Now
o Az+t) Az
f sin 2u(1—cos ut) du| =3 sinv o __ sinv o
% v v
A A Alz—2|
-+t
< 3lo )

and the result follows from dominated convergence.

4.12. Special conditions. In this section we give two sufficient
conditions of special kinds for f(x) to be the transform of a function
of L? (1 < p < 2).

THEOREM 82.1 Let f(x) be even, positive m-increasing Jor x >0,
f(©) = 0, and let {f(x)}rx?—2 (1 < p < 2) belong to L(0,0). Then
F(x) belongs to L»,

Since f(x) in non-increasing, and f(c0) = 0, the integral

F) = B = | 3 rf(y)cosxy dy

converges for every x > 0. Let

1z >
- /2 2
e = /() f twwossyay + [(2) 1 /f fg)oosy dy

= F(2)+Fy).
By the second mean-value theorem

= Jf) [ o= Bt
1z
Hence | hER)] <2 J (?r) %f (%),

and fw;(x) Pde< A f | (;c f(.;)}” dz = A j (Feyem-2 de,

3

1 See Hardy and Littlewood (3).
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which is finite by hypothesis. Also

R)] < j() j 1) dy,

and we have to prove that this is L?; or, what is the same thing, that
x
== | fy) dy
0
is L?. We are given that f(z) = g(x)x¥P-1, where g(x) is L?. Hence

z=2 f f(y) dy = 2% f glypyr—tdy < =7 f 9(y) dy,

which is L7, by a theorem of Hardy + This proves the theorem.

Incidentally it must follow from our hypothesis that f(x) belongs
to L?'; and in fact z

K > [ frioyee-2dt > fr(@)(kap-2e,
flz) < Kzg-@-2ip,
If@)P" < K|f(x)[PzP—2.

THEOREM 83. Let f(x) be the integral of order (2—p)/p of a function

#(x) of L?. Then F(x) exists and belongs to L>.

Let 20 = /() f ple)sin(at-+np) dt.
0

Then, by Theorem 80, z1-2r® (x) converges in mean (p) to g(x) say.
Let G,(x) be the cosine transform of g(z). Then G (x) belongs to L¥".

Also v ®
f G (x) dx = J (%) f Ei—nxiyg(x) dx
0 ]

= lim (3) f i‘-";’”l’xl-ﬂwa(x) dx

a—>®o v,

=limZ f smxy dx f $(t)sin(xt+/p) dt

a—»>o T

= limg $(t) dt f smxysmz(,:t‘*'"/p)

a—»0 T
0

the inversion being justified by uniform convergence.
+ See Titchmarsh, Theory of Functions, p. 396.
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The inner integral is

2P(2/p)(y —t)Er-l (t<y), O (t>y)
Hence

Yy
Go(x) dx = (y—8)*»-19(t) dt = | f(z) de,
[owrie=ri | I

by hypothesis. Hence G,(x) = f(x) almost everywhere, and g(x) = F,(z)
belongs to L,

4.13. Lipschitz conditions. In this section we shall give a con-
dition of quite a different kind for a function to have a transform
belonging to certain L-classes. The analysis originated with theorems
of Bernstein and Szasz on Fourier series.}

TuEOREM 84. Let f(x) belong to L* (1 < p < 2), and let

f |f@+h)—flx—h)? dz = O(h®) (0 <a<<1) (413.1)

-0

as h—> 0. Then F(x) belongs to LF for -
’ P P
pFeap—1 <P Sp3
For a fixed h the transform of f(z-+%) is e-***F(x). Hence the
transform of f(x+h)—f(x—h), as a function of x, is —2isinzhF(z).
Hence

o < Y(p-1)
f |2sinzh F(z)|?" da < K(p){ J. |fx+h)—f(x—h)? dx}

< K(p)h*r'.

Since |sinzh] > Axh for x < 1/h, the left-hand side is greater than
1A

4 f «®h?' | F(z) P da.
0

1Vh
Hence | @1 F@) dz = O(he=-17),

0

¢
Let - $(6) = [ |zF(@)|F da.
1

1 See Titchmarsh (12).
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Then, if 8 < 2/,
4
() < (f |eF(z)|?’ dx) ( f dx)l—ﬁlp’ = Q(g1-oB+fin),
1

Hence

£ 4 4
[1F@Pde = [ 2-P¢'(x) dz = £-PY(E)+B [ 2P 2(a) de
1 1 1

£
= O(£1-P-op+Blr) |- 0( J‘ x—B-oB+Blp dx) = Q(£1-B-op+hip),
1

and this is bounded as £ — o0 if 1—B—af+B/p < 0, i.e. if
P
B> oFap—T
Similarly for the integral over (—§, —1). This proves the theorem.
A particular case, corresponding to the original theorem of Bern-
stein, is that if the condition is satisfied with « > 1/p, then F(x)
belongs to L(0,0), so that the Fourier integral

jP F(t)ei dt

is absolutely convergent for all values of x.
To show that the range for B in the above theorem cannot be

extended, consider the even function
J@)=—2— (=>0),

where 0 < a < 1/p. Forx > 2h
|f@+-h)—fle—h)| = 2h|f'(x+6R)| (—1<6<1)
< 2h|f'(x—h)| < 2h|f'(32)l,

since |f’(x)| is positive and steadily decreasing. Hence

_f ]f(x+h)—f(x R)|P dx = {hp f[f'(%x)p dx}
2h

h
= O{hp( f o+ dg | f z-2 dx)} = O(h1-o»),
Also o !

2h 2h
da -
11 0
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" The conditions of the theorem are therefore satisfied with « = 1/p—a.
Hence F(z) belongs to L8 for B > 1/(1—a). Butt F(r) ~ Kz~ as
x - 00, 80 that F(z) does not belong to L¥1-a),

In the case o < 1, p = 2 it is possible to put the theorem into a
form in which it is reversible.

THEOREM 85. If f(x) belongs to L2, the conditions
[ fet+h)—fa—m)2dz = O(AI*) (0 <a<1), (413.2)

0,

(-}x+ f){]«‘(x)}a dex = O(X-2*) (X -—>o0) (4.13.3)
— 0 X

are equivalent.
Instead of an inequality we now obtain

7 4sin*ch | F(z)|2 dx = j? |fx+h)—f(xz—h)|? de.
- ~ (4.13.4)
Suppose that (4.13.2) holds. Then (4.13.4) gives

1/h @
f |F(a)2de < A f sinZeh|F(z)[? de = O(h%).
[

1/(2h)
Hence

) 2X 4X
[ {F @) dz = f + j + ... = Of{X-24 (2X)- 204 ..} = O(X-2%),
X X 2X )

and similarly for (—o0, —X).
On the other hand, if (4.13.3) holds, then writing

#X) = [ Py
X

X X

X
_{ 2 F ()} dz = f — 2% (x) de = —X2¢(X)+2 f zd(x) da

L]

(-1

b4
<2 f O(x1-2%) dx = O(X2-22),
Hence o
@ 1/h —1/h ©
[ sintah {F(a))t do = o(h2 [ Fay dx)+0( [+ [ Fey dx)
—_ ~1/h — a0 1/h
= O(h*), ‘
and (4.13.2) now follows from (4.13.4).
1 See e.g. Theorems 126-7 below.
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Since, if 8 < 2, \
32X \1-1B

:fllv“(ac)p9 dr < @X{F(x)}z dx)*ﬁ ( | dx)

= O(X-*B)O(X1-18) = O(X1-B-iB),
it follows again that F(x) belongs to LB if B > 1/(a-+1), the case
p = 2 of the above theorem. But this last step is, of course, not
reversible.

4.14. Mellin transforms of the class Lr. Let us denote by £
the class of functions f(x) such that

f e & <.
0

Then we have

TaEOREM 86. If F(k-it) belongs to LP (1 < p < 2), then its Mellin
transform f(x) extists, and z*f(x) belongs to LF'.
If a*f(x) belongs to L», then the Mellin transform §(s) of f(x) exists,
and F(k--it) belongs to L*'.
THEOREM 87. If (k+-it) belongs to LP, and x*~*g(x) to LP, then
k+ i @©
1
5 | @600 ds = [ fiwlg(e) do
e
k—iwo 0
These are readily obtained by transformation from Theorems 74
and 75.

TurorEM 88. If F(k-+iv), 2*f(x) are Mellin transforms of L», 27,
and x*~*g(x), ®(s—k—1iv) of £F, LP, then (2.1.15) holds.

THEOREM 89. If F(k+1v), 2*f(x) are Mellin transforms of L, 8F',
and ®(s—k—iv), 2*~¥g(x) of L9, 27, then (2.1.16) are Mellin trans-
Jorms of F, LP.

Note. It has recently been proved by Zygmund (2) that if f(x) is
Lr 1 < p < 2, then (3.11.2) holds almost everywhere, no logarithmic
factor being required. If f(z) satisfies the condition of Theorem
79, then f(z)logz is L*(1,c0) (apply Holder’s inequality to the
integral over (2%, 27+1)). Hence (3.11.2) holds almost everywhere by
Theorem 62.
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CONJUGATE INTEGRALS; HILBERT TRANSFORMS

5.1. Conjugate integrals. FoURIER’S integral formula may be
written in the form

flx) = f {a(t)cos xt-+-b(t)sin xt} dt, (5.1.1)

where

a(t) = 11’ f f(u)cos ut du, b(t) = -:-r f f(u)sinut du.

The integral in (5.1.1) is, formally, the limit as y — 0 of ©12)
f{a(t)cos xt4-b(t)sinzt}ev dt = U(x,y) (5.1.3)
say; and this i‘; the real part of
f {a(t)—ib(t)}e'? dt = ®(z) (5.1.4)
say, where z = a:+'iyo.
The imaginary part of ®(z) is
- f {b(t)eos vi—a(t)sinztle~v dt = V(z,y) (5.1.5)
say. Writing —?V(x, 0) = g(z), we obtain
g(z) = J? {b(#)cos xt—a(t)sin xt} dt (5.1.6)
e
- % f dt J’ sinu—a)tf@)du.  (5.1.7)
0 o

The integral (5.1.7) is called the allied integral of Fourier’s integral.
It is obtained formally from (5.1.1) by replacing a by b and b by —a.

Repeating the process, we return to minus the original integral.
The relation between f(z) and g(x) is thus skew-reciprocal, i.e.
reciprocal apart from a minus sign. '

Again, we have formally

a(t) = - (FO+F(—1),  bt) = J(z ){F(n —F(—1)).

W")
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Hence

glx) = e )J{F(t) F(—t)}cosat dt——«/(2 )f{F(t)+F( t)}sinat dt

= \/(2"){ f o) di — | F(—z)efddt}
0 1]

1 [ »
=N_(2—"-) f F(t)sgnte-i=t dt.

Thus N Q(t) = —iF(t)sgni. (5.1.8)
- If f(z) is even, b(t) = 0, and g(x) is minus the sine transform of the
cosine transform of f(x); similarly, if f(x) is odd, g(z) is the cosine
transform of the sine transform of f(z).

Again, we have forma,]ly

g(x) = hm fdt f sin(u—ax)t f(u) du
—lim 2 [ 1m0 ) g,

A0 T
-

_ hm 1— cos)tt

A~ T

{f@+t)—flz—1)} de.

If f(x) is a sufficiently regular function, the part mvolvmg cosAt will
tend to 0 as A - o0, and we shall have

gla) = % f ﬂiﬂ—){—f@—_ﬁ dt; (5.1.9)

and similarly  f(z) = —% f 9fﬂ):—g(¢:‘) . (5.1.10)

4]
The reciprocity expressed by (5.1.9), (5.1.10) was first noticed by
Hilbert, and the two functions so connected are called Hilbert
transforms.
Equivalent formulae are

_1, [ f@ _ 1, [ 90
se)=2p [ o jfo=-1p | Za
- (5.1.11)
where P denotes a principal value at ¢ = =.
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Simple pairs of conjugate functions f(:t), g(x), are

1(0 <z <a), Oelsewhere, —1 a-l-x
, 7 8la—al
1 x
1422’ T 1422
cos z, —sinz,

and any number of such examples can be written down by starting
with a suitable analytic function ®(z). Examples from Chapter VII

are || =, (|x]), —sgnzle|~H,(|z|)
from (7.1.11) and (7.2.8);
sgnx|z|*J([z), — |e["T.(|x])
from (7.11.2) and (7.11.3); and :
Jo(2y/J2]), —sgnz{(2/m) Ko(24/|x])+Yo(2/|z])}

from (7.11.2), with v = 0 and = = }(u/a+-a/u), and (7.12.8).

5.2. Conditions which would justify the above formalities directly
would be extremely complicated. Actually the simplest rigorous
argument gives the reciprocity in a slightly different form.

TaEOREM 90.} Let f(x) belong to L¥—c0,00). Then the formula

o) =12 f f®hog

defines almost everywhere a fum:tzon g(x), also belonging to L*(—o0,0).
The reciprocal formula

1—_i dt (5.21)

fay=12 f glt)log 1-_l at (5.2.2)
also holds almost everywhere, ami
f (@) de = f @) de. (5.2.3)

If we could perform the d1fferent1atmns under the integral signs,
we should obtain the reciprocity in the form already given. We
shall see later that this is possible; but we begin with the form to
which the theory of Fourier transforms leads directly.

Let F(x) be the Fourier transform of f(z), G(z) = —iF(z)sgnx,
and g(a:) the transform of G(x). Then

j lo(a)|? dz = f |6(@) 2 dz = f |F(@)]? de = f \f@)|? da.

1 lechmarsh (5).
I
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Also
e —izy__]

d eW 1 el g

1
0 = fomis | O9 ‘M)mj

The transform of H(y) = (e~**¥—1)/|y| is

\/(2") f e‘"’” 1wy dy = A/ (%) J‘ cos(x—{—u?/—cosuy dy

( ) fcos(x—f-u y—cosuyd
—0
3

[

:1

J
J
J

@
2 cos v
_ —)hm( 89 1 J‘ cosvdv)
‘n‘ 3—0 v
8(z+u! Slul
9 8|ul
CcOsS v
= (—) d’v
7/ §—0
8Ia:+u|

-G ], J( e

Hence Parseval’s formula gives

x—}—ul

du,

mee”“@——fﬂw%

and (5.2.1) follows. The relation between F and @, and so between
f and g, is skew-reciprocal, so that (5.2.2) also follows.

5.3. TeEOREM 91.1 Let f(x) belong to L*(—oc0,0). Then the formula

j M_f.(f’__t_) dt (6.3.1)

—»0

g(x) =

defines almost everywhere a function g(x), also of L*—oo,00). The
reciprocal formula

fo) = ~1 f -‘-’(fr_”;-"_(”f:‘_)dt (5.3.2)

1 The analogue for series is due to Plessner (1). See also Hardy (14).
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also holds almost everywhere; and
[ @y de = [ {g))® da. (5.3.3)

The functions g(x) of Theorems 90 and 91 are equivalent.
The integrals (5.1.2) defining a(t) and b(¢) exist in the mean-square

sense, and aft)—ib(t) = A/(?T)F(—t).

Let H(t) = ¢*# (t > 0), 0 (! < 0). Then

1 r id—igu = 1
) = gy | = iy

Hence Parseval’s formula, in the fdrm
[ F(—nHE@) & = [ feRe) de,

applied to (5.1.4) gives ©
D) = z% f ;f% & (Iz) > 0). (5.3.4)

—0

Taking real and imaginary parts separately, we obtain

Ule,y) = ¥ f - g:)Jr ot (5.3.5)
Vi) = —- = x)2+ =Tt (5.3.6)

Define g and G as in §5.2, the integrals being now mean-square.
Then we also have

O(z) = J(%) wa(~t)eiddt= —i J(%) f G(—1) i dt
=i J (;2;) f G(—O)H(t) dt = —i J (2) fo g(Oh(E) de

1 f 9) . (5.3.7)
a

—2
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Hence °
Uz,y) = ——11; J 0 t):; 59(t) dt, (5.3.8)
Vy) = -2 f (t_gﬁlyzd’ 639)

By the theory of Cauchy’s singular integral, § 1.17, U(x,y) - f(x)
as y — 0 for almost all values of z, and V(x,y) - —g(x) for almost all
values of z. We now use the following theorem.

- TurorEM 92. Let f(x) be any function such that f(x) belongs to
L(0,1), and x-f(x) to L(1,00). Let V(z,y) be defined by (5.3.6). Then

hm{V(x, 9+ f fett—flz—1) dt} =0  (5.3.10)
y—0 T t
y
for almost all values of .
We know that
o) = | fa-+)—fa—D] &t = o(9)
0

for almost all values of . Let x be a point where this holds. We have
Ven+s | fletti—fe—l) 4
T ¢
y .

y
1 t
=~ f m{f(x’*‘t)“'f(x_t)} a4
0

1
y? f(x-l-t)—'f(x—t) flx4-2) f(x—t)
ta (@+y2) + f (E+y2)

= Ji+ht+
say. Asy —> 0,

)
Wl < gfr—y f @+t —fa—1t)| dt = o (1),

t2+y2)t

1
_ P w0 T 9 [ 304y
I [(t2+y2)t] o J G R
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1
y? (1) 2 [ 3°+y°
S Ty °{3’ Ny A

= O(y2)+o{ f (3:‘+';')12ud }: o(1),

and plainly J; = o(1). Hence the result.

Since V(z,y) > —g(x) almost everywhere, (5.3.1) follows from
(5.3.10). The relation between f and g being skew-reciprocal, (5.3.2)
also follows; and (5.3.3) holds as before.

5.4. In this section we shall show that the same set of formulae
may be obtained from a different source. We can take an analytic
function ®(z) satisfying certain conditions as the original function.

THEOREM 93. Let ®(2) be an analytic function, regular for y > 0,
and let

©

[ 1@@+iy) dz

exist for every positive y, and be bounded. Then, as y — 0, D(x4-1y)
converges in mean to a function O(z), and also D(x-iy) — ®(x) for
almost all xz. For y > 0

1 [ o
O@) = f 2 g (ureat).

If ®(z) = Uz, y)+iV(x,y), O(x) = f(x)—ig(x), the functions U, V,
[, and g are connected by the formulae of the previous section, and in
particular f and g are conjugate. :
We first prove the following
LeMMA. Let O(2) be analytic, and let

e}

[ @@+iy)Pds (p>1)

exist and be bounded for y, < y < y,. Then,asx - +00, D(z+1y) - 0,
uniformly for y,+38 < y < y,—8.

- Let y;+6 <y < y,—38. Then,if 0 < p <39,

O(z) = f ‘D(’”’d = f ®(-+pe'$) d.

lw—-l =p
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Hence

b3 2w
10() = o f pdp f D(a-+peid) de,

wrioe) < L | f f e dpd¢}m'“ j pdpdqs}l’w
27 0 J
< K(3) { f’d f 1D (i) [P du}
= PR
x+d :
Now j |0 (u+iv) P du
z—3

is bounded for y; < v < ¥,, and tends to 0 as z ->oco, for every v.
Hence the right-hand side tends to 0, and the result follows.
To prove the theorem, let

a

t D(z)e-%* dx.
For each y this ¢onverges in mean, to ¢(t, y)say, as a - co. Consider,
however, the integral J- D(e)e-it de

taken round the rectangle with corners at a4y, +-a--ty,, where
0 < y; < y,. The integral along the right-hand side is

f ®(a+1y)e-Ha+v) dy = je-a f D(a-+iy)e dy,

%N
and, by the lemma, this tends to 0 as a - oo, for fixed y, and y,.
Similarly, the integral along the left-hand side tends to 0. Hence,

as a - o,

a .
[ @@tigyeiterw do — f O+, Jorietv) do > 0,

—-a -a
ie. i (t Yr)— Vi, (t y2) > 0.
Hence the mean-square limit of this sequence over any finite interval
is also 0, i.e. dng(t,y,) = evid(t,yy)

for almost all £. We may therefore write
$(t,y) = e (1),
#(t) being independent of y (e.g. by putting $(t) = ed(t, 1)).
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Also, by Parseval’s theorem,

0

[ 1Bopemdt= [ @@ty de.

-— o0

Since this is bounded as y —> 00, we must have ¢(¢) = 0 for ¢ < 0; for

J |(2) |2 dt < =2 J- |B(t)|2e~2v dt < Ke~2 > 0,

-8
80 that f |$(8)|2 dt = 0.

Since it is also bounded as y — 0, $(¢) belongs to L?0,%0).
Also, ¢(t)(e-1—es) is the transform of ®(x+1y,)—P(x4-1y,).
Hence

f (®@-+iy,)—B(z—+iy,) |* dz = f |$(2) e re—e-tve)2 dt,

which tends to 0 as y, >0, y, > 0. Hence ®(x+1y) converges in
mean as y — 0, to ®(z) say.
J‘CI)(w) dw,

the integral being taken round the rectangle +a--iv,, +a-iv,,
where ¢ > |z] and v; < y < v,. As before, the integrals along the
right- and left-hand sides tend to 0 as @ - 00, and we obtain

1 D(u+-wv ) P(utiv )
D) = o f ot gy — f Dlu-tiy)

Next, ify > 0, D(z) =

2

2mi u—l—wl—z u—l—wz—z
But
(D(u+wz) f . i f  du
J u-I—wz——zd | <—m |P(u+v,) |2 du J (u—x)2+ (v,—y)*
K
vp—y’

which tends to 0 as v, +co. Hence

1 (I)(u-{-wl)

2 u—l—wl-—-z

-

O(z) = u, (5.4.1)
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and, making v, - 0,
D(u ‘
O(z) = f ol G  du. (5.4.2)

The integral with z replaced by Z is zero. Putting ®(u) = f(u)—ig(u),
®(z) = U(x,y)+1V(x,y), we obtain the formulae of the previous
sections; and it follows from the theory of Cauchy’s singular integral,
and (5.3.5) and (5.3.9), that ®(z) - ®(x) for almost all z.

THEOREM 94. If (2) is regular and bounded for y > 0, then (z)
tends to a limit as y — 0 for almost all x.

For i(z)/(z+1) satisfies the conditions of the above theorem, and
so0 tends to a limit almost everywhere.

Notice also that, in the above theorem, ¢(t) is the transform of
®(x); for, if x(?) is the transform of ®(z), as y - 0,

[ xo—gwesra = [ 10w—0@+inrd-»o,

—

[ Ix—g@2de=o.
Hence x(t) = ¢(t). -

5.5. We also deduce

THEOREM 95. Alternative necessary and sufficient conditions that a
complex ®(x) of L3 —c0,00) should be the limit as z — x of an analytic
O(2) such that - »

| @eti)rde < K
are o A

(i) @(x) = f(x)—2g(x), where f and g are conjugate functions of the
class L2

(ii) ¢(x), the transform of ®(x), is null for x < 0.

The necessity and sufficiency of (i) follows at once from the above
theorems.

The necessity of (ii) has been proved in the course of the previous
proof. Conversely, let ¢(x) = 0 for x < 0. Let @ be its transform.
Then

®O(u) = li al_>m \7(—7) ( eizud(x) d.
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Let  ®utiv) = f eiewting(z) dz (v > O).

(2 )
Then ®(u-t1v) is analytic for » > 0, and

[ ouin)eau = f e ()2 dz < f Ip(a)]? da

Hence, by the above theorem, ®(u-iv) converges in mean, and also
almost everywhere, to ¥'(u) say; and

U 0
1 ezU—1
du — >
of ®(u) du 4(2«)f ——(a) da

ete(U+iv)__ 1

= lim o(x) dz

in g | <
hm f O(u+iv) du ! (u) du

Hence ‘I’(u) O(u).
The result also follows from the transform formulae; for, if (I)
satisfies the given conditions, ®, f, and g are related as in § 5.1, and

$(@) = Lim, f (f(w)—iga)je-i=* du

«/(2 )
= F(—x)—zG’(—x) =0 (x<0)

by (5.1.8). Conversely, let $(z) = Oforz < 0. Let ®(u) = f(u)—ig(u),
let a(z) and b(z) be defined as before in terms of f, and similarly
a(z) and B(z) in terms of g. Then

a(x)+ib(z)—t{a(z)+if(x)} = 0 (z < 0),
ie. a(x) = —B(z), bx) = a(z) (x < 0).
Hence g is the conjugate of f, and the sufficiency of the condition
follows from condition (i).

5.6. THEOREM 96. A necessary and sufficient condition that ®(x)
should be the limit as y — 0 of an analytic ® z) such that

f (®(z-+iy) |2 dz = O(e™¥)

18 that $(x) = O for x << —k.
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If k is the least number such that ¢(x) = 0 for x < —k, then

lim - log |®(x+1y) |2 dx = 2k.
1]—)00

Suppose that ®(z) satisfies the given conditions. Let
D(2) = e~ (2).

Then f ¥ (z+iy) |2 do = e-2kv f [O(z+iy) |2 do = O(1).

Hence ¥'(z) > ¥(x) almost everywhere, and, if (x) is the transform
of ¥(x), Y(x) = 0 for x < 0. Now

$(a) = 1.i.m.7(-;—_ﬂ) f D(u)e-iow du

= lim. -1 f P(ue-iethe dy = Ya-k).
Hence ¢(x) = 0 for x < —k, and in view of the above theorem the
argument is reversible. This proves the first part.

Again, since ®(x+-1y) is the transform of e~“¥¢(u),

@

| 0ripede = [ erigpn = | erigaoldu

o —~ -k
This is < ekv f b(u) |2 du;

Sy
and, if w(u) = j &) (u)|? du,

it equals 2y f e~y (u) du > 2yw(—k4-8) f e~2w dy
-k —k+8
= w(3—k)e2k-dv,
Hence the second part.
5.7. For a function having a mean value in a finite strip the
corresponding theorem is as follows.
THEOREM 97. Let ®(2) be an analytic function, regular for

N<Y <Y
and such that j |O(x+2y)|* dx

exists and is bounded for y, < y < ¥,.
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Then the boundary functions ®(x+y,) and O(x+-iy,) exist as mean-
square limits, and also almost everywhere as ordinary limits of ®(x+-1y).
For yy <y < Yo

(D(Z) f q’(“""’yl) 1 (D(““"'?/z)
2mi u-{—zyl—z T 2m u—l—@yz—-z

The transform of ®(x-+1iy) is of the form e—p(t), where e~e(t) belongs
to L for y1 < Y < ¥

This is an obvious consequence of the above analysis, except
perhaps for the existence of the limit of ®(x-4y) almost everywhere
as y - y; or y,. However, the previous analysis shows that

J Dutiy,) 4
u+tiy,—z

-~

tends to a limit almost everywhere as y — y, from above; and

f Pt 4,
u—f—zyz-—z

is regular for all ¥ < y,, and so tends to a limit everywhere as
y > y,. Similarly for the case y — y,.

5.8. TurorEM 98. Let f(x) belong to L¥—o0,0). Then

f@) = fi(@)+f-(2),
where [, (x) belongs to L*(—o0,00), and is the mean-square limit of an
analytic function f.(z), regular for I(z) > 0; and similarly f_(x) is the
mean-square limit of f_(z), regular for 1(z) < 0.
. Let F(z) be the transform of f(z), and
f +z) =

f Fluje-iv du,  f.(z) = f Flu)e-i=* du,

«/(2 ) J(2 )
Plainly f,(z) and f_(z) are regular for y > 0, ¥y < 0, respectively. The
rest of the theorem follows as in § 5.4.

THEOREM 99. Let f(x) belong to L?*(0,00). Then
f@) = fu@)+fo@),

where f,(x) belongs to L*0,00), and is the mean-square limit as-
argz - +0 of an analytic function f,\(z), regular for argz > 0; and
similarly fy(x) is the mean-square limit of f_\(z), regular for argz < 0.
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This may be deduced from the previous theorem by putting z (of
the present theorem) = ef; or deduced directly from Mellin trans-
forms. In fact

¥ t+io
fold) =5 [ Bertdn S =g [ Beras
t—iw t

5.9. TrEOREM 100f. If f(x) belongs to L(—c0,00), then
f feth)—fa—t) 5,
t

exists for almost all values of x.

We may suppose without loss of generality that f(x) > 0. Define
U(z,y) and V(z,y) by (5.8.5), (5.3.6), and let
. 1 [ S A
D) = Uz, y)+iV(z,9) = f IO 4 (4> o).
i t—=z
From its definition it is clear that U(x,y) > 0
Let ‘{'(z) — e—Q(z) — e,—U(@‘,U)—iV(IJI).

Since U(x,y) = 0, |¥(2)] < 1. Hence, as y - 0, ¥'(z) tends to a finite
limit for almost all 2 (Theorem 94); and this limit can be 0 in a set
of measure 0 only, since U(z,y) tends to the finite limit f(x) almost
everywhere. Hence W(z) tends to a finite non-zero limit almost
everywhere. Hence ®(z) tends to a finite limit almost everywhere.
Hence V(z,y) tends to a finite limit almost everywhere. The result
then follows from Theorem 92.

5.10. Hilbert transforms of the class L7,
THEOREM 101. Let f(x) belong to LP(—o0,00), where p > 1. Then

the formula ®
g(x) = 1 f fatt)—fe—t) 4 (5.10.1)
T t

defines almost everywhere a function g(x), also belonging to LP(—c0,0).
The reciprocal formula ©
flx) = 1 [ Z(E_Jr‘_):_fﬂl dt (5.10.2)
ke

~0

+ Plessner (1). I believe that this version of the argument is due to Little-
wood.
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also holds almost everywhere; and
| lg@) dz < M3 [ 1)l d, (5.10.3)

where M, depends on p only.
This is M. Riesz’s extensiont of Theorem 91. There are three cases.
(i) Let p be an even integer. Let

o) = [ o= v@y+iey >0,

Consider the integral J' {®,(2)} dz

taken along the straight line from — R4y to R+1y, and round the
semicircle above it. For a fixed a, @,(z) = O(1/|z]) as |z]| > co.
Hence, making R — o0, we obtain

f {Qu(z+2y)}r dx = O,

ie. f (U, +iV,)? dz'= 0.
Expanding the integrand by the binomial theorem, and taking the
real part,

| {w;—(g)vs-“Uer(ﬁ’)Vz-*Ua—...:tUz} dz = 0
Hence ngdx () f VB-202 de 4.+ J' Us dx

® (p—2k)|p 2k/p
j ng) ( J’ Uz dx)

-0

<(.
Writing (Jiv dx) / ( Uz da:)

" it follows that -w

Now f Va-2k 2k g <

-

X» < (1‘2’)XD4+( )Xp-d-;- 4L
Hence X does not exceed the greatest positive root of the equation

Xp—(g)Xp—z—-...—l =0,

+ M. Riesz (1), (2). For another method see Titchmarsh (7).
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and so X<M

p’
where M, depends on p only; i.e.

@

ngdngg ngdx.

Now " o
et =4 [ el <t [ 0
|Ua<x,y)lp<§—ﬁ [ (r'ff)lz%dt{ fw «Tff;;}l
_y [ _lor
m J (—e)Ptyt
f U dz < ¥ f ey d f e
- f 1) d. | (5.10.4)
Henco f Wiz, )P do < M2 f{f(t)}p dt.
Making @ -> o, - -
Vi(z,9) > Viz,y) = f = x)2+ =T _sna, (5.10.5)

and, making y - 0, V(z, y) - —g(z) almost everywhere, by Theorems
92 and 100. It therefore follows from (5.10.5) and Fatou’s theorem
that (5.10.3) holds. (See Titchmarsh, T"heory of Functions, § 10.81.)

(ii) Suppose next that p is not an integer. We may suppose
without loss of generality that f({) > 0. Then U(z,y) > 0, and
U,(x,y) > 0 for y > 0, a > a,.

Some care is now needed in the definition of pth powers. Let

(U+iV)p = eiplog(U'+V’)+iparotau(VlU),
where —}nr < arctan(V/U) < 4= for U > 0. Making U -> 0, we

‘obtain
(@V)P = |VIretirm (V > (), |V|Pe-tirm (V < 0).
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With these definitions we have
U+iv
f 2p-1dz
iv
< pU(U+ Vo= < p2o-NUr 4 UV |P-1).
Applying this to U, V,, we obtain

(U+Vp—(GV)P| =

e~y ae] < 5 [ vzas + [ vmip-ras)

But, as before, f {U iV e da = 0,

and f (iV,)? dx

>R [ @Wprae

—®©

= leosdpm| | [V,[? da.

Hence
josipr| [ W de <K, [ Uzde+ K, | Uit da,
and the proof of (5.10.1) and (5.10.3) can now be completed as in the
previous case.
The above proof fails if p is an odd integer. Leaving this case
aside for the moment, we next prove (5.10.2) in the above cases.

We have
7 ¢ -
Ue,y)—f@)r <L f ﬂiﬁ%ﬁﬂﬂ

_ ¥ [ era—fep
f T

j U 9)~fe) dz < f A f ) —fta) .

The inner integral (see Titchmarsh, Theory of Functions, p. 397,
exs. 17-19) is bounded for all ¢, and tends to 0 with ¢; hence the
right-hand side is less than

© © [+ ]

dt dt
Kyft2+y+()ft2+z<lf sf +‘(8)yfm
0

Kp y/s -+ %”"(8)»
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which tends to Obby choosing first & and then y. Hence for any p
lim j |U(x, y)—f(x)[? dz = 0.
y=0 v

Also, by (5.10.4),

[ Wen-tmpp <]+ ] (o at—o
as @ - o0, uniformly with respect to y. Hence

f |Ua(: y)—f(2)[? dz > 0 (5.10.6)

as a - 00, y - 0, in any manner.
Again, by the calculus of residues,

P f e gz = 0 ein) (7> 0)
and, taking i lmagmary parts,
1 ¢ Ufx,m) , _
;P f _x——f—dx— Va(é, ).

Hence the Hilbert transform of U,(z,y) is —V,(z,y), and it follows
from (5.10.3) that, for the values of p already dealt with,

[ W@p+e@P <K, [ U@y —f@Pde  (5.10.7)
Combining (5.10.6) and (5.10.7), it follows that

[ 1) —{f@) g dz > 0

as y - 0, @ > 00, in any manner.
Now by the calculus of residues

(1) (z) . o :
I f dz = Q({+im) (y < 7).
Making a - 00, y — 0, it follows that

1 )—tg(x) .
i fL::.ngx O¢+in),
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[}

and hence -2_:r—z f i—%dx = }O({+m).

Taking real parts,
z f (;”—g,ﬁg(x) de = —U(E, ).

Making n - 0, the left-hand side tends almost everywhere to the
Hilbert transform of g(z), by Theorem 92; and the right-hand
side (Cauchy’s singular integral) tends almost everywhere to —f(x).
This proves (5.10.2). ‘

(iii) To prove the case where p is an odd mteger, we shall prove
that if the theorem holds for any p it also holds for 2p. Since it
holds when p is half an odd integer, it will follow that it holds when
p is an odd integer. ’

Applying the calculus of residues as before, but now to {<I) ()33,
we obtain.

P f @t 4 — @i+l (@ > 0)

ie.
L f o Vet Bloke o — U3t 1)~ VA6 9+ 25U WD)

Taking imaginary parts, it follows that the Hilbert transform of
U2—V2is —2U,V,. Let §(z) be the transform of U3, and x(x) that

Of VZ. Then ‘/‘(x)__x(x) — —2UaI/a-
Hence Ix(@)? < 22|(z) [P +2|U,V, P,

[ x@Pde<2o [ W) de+2% [ |UT,l? da.
Now [ 10grde<( [ Wwds | zmzpdx)’*,

and, by the fundamental inequality (5.10.3) (for p),

f () |P de < K, f \U, )% da,

[ Wprds <K, [ ix@eds.

-y -
-~ K
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Altogether '

[ Wit <K, [0 de k([ 100 ds [ Wi aa)
The result for 2p now follows as in the previous cases. This completes
the proof.

5.11. THEOREM 102.1 Let f(x) and g(x) be Hilbert transforms of the
class L?, and h(x) and k(x) Hilbert transforms of the class L¥’, where
P = p/(p—1). Then

f f(@h{x) dx = f g(x)k(x) dx. (5.11.1)
Ifp=2p = ;,mand (5.3.3) giv;:
[ @) +h@p de = [ {g@)+k@)? de, (5.11.2)

and the result follows in the usual way.

In the general case, define U,(x,y), V,(x,y) as before, and let
Py(z,y), @y(x,y) be the corresponding functions for # and k. We have
seen that the Hilbert transform of U, is —V,, and similarly that of
F, is —@,. Since these functions belong to L2,

f Uz,y)B(x,y’) dx = f V2, )@@, y') dx.  (5.11.3)

Making @ -0, y - 0, b - o0, y’ - 0, U, and ¥, converge in mean to
fand —g, with exponent p; and F, and @, converge in mean to k and
—k, with exponent p’. Hence the result.

ExampLE. Let k(z) = 1/(x—a) (lx—a| > §), 0 (|x—a| < 8). Then

h(u) du
k) = f ylu=_P [f a2 f (u—a)(u—x)}

. 1 a-té—zx
T wa—zx) “la—&—=z|
Hence © ©
fleta)—fla—=) , 1 a+d—z| dx
J e de = P f g(x)log —3—xla—zx

=117 f glt+a)lo g's“idtt. (5.11.4)

1 M. Riesz (1), (2).
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We can use (5.11.1) to give an alternative proof of the case of
Theorem 101 where p is an odd integer.
Let h(x), k(x) be transforms of L?’. Since the theorem has been
proved for p’, on making b — o0, ¥’ — 0 in (5.11.3) we obtain
[ U@ y)hiz) dz = | Vi, y)k(z) dz.

Hence

[ Ve, k@) da

: ? Upf 2 o \up
<( [ 1w ) ( [ wiie as)

< 11, [ 1700 dt)””( [ @) dx)””'

— —

by (5.10.4) and (5.10.3) for p’. Here k(x) may be any function of
L. Take kz) = i(e,y) - sgn ¥z, y).

%@ @ pf P 1p’
Then [ Wirds<2( [0 a) ([ Wpds)

or [ Walp dz < M. [ (0P d.
The theorem for p n—ow follows as bef—ore.

It also follows that, if M, is the least constant for which (5.10.3)
holds, then M,, < M,,. Hence, since p and p’ are interchangeable,
'Mp - 'Mp"

5.12. TuroreM 103. Let O(z) be an analytic function, regular for
y > 0, and let ®

: f |O(x+iy)pde < K (p > 1) (5.12.1)

for all values of y. Then ®(x-+1y) converges for almost all x, and also
in the mean of order p, as y — 0, to f(x)—ig(x), where f(x) and g(x) are
Hilbert transforms of the class LP.

It is convenient to use the following lemma.
LeMMA. Let A, (x) be a sequence of functions such that

b
| Ma@)P dz < K,
a
while A,(x) - 0 almost everywhere. Then if u(x) belongs to L¥',

b
f A (x)p(x) dx — 0.
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Suppose first that the interval (a, b) is finite. By Egoroff’s theoremt
An(2) > 0 uniformly in a set £ of measure b—a—3§, and hence

f M (@)pu(z) da - 0.
Also "

JRCCC o] < (C£ A @ dx)"’”( [ e dx)""'

CE
< A(c‘i ()" dx)””',

which tends to 0 with §, and is independent of ». Hence the result.
If b = o0, we first take X so large that

f’ln(x)#(x) do
X

< K(Xf o i) <.

and then argue as before with (a, X).

If O(z) - f(x)—ig(x), it follows from Fatou’s theorem that f and g
belong to L?. We prove (5.4.1) as before, and (5.4.2) now follows
from (5.4.1) by the lemma, taking

M(te) = (Ot iv)—fu)+igu)}—"—>TY__ (=)

u—xz+1(v—y)
and : ulx) = u—::-l—'iy
Hence () = HU+iV)—3(P+4Q),

where U and V are (5.3.5), (5.3.6), and P, @ are defined similarly
with g instead of f. Now make y - 0. Denoting by f* the conjugate
of f, and by g* that of g, we obtain

f—1g = }f—if*)—Lilg—ig*).
Hence f = —g*, g = f* almost everywhere.

That ®(z) converges in mean to f(x)—ig(z) with index p follows
from the analysis of § 5.10.

That ®(2) tends to a limit almost everywhere was deduced by
Hille and Tamarkin (5) from the corresponding theorem for series
(Zygmund, Trigonometrical Sertes, § 7.53). It could be proved directly
as follows. If ® has no zeros, the result follows on applying Theorem 93

1 Titchmarsh, Theory of Functions, p. 339.
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to {®(z)}*?. Otherwise, let z, run through the zeros of ® in y > 0,
and let n .
2,11

_ z—z, £,11

12—%, 2,1
(assuming that no z, is 4). For a fixed n, |B,| = 1—e for y < 7, say,
and all . Let ®(2) = G,(2)B,(z). Then

2] . K
_L Cuat i)l de < 75
- for y < 7. Since G,(x+1y'), G,(x+1y), (y < ¥’) are related like the
previous ®(z), f(z)—ig(x), it follows from the analysis of §5.10
(especially (5.10.4)) that

[ 10na iy az < K

for all y, K’ depending on K and p only.
If ® has an infinity of zeros, a little consideration of Carleman’s
formula (Titchmarsh, Theory of Functions, § 3.7) shows that .

2 1(z)/(1+[z,[%)
is convergent, and hence that B(z) = lim B,(z) and G(z) = lim G,(2)
exist and are analytic. It follows that ®(z) = G(z)B(z), where G(z)
satisfies (5.12.1) with some K, and has no zeros, and |B(z)] < 1.
Hence ((z) tends to a limit almost everywhere, as before, and so does
B(z), by Theorem 94. '

. 5.13. THEOREM 104. Let f(z) belong to L? (p > 1), and let g(x) be
its conjugate. Let Ax) belong to L2, where ¢ > 1, pq < p+g, and let

h(z) = f AOf@x—t) dt,  k(x) = f}\(t)y(x—t) dt.

Then if pg < p-+q, h(x) and k(x) are conjugates of the class LF, where

P = pq/(p+9—pq). If pqg = p+q, k(x) and k(x) are conjugates, in
the sense that

kz) = _:; I“’h(x-f-u)-—h(x_u) du,

U

-0
and reciprocally, for all values of x.

(i) Suppose first that pg < p+g¢. Then i(x) and k(zx) belong to
LP, by Lemma B of § 4.2. We have to prove that they are conjugate.
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Let ®(z) be the analytic function of which f(x)—ig(x) is the
boundary value, and let

Y(z) = f AOD(z—t) dt (y > 0). (5.13.1)

It follows from the lemma of § 5.4 that ®(z) is bounded in any strip
0 <y, <y<y, Hence

el T
|[M006—0 & < [ Do oe—0pipE—op- d
T T

< Ky, ?/2)( f (o) dt) ( f Dz—2) |7 dt)llq

Hence the integral (5.13.1) converges uniformly in y, <y < ¥,.
Hence W¥'(z) is analytic for y > 0.
Also, by Lemma g of § 4.2,

L < Plgf Pip
f [¥(2)|P dz < ( J @) |2 dt) ( f 1O (z—1)|? dt) ,
which is bounded; and similarly

f ¥ (2)—h(z) +ik(2) [P do

<( [ wowa)™( [ we-t—se—n-+ize—npa)™,

which tends to 0 as y - 0. Hence, by Theorem 103, h(z) and k(x)
are conjugate.

(i) If pg = p+q, it is known that A(x) and k(z) are continuous,
and tend to 0 at infinity.}

In this case the integral defining A(x) converges uniformly over any
finite range. Hence

A ‘ |
1 [h.(x+u>—h(w—u> du — f du f No){fla-tu—t)—fle—u—0} e

u

e fw A(t) dt f fetu— ""f(x“““) du

- f AO)gs@—t)—gsle—0)} dt,

t See Titchmarsh, Theory of Functions, p. 398, exs. 20, 21.
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where gs(x) =

1 Tf(x+t)—f(x—t) i
ar t

Now gs(x—t) - g(xz—1), ga(x—1t) >0
as 8 - 0, A — o0, for almost all . Hence, by the lemma of § 5.12, it is
sufficient to prove that

| lgst)l dz < K

for all 3. By (5.11.4)

o) = 25 | ott+zlog

= o=

8+t“

S-l—tl dt

Hence

0@ < = [ loe+a)plog

dt)
[¢]

log

Itl

by putting { = 8u in the last factor. Integrating with respect to
z and inverting, the result now follows.

<K f lg(e+2)l?

5.14. The case p = 1. We have so far supposed that f(x) belongs
to L?, where p > 1. The general Theorem 101 fails in the case p = 1,
in which f(x) belongs to L. We have seen (Theorem 100) that g(x)
still exists almost everywhere in this cagse. But g(x) does not neces-
sarily belong to L. Suppose for example that

f(t)=mlg—2t ¢>0, 0 ¢<o).

Then for x > 0

- .
1 J) dt 1
g(—=) = - P I dt > f 2xtlog? 2mz;logx'

Hence g(x) does not belong to L. In fact it is possible to construct
examples in which g(x) does not belong to L over any interval,
however small.

We have, however; the following theorem.}

+ Corresponding to a theorem of Kolmogoroff on Fourier series; see Littlewood
(1), Titchmarsh (13), Zygmund, Trigonomeirical Series, § 1.24.
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THEOREM 105. Let f(x) belong to L(—c0,00). Then the formula

g(x) = 117 f ﬂﬂ—ﬂ—*t_ﬂ@ dt (5.14.1)
a:leﬁnes a finite g(x) for almost all values of x, and
'i’:’fﬁ: dz - (5.14.2)

-0
18 convergent if 0 < p < 1.

We may suppose without loss of generality that f(¢) > 0, and that
f() is not null. Let :

O, (z) = % f {_(__t)zdt = U4V, (y >A0), l

as before. Then a
=¥ J@)
Uz, y) = = f _**_(t—x)2+y2 dt >0
if @ is large enough. Let 0 < p < 1, and let
{®,)} = (U,+iV,)? = AP 108(Us+V3)+ip arctan(V, /Ly,

where —3in < arctan(V,/U,) < in. For a fixed a, ®,(z) = O(1/|z|)
as |z| > oo, and the calculus of residues gives

[ (@) dz = #{@,6)PF (0<y< 1)

241
Now 0] = | f 0 g <1 | 1ora
7T
at1Va)®
Hence J. (UatiVe)” o dz| < K, (5.14.3)
U >0 |V|>1,
U+iy

W+iTp—GVpl = [p [ =i <pUWP <D,
iV

while if U > 0, |V]| < 1,
(U+V)PP—(VP < (U+1)P+1 < U+2.
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Hence

JUAR ASCASS

U+2dx
2241

—a
0

< JUadx+2w—% fdxf(t i()?+ IO g 4 on

f f@) dt +27 < f ft) dt +2m.  (5.14.4)
From (5.14.3) and (5.14 4) it follows that

GV

2+1d

Now
‘(W) } A (x2—y2+1)cos §pr+- 22y sin prm > K 1A
241 e (*—y*+- 1)+ 42y? P41

for sufficiently small y and all z. Hence

AL
2241

-

and the result follows as in the proof of Theorem 101.

5.15. Lipschitz conditions. THEOREM 106.} Let f(x) belong to

L? (p > 1), and let it satisfy the Lipschitz condition
If@+h)~f(x)| < Klh|* (0<a<1) (5.15.1)

uniformly in x,as h — 0 (say for all x and 0 < h << 1). Then Hilbert’s
reciprocal formulae (5.1.9), (5.1.10) hold for all values of x; and. g(x)
also belongs to LP and satisfies a Lipschitz condition with the same o
as f(x). '

In this case the integral (5.1.9) plainly exists for all values of z.

We next observe that if f(x) satisfies the given conditions then it
is bounded—in fact it tends to 0 as - co. For since f(z) is continu-
ous, the points where |f(z)| > 8 > 0 form a set of intervals. The
length of such an interval (z,,,) tends to 0 as x, > o0, since

dr < K,

(e—28% < [ If(e)}? dz > 0.

1 Titchmarsh (5). The result corresponds to Privaloff’s theorem for Fourier series.
See Zygmund, T'rigonometrical Series, § 7.4.
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Now since |f(z,)| = §,

@) < f@)|+If@)—fy)] < 8+ Klo—ay|* < 8+ Klwp—a, %
which tends to 0, by choosing first 3 and then z,. Hence f(x) - 0.

It follows that if (5.15.1) holds for small % it holds for all A, with
a possible rechoice of the constant K.

Now as y - 0,

1 1

V@ y)+e@) = - f ()

g [fet)=fe—0 5 _ of s [ £ ) — ope
| GRS 0(”2.[ Fry? dt) = 0w
1] 0

oV 1 [ (t—a)p—
R =L

{f (x+t)—f (@—2)} dt

@ , . w
i f ety 2)2f(t+ ) dt = — f T 2)2{f(t—{-x)—f(g;)} dt
: _ A W
- O( f @y d‘) = 0.
Hence, taking & > 0, -
lg(z-+h)—g(x)|
z+h

=0(h°‘)+0( f EV(E,h)dfl)+0(h“)=O(h"‘),‘

80 that g(x) satisfies the reqmred Lipschitz condition.

The reciprocal formula (5.1.10), already known to hold for almost
all values of z, now holds for all values of z, since each side is con-
tinuous.

If « = 1, we obtain similarly

v _ [ e y] Fdi
R

- l Iu —1] — o100
_0( [u|du)+0(1) O(ylogy),

y u?+1

-1y -
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and it follows that _
g(z-+h)—g(x) = O(|h|log 1/[h]).

5.16. The allied integral. We next return to the allied integral
(5.1.7), which is formally equal to g(z). We can now prove the
following theorem. )

THEOREM 107. Let f(x) belong to L(—o0,00). Then, for any positive
o, the allied integral i3 summable (C, «) to g(x) wherever

1 [ f@tt)—fa—t)
- f &

g(x) = (5.16.1)

h
exists, and j If@+8)—fx—1t)| dt = o (h); (5.16.2)

and so almost everywhere.

It is plainly sufficient to suppose that 0 < a < 1.
We have to consider

A ©
lim (1—'7\‘)“du f Fla+t)sinut dt

p

= /E?o 6i?{f(x—i—t)—f(ac—t)} dt of (l—%)asinut du.

Now
A

1
f (1_;_‘)“sinut du =2 f (1—v)esin Mo dv
0

0

1
= —%[(l—v)“cos)\tv];-}-%j (1—v)*~1cos Atv dv
0

At .
1 o cos(Al—w)
= Z'I' egaH f wl—a dw.

0

f (“x) smutdu__} - K@)

prr

-Hence

1t follows at once that, if 8§ > 0,

hm f{f(x—}—t)—f(r—t } dt "(l—x) sin utdu = ffx—{—t——-f__

0



148 CONJUGATE INTEGRALS Chep. V

A]so

J{f(x—l‘t)—f(x—t)} dtf (l_X) sin ut du

1/A

~

"f(a:+t) —fla—1) +0{ f frtt e g),
12 1/A ’
and, if (5.16. 2) holds, the last term is
3

[Aatowl f lf(x+“)—f(x—u)| du] +

1/A

et (5 f -t —fle—w)] du

1A 0

]
1 dt
X f T) =
: 1A
by choosing first 8 then A. Finally,
A

f (l~§)asinut du

0

= o(l)+o(

< KA,

and

}M{f(x-}-t)—-f(x—t)} dt f (1_%‘)°‘sinutdu

YA
< KX j \f@+t)—f@—1)| dt = o(1).

This proves the theorem.

5.17. Application to Fourier Transforms. In this section we
make an application of the theory of conjugate functions to the theory
of Fourier transforms. There is one respect in which this theory is still
incomplete. We have shown that if f(z) belongs to L? (1 < p < 2) then
f(z) has a transform F(z) belonging to L?, and F(z) = lLim. F(z,a).

We have not yet been able to show that the reciprocal relation
f(x) = lim. f(z,a), where

flz,a) = 7(—2- f F(t)e—i= dt,

also holds. We can now supply thls point.t
' t Hille and Tamarkin (3).
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THEOREM 108. If f(x) belongs to L? (1 < p < 2), then
f(z) = Lim. f(z, a).
1t follows from Parseval’s formula (as in the proof of Theorem 58)
that

fe.a) =1 [ g0y = gy

_ sinza p f(u)cosua du — 98%2 p fu)sinua du

T r—u m r—u
—® — .

= sinzxa $,(x)—cos za Y ,(x)

say, the integrals being principal values at ¥ = . By Theorem 101

f |$o(@) P dz < K, f fweosualr du < K, [ |f@)|® du,

and similarly for ¢,(x). Hence

0

[ feward < | @B @P+2EP) d <K, [ ol d.

"o "o —w

This proves that f [f(x)—f(z,a)|? dx

—a0
is bounded as @ —>co. We have to prove that in fact it tends to zero.
We can construct a step-function f*(x), zero for || > X, and such
that »

[ 1@ @) dz < e.

—

Now

(_ji [f(x)—f(z, a)|P dx)up < (_jz If () —f*(x) P dx)”" +

+ [ 1w e @)+ [ e a—seap )"

= JIP L JYr 4 Jip,
say. By hypothesis, |J;] < ¢; and by the above method
[l < K lh| < Kpe.
Also f*(z,a) — f*(x) boundedly in any finite interval, say (—¢,¢);
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now if § > 2X,

jo @)~ )P do = f ’ J(%)_f f*(t)sm—;’”_‘—t"—“dtp

® X
o) *(‘” a dz <K ‘ﬂ_( 40 dt)p
] e ol |

We can choose £ so large that this is less than ¢, for all @; and, having
fixed ¢,

dx

£
[ 1f*@)—f*z, a)l? dz 0
—¢
by bounded convergence. This completes the proof.

5.18. Further cases of Parseval’s formula. We have already
seen that (2.1.1) holds if f and G are L? (1 < p < 2). If f and g are
the given functions, and belong to L?, L? respectively, we cannot
state the result, because the existence of & is not known. We require
an additional condition.

THEOREM 109. Iffis L? (1 < p < 2), and g 18 L? and L¥', then
A ®
lim _fA F(x)0() d =_fw f@)g(—=) da.

Let G be the transform of g. Then
G(z) (=] <A), 0 (jz] >A); g(=,2),

defined as in (3.1.2), are transforms of L2?; and the former is also L?.
They are therefore transforms of L?, L?', and Theorem 75 gives

A ©
f F(z)GQ(x) de = f fx)g(—=, A) de.
—A — a0
As in the previous section
Lim.(p')g(—a,A) = g(—2),

and the result follows.

TaEorEM 110. If fis L? (1 < p < 2), ¢ 8 L', and the integral for
G is uniformly convergent in any interval 0 < 8 < x < A, then

§-50, A_,w( f + J)F(x)G(x) dx = ff(x)g( —x) d.
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We can now prove by uniform convergence that
Glz) B<le|<A), 0 (2] <3, x| >2)
is the transform of

-

% f g SR A=) —sinS(u—2) ;.

u—x
—

The proof now goes as before, but to complete it we want
. ¢ r sind(u—zx) ,
tim [ f@)de [ g™ au—o.
Now N

[ sind(u—z)
J‘ g(u)—;_T du’

-

x+1/8 z—1/8 @
<6 f |g<u)|du+( [ + f )Mdu—w
u—a|
z—1/8 —~00 z+1/8

as 8 — 0, for any fixed z; and, as before, its mean p’th power is
bounded. The result therefore follows from the lemma of § 5.12.



VI
UNIQUENESS AND MISCELLANEOUS THEOREMS

6.1. Uniqueness of trigonometrical integrals. THE classical
uniqueness problem for trigonometrical series is to show that if

ia,+ i (@, cosnx+b,sinnx) = 0
n=1

for all values of z in (0, 27), or all values with some exceptions, then
a, = 0, b, = 0 for all values of «.
The corresponding problem for integrals is to show that if

f{a(y)cos zy-+b(y)sinzy} dy = 0 (6.1.1)
(1]

in some sense or other for all values of x, possibly with some excep-
tions, then a(y) = 0, b(y) = O almost everywhere. A more general
problem is to show that if a given function f(x) is represented by a
trigonometrical integral, .

[ {aty)eosay+b(y)sinay} dy = f(z), (6.1.2)
0

in some sense, then the integral is necessarily of the Fourier form,
i.e. in some sense

aly) = f fwosay dz,  by) = 1. | flelinzy de.

Owing to the symmetry of the Fourier integral formula between a
function and its transform, in the integral case this is not, formally,
a new problem. It simply amounts to the question whether a(z) and
b(x) are representable by Fourier integrals; and in some cases the
answer follows from theorems which we have already proved.
Suppose, for example, that a(r) and b(z) belong to L(0,00), and
that @
| (aty)cos zy+b(y)sinzy} dy = 0
(V]

for almost all values of z. Adding and subtracting the formulae with
x and —z, it follows that both
f a(y)coszxy dy = 0, f b(y)sinzy dy = 0

0

v
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for almost all x. By Theorem 14 (for an even function)
A ©
lim 2 f (l—ﬁ—‘)cos xu du f a(y)cosuy dy = a(x)
A>T P A J

for almost all z, and in this case the left-hand side is 0 for all z. Hence
a(z) = 0 almost everywhere. Similarly b(z) = 0 almost everywhere.

Theorem 22 can be used to give the same result.

Suppose, again, that a(y) belongs to L3(0,0), and that

f a(y)coszy dy = 0
0

for almost all values of z. Since the limit and mean limit of a
sequence, if they both exist, are equal almost everywhere, the cosine
transform of a(x), in the sense of Theorem 48, is null, and hence a(x)
is the mean limit of a sequence of null functions, and is therefore null.

The uniqueness theory of Fourier series suggests a different type
of theorem, in which the possible values of z for which (6.1.1) fails
are much more restricted, but in which a(x) and b(x) do not neces-
sarily belong to L-classes. The main difference between the theory
for series and that for integrals is that the convergence of 3 a, cos nz,
for example, in a set of positive measure, implies that a, — 0; but
- ‘the convergence of o

| ay)coszy dy
0

does not imply that a(z) - 0 as - co; for example, the integral is
convergent if a(x) = e®cos e?*.

6.2. The expression
1imtl)(a:-I—h)-}—<I>(ar:——h)——2(I>(x) : (6.2.1)
h—0 h?
is called the generalized second derivative of ®(x). The uniqueness
theory of Fourier series depends on the theorem of Schwarz (see
Titchmarsh, Theory of Functions, § 13.84), that if ®(x) 18 continuous,
and has at all points of an interval the generalized second derivative 0,
then ®(x) is a linear function in the interval. Here we shall proceed at
once to the general problem with f(z), and use
THEOREM 111.1 Let ®(x) be continuous in (a,b), and have at every
point of this interval a finite generalized second derivative f(x), which

t De la Vallée-Poussin, Cours d’analyse infinitésimale, 1914 ed.
. L
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belongs to L(a,b). Then

@) = [du [ f0) @0 +atae @<z<b),  (622)

where a, and a, are constants.
‘We first prove two lemmas.
Lemma 1. Let ®(x) be continuous in (a,b), and let
liTn(D(x+h)+(I)(x——h)—2®(x)

h—0 h2

(6.2.3)

be > 0 for every = in (a,b). Then no part of any arc of the curve
y = ®(z) can be above its chord.

Suppose that some points of an arc (z,x,) lie above the chord,
PQ say. Let

O (z) = D(x)+fe(z—z)(@—2;) (e > 0).

Then, if e is small enough, some points of the corresponding arc of
y = @ (x) will lie above the chord. Let M be such a point of this
curve, whose distance from P@Q is not less than that of any other

such point. Let x be the abscissa of M. Then, if A is the tangent of
the angle which PQ makes with the z-axis,

h ~ 4 h = .

Hence O (x+h)4+D (x—h)—2D (x) < O,
ie, D(x+h)+P(x—h)—20(z) < —¢,

for all small h. This contradicts the hypothesis, and the result
follows.

LeMma 2. Let ®(x) be continuous in (a,b), and let (6.2.3) be > 0
Jor almost all x in (a,b) and be nowhere —co. Then no part of any
arc of the curve y = ®(z) can be above its chord.

If (6.2.3) is nowhere < 0, the result follows from the previous
lemma. Otherwise, let E be the set, of measure 0, where (6.2.3) < 0.
Lett x(x) be a non-decreasing absolutely continuous function such
that x'(x) = + oo in B, and y(b)—x(a) < e. Let

@) = [ x(w) du.

1 See e.g. Titchmarsh, Theory of Functions, §11.83.
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If z is a point of E, and M any positive number, however large,

x@fﬂé_ix(‘”—“) >M (ju] <59)
Hence, if h < 5,

Xl(x+k)+X1(x—h) —2x,(x)

5 = {x(x+u)—x(@x—u)} du

1
;2

2uM du = M,

°hﬁ>‘ e -

1
= 5

and so the left-hand side tends to infinity as & — 0.

Let Q(x) = O(x)+ x,(2)-
A0 h2

for every x in (a,b). Hence no part of any arc of y = Q(z) can be
above its chord. Since this is true for arbitrarily small ¢, the same
result follows for y = ®(x).

Proof of Theorem 111.

Let  p(*) = min{f(z),n},  q(z) = max{f(z), —n}.
Then p(z) < f(x) < ¢q(x), and, since f is integrable, so are p and q.
Let z x
po@) = [ pw)du,  py(a) = [ py(w) du,
and similarly for q. ‘ ’

Then g,(x)—®(x) has almost everywhere the generalized second
derivative g(x)—f(x) > 0, and

h z+u
(@) +gy(e—P)—2 !
et tale D206 _ L (a0 [ g
0 T—u
] h z+u
0 T—Uu

Hence the generalized second derivative of g,(x)—®(x) is nowhere
—o0. Hence no arc of y = g¢,(x)—®(x) is above its chord.
The chord through the end-points a and b is

Y = o {a:(5)—D(B) +P(@)}—D(a),
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and hence
0:(0)—0(@) < T—{2:(6)—OB)+O(@)—P(@) (2 <& < D)

Similarly, no arc of y = py(x)—®(x) is below its chord, and it
follows that '

Do) —0(@) > T {ps0)—D(b)+P(@)}—P@) (@ <z <),
Making 7 -> 00, py(z) and g,(x) both tend to the limit

fule) = fdu ff(v) .

Hence
F#)—0(@) = T (f(b)—0 () +P@)}—0(@) (2 <z <b)

the desired result.

6.3. TurorEM 112. 'Let a(y) and b(y) be integrable over any finite
_interval, and zero in an interval containing the origin. Let

[ {aty)oosy +-by)sinzy} dy = f(z)
[}

for all x in a certain interval. Then
—®0 ) dy
o) = — | {a(y)cosxy-l-b(y)smxy}ﬁ

exists for every x of the interval, and has the generalized second deriva-
tive f(x).

The convergence of the integral for ®(x) follows from the second
mean-value theorem. Now

(x+h)y+ (x—h)y— z Yy = —4sin2§hyzgzxy.
Hence
O(x+-k)+D(x—h)—20 . h
(z+h)+ (hxz ) =) _ f {a(y)cos xy+b(y)sin vy} hzy%z yd
. 0
(6.3.1)

and it is sufficient to prove that this integral converges uniformly
with respect to & for & > 0.

—>0

Let [ {aty)eos zy+b(y)sinzy} dy = r(¥),

Y
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so that |7(Y)] < e for Y > Y (¢). Then

f {aly)eos zy-+b(y)sinay) L5H 4 )

=‘[ (y)‘“;f——z—;%i”] + f ) 7o (St J‘
<<t o

<e+eof d (%)

du\ u?

for all 2 > 0; hence the result.

du = Ae

6.4. We shall now prove the uniqueness theorem on the assump-

tion that a(y)/(14y?) and b(y)/(1+y%) belong to L(0,c0). Later it
will be shown that this condition is superfluous.

THEOREM 113.1 Let a(y)/(14+y?) and b(y)/(1+y?) belong to L(0,00),
and let S

f {a(y)cos xy+b(y)sin xy} dy = f(x) (6.4.1)

for all values of x, where f(x) is everywhere finite and integrable over
any finite interval. Then for almost all positive values of y

A

a(y) = 71:%1_1)1010 J; (1—~ I-;:—I)f(x)cosxy dz, (6.4.2)
A

b(y) = —11;)]\1_11010 _! (l—%)f(x)sin 2y dx. (6.4.3)

In particular, +f f(x) = 0, then a(y) = 0, b(y) = 0 almost every-
where.

The condition (6.4.1) may be broken for a finite set of values of x,
provided that a(y) - 0, b(y) - 0, as y — co.

By replacing z by —z in (6.4.1) and adding or subtracting, we
obtain similar formulae with' the cosine or sine integral only. We
may therefore consider them separately.

1 Pollard (3), Jacob (2). The unrestricted result follows from Offord (7); the proof
given here is by Offord and the author.
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Suppose first then that b(y) = 0. Suppose also that a(y) = 0 for
0 <y <3d,and let w

a(y)
Px) = — “cosay dy. (6.4.4)
[

By Theorem 112, ®(x) has the generalized second derivative f(x),
and here f(x) is integrable. Hence, by Theorem 111,

O(z) = [ du [ f(o) dv+p+gz,
0 0

where p and ¢ are constants; and ¢ = 0 in this case, since ® and f
are even. Writing

fiw) = [ fe) do,

we have A O(x) = ff1(u) du +p,
0

f (l—é)f(x)cos xy de = ffl(x) ‘ﬂiﬁ_{_ (1—;)3/ sinxy} dx ‘
[ (] E
= [q)(x)(gg;:c.z_/ (l—g)ysinxy}]:-}-

+ fd)( );2ysmxg_y (l—g)cosxy} dx

(D(A)cos)\y P + f O(z)sinxy de —y? f (1——)(I)(x)cosa:y dx.

A
(6.4.5)
Since a(y)/y? is L, (6.4.4) and Theorem 14 give
A N
lim (1—:—)¢)(x)cos oy do = — (6.4.6)

almost everywhere. Also ®(x) > 0 as - oo, by Theorem 1, so that
the remaining terms in (6.4.5) tend to 0 as A —>co. Hence

A
}im (1—-;)f(x)cosxy dx = 1ma(y), (6.4.7)
0

the required result with the conditions stated.
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To remove the restriction that a(y) = 0 over (0, 8), let

a5(z) = a(z) @=38), 0 (z<3?),
3
and let ‘ f a(y)cosxy dy = x(x).
0
Then the result already obtained shows that

A
tim [ (1=3)ifte)—xtelconay d = 4masty)
almost everywh:re. Also, by Theorem 14,
;i_x)?o f (l-—;) x(z)coszxy dz = 0
.for almost all ¥ in (8,0(? ). Hence
A
lim | (1—§)f<x)cosxy dz = jma(y)

for almost all y in (8,0 00), and so, since § is arbitrary, for almost all y
in (0,00). This is the required theorem for the cosine integral.

Next let a(y) = 0, and suppose that b(y) = 0 in (0,8). Let

Y(z) = — fb;—z)sinxy dy. (6.4.8)

Arguing as before, we obtain °

Y(x) = fdu ff(v) dv +qz,
0 0

and

f (l—i\f)f(x)sinxy dx = f{fl(x)+q}{8ill)‘xy— (l—a—;)ycosxy} dx

A A
- m_% f Y(x)coszy dw —y? J- (1—;) ¥(z)sinzy dz.
0 0

4 (6.4.9)
The proof now concludes as in the cosine case.

If there are exceptional points where (6.4.1) does not hold, the
argument merely shows-that

y = O(x)— jﬁ du rf(v) dv (6.4.10)
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is a linear function in the intervals between these points. But now, if
la@)] <e by) <e for y=A,

© ‘ '
f {a(y)cos xy+b(y)sin xy} 4 s;ln;%hy dyi

lo

4 [+
in2l
<J{la(y)l+[b(y)|}dy +25J.4:%22’Wdy
A

1]
< K(A)+Ae/h.

Multiplying (6.3.1) by %, and choosing first € and then &, it follows
that . {(D(x—l—h)-—(l)(x) @(x)—q)(év—h)]

im . — = 0.

h—>0 h h
Taking  to be one of the exceptional points, it follows that the slopes
of the straight lines which make up the graph of (6.4.10) are the same
on each side of the point. Hence (6.4.10) is a single linear function,
and the result then follows as before.

6.5. To remove the restriction on a(y) and b(y) we require some
more preliminary theorems.

THEOREM 114. If f f(t)cos yt dt
0

converges uniformly in any finite interval, to \J(3m)F(y) say, then
A
lim (g f <1__Q F (y)coszy dy = f(x)
P v A ¢
0
for almost all x.

This is merely a variant of Theorem 20; the proof is substantially
the same, depending on the particular case of the data, that

[roa
0

exists.
We require a similar theorem for the sine integral, but in this case

the argument is more complicated.
THEOREM 115.% Let x, be a sequence of numbers tending to infinity,
such that z, =k, (n=2,3,.),

1 Cantor (1).
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where k > 1. Then, given any interval (o, B), there 18 a number Q in
(«, B), and a sequence of integers y,,Yys, ..., such that
z, Q—(2y,+1) - 0. (6.5.1)

Suppose that 0 < « < B, and divide («,B) into three equal parts
(@,7), (7,9), (8,B). Let z, be the first of the x,, which is greater than
both 3 and 6

(k—1)(B—a) B—o

~ Choose y, so that (2y,+1)/x, falls in (y,8). This is possible, since
z, > 6/(B—a). Then determine y,,,,¥, s, ... 50 that

(it D— @Yt D22 <1 (0= vv+1,.0).

n
If in any case there is more than one such y, ., take the least; the
process is then unique; y,, ...,,—, can have any values.
The numbers z, and y, now determine a sequence of fractions
(29, +1)/x,, which tend to a limit Q; for, by the above inequality,

2Y s 1 2 1 1
yn+m+ — y;+ I< +"-+

Trtm

n+m
Also
BT L R L 1
e S fn T S m BB = pmTy
so that (6.5.1) follows. Finally, Q is in («, B), since
1 1

14

S o= Smp=p < ek
TaEoREM 116. If T $(u)sin zu du
0

i8 convergent for all values of x, then as n — o

n+é
T —max f¢(u)du—>0

0<é<1

If the theorem is false, there is a positive € and a sequence 7, such
that |r, | > €; and from this sequence we can select a sub-sequence
n, satisfying n, > 2¢-'n, ,. Hence there is an z in (0,}n), and
integers y,, ¥s, ..., such that

2zn, [m—(2y,+1) > 0.
Hence, if p is large enough,

Ixnu— (yy. + %)77'[ < %‘”'
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Hence, for n, < u < n,+§ where £ <1, zu—y, = lies between }w
and 3m; hence sinzu is monotonic in at most two intervals, and
[sinzu| > 1/v2. If e.g. sinxu is steadily increasing,

ny+§ nu+¢ ny+¢

f d(u) du = $(w)sin zu du = f d(u)sinzu du

sin xu sinzn,
Tu
by the second mean-value theorem, and the rlght-hand side tends
to 0. Similarly in other cases.

THEOREM 117. If f f(t)sin yt dt (6.5.2)
0
converges uniformly in every finite interval, to \/(3m)F(y) say, then
)
lim (.2.) J (1-%)1;(y)sinxy dy = f() (6.5.3)
—> 0 W

for almost all x.

We can insert (6.5.2) in (6.5.3) and invert, by uniform convergence,
We obtain

—cos)«(x t) 1-—cosX(z+t)
f f(t){ L a }dt., (6.5.4)

Let T' > z, and consider
$(n+1)

I— S(¢)cos As )\t ( J* + °° f ) f(t)cos At i,
7 )\(ac—t)2 S Az—1)?
where N is the integer next above 2A7'/z. By the second mean-value
theorem

$n+1)m/A f(t) by 1 i
CO8

where {nm]A < € <5 < }(n+1)w/A. By Theorem 116 the last
integral tends to 0 as » - co0, uniformly for A > 2/=. Hence

A = A A 1
r= ol 20 =) =<l
uniformly with respect to A. Similar arguments apply to the rest of

(6.5.4) with ¢ > T'. Also, for a fixed 7', the part with ¢ <© 7" tends to
f(x) almost everywhere. The result therefore follows.
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6.6. THEOREM 118. The results of Theorem 113 hold if a(y) and
b(y) are integrable over any finite interval, and (6.4.1) holds.

We again define ®(x) by (6.4.4), but now the integral is not neces-
sarily absolutely convergent, and ®(x) does not necessarily tend to
0 at infinity. However, since

a,(y) = Jy a{u) du — limit

0

as y - oo (by putting z = 0 in (6.4.1)), and

(y) cosxy dy =

g
Y Y i 2¢o
G ?2“ + fa;(y){xsu;xy+ yﬁm’} dy,

the integral (6.4.4) converges uniformly over any finite interval.
We therefore deduce (6.4.6) from Theorem 114. Also

o) = — [ a) “‘”"’+2°‘;§”‘~”} dy = o (@)
0
as x -0, by Theorem 1; and, for a fixed y,
A A ©
j‘b(x)sinxy dx = f {o(l)— f a,(u )E%—?ﬂ du}smxy dx
[ 0 y+1
— o=} J‘ al(u) {Asm)\(u y) 1l—cosd(u—y)
u—y u—y
¥+l
_Asin)\(u+y) cosz\(u—l—y) _
uty L } u=oW

as A >oo. Hence (6.4.7) again follows from (6.4.5).
In the sine case we obtain (6.4.8) as before, but now we get no result
by putting = 0 in (6.4.1), and we have to use Theorems 115-17.
We have

Ys b mmiz n Yt+lmiz Ys
J é?sinxydy = ( f + z f + [ ) ;y)smxy dy.
" N O Mat V)m)jz

The second mean-value theorem gives

7
by) . x>
_gﬁ_sm xy dy = 0(;5 f b(y) dy),
3

v+ Dmix

v/
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where {vr/r < ¢ < n < 3(v+1)n/z; and the last integral is o(1) as
v >0,z —>00, and is o(1/x) a8 v >0, x > 0 (by considering O(1/z)
terms of type r,). Hence as z tends to 0 or co

Y
[ ogemeras = oleiez) 2} = o (%)
U

Hence (6.4.8) converges uniformly over any finite interval, and

¥(x) = o(x)

as x o0, Also

P
f W¥'(x)cos xy dx
S .

_ . —mb(u) 1—cosA(u+y) , 1—cosA(u—y) _
— o) %JF{ e }du_o()o

y+1
as A >0, by an argument similar to that just used for ®(x). The
result now follows as in the previous case.
We can also state the above result as a direct theorem on Fourier’s
integral formula.
THEOREM 119. Let f(x) be integrable over any finite interval, and let
I
lim J Sf(t)cos xt dt, lim f Sf(t)sinxt dt
B7®

p—>0

have finite values for every x, and let these values be integrable over any
finite interval. Then

x - u
f(x) = lim 1 (l——lﬁ-l){lim f Sf(t)cos u(x—t) dt} du.
A DYy | st )

A0 T

6.7. Integrals in the complex form. The result in this form is
THEOREM 120. Let F(y) be integmble over any finite interval, and let

lim f P(y)e-i=v dy = f(x) (6.7.1)

for all values of x, where f(x) 18 everywhere Jinite and integrable over
any finite interval. Then for almost all y

A
—_— |xl 12
F(y) 1_1_1:2\/—2-5 ( )f(x)e vV da. (6.7.2)

In particular, if f(z) = 0, then F( y) = 0 almost everywhere.
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Since

A

[ Fyetev dy
—-A

A
= 2 [ [{F(y)+F(—y)}cosay—i{F(y)— F(—y)}sinay] dy,
0

the theorem is equivalent to Theorem 118.
There is a specially simple argumentt for the case f(z) = 0. Let

x
F(z) = f F(u) du.
Then °
A 2
f F(y)e-i=v dy = Fy(A)e~*A— Fy(—A)eir 44z J' Fy(y)e-iov dy.
- 2

Replacing z by —z, and adding,
A A

fA F(y)ooszy dy = {R(\)—F(—)}coszA+z fA F(y)sinay dy.
Now FW—F(—) = f F(y)dy >0
as A — o0, as a particular case of th_c:da.ta. Hence
1'_1{1;:1: f F(y)sinzy dy = 0,
A - |
and so lim of {Fy(y)—Fy(—y))sinzy dy = 0

for x £ 0, by the above argument; and for x = 0 because the
integrand is 0.
We deduce that Fy)—F(—y)=10
from Theorem 118; but now b(y) is bounded, and all that we want
about ¥(z) is obvious from its definition. Hence
Fly)+F(—y) = 0.
The argument applies equally well with F(y)ev, with any £, instead

of F(y). Hence
F(y)ei v+ F(—y)e~*%v = 0.

for every y and ¢. Hence F(y) = 0.

+ Offord (6).
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Offord (7) has recently proved the remarkable theorem that if F(y)
18 integrable over every finite interval, and (6.7.1) is summable (C, 1) to 0
for all z, i.e. A
lim (1 — '?/J)F(y)e—w dy =0
A—0 A
-2
for all x, then F(y) = 0 almost everywhere.
This theorem is a ‘best possible’ both in the sense that one excep-
tional point is sufficient to render the conclusion false, and in the

sense that it is not possible to replace (C,1) by (C,1+8) for any
positive 8. Thus

f erdy =0 (C,1) (x0),

and f uetdy = 0 (C,1439)

for all .

6.8. Parseval’s formula. The above results enable us to prove
still another theorem on Parseval’s formula.

Suppose that f and g are given functions, f belongs to L(—0,), @
exists ag the transform of g in some sense or other, and G is L(—o0,0).
We are unable to use Theorem 35, since we do not know that ¢ is
the transform of ¢. We have, however, the following theorem.

TuEoREM 121. Let f(x) be L(—o0,00), g(x) integrable over any
Jfinite interval, and let

A
Q@) = -1 lim f g(t)e= dt (6.8.1)

1
;\/(211') A=

for all x, and let G(x) be everywhere finite, and L(—o0,0). Then
(2.1.1) holds.

The convergence of (6.8.1) may fail for a finite set of values of z,
provided that g(x) —> 0 a8 x — 4-00.

For g(x) is the transform of G(z), by Theorem 120, and the result
therefore follows from Theorem 35.

6.9. Another uniqueness theorem. We shall next prove a
uniqueness theorem of a different type, in which (6.4.1) is not neces-
- sarily convergent, but in which there is an additional condition.
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THEOREM 122.1 Let e~Va(t), e~¥'b(t) belong to L(0,00) for every
positive y, and let

Uz,y) = f {a(t)cos xt-b(t)sin xt}e~ dt
0

be bounded for y > 0 and all x. Then
lim U(w,9) = f(v)

exists and is finite for almost all values of x, and

k1 e

A .
a(t) = ! lim (1 — |:5—|) f(z)cos xt dx,
A -

bty = L 1“2 f ( ) fle)sinat dx,

Sor almost all values of t.

Let ®(z) = f{a(t)—ib(t)}ew dt
0

be the analytic function of which U(z,y) is the real part, and let
Y(z) = exp{—®(z)}. Then |¥(z)| is bounded above and below.
Hence, by Theorem 94, ¥(z) tends to a finite non-zero limit for
almost all z, as y — 0. Hence ®(z) tends to a finite limit for almost
all z, and hence so does U(x,y). Let the limit of U(x,y) be f(x).
Now fory > 0,7 >0

- o

1 _ n cos xt
f(g 2 "”’-”’”’”“"J”‘““’d‘fmd”*

e g,

= fe‘”‘{a(t)e—’l‘cos Et+-b(t)e-msin ¢8} dt = U(€,y+1),
1]

the inversion being justified by absolute convergence. Making
y—>0, ®

Ve =1 [ goahal@ e

by dominated convergence.
1 Verblunsky (2).
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By Theorem 14, A
1.. ||
-y, P —_—
eVia(t) = ”}1_13 (l 5 ) U(x, y)cos xt dx
-—A
) ¢
= ;){E&A f d¢ f U(x,y)cosxt dx (6.9.1)

-¢
for any positive y, for almost all values of £. Now

£
1
:!; Uz, y)cos xt dx = ~—_£ cos zt dx f =)t u)2+y — f(u) du

r ycosxt
f T | ety

=ll'-‘

f {(fw)+Hf(—w)} du f {

0 0
(ff ff+fj)=3—r(tfl+']2+¢73)-

y y
{(x—u)=+y=+(x+u)2+ Jconst do

I
3|~

Yy
e e LU

3|~

okﬁs

= f = )2+ 2coxs:/ctdx—':re-"‘cosut

Hence Jy = me ¥ f {f(u)+f(—w)}cos ut du. (6.9.2)
"0

Again, by the second mean-value theorem,

o«

ycosxt

) wro

2y
Tt (ut )2y

[_yoosst g 2y
P N

-

ydz

and also < ) e T
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Honoo, i |ftw +f(—w)] <

£~y £

- 2M 2M
¥ Y __diMn [ 4
el < f erore @t J E—aire T "f y

£—vy
=M (arctan %_ arctan> f) 4 —JE (arctan 3 _arctan f) +Mnvy.
t y Y vy
Also, if u > ¢,
£
ycosxt

2 y
~ tu2+y2)

J‘ _ycosxt g ]
(w—u)”+t2 Tt (u—E€)3+y?
and also <
as before. Hence

3

© £+vy
2M Yy M Y
I < t! T f w—g—wrwd“*M"! -

2M (n ¢ 2M
= (§ —arctan> y) + - (5 —arctan — )+M VY.

Let yy,9,,... be a-sequence of values of y tending to 0, and let
E be the set of values of ¢ for which (6.9.1) fails for any of these
values of y. Then F is of measure 0. Let ¢ be a point not in £. Then
we can choose y = y, so small that the contribution of J, and J;
to (6.9.1)is << e forall A > 1. Having fixed y, it follows from (6.9.2)
that

< 2¢

y
e-vta(t)—e—w%\ f d¢ f {F(0)+f(—u))cos ut du
0 0

for A sufficiently large. Hence

» ¢
a(t) = lim ﬂla f dt J () +f(—w)}oos ut du.
0 [H]

Similarly we can prove the corresponding result for b(z).

6.10. Special properties of transforms. In this section we
consider some special properties of sine and cosine transforms.
THEOREM 123. Let f(x) be non-increasing over (0,c0), integrable over

(0,1), and let f(x) > 0 as x >o0. Then Fx) = 0.
M
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For

Fo) = | (f;) Iwﬂy)sin.xy ay=[ (f—T) g (:I:"I}(y)sm ay dy.

This is a series of alternately positive and negative terms, non-
increasing in absolute value. Its sum is therefore > 0.

THEOREM 124. Let f(z) be a bounded function, which decreases
steadily to 0 as x—> o0 and ts convex downwards. Then Fyx) s
positive and belongs to L(0,00).

The conditions imply that f(x) is the integral of f’(x), which. is
negative and non-decreasing, and tends to a limit at infinity; and
the limit is 0 since f(x) is bounded. We can now integrate Fourier’s
cosine integral by parts, and obtain

e = - [B); f F'y)sinzy dy,
0

and this is positive, by the previous theorem. Also we may now take
2 = 0 in the analysis of Theorem 6, and obtain

J (%) I Fy(u) du = }f(+0).

Hence F(x) belongs to L(0, o).
Neither of these theorems is true for transforms of the opposite
kind. If fz) =1 (0 < 2 < 1), 0 (x > 1), then

e =, [B)

which takes both signs. If f(x) = e~=, then

o= ()

which is positive but does not belong to L(0,00). In fact if F,(x)
belongs to L(0,00), f(x) >0 both as x>0 and as x—>o00, and so
cannot be monotoniec.

6.11. It is not quite easy to construct a monotonic f(z) for which
F,(x) is not integrablet over (0,00), To do so, we first prove that

there is a function w
$(x) = > b,sind, x
n=1

t For a similar result for series see 8zidon (1).
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- o]
with b, = 0, ¥ b, convergent, and
1

f @)
X
0

divergent.

We have

1 1 e 1 .1

f'i*i})—'dx> f balsind, 2] 2 — f S b,sin),z| 2
1 1 e "=t

1
- . dx
— b,8in A, x - = J—dy—Jy
v=n+1 .

Now An e

sinu
g = b, T
u

1

. 1 n—1 n—1
Jy < f 30N de=30,,
0

du > Ap,logA

n’

1
— dx @
o < z b”? - log/\,,v=§+lb,,.
e P=RH1

Hence J; < }J, if b, = kv with a sufficiently large k; and J, - oo,
J=o0(J))ifeg. A, = 1, and
An — 2(A1+---+An—l)lbn.
1
Then &:(r_xll_ dx — o0,

. e
the required result.

THEOREM 125. There is a function f(x), continuous and steadily
decreasing to 0 as x — o0, such that F,(x) does not belong to L(0,00).

We first obtain the result for a non-increasing function. Let
fx) =¢, in (@, ,+38, a,—8), where ¢, > 0 steadily and @, -0
steadily, and 0 < 8 < 1; and let f(z) be continuous and linear in the
remaining intervals. Then, taking a,+8 = 0,

® an—3
JAME@) =3 ¢, [ cosatdt+
n=1 an-l+5

« 8

+2

an—38

{%(C,,.—f-cnn) + (c,,,—cn;g)(an-—t)} cosxt dt
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z“’: in(a —S)x-—sm(a 1+8)x+

T

sin(a,+3)x c sin(a,,—d)x
" x

+ i [Cn.+1

n=1

+
Cn—Cns1 ___ . '
+ T {cos(a,,—8)x—cos(a,+ S)x}]

sm 89: .
= z (cp—Cpiy)8ina, x.

By the lemma, we can choose ¢, and @, so that
1
!

1
is divergent, and then so is f |Fi(z)| d, "since sindx/(8x) -1 as
0

< . dx
Z (cn_cn+1)81n @ =

n=1

x> 0.

We can plainly construct a steadily decreasing function g(z),
having derivatives of as many orders as we please, such that
f(2)—g(x) belongs to L(0,c0). Then the cosine transform of f(x)—g(x)
is bounded. Hence the cosine transform of g(z) does not belong to
L(0,0).

6.12. Under Special conditions F(z) and F,(x) behave asymptotic-
ally like a power of z, either as x — 0 or as x — o0, or both. The
two simplest theorems of this character are as follows.}

THEOREM 126. Let f(x) = x~%¢(x), where 0 < o < 1, and ¢(x) 18
of bounded variation in (0,0). Then

Ei@) ~ $(+0), | (E)Pu—a)sin Jraze-l (z->c0),

F(x) ~ ¢(oo)~/ (%)I‘(l——a)sin traxzx-1 (2 — 0).

F (z) satisfies similar conditions with sin ima replaced by cos ima.

We may suppose that ¢(x) is positive non-increasing in (0,00).
Take the case x —o0. We have

JEm) F(x) = f) t—%$(t)cos xt dt
0

1 Titchmarsh (9).



6.12 MISCELLANEOUS THEOREMS 173

= g1 f u—*$(u/z)cosu du
0

= x""l((f-f- I) = x> YL +1).

By the second mean-value theorem
A
A
L= ¢{=} | v*cosudu = O(A~%)
o
uniformly with respect to z. Now, for a fixed A,
A , A
[ (#(+0)—p(u/a)ucosu du = {$(+0)—$(A/x)} s[ u=%cos u du
0
= Of$(+0)—¢(A/z)} = o(1),

and
A ©
$(+0) j. u~*cos u du —> ¢(-+0) f u~%cosu du = ¢(+0)['(1—a)sin ina.

Hence the result. Similarly in the case z — 0.

THEOREM 127. Let f(z) and f'(x) be integrable over any finite
interval not ending at x = 0; let x*+if'(x) be bounded for all x, and let
f@) ~z>as x>0 (x> 0). Then

F(z) ~ J (-2-)1"(l—a)sin Yozt
v,
as x>0 (x—>c0). Fyfx) satisfies similar conditions with sin }ma
replaced by cos ima.

Consider the case x > c0. We have
Alx ©

JOm)E(x) = fm f(t)cos zt dt = f + f = L+1I,

Alz

Then

L= ——f(%)sm—x—A—:% f F(sinat di
Alx

- O(A-“x“-l)—f-g—lc f O(t-=-1) dt

Alzx

= O(A-ez=-1),
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Let m(¢) = magt |£%f(z)—1]|, so that m(£) - 0 as £ > 0. Then

z< )

Alz Alx

I = f t-coszt dt + f {tf (t)— 1}t=cos xt di
0

0

A
= go-1 (—! w=*cosu du —I—O{m(%) (%)1-(:}

[=2]

= gpo-1 f u—*cosu du +O(xa;lA_a)+0{m(%) (%)14:’
0

and the result follows on choosing A large enough, and then z large
enough.
Similarly if z — 0.

6.13. Order of magnitude of transforms. There are various
more or less trivial results; if (14 [z|?)f(x) belongs to L(—co,c0), the
equation

F(z) = f fye= di

«/(2 )
can be differentiated n times. It follows that F(z), F'(z),..., F(”)(é:)
are all continuous and tend to 0 at infinity.

If f(z),...,f®D(x) are continuous and tend to 0 at infinity, and
f®(x) is L, then by repeated integration by parts

F(z) = (—) Jem) f fo(t)eiat d.

Hence 2" F(x) - 0 as # - -+ oo.

Similarly, if (14 [2|*)f(x) belongs to L%(—o0,0), then.

Fx), ..., Fo-(x)

are continuous and tend to 0 at infinity, and F®(x) is L%(—o0,00);
and conversely.

Other results have been given in Theorem 26. :

The idea underlying the following theorem is that both a function
and its transform cannot be too small at infinity.T The result is

THEOREM 128. Let f(x) and F,(x) be Fourier cosine tmnsfornw and
let each be O(e ") as x —co. Then

@) = Ez) = Ce-e".
1 Hardy (19), Ingham (1), Morgan (1), Paley and Wiener, Fourier Transforms, § 19.
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We use the following lemma.

LuMmA. Let ¢(z) be an integral function, §(z) = O(e®™) for all z,
and $(x) = O(e=9%) for real positive x — o0, a being a positive constant.
Then ¢(z) = Ce=2,

There is a constant C such that
@) < Ce=o=,  |g(reie)| < Ce,
where 0 < o < 7. Hence, by a theorem of Phragmén and Lindelof,}
[$(reid)| < CG'H(H’ 0<b<a)

—asin(a—0)+asinf _ asin((?—%a)

where H(@) = v sin o

Here we can keep # fixed and make o — 7. Then H(f) - —acos®,
and it follows that

[$(z)] < Ce~aresl (0 < 8 < m).

Similarly, we obtain the same inequality for —7 < 6 < 0; and
also, by continuity, for § = 7. Hence e*¢(z) is a bounded integral
function, and so is a constant. '

To prove the theorem we have

Rz) = J (1_27) fw f(t)cos 2t dt.

By the condition on f(¢) this is an even integral function of z; and

if |z] =7, ® '

|F ()] < K f e~¥coshrt dt = Keir,
(V]

Hence F(+z) is an integral function which satisfies the conditions of
the lemma, with @ = . Hence

F(Nz) = Ce ¥z,
E(z) = Ce¥,

and also the result for f(z) follows, by a familiar formula.
More general results can be obtained in a similar way. Suppose
for example that

fle) = O@¥e ),  Fz) = Oaet),

1 The argument is that of Titchmarsh, Theory of Functions, § 5.71, with & = 0.
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where & is an integer. Then F,(z) is an even integral function; and

|[Fz)| < K f e~#2kcogh rt dit |
/]

a\* [
=K (—-) f e—cosh rt dt
dt
0

d\* .. :
— K(Et) ér — O(r%elr),
Let ¢(z) = F,(vz). Then ¢(z)is an integral function; and, if a,, ..., @;_,
are properly chosen, so is
P(2) = 272{p(2) — (@p+a; 2+...+a)_y 2F-1)e-#2}.

Hence y(z) satisfies the conditions of the lemma, and so is Ce-#,
Hence F(2) = (ay+a,22+...+a, 22)e ", '
and f(z) is another expression of the same form.



v
EXAMPLES AND APPLICATIONS{t

7.1. Cosine transforms. SIMPLE pairs of cosine transforms are

10, 0@o), (%) dnaz, (7.L1)
cosz (0,a), 0 (a,00), J(;vr) sin;z(_l;x)_l_sin;zﬁi-x)}’ (7.1.2)
sinz (0,a), 0 (a,0), J(;ﬂ){‘“ﬁ“_“;““u‘—"‘g‘fgj“’},

' (7.1.3)
e, J (%) iﬁi (7.1.4)

Generally, the cosine transform of any even rational function, regular
on the real axis and O(1/22) at infinity, can be evaluated by contour
integration; for example

1 ™\ e~zi3gin( X 4.7
Tz’ J(Z)e sin{— +7)- (7.1.5)
Another familiar process of contour integration gives the pair

1 1
coshmz’  ,/(2m)cosh §z’ (7.1 '6_)
Next '

[ frwomme

1]

[
e—txt+izu o — 1 e—iv* J‘ e—t@—iv) g
-~

1
- T@_l e

l o
=L g J' 18 df = Ce-tot
V(2n)
(by Cauchy’s theorem). The cosine formula then gives cr = 1,
whence C = 1 since ¢ > 0. Hence we have the pair
e, i (7.1.7)

~

All the above examples belong to obvious L-classes.

+ An extensive list of Fourier transforms is given by Campbell and Foster, Fourier
Integrals for Practical Applications.



178 EXAMPLES AND APPLICATIONS Chap. VII

Next we have

NE f ereonsyay — [(2) f CO;_

— i et

by the formula just prov‘e_d.
This is true primarily for real positive A, but it can be extended by
the theory of analytic continuation to all values of A with R(A) > 0.

Taking A = ¢,
A/ (g) j etV cos wy dy = etir’-dim,
w
H

Taking real and imaginary parts. we obtain the transforms
cos a2, '«_}E (cos 3x%+tsin Ja2), (7.1.8)

sin 1a2, -:/15 (cos 3x2—sin }a?). (7.1.9)
The Fourier formulae arising from these give examples of Theorem
11, case (i).
We define the Bessel function of order » by ,
—1) v+2:
J(z) = Z( PRy, (7.1.10)

n!(v+n+1)
Thent

1 © 1
—1)ng2n
; f (1—yt)y-teosay dy = > L7 (2;)T j(l—yz)"‘*y2” dy
o n=0 ) o

— 13 el ) ,,
@) Tv+n+1)

- S (1)t
= Vo D(v+ %)7;’ 22 I'v+-n+ l).

Hence we have the cosine transforms
(I=2?t (0<z <), 0 @>1), 2+ ().
' . (7.1.11)

+ Watson, Theory of Bessel Functions, § 3.3 (2). This work is referred to later as
‘Watson’,
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These belong to L? if v >0, and to L?, LP respectively if
p > 3—v,v > —L
In each case we can introduce a parameter, since the transform

of f(Ax) is )_I\I;(;),

and similarly for sine transforms.

7.2. Sine transforms. A simple pair is

4 2\ =z
ez, J(;) Tz (7.2.1)

and, generally, the sine transform of any odd rational function,
regular on the real axis and O(1/x) at infinity, can be evaluated by
contour integration.

Other familiar methods of contour integration give the pairs

1 1 1 1
S _ — 2.
A1 g J2m) @1 )(2n) (7.2.2)
1 1
— —1. 2.
Snhey(in) w0’ tanh{z,/(3m)}—1 (7.2.3)
The pair ze— 1, ze-¥= (7.2.4)
may be obtained by differentiation from (7.1.7). Nextt
m)z:,iny . 1 wcos(l—x)y—cos(l+x)y r 142
J‘-Tsmxydy_if ” dy = }log 1=l
(1} 0
Hence we obtain the pair
sina 1 14« :
= — 7.2.
2 Jom i (7.2.5)

If v > 1 we obtain by partial integration from (7.1.11) the pair ‘
z(l—2¥)-t 0<z<<l), 0 (x>1), 210 (v— Lat—J (x).

(7.2.6)
We define the Struve’s function} of order v by
© (—l)"(%x)"“"“ 3
H = > —3). 7.29
= 2 Sty © D 02

T e.g. asin § 5.2, Watson, § 10.4.
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Then

_— l)nx2n+l

1 [+ o]

a2k o — ( —y2)v—ig2n41
f(l y?)y-tsinxy dy Z—__(%H)! f(l y?) -yl dy
0 - 0

—_ 1)”F(V+ S)n n
=32 Z B I DTt

( —1 )nx2n~|?l

T(n+3)T+n+3)

= Wrl(v+1) Z SaT
n=0

Hence we have the sine transforms

(I—22p—t (0<z<1), 0(>1), 2T+ H/).
(7.2.8)

7.3. The Parseval formulae. We obtain simple examples of
(2.1.4) or (2.1.6) by taking f and g rational functions; for example,
let f(x) = 1/(x2+a?), F(z) = J(}m)e~*"/a, and similarly g, G,, with b
for a. We obtain

i de -7 —-ax—bx - K
JW B _fa_bJ.e @ =@ty 3
° 0

As another type, let f(z)=1 (0<z<a), 0 (xr>a),
F (x) = \/(2[n)sinaz/z, and similarly g, G, with b for a. We obtain
min(a.b)

me;_w de = m [ dz = Jrmin(a,b).  (7.3.2)

o

0

Similarly, from (2.1.6) and (7.2.5) we obtain
dx = 27 f sin az sin bz dx = w*min(a, b),

[ log o
0 (7.3.3)

by (7.3.2); or we can obtain this directly from Theorem 91. All the
above formulae come under Theorem 52.

We can deduce some of the familiar I'-function formulae from
Parseval’s formula.t Define I'(a) by

I'a) = fwe-i‘x“‘l dx (a > 0), (7.3.4)
0

—i—x b+x

log

T See Hardy (3).
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and let ®
c(a) = f z*leoszdr (0 <a< 1), (1.3.5)
0

8(a) = fa:“"sinxdx (~l<a<1). (7.3.6)
0

Then the cosine transform of z%-1is

-2}

J (%) f y*lcoszydy = 2~ J (12—'_) f u*1lcosu du = x“" J (%)G(“)-

0
Similarly, the sine transform of x%-1 is 2—2 J (—?;)s(a).

We can prove, by contour integration or term-by-term integration
of series, that
o0

J i%z dv = Jrseclar (—1<a < 1). (37)
L]

In (2.1.4) let f(x) = e—=, g(x)v= z%-1. We obtain

o0

I(a) = 727 f %‘:—) dr = c(a)sectar (0 <a < 1), (7.3.8)
(]

e.g. by Theorem 36. Similarly, by (2.1.6),

0

IN'a) = ;2; f i—_'{;—xzx‘“e(a) dx = s(a)coseciar (0 <a < 1).

0 (7.3.9)
Also, by the above rule, the cosine transform of z—* A/ (f—;)c(a) is

za-1 %c(a)c(l—a);

since it is also z2-1, by Theorem 6, it follows that

clay(l—a)=1inr (0<a<<l). (7.3.10)
Similarly, s(@(l—a)=137 O<Ka<l) (7.3.11)
Also, (7.3.8) and (7.3.10) give '
_cay(l—a) =
Na)'(1—a) = Isinar — snan (7.3.12)

In particular

c3) =4Jdn), s(d)=4J3n), T@G)=4r (7.3.13)
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We have also obtained the cosine transforms

o1, J (%)F(a)cos lamz—e (0<a<1) (7.3.14)

and the sine transforms
z?-1, A/(g)I‘(a)sin jarz (0<a<l). (7.3.15)
T

7.4. Some Bessel-function examples. From (2.1.4), (7.1.11),
and (7.3.14) we obtain

f J,(x)as—v-1 dg = J (%) glf)li‘(’_%’_; f (1—a2y-iz—a dy
0 0

_ TD(a)ostar I'ep+}Hl(E—}ia)
T2 WrD(v4+3) 2T(wv—da+1)
2a—v—lp(%_a)

= o= latl) (7.4.1)%
This is a case of Theorem 36 if v > —}, 0<a <1 (taking
fl@) = (1—a?-t (0 <z < 1), 0 (x > 1), and g(x) = z-%). Actually
the integral converges if 0 < @ < v--§, so that the result holds by
analytic continuation in this wider range.

Similarly, from (2.1.6), (7.2.8), and (7.3.15) we obtain

va(x)xa—v—l de = J (%) g’% j (1—z2)-tg-a dy

__ 2%-v-1'(Ja)tan jan
— D—ia+l)

As an example of (2.1.8) let —1 < v < 0,
f(x) = J@2[m)[(2v4-1)cosvr|z|-2-1sgnz, F(x) = i|r|*sgnw
by (7.3.15), and
9(@) = 21—y HCE+}) (] <1), 0 (jz] > 1),
G(x) = |x]|~>J(|x]),
by (7.1.11). Then if x # 1,

(—l<a< V—I—%);
(7.4.2)1

2 f tJ,(t)sin ot dt
(1] 1
_ _2_ I'(2v4-1)cosvm 2V =}lge_ oy |—2v—1 —
= JE) s [ o a

-1 , (7.4.3)
+ Watson, § 13.24 (1). 1 Ibid., § 13.24 (2).
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This may be justified by Theorem 39.
If z > 1, the integral on the right-hand side ist

1 N T(» 4+ 1\12 92
f (1—u?y~Hzx—u)>-1dy = {F((2v _:g @1y

-1
If 0 < = < 1, the integral is 0; for consider

f (1—w?)~Hxz—w)-2-1 dw.

This integral, taken round a circle of centre the origin and radius R,

tends to 0 as B —co. On reducing the contour to the real axis from

—1 to 1 described twice, and allowing for the change of value of the

integrand at —1, z, and 1, we obtain a multiple of the above integral.
It follows that we have the sine transforms

v+t

EROUI T

x>1), 0(x<1l) (7.44)%

Actually (7.4.3) converges for v < 4, and the result holds by analytic
continuation in this wider range. The functions belong to L?, L*’ if

20>-¥l—— (v=0); Al—<p<—-l- (—3<v<O).
3—v  al 2v
(7.4.5)
From (2.1.6), generalized as in (2.1.22), and (7.2.6) and (7.4.4), we
obtain, if 0 < a < b,

@

[ (a@)d (az)(bayi=J,(b2) da

0
1 4 Qu+¥ 2 1 -t -y g 1 x v—id
=a | ren ) enitE e
a

while the left-hand side is 0 if 0 < b < a. Hence

f 2h—v+1] (az)J,(be) da
0 . 2y—v+1au(bz_a2)v—-y—1

F—p)b”

The process is justified by L2 theory if —} < pu <0, » > 1. As
usual, the result holds in a wider range.

(0 < a<b), 0 (@ >=05) (74.6)

T See Titchmarsh, Theory of Functions, p. 63, ex. 19, 1 Watson, § 6.13 (3).
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Next let

f@) =sinzfx, F(x) =) (x| <1), 0 (lz| >1),
and

glx) =Jylx) (x>0), 0 (x<0),
1 [ i [
Q) = — duy 1 .
(@) T a[ Jo(y)eos zy dy + 7@ of Jy(y)sinzy dy

X .
==y F<V jger (H>D

by (7.1.11) and (7.4.4). Then (2.1.8) gives

1 1
sm(x £) 40 _ e—txt coszt ,
f Jy) 2@ gy [ 7= 5 & [F=" dt = 3nly(z).
(147t

Here f(z) and G(x) belong torifl<p <2
From (7.2.1), (7.4.4), and (2.1.6) we deduce

of e~y (@) d = J ( ) f s T j(::_l)v L do

1

_ o w-t " — 2v1'1(,, + %)
T Nnl(3—v) ) @utl)(I—u)pt T Am(ai 1y
0 (7.4.8)%

Here the L? theory applies if p satisfies (7 4.5). The result holds by
analytic continuation if v > —43.

7.5. Some integrals of Ramanujan.|| Let

L

¢(x) = ,.e—_i"_".‘_ e—izu dy. (7.5. 1)
cosh 7ru -
Th ©"
g d(z+in)+d(x—im) = 2 J‘ e—tmut—izu gy,
iat ivr
= 27 % (1.5.2)

it _im
Again, by (7.1.8) and (7.1.9) the transform of e~m" is (2m)~te'™ 4,

+ Watson, § 13.55 (4). t Ibid., § 13.2 (5).
|| Ramanujan (2), (5), Watson (5).
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and that of sech mx is (2m)-}sech 4x. Hence, by (2.1.8),

o Uz—u)_ir ©
1 e 4 4 i ‘;ﬁ—ig eiw’—m
) = — —— du = "
$(z) 2 cosh u

-0

)
cosh 7v
—o

This integral is of the same form as the original one, and we can
repeat the process which gave (7.5.2). We obtain

_Uzt+inm)? Wz —~im)?
e

~ir ?
i ¢(z+iﬂ')+e dnm qb(x-—iﬂ) = 2¢ 4 f e‘ﬂ'—m dv

—o

izt
= 2¢ %,
_im
ie. eivd(z+im)+eVod(x—in) = 2 * (7.5.3)
Eliminating ¢(x—in),
i iz
(e—e-to)p(z+im) = 2¢ 4 (1—e* ), (7.5.4)
and, replacing x by x—tm, we obtain
e® —ie™”
$(2) = — . (7.5.5)
Taking real and imaginary parts, we obtain the formulae
L |
[ cosmutcoszu , TR (1.5.6)
cosh 7ru " 2coshiz ’ e
0
© cos 1
sin 7ru? cos xu i V2 (7.5.7)
cosh 7ru 2coshzx ~ e
1]

Similar integrals with denominator sinh 7« may be evaluated in a
similar way, or deduced from the previous ones, as follows. We have

$lat-im) =

TU
e—inu—izy ¢

-du
cosh 7ru

8

1.—-‘8

e—$mwi~izu(] 1 tanh 7u) du

g 8

in

a9

(‘b
]

e—i"gin xu tanh ru du.

ZFc'—-,B

(7.5.8)
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Now by (7.5.4)
it _im im(y_ FaE LR
s N _Am T __ AL e __am
P(x+im)—e e { sinh 1z e }
i .
e il
= —————|1—e' cosh }z/.
sinh %x( z )
Also tanh 7y = ! f SIYY .
sinh {v
Hence the second term on the right of (7.5.8) is
« o}
P2 1 .
s f e~ gin xy duf §Mfi dv
T sinh {v
0 ]
P 2 _dv_ f e~ gin ru sin vu du
= J sinh v :
ir® _im
_ _'__l_edﬂr F ot sm(:w/21r) v
™ sinh }v
0
ix? ur imy?
= — 2% f ervsinzy 4
sinh 7y
7y gin xy coshlx—e ¥
H ¢ = 2
ence f sinhmy Y Zsinh iz’
0
1 2
ie. J‘cosm/ smaq;d cosh Jx— cos(x /441), (7.5.9)
sinh 7y 2sinh {x
i (2/4m)
sin 7y2sin xy sm x°[4m
and - d b,
f sinh 7y Y= Zsinh ix° (7.5.10)
7.6. Some I'-function formulae.t The formula
in
I'a—1)
cos t)I -2l dt = 7 1
[ teost S (et il da—dn) Y
~im (7.6.1)

T Ramanujan (4), (6).
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may be obtained by calculating

f (w + é)a_zwz-l dw

taken round the contour formed by joining the points —i, ¢ by
the imaginary axis, and by the right-hand half of the unit
circle.

The reciprocal formula is

@

i __ 2a-1(cost)e-2? In
[o Tt 3ot T~ T (1<
= 0 (It] = 4m),
(7.6.2)
or, putting @ = a+B, = 2uta-—-B, t = 1y,
©  e—iuy _ (2cos %y)a+ﬂ—28}iu(a—ﬁ) .
_!o Tetal@—w "~ Terg—n =<7
= 0 (ly| = =).
(7.6.3)
Here F(@) = {Da+u)lE—u} = O(juf-*-)

as 4 > +00. The functions F(z), f(z), related by (7.6.3) both belong
to L? (p > 1) if a+8 > 2; if 1 < a+B < 2 they belong to L?, L»’
respectively if p(a+B—1) > 1. In the latter case (7.6.3) is non-
absolutely convergent; this may be verified from the asymptotic
expressions for the I'-functions, or by Theorem 59 and its extension
to L7,

The particular case y = 0 is

u Q0+p-2

© p |
_~£ Ia+u)(B—u) - I'(atB—1) (a-+B8 >1). (7.6.4)

Since
sin mnu/sin T = ci(m—l)nu__'_ei(m-a)mt_i_ ..._}_e—i(m-l)nu,
(7.6.3), with o = B, gives

=)

J‘ sin mre du Q203

sin ru r‘(a—f—u)l‘(a_u) = F(‘Za—l) (m Odd)’ 0 (m even).

(7.6.5)
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The particular case « = n+1 (n an integer) is
«©

J‘ sinmmu du 72" odd), 0 (meven).
-

R

Again, apply (2.1.1) with
1 1
. Q@) = .
Taial@—2 O~ Torare—a)
Then, by (7.6.3), if a+B+y+8 > 3,

f dx
R D(a+z)I(B—2)'(y+2)'(8—=)

F(z) =

=1 1 r s arbtttrefoy s
= o T TE=TTGFs=1) | (Geosiadoiteectridy
I(a+B+y+8—3) 7.6)

= Iatp—DI+3— Dl (atds—1)I(E+y—1)’
using (7.6.1) again. Here F and gare L?if 2—y—3 < 1/p < a+B—1.
The formula (2.1.8) with the same functions and = =, a8 = 8+,
gives

]

e—‘lﬂ$
J. Nat+z)L'(B—z)D(y+x)['(6— x)

1 yim(a—fP) '
= 2 P(a+p_e_ D (y+6—1) j (2 cos Jy)*+B-2(2sin y)7+3-2 dy
= etima—p o
T 23 (BT By +O) (a4-8—1)" (7.6.8)
In particular,
TG : (7.6.9)

{P(a+x)1‘<a—x)}2 = MR DT

Other integra,ls which may be evaluated in the same way are

o
eiﬂ’z

J.P(a-}—x)l"(ﬁ—x)r'('y—i—2x)P(8—°x)
_ Qx+B+y+3— 5311"(5““)}:‘{%(&—}-3—}-)'—}—8—3)}
= TG ATy +5— D Rato—2)

(7.6.10)
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provided that 2(a—pB) = y—3; if x+B+y+8 = 4, then

o«

J‘ cos w(x+B+y) d
J Dlata)T(B—a)Ty+22)1(5—22)
1
T (S —D)I(2ats—2) T (2B+7—2)" (7.6.11)
If 2(a—B) = y—8+-k, where k is 41 or 42, then
3 sin m(2z+a—f)
I‘(«x+x)P(B—-x)P(y+2x)l‘(8 2x)
=4 A . (1.6.12)
VaT(B+y—at DI (2a+5—2)
If 3(x—pB) = y—8+k, where k is 41 or 42,
j‘o sin (224« —pB) da
Da+2)T(B—z)T(y+32)1 ' (6—3z)
= ¢ ST CapE—2) o6

4r(y+8—1)I'(3x+8—3)°

The sign on the right-hand side in each case is that of k.
We next take some integrals of a similar kind, but with P-functions
in the numerator. Consider

- f P(“+2?eiuda: (I() < 0)

) T@+)
—af - LAl 7.6.14
-7 f P(B+x)P(l—a—x) sin‘n'(a-[—x) ) (7.6. )
Now 1 = 2 = 2 f e—tmEm+1)a+)
sinm(a+4x)  eime+D) _g—in(a+w) 2o .
‘ o eiet—in(@m+1a+z)
Henee f=a ,,,Z,:o f [ g —

and these integrals are of the form (7.6.3), with y = (2m- 1)mr—t.
Hence I = 0 if ¢ < 0. If ¢ > 0, the only non-zero term is that in
which m = [¢/2x]; the value of I may thus be obtained from (7.6.3).
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We can now pass to
-]

f Ia+2)[(B—x)ei da (7.6.15)

in a similar way. This is

INa+2) it
F(l—ﬁ+x) sin -n-(ﬁ—a:)

MNa4-x)
= 2 iat—in(2m+1XB-2) f.
“’ 2 f Ta—f+a)° v
if I(8) < 0. Hence (7.6.15) can be evaluated in terms of (7.6.14).

The above results may be used to evaluate some integrals involving
Bessel functions, in which the order is the variable of integration.t
Using (7.6.4), we have

Jaral®) T—s0) 4

aqb+c bv—a:
—®
< S (—1)ym+n (1| pivi2mi2n c a2mpen
B mz-o; minl 5) F(p«+x+m+l)I‘(u-»c+n+1)
> < (—1)ymtn az’"bm Qu+v+min
= ng(“;)" In! ou+v+2m+2n F(M+v+m+n+l)

azmbzr—2m

_ (=1r
- z 2T (p+v+r+1) mZ=0 m! (r—m)!

_ e (-l (@b
- Z 2T(u+v+r+1) 7!

2

r=0
. © J z(a) _z(b) +V[J{2(a2 +b2)}]
ie. J; ’;ﬂ e dx = Wﬂ (7.6.16)
In particular f I+, (@) dx = J,,,(20). (7.6.17)

The values of corresponding integrals containing a factor ¢i** may
be deduced in the same way from (7.6.3).

7.7. Mellin transforms. The simplest example of Mellin trans-
formsis  fo) ==, §s)=T() (0> 0). (1.7.1)
1+ Watson, §13.8.
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Here f(x)z*-! belongs to L(0,00) if £ > 0; and (s) belongs to
L(k—ic0, k+1ic0) for k > 0.
Other straightforward examples are
1 (x<a), O (x=a), a’/s (¢ >0), (7.7.2)
log(a/x) (x < a), 0 (x = a), a’fs® (o >0), (7.1.3)

1
F—1 L)) (o>1), (7.7.4)
;a_le—_;’ ['(s)L(s) (0 >0), (7.7.5)

where L(s) is (9.12.1). Here f(x)x*-! belongs to L(0,00) for £ > 0 in
each case except (7.7.4), when it is £ > 1.
We also observe that if f(x) and (s) are Mellin transforms so are

zMf(z) and F(s+-A), and also f(z*) and iﬁ(g). This enables us to

introduce parameters in each case.
Consider next the integral

k+-1ic0
1 T'E)MNa—s)I'(b—s) TI'(e)

f@) = 5— T(o—s) @)t (b)z-s ds, (1.1.6)

k—diw
where R(a) > 0, R(b) > 0, cis not 0, —1, ..., and
0 < k < min{R(a), R(b)}.
Since
I'@E)MNa—s)I(b—s)/T(c—s8) = O(e~-H|¢|R@+b-0-1) |5-8| — p-0¢bl

the integral represents an analytic function of 2, regular for » > 0,
—7 < 0 <m If z=2z where 0 << z < 1, it may be evaluated by
moving the line of integration away to infinity on the left, and

evaluating the residues at s = 0, —1, .... We obtain
— 1095, datp(b+1) ,
flz)=1 c—ux—}— ot+1)2! xi—...
= F(a,b; ¢c; —~x)

with the usual hypergeometric notation. For x > 1, f(z) is therefore
the analytic continuation of this function (and may, of course, be
expressed as a sum of hypergeometric series by moving the contour
the other way). We therefore obtain as Mellin transforms
. Le)'(@—s)I'(b—s) I'(c)
f(x) = F(a”ba C; _x)’ 8’(8) = P(C"‘S) F(a)P(b)
(0 < o < min{R(a), RY)}). (7.7.7)
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Particular cases are

1715-’ T O<o<l), (1.7.8)
1 I'(s)I'(a—s)
it ~T@ (0 < o < R(a)), (7.7.9)
1 T

1 p 1—z [} (m—s)}?
(14zy» " N\1+2/)° L(1—s){T'(m)P?
where P, (z) is the Legendre polynomial of degree n.
In each case F(o--it) belongs to L(—o0,0) for the range of values
of ¢ stated. In cases (7.7.8), (7.7.9), and (7.7.10) the. integral

(0<o<m), (7.7.11)

j? f(x)xt-tdx (7.7.12)

can easily be proved to be equal to F(s).
Another Mellin pair of the same type is

22+ 1)—x}® re)r —14s
fe) = w(4<;+)'1') £ s =2 T
(0 < o < R(a)+1). (7.7.13)
Here the integral (7.7.12) may be evaluated by putting
z = Yy/Jy+1).

Another class of Mellin transforms is
flz) = {(1--34)““1 o<z<]l), F(s) = I'(s)I'(a) ( o> 0,0)’

0 (@>1), T Tete) R@ >
(7.7.14)
0 (0<z<l), T@—all—=a)  _po
ooy~ @sn —Ta—a S ((?7.?.15’;

0 (0<z<<]),
fe—yJ@—1)}o+{z—y@@*—1)}*  2-°T(la+i—}s)I'(}—4s—1a)

J(@*—1) I(1—s)
(x> 1), (¢ < |R(@)|+1), (7.7.16)
142 g .
log i Eta.n{:sw (—l<o<).

(1.7.17)
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In each case f(x) belongs to a different analytic functionfor0 < x < 1
and for x > 1, while 2%-1f(z) belongs to L(0,c0) for some k. The
evaluation of (7.7.12) is immediate in cases (7.7.14) and (7.7.15); for
(7.7.16), put x = Hy+1/y). For (7.7.17),

1 1

| PR z? g of 1 1
flog( ) 2*-ldr = 2f (x+§+...)x8 lde = 2(—1+8+3(3+8)+...),
0 0

1 1 T
and F() = 4(1:"'T.33+:¥"—_s";+"') = ;ta.n $8m.

7.8. Further gamma-function formulae. In (2.1.12) let
f(z) = 2%, F(s) = D(s+a), gx) =2*1e=, G(s) = [(s+b—1).
Then

ki ©
1
— — o +b—1,-2x
= f D(a+8)T'(b—s) ds f 49122 gy
k—1io . 0

= 2—==-br(a}b) (—a<k<b). (1.8.1)

This process and the following ones are justified by Theorem 42.
The result is a particular case of the reciprocity (7.7.9).

Taking b = a and the line of integration the imaginary axis, we
obtain ©
f |T(a+it)|2 dt = 2-222T'(2a) (a > 0), (7.8.2)
0

and there are similar particular cases of the following formulae.

Next let »
_ '(b+s)'Na—b— 8)
f(z) = m’ @) = T()

and so g, ®, with ¢, d for @, b. Then

1 " D(b+8)[(@—b—8)['(d+ 1—8)[(c—d—1+s) i
= |

F(a)I'(c)
k—iw

0

1"(b+d+l)l"(a+c—b —d— l)
f x)“+° I'a-+-c)

0
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or, writing c—d—1 =«, b = B, 14+d = y, a—b = §,

k+io

s | Tlets)D(@+s)ly—s)l(3—s)ds
k—ico
L(a+y)I(a+3)'(B+y)'(B+3)
= (—a<k,—B<ky>kd>k).
N(a+ +9
Let (octfty+9) (7.8.3)t
— 2b(]—z)am (e _ L(0+8)(a)
f@) = a?(l—z)er (0 <z <1), O (x>1),» F(s) = m_)—,

and so g, ®, with ¢, d for @, b. Then

k+io 1
1 T(b+s)@T(1+d—s)l) , s
E;ik T(atbt8)(ctd+1—s) fxbw(l—x) et de
i 0

—100

I'+d4-1)I'a+c—1)
T(a+b+c+d)
or, writing ¢ = B—a, b = a, c = 8—y, d = y—1,
1 k+ico D(ats)(y—s) ; _ Tlaty)l(B+8—a—y—1)
2mi J T(B+o)l(—s) = T(B—a)lE—y)l(B+5—1)
(—a<k,—B<ky>kd>k). (1.84)
Defining f(x) as in the last example and g(z) as in (7.8.3), we
obtain

P(b-{—s)I‘(a)l"(d—}—l s)l"(c—d—-l—i-s)d
j - I(a+b+8)I'(c)

2171,
k— i

1
[ 2+¥(1—x)a?
(1+=)y
The integral can be evaluated in finite terms if ¢ = 1—a. It is
then

1 1
f b (1 —2)e-1 dy = } f yHO+-D(] —gy)a-1 gy — ; Ill{{i(i-;é—,-{_—:l)fl(;l})

0

Putting b = o, @ = 1—B—y, d = y—1, we obtain
k+io
1 Dlat-a)T'(B4-)'(y—s) ;. _ I'(Gat+3y)T'(B+y)
2mi P(l4+a—B—y+s) - 2D(1—B+a—14y)
c—io
(—a<k,—B<ky>kBt+ty—a—1<k). (7.85)
1 Barnes (1); see Whittaker and Watson, Modern Analysis, § 14.52.
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Another formula of Barnest is
k4-io
1 [ TetsPE+aly+al@—al(=s)
e INe+-8)

kot _ T@r@I)Ce+)TE+Ty+8) g6
T(e— o) (e—B)(e—y) ’

[

where atB+y+d =e
To prove this, we use the formula
k+io
[ someme) 4= f f fl(u)fz(vm( )
k—1io
derived from (2.1.18) with n = 2. Take
_ x° : _ D(a+8)I'(8—s)
Silx) = (Fz)e+’ &i(8) = T Terd)
. B __ D(B+s)'(—s)
folz) = A=) &a(8) = ——P(Bj—,
h@)=o(l—afrt @<z <l) o Dlytalley)
0 (x>1), : D(e+s)

Denoting the left-hand side of (7.8.6) by I, we obtain

T'(e—y) J' J vB 1 (l e-y-1 dudv
P(a+8>1“(/3) (1+u)'x B (1+0)f (woyr\" wy u
Putting v = ;c— 1,v= }/— 1, the right-hand side becomes

[ av#-tyr1(1 =)ol — )P~y darly.

z+y<1
Putting ¥y = z(1—=z), we obtain
1 1

J. 2 Y1l—z)-r-1dz f av+3-1(1—z)*-Y(1—z+2x)B-¢ da.
0 0
The inner integral can be evaluated in terms of I'-functions if
a+B+vy+38 = e. It is then equal tof
PTy+8) 1
D(aty+38) (1—2)*

Hence we obtain

1
P(a)r‘(y-l_s) zy_l(l__z)g_y_a_n do — F(o‘)rl('}"*_s) F('}’)F(G_'y—a),
I(a+y+9) . I'a+y+9) D(e—a)

+ Barnes (2). 1 See Titchmarsh, Theory of Functions, Chap. I, Ex. 19.




196 EXAMPLES AND APPLICATIONS Chap. VII

and the result follows. The necessary inversions are all justified by
absolute convergence.

7.9. Bessel functions. In (7.4.1) we may take a = & to be complex,
provided that 0 < ¢ < v+3. We thus obtain the Mellin transforms

T (=), %%)) O<o<v+d.  (1.9.0)f
Equivalent pairs are
21038+ 3) _
J (), Tv—Is+1) (—v<o<}), (7.9.2)
(), %’2 (—2 < o< §—v), (7.9.3)
Qe+t L
and ¥ (x), “TUv—to+1) ( t<o<). (7.94)
Taking v = —4}, v = } in the last pair, we obtain
cosz, 2“-1477%% =I'(8)cos jsr (0 <o < 1),
(7.9.5)
sinz, 2‘-1\/17?5%—1_%3 = D(s)sinfsr (—1< o< 1)
(7.9.6)
We define Y,(z) = J"(x)cos.W—J“’(x).

v sinvwr

By (7.9.2) the Mellin transform of Y, (z) is
1 {2’-11"(%3-}-;-;') 2‘—11"(%.9—4}1;)}

cosvm

sinvar \D(3v—3s+1) T T(—3v—1s)
_ 2T (%“ti%:w (0= (i (45— 3o cos vr—sin(hs+ )}

= —2-17-1"(}s+4v)['(38— }v)cos(3s—v)m.
Hence we have the Mellin ;;airs
Y(2), —2- s+ (s—peos(hs—)r (] <o < 1),
(7.9.7)1
z7Y, (x), —28-v-1p-11(48)'(}8—v)cos(3s—v)r
' Pl <o<v+3). (7.9.8)
t Watson, § 6.5 (7). 1 Ibid., § 13.24 (5).
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From (7.9.2) we also deduce
J,(x)+J_,(x), 20711 (384 1v)[(38— }v)sin 48w cos dvm
(vl <o< ) (7.99)
J(x)—J_,(x), —20-11 (384 3v)T(38— 3v)cos 4smsin dvnr

(Ml<o<P). (7.9.10)
Again, by (7.9.1) and (7.9.8),

(@) 4%, (@)}

k10
=§'1—27: f 94-r-11(15)T'(Js—v){sin(3s—v)m—s cos(§s—v)m}z— ds
o
k—io
k+io
-1 f 90-r-1D(3)T(hs—v)eits-ymz=s s,
2m2
k—1io

and here we can (by analytic continuation) replace x by iz. We
obtain}
x-ve-timv _E e—tvmi Kv(x)
m
k+iw
= _5%7-2. f 20v-1T(18) (38— v)eimds—Vig—se—iims dg,
k—1iw
so that we obtain as Mellin transforms
K, (x), 2--T(3s)I'(3s—v) (o > max(0,2v)). (7.9.11)}
An equivalent pair is
2K (), 20+v—21(48)(38+v) (0 > max(0, —2v)). (7.9.12)
Hence we verify that K, (z) is an even function of ». For v =}
(7.9.12) reduces to (7.7.1).

From (7.4.2) we obtain the pair
2s-v-11'(}s)tan 48w
I'(v—1s+1)
and variants of this can easily be obtained in the above way.

To justify the inversion formulae in the above cases, consider e.g.
(7.9.1). We obtained (7.4.1) directly; the inverse formula is

k+id vl J

271 Arao I'v—1s+41) x
kZiA

1 Watson, §3.7 (8). 1 Ibid., §6.5 (3-6).

z—H,(z), (=1 <o<v+}d), (7.9.13)

(7.9.14)
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This follows from Theorem 28if 0 < k¥ < v +4, and from Theorem 30
if 0 < k < v+1. The leading terms in the asymptotic expansion of
z~*J (x) are of the form 2~-}(a cos z+b sin x). Hence, in Theorem 30,

$(x) = ebv-r, () =
and the crucial condition (1.12.1) is satisfied if Ic v+1.

We might begin by proving (7.9.14) by the calculus of residues.
We have then to deduce (7.4.1). We have as ¢ —»> o0

T%:::l;;_%% — o-Lim+itlogi—tyo—v-1 { 1+ ‘_: + O(Zlé ); .
The result follows from Theorem 29 if 0 < k <v. We can also
apply Theorem 11; here
() = o1, (1) = tlogi—t,
and (1.12.1) is satisfied if £ < v+3§.

7.10. Products of Bessel functions. By (2.1.16) and (7.9.1) the
Mellin transform of z—+-7J, (x)J,(x) is
k+io

J‘ _1 P(%w) 2g_w._y__1 I‘(%s— %W)
e T+ p—fw) T(v—ls+iw)
and puftmg w = 2w’ and using (7.8.4), we obtain the Mellin pairt
Ju() (%) 2+l (1+ptv—s)
aitr  T(14v—3s)(1+u—3s)T(1+p+v—1s)
(7.10.1)
Similarly, by (7.9.11), the Mellin transform of x=#—K,(x)K,(z) is
k+iw
%i 90-1-21(300)T'(Jw— 1) 20—~ (33— 3o ['(3s— Jew—v) du,
k—io

and, using (7.8.3), we obtain the Mellin pair
K @K@ 25T (o)l (Js—p)DEs—n)T(Js—p—v)

7 I's—p—v)
(7.10.2)
From (7.9.1) and (7.9.11), the Mellin transform of 2~%J,(z)K () is
k+i0

1 Wy~ )98-y F(%s— %w)
= J' 2Tl w—vj2e-er-t g et

k—iw

+ Watson 13.41 (1), (2), 13.33 (1).
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and, using (7.8.5), we obtain the Mellin pair
28-2-2 (1) (ds—v)
(l+v—4s)
By combining particular cases of (7.10.1), we obtain as Mellin
transforms ‘
1 I'(3s)I'(3s+v
J@)Y, (), — R T %34(-2521‘2%4: ) o (7.10.4)
Other particular cases of (7.10.1) give the Mellin transforms
2-1ail s+ )T (3 —s)
P(+b—$)T(3——1s)T(3+bv—1s)’
(7.10.5)

% (x)K (x), (7.10.3)

coszJ,(x),

21D (ds-+ b+ YT —s)
T+ D=3 T (= — T+ b—1s)
(7.10.6)

sinz J, (),

Combining these, we have

k—+io
1 2-° L'e+v)I'(3—s)

ix _ Yim(84v)pe—s
A= on | T T O e s

k—1io
As in (7.9.11), we may now replace z by iz, and obtain the Mellin
transforms
- Ps4+-v)I'(3—s)
T s
e~*L(x), P v E— o (1.10.7)
Again, from (7.10.1) and (7.10.4), the Mellin transform of

J (@), (2)+3Y,(x)}
; —ie®™ I'(Js+v)['(3s)['(3—13)
is
ot T(1+v—1s) ’
and hence, replacing = by iz, we obtain as Mellin transforms
I,,(x)K,(x), F(%S+V)F(%S)F(%—%8)‘ (7.10.8)

4vr T'(1+v—3s)
Similarly, the Mellin transform of e~%={J (x)+1Y,(x)} is

)
—5— etimsvicogyr ['(1— ) (s+v)I(s—v),
p

and replacing x by i we obtain
K (x), 2-8=t cosvr[(3—s)[(s4v)"(s—v).
‘ ' (7.10.9)1
The processes of this section can be justified by Theorem 73; for
+ Ibid., § 6.51.
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example, z¥z-#J,(x) belongs to £2if 0 < &k < p+4, and x°~*z~J,(z)
belongs to £2if 0 < o—k < v+4%. We can choose ¢ and ¥ to satisfy
these conditions if p > —4%, v > —3. This would not include (7.10.5)
directly; for this we could consider first (1—cosz)J,(z), 2%(1—cosx)
belonging to £2 if —2 <k < 0. We can of course also extend the
ranges of validity of the formulae by analytic continuation.

7.11.: Integrals involving Bessel functions. We are now in a
position to evaluate a large class of integrals involving Bessel functions.
By transfonnatlon from (7.7.15), we have the Mellin pair

@—1)7+ (2 >1), 0 (z<1), F(v-!;%(l*}sl;()% =) (r.11.1) .

Using this and (7.9.6), (2.1.23) gives

@

k+io
f( sinas_y, _ L ] go-1,3 T+19) Do+30TG—) o0

1 1y s I‘(l 3s)  2I'(3+3s)
w*f‘(% v) f 98— 1?("'{‘%3)
s (1—1s)

= 21703 —v)ard(a) (—i<v<i}) (7.11.2)F
by (7.9.3). The formula is the sine-reciprocal of (7.4.3). Similarly,
using (7.9.5) and (7.9.7),
cos ax —— oy .
f e = =2 TG0 (—h<v <.
1 (7.11.3)1
These processes come under Theorem 42 if } < v < ; for
F(3+3s) ., _ k-4
which is L if k < —3; and z-%(22—1)~*-tis Lif —}k <v < 4. The
result can be extended to the full range —} < v < } by analytic

continuation, or we can use Theorem 43. For 0 <o <1
1

J. sinzzs-1dzx = O(1)

a

» b
and f sinzzs-ldx = [—cosxx‘—l]:—l—(s—l) f cosza*~2dx
1 1

§lo) = 2t

= O(1)+0([t]) = O(l¢)).
1 Watson, 6.13 (3). 1 Ibid., 6.13 (4).
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Also, for o = 1-—F,

b .
281
[ @i = o
1
if —}k <v<} The other conditions are plainly fulfilled if

—3% < v < }. By taking k arbitrarily near to 1 the result follows.
Again, from the Mellin pairs

o] (az), 2.,““-,4_1?_;‘%:%_%%_), (7.11.4)
e F(3s)I'(p+1—1s)
(x24-1)+-1, STt 1) (7.11.5)

(transformations of (7.9.3) and (7.7.9)), we obtain

@

xl'+l.]v(ax)
[ s
0

k+io

_ f gesvg-s—v-1 L(38+v+3) TG —1o)(u+§+4s)
om TG—19) 2T(u+1)
) k+2v+1+io
—_ 8~y —1y —8' 4p ’ ’ _ ’
= Tt T) 2 a—* T (46" )[' (38" +p—v) ds
k+2v+1—-io
_ @K, ,(a)
P (ut1)
by (7.9.12). Here the F(s) of (7.11.4) is L(k—ico, ki) if
—2—1 <k < —v—1;and z¥a?41)-#tis Lif —2u—1 <k <1,
These conditions are consistent if 0 < v < 2u, and the result
then follows from Theorem 42. The formula is actually valid if
—1 <v < 2u+34. It can be extended to the full range either by
analytic continuation or by Theorem 43.

The following examples can be obtained in a similar way, and
present no particular difficulty:}

k—io

(7.11.6)t

fe_ax(xz_l)v_; i — 2_1;(;’5_%) K;(v“), (1.1L.7)

1

+ Ibid., 13.6 (2).
1 The corresponding formulae in Watson are 6.15 (4), 13.2 (5), 13.2 (8), 13.3 (4),
13.3 (5), 13.45 (2), 13.6 (3), 13.6 (6).
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0. 2VP
[ e do = ZoEE D, (1.11.8)
’ (= 7.4.8)
T gmaz _ atae)—ap |
ofe J,(x) dx = Jitay (7:11.9)
© "y a e
of J,(az)e-be'er 41 d = e da, (7.11.10)
[ Aulaz)e= do = ;_’g;e—a-/sazy(‘_;;), (7.11.11)
0

(20)(26y T(p4-v+-1)
(a2+b2)(,lf+,,+z , (7.11.12)

f K (at)J,(bt)s++1 dt =
0

@

Jfaz)
J Y+

de = I,(}a)K,,(}a), (7.11.13)

[@+fae) , _ (apmt
(@i +4y+ T 22T(v+4)
0

A more delicate example is

w k+im

1 210 (Js+Jv) 2T (14 Jv—14s) _,
| Moo =gy | Fp—gart) Trdern * %
0

J(@)K,(@). (7.11.14) |

1 ki .
a-
k—io
=a 0<a<l), ta=1), 0 (@>1).

(7.11.15)¢
If @ + 1 this may be justified by Theorem 43, with

x(6) = [ J(a2)], . (ée) da.
0

The conditions may be verified as in the proof of (7.11.1). If
a =1, x(¢) is discontinuous at ¢ = 1, and the method fails to
evaluate x(1). We can fill in this case by proving directly that
x(1) = H{x(1+0)+x(1—0)}; or we can apply the method in the
opposite direction, which gives the whole result, but with more

{1 Watson, § 13.42 (8).
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tedious details; or we can write

©0

: d d
jJ,,(x)J,ﬂ(w) dr = f d—x{x""'l']v+1(‘”)}-xv+l']v+l(x) xziz
H

0

- - f 2, (@ )‘”_M__w +2)7 " hen J"ﬂ(‘”)} de,

50 that I T(@), 11(@) dz = (v+1) f ‘L’%’fi(—x)dx.

The last integral is 1/(2v+2), by taking » = K, 8= 2y, in
(7.10.1).

As an example on (7.8.6), we have, by (7.9.12) and (7.10.8),

J‘ 21K, (22),(x)K,(z) dee

0

k+io

- f T(ds—u— D0 (s +3u—1) x
ki 1'*(%-;.;,—%3)1‘(% —438)I"(3s) ds
I(3+v+1s)
1 1 $(k—1)+1iw
S e T’ but- DI+ b+ 1) X
$(k—1)—iw
Pe—&)'3+s)0(—¢) ,,
X PA+v+e) ds
PA— 3l G+HWT0+1— 4T+ i+ i) (7.11.16)

PG +v+ 3G +v—1p)
From (7.7.11), and (7.11.4) with v = 0, we obtain

,‘ 3 1 1—x
f(1+x2)”P”_ (1+ 2)xJ(ax) dx

_ 1 [TuTdstd Da—iaTm—3+ip
2 | TT4-19) " G+

)
k+io
f 2-YD(n—}+ Jo))a-s1 ds

Kk—1io

= 2m{T(n)}
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1 k+2n—1+1iw
= AT e 27-2n(T(1s')}2a—*-24+2n ds’
2m{P(n)}2 k+2n—1—1i
2n—2
({%l?() N Ko(a). (7.11.17)

7.12. Some non-absolutely convergent integrals. We have,
by (7.9.5) and (7.9.6), the Mellin transforms

cosz%, éI‘(Z) cos‘;l; (7.12.1)

sin %, il"(-::) sm%. (7.12.2)

From (7.12.1), with « = 1 and o« = 2, we obtain

—»0 k+io
f cos x2cosax dx = 4-};; J I'(8)cos 387 I'(1 — 38)cos }n(1—s)a—2 ds

0 k—io

ki
= i 2¢-174["(48)cos }n(1—s8)a—* ds
k—1ic0
= }ntcos }(m—a?), (7.12.3)
by (7.12.1) and (7.12.2) with o = 2. Similarly,
f sin 22 cos ax dx = }wisin }(mr—a?). (7.12.4)

0
The results are equivalent to (7.1.8) and (7.1.9). The process is
justified by Theorem 39. Asin §7.11 we have

»
fx"lcosxdx = O(Jt])
A

for all A and p. Also

I ja—1 {a+1 I
J cosaz—at)de = [ + [ + [ =dthtdh
A ja—1  ja+1l
(with obvious modifications if A > -%a—l or p < 3a+1). Plainly
J, = 0(1); and

dsin(ax—2?)

i —z?) = 0(1
e dsin(ax—2?) (1)

DO -

g’a ==
r=}a+1 z=}a+1
by the second mean-value theorem. Similarly, J; = O(1). The con-
ditions of Theorem 39 are thus satisfied.
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. Next, combine the cases « = 1 and « = 3 of (7.12.1). We obtain
>0 k+4do .

f cosxdcosax dx = & f I'(s)cos 3sw T'(3} —18)cos 3m(1—s)a—* ds.
k—1io )

Now 3o
PErG—1s) = 5 IE)MEs+HTAs+HIE—1e)

-}
= 2 s s+djsin (1),
We thus obtain
k41w

35142 cos §n(1—8)}I"(38)"(3s+1)a—* ds.

24mi
k—10
In the first part put s = 3s’. We obtain
1 $k+ i
— 11 (1s’ ’ 15’ g’
fomi | 3T@SITG+ya-te ds
$k—io
L e ot -
= o +-30(1e')D(3s’ + 1) 22 ' = L K {203t
= [ zranrar () " e = SR,
$k—io
by (7.9.12). In the second part put s = $s'—4%. We obtain
1 $e+3+io
- f 31 -1gin 3’ {38’ — )T (3¢’ + 3o+ de’
§k+3—io :
'J . 7 ’ ’ ! ’
= 3o | 2 sindme T(ds' — HI s +H{2(3a))~ ds
ma

= gva [2da+ T {2,
by (7.9.9). Hencet

-

f cos 23 cosax dr = ma [Ji{2(3a)}+J_{2(32)1}] +%‘~z K{2(3a)1}.

6v3
° (7.12.5)
Similarly,
—r sinz3sinazx do = ;-%g [{2(3a)}+J_i{2(3a)t}] — %Ks{%&“”}-
0 (7.12.6)

1 Watson, § 6.4.
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The process is justified by Theorem 39, as in the previous case.
We have

u W
f#-lcosx“dx = —l—fg”“‘lcosfd.f = O(|t])
. o
At

for 9 < o/a < 1, as before. Also the integrals
—®
f cos(ax+x3) dx
converge uniformly in any finite a-interval.

-Again,
k+iw

a?® 1 a0
2"-1eos — = ——, I'(s)cos 3smx¥ " ds

r 2m

k—io
1 1—-v—k+io
= I'(1—v—s)cos {n(l—v—g) a~2+2+28-8 g,
2m

1—y—k—iwo
Using this Mellin transformation and that of cosz, we obtain}
© 2 k-t .
f cosxcos%x”‘l dx = 2_1—11-1, f I'(s)cos 4sn I'(s—v)cosin(s—v) a?®~2%ds

0 k—dwo

2k—2v+ i

- -81;: f F(V+%s')l—‘(%g'){cos 3mv+cos dm(s’+v)} a-* ds’
2k ~2v—iwm

= cos ym a’K,(20) + ——— { _(20)—J,(2a)}, (7.12.7)

by (7.9.12) and (7.9.10). Slmﬂarly,

f smxsm(; 2v-l1dx = cosimva’K (2a) — {J_,,(2a) —J,(2a)}.

0 (7.12.8) .
The process may be justified as in the previous cases.

7.13. Laplace transforms. Simple functions f(z), #(s) con-

nected by (1.4.1), (1.4.2) are
: 1

-z ., 7.13.1

e, Py ( )
8

— 7.13.2

cosz, &1 ( )

1 Watson, § 6.23.
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sinz, &1 (7.13.3)
z*-1 N{a)s—2, (7.13.4)
1 T
e~z Te~2vs
ZE J (8)e : (7.13.5)
. y 2T(v+14)
The pair z°J,(x), Y T (7.13.6)
results from (7.4.8); the pair
(1 +8%)—sp
J,(x), JOFe (7.13.7)
from (7.11.9); the pair
J@)z,  {(1+8?)—ay (7.13.8)
by integrating (7.11.9) with respect to a; the pair
atvJ (vx), 2-vg—v-lg~-1/ds) (7.13.9)
comes from (7.11.10).
Writing z
Ol O, S “sinu du,
@ = 4(2) ED @ = 4(2) Vo
(7.13.10)
we have
¢ 1 ¢ cos % 3
—rs(} _ —x8
fe 0@ de = o [ S dufe dz
0 [\] °
1 cosu s gy — 1 1 s \}
«/(%r)s E (J(1+s’=)+ 1-+s*) > (1131
e.g. by (7.13.7). Slmllarly, we have the pair
1 1 s \}
Defining ¥z) =142 3 en're, (7.13.13)
n=1
we have -
f emd@)dr = [ e do+2 3 [ et dg
0 0 n=lg,
1 - 1 1
§+2 nzls—i—n%? = Vstanh s’ (7.13.14)
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In each case the real part of s has to be greater than some lower limit
—in fact 0 in all the above examples.

7.14. The formula (2.1.20) gives a number of interesting examples.
“The simplest is obtained by taking f(x), #(s) as in (7.13.4), and
g, ¢ with B for «. We obtain the familiar result

z k+io
[yie—ypray = o [ e Sy
0 k—io
_ %“gf%xuﬂ—l, (7.14.1)

The formula (2.1.20) is equivalent to Parseval’s formula for the
~ Fourier transforms
f@e™ (@ >0), 0 (x<0), (2m)dpth+tit),

and similarly with g and 4. Here the e-** makes problems of f and
g at infinity trivial. In the above case the L? theory applies if
a >}, B > 4. The result holds for « > 0, 8 > 0. The extension
may be made e.g. by Theorem 38.

The following examples are easily justified in a similar way.

Take f(x) and ¢(s) as in (7.13.6), but with parameter u, and g, ¥,
with ». Thent

[ #a@)a—yria—y) dy
0

B PR e

2mi ™ (o
k—io
P .
B j;;‘;}%:&iti%l)) AT, (@), (7.14.2)
The particular case u = §, v = 0 is
f siny Jy(x—y) dy = xJ,(x). (7.14.3)

1]
A number of similar formulae derivable from this are given by
- Watson, §12.21.
The particular case p = 0, v = 0 is

fJ,,(y)Jo(x—y) dy = sinx. (7.14.4)
s .

t Hardy (10), Watson, §§ 12.2-12.22.
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Simila.rly, (7.13.8) gives

k+io
J(y)J(x ;1/) —_ 1 1-4-82)—gl+ve8 dg
“ ey Y T f Wil+at)—a)e
— bty (@) (7.14.5)
w =z

- Takmgf ¢ as in (7.13. 8), but with p for v, and g, ¢ as in (7.13. 7),/,,
we obtain '

2y v
f e Y 2;“ {«/(lj(-; o e
=_4%(“’). (7.14.6)

‘Taking g, ¢ as in (7.13. 7), andf ¢ with p for v, we obtain

f (), (x— ?/)dy—__:; Meuds
(1]

1482
k—iwo
- f [y +83)—a}#+“+1—{\/(1+82)—8}F+"+3+...]ﬁ_ﬂ ds
= 20, 1y s1(@) =y 1y a@) . ). (7.14.7)

The integral is expressible in finite terms if u+v is an integer; for

example
k+io

f Mo —y) dy = 5 f o
k —~1io
A slightly different type of formula is obtained by taking
@) = i o), $lo) = gzexp(— ),
iand g, ¢ with b, v for a, p. Thent
[y vy a—y)d by(z—y)} dy
1]

k+1io

ds = sinz. (7.14.8)

arb . 2+bﬁ
2111 W P{—
k—io

=)o

(az—_j,%;&ﬁm JurvulWf{(@+0%2}].  (7.14.9)

.t The result is equivalent to Watson, § 12.13 (1).



210 EXAMPLES AND APPLICATIONS Chap. VII

Taking the same g, , and the f, ¢ of (7.13.4), we obtaint

x k0
) 1 ()b

f ye l(x—y)*"Jy{bJ(x—y)} dy - '2_,;1 Qvgv+a+l exp

0 i

-1

(-—{)—4: -l—ms) ds

_2 ll;‘(a)z}l'.] +alOVZ). (7.14.10)
From (7.13.11) and (7.13.12) we obtain}
fC( \S(z—y) dy = —— Tm e
Y Yoy = 871 82(1+82)
' ke _
= }(x—sinzx), (7.14.11)
£ | ] Kk+io oo
{CW)Ca—y)—8@)S@—ydy = — | 7%
;’f 4mk_iw s(1+4s?)
k+io0
4m _[ ( 1+sz)e“d8 = }(1—cosz), (7.14.12)
k—io

and there are some similar formulae involving J;, and J;.
The method also leads to an integral equation|| satisfied by the
function $(z). From (7.13.14) we deduce

k+io
ex8

F 1
fﬁ‘(y)ﬁ(x—-y) dy = 5— f Ttomive %
(1]

k—io
Now d ___1__ 1 ___1____
ds\tanhvs] = 2vs 2+vstanhZ+s’
Hence the right-hand side is
k+1io k+io
LI O A 4 1 \e®
2t 8 i ds tanh Vs Vs
k--io k—1io
k+dc 1
x
o l+m j tanh«/s(«/s 28
k—ico

1 Watson, § 12.11 (1).

|| Due to ¥. Bernstein.

= 14 2xHz)— f S(w) du,
0

1 Humbert (1).
See Hardy (10).

,)ezs ds
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x 1 k+io - 1 k+io ds
. _ 1 P A
since J Bu) du 2w f sttanh s 2m f sttanh vs
1] k—1io k—ic
and the last term is 0, as is seen by moving the line of integration
away to the right. We have thus proved that

fz?(y)u?(x—y) dy = 14-220(x)— fﬂ(u) du. (7.14.13)
0 [}]



VIII
GENERAL TRANSFORMATIONS

8.1. Generalization of Fourier’s formulae. In the foregoing
chapters we have studied two formulae of the form

fl@) = [ klzu) du [ k(uy)fty) dy (8.1.1)
(1} 0 .

for an arbitrary function f(z); k(z) = J (%)cosx gives Fourier’s cosine

formula, and k(z) = J (;)sinx gives Fourier’s sine formula. There

are, however, other formulae of the same form, the best known being
Hankel’s formula, in which

k(x) = a¥J,(x). (8.1.2)
There are also formulae of the form
f@) = [ kau) du | huy)fty) dy (8.1.3)
0 0

in which the two cosines of Fourier’s formula are replaced by differ-
ent functions. The simplest formula of this type is that in which

k(z) = 2¥¥,(z),  h(z) = 2¥H (). (8.1.4)
As usual, (8.1.1) may be written as a pair of reciprocal formulae
g@@) = [ f)k(zy) dy, . (8.1.5)
0
fi@) = [ gly)k(ay) dy. (8.1.6)
[1]

A function k(x) giving rise to a formula of the form (8.1.1) will
be called a Fourier kernel. The main object of this chapter is to give

an account of such functions.t
Suppose that we multiply (8.1.5) by 2*~* and integrate over (0, 00).

We obtain formally
[yt dz = [ ot da [ fig)kiay) dy
0 0 0

= uf flo) dy T k(oy)ert do = ff(y)y-' dy fk(u)us-l du,
° 0 Ft °

+ Hardy and Titchmarsh (8), Watson (2).
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i.e., with the usual notation for Mellin transforms,

G(s) = F(1—s8)K(s). (8.1.7)
Similarly (8.1.6) gives

F(s) = G(1—38)K(s). (8.1.8)
Changing s into 1—s in one of these equations, and multiplying, we
deduce that RE)K(1—s) = 1. (8.1.9)

We should therefore expect that a Fourier kernel k(z) would be in

some sense of the form
¢+ 14

k(x)=2—i-i f R(s)z— ds, (8.1.10)

where R(s) satisfies the functional equation (8.1.9).

8.2. The condition (8.1.9) may also be expected to be in some
sense sufficient.
A characteristic property of a Fourier kernel k(z) is that, if

ky(z) = f k(u) du, (8.2.1)
0
[ k), 1 (0<2<§),
then 6[.Ic(a:'u,) lu du = 0 @>8) (8.2.2)

For if we put f(z) =1 (0 < 2z < §), 0 (x > £), in (8.1.1), we obtain
(8.2.2); and conversely (8.2.2) leads to

[ 1018y = [ 110 ay [ w552
1] 0 0

w

— f @) gy, j k(uy)f(y) dy,
0 0

from which (8.1.1) follows by formal differentiation.
Now (8.1.10) gives formally
¢+iw
kyle) = L f R(6) 2= ds. (8.2.3)
27 | 1—s

Hence, by a formal application of Parseval’s formula for Mellin
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transforms, in the form (2.1.20),

@ c+1io .
Jren g — L[ 00 apas o> 0
0

+ teo
=%72 | (%)%=I(O<x<§), 0 (x> §).

Hence (8.2.2), and so the Fourier formula, is formally a consequence -
of (8.1.9).

8.3. Similar analysis holds for the unsymmetrical formulae arising
from (8.1.3). If we now write

flz) = f k(zu)g(u) du, (8.3.1)
0
9tw) = [ hluy)f(y) dy, (8.3.2)
(1]
the relations between Mellin transforms are
F(s) = G(1—s8)K(s), (8.3.3)
G(s) = F(1—98)H(s), (8.3.4)
and, eliminating & and @,
K(s)H(1—s) = 1. (8.3.5)

We may regard (8.3.2) as the solution of the integral equation (8.3.1)
for the unknown function g(u), the ‘solving kernel’ A(x) being

given by ctiwo eiio
=
— -8 = e— B ———
) = 5 f Hle)w= ds = 2m‘ R—a®
c—ifn c—io
8.4. Examples. Before proceeding farther we shall give a number
of examples.

F'(dv+4s+})
1) If Ry =202 2 .2 > —1),
. O =ty ¢ Y
then k(z) = atJ (x),
and the formula is that of Hankel; the cases v = —}and v = } are

Fourier’s cosine and sine formulae.
If —2 < v < —1, then

~ ey
o) = 2o~ )
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and generally, if —m—1 < v << —m, then
_ __mGJWhWﬂ

kz) = = {J"(x) Lol Dlp+at 1))

the sum being the first m4-1 terms in the power series for J ().
(2) If} ka) = 2iY,(@),
then, by (7.9.7),
R(s) = —2¢ 7' (3s+ v+ T (38— v+ })cos(3s— v+ ).

This does not satisfy (8.1.9), so that k(x) is not a Fourier kernel. But
(8.3.5) gives

_ ges Dls+ivtd) _
86 = 2t T tano vt

It then follows from (7.9.13) that
h(z) = x3H ().

(3) There are a number of very general transformations, due to
Fox,] in which k(x) and A(x) are linear combinations of generalized
hypergeometric functions. From our present point of view these
originate as follows.

Suppose that «; > 0, that p, and p, are any real numbers other
than negative integers, and that

¢’ = °‘1_P1“P2+%s
a1 D+ —13s)I'(3s—14)

d let = 28-1 112 —
andlet Rl = 2 R T 1T T (et 15— 1)
We deduce from the calculus of residues that

4 Tlytn)  (—ladm
k(z) = $ 1 1
() = () ,Z_of‘(h-!-n)f‘(pfrn) n!

= (32)~# Fy(oy, pr, ps— 32
in the usual hypergeometric series notation. If we now calculate
$(s) from (8.3.5), and then i(zx) by summation of residues, we find

h(x) = hy(x)+hy(z),

where )
hy(x) = %{%@% vi$-1 Fo(l—ay+py, 1—po-t+-p1, pr; —322),

and hy(z) is derived from h,(x) by interchange of p, and p,. The
formulae thus obtained are those of Fox’s Theorem 1, in the special

1 Titchmarsh (3). 1 Fox (1).
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case p = 1. In the general case R(s) is a more complicated product
of gamma-functions of the same type.

The case oy = 1, p, = 3, p, = v+ gives example (2) above. The
case oy = 1, p; = a+1, p, = v+a+1 gives a more general trans-
formation found by Hardyt and discussed by Cooke.i The case
oy = v+3, pp = v+1, py = 2v11 gives

M) = Wr Sfelidel), M) = — V(L (o),

a transformation due to Bateman.| The case « =via+i,
pp = v+a+1, p, = 2v+a+1 gives a more general transformation
due to Titchmarsh.tt Fuller details concerning these transformations
will be found in § 5.2 of Fox’s paper.
If we take

R(&) — 98-} P(al'l'%s)r‘(az'*'&s)r(aa—%a)
L'(b;+38)T'(b,—4s)T(b5—1s)’
where a;+a,+ag+31 = by+by+by,
we obtain examples of Fox’s Theorem 2. For example, if

a, = p+dv+14, ay = 3—tp—1iv, as =4,

=1, b= dv—dutd b= h—b+l,
k(x) and k() are each combinations of two hypergeometric functions,
and can be reduced to the forms

Nar
k(z) = W{ _u(32)_,(32)—J, (32)J, (=)},
N
Me) = 5 oo To—v)m 2 ({40 d2) I, (2],
4) If k(z) = x*{Y,(x)-|—§ cos anK,(x)},

then, by (7.9.7) and (7.9.11), K(s) is
2210 (s 4 41T s+ P+ T (Js— P+ 1T Hs— v +8),
P{s—{+i+1al(G+v—is—1a) ¥
X D(je—tv+3— 300G+ bv—1o+ o)
In this case again k(z) is the sum of two hypergeometric series. There
are two interesting particular cases. If v = 0, a = 1, then
a0 = —oua[FQE DI

t Hardy (13). t Cooke (1). || Bateman (1), (2).
+ Titchmarsh (6).
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which satisfies (8.1.9), so that, by (7.9.7), (7.9.11),

ke) = {Tie) 2 Kofo)
is a Fourier kernel. If v = 2, @ = 0, then

23—1 P(i.g.{_") is_%
8(s) = 2w-1f 18)} 1y

and K(8)R(1—s) = —1, so that
k(@) = —h(z) = x*{mm)+§lfz(x)}.

The formulae in this case are due to A. L. Dixon and Hardy.t Much
more general formulae of a similar character have been obtained by
Steen} and Kuttner.|

(8) If K(8) = e-sie-" (g > 0),
then _ H(8) = eaite-d’,
Taking ¢ = } in (8.1.10), we find that

o«

k(zx) = 5171%— f e cos(tlogz) dt =

-

elnt
e—’mOBI)'I‘a,
2,/(mazx)
and h(x) is the conjugate function. The Fourier formula thus

obtained may be reduced by a change of variable to the exponential
form of the ordinary Fourier formula. It is

= = | e-itogzupriaa _*% du F idog uyyia JY)
fer= fe T T ) T Y

and, if we put ¢ = %, and

X = ef, u = e; y=el, g(f) = eiif'+lff(e§),
we obtain - g(¢) = o f el df f eif"'g('q) d.
1T
This formula is not included in our standard form, since the limits
are —o0 and co instead of 0 and co.
1 Hardy (17); ;see also Hardy and Titchmarsh (8).

1 Steen (1). || Kuttner (1).
cp s
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(6) If K(8) = e (a > 0),
then k(x) is a Fourier kernel. Taking ¢ = } in (8.1.10), we find

—>©

k(x) = ;r%/; f éos(at3+tlogx) dt
= s (%3] [l (o) |+ e )]
o<z<l),
— 3T e K sy tos | > 1)

by (7.12.5) and (7.12.6).
(7) If  RK(s) = expfie-"e-D} = exp(i¢) (s = 3-+ut),

then $(8) = exp(—ie).
We obtain ,
k(x) = i eXp(ie’)x‘*'“ dt (= i-_* e’iuu—ilogz @
27 O ”
o ;
zt dy it

. = —2—77—1"(—zlogac),

B)

@
—— f e—v(ve}m)—zlogz
0

and h(z) is the conjugate.¥

(8) If K(s) = 1,
then (8.1.9) is satisfied, but the integral (8.1.10) is not convergent.
If, however, we regard (8.2.3), with 0 < ¢ < 1, as the definition of

k,(x), we have
c+io

o g 1 (x> 1),
k@)= 55 f 1% =0 0<z<1)

e—1io

If we replace (8.1.5), (8.1.6) by
o) = 3 [ 10 o), J) =3 [ 0) dbsa)
0 0

then our formulae become

1.,.(1 1 (1
o =11 s = Lal3):
which are plainly consequences of one another.

1 Paley and Wiener, Fourier Transforms, § 16.
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(9) In all these examples K(s) is analytic. Suppose, however, that
o =1} and K(3+it) = isgnt.

Then §, defined by (8.3.5), is —R. The integral (8.1.10) is not con-
vergent, but it is formally
@© [

i i a1 [ _ 1
o «/x( f -4 dt f x dt) =7 f sin(tlog z) dt T log @’
0 — 0

the integral being summable (C,1). Our formulae become

L gy 1 f_swa
for =2 ) Teosey 9T ) Jeylogy

If we replace z and y by e and €7, and mterpret the integrals as
principal values, we obtain formulae equivalent to those of the
theory of Hilbert transforms.

(10) If K(s) = cot }sm,
then (8.1.9) is satisfied. The integral (8.1.10) is of the same type as
in (9). A formal application of the theorem of residues gives

2 1
ml—a?

and we again obtain formulae of the Hilbert transform type.

k(z) =

(11) We obtain formulae of a somewhat different type by taking
K(3+1t) = eit,
Then (8.1.9) is satisfied, and

1 Fo 1 [ 1
= — " —it b = — —_—— [
k(x) Py~ J. ettt dt - focos(t tlogx) dt.
o

-0

The integral is summable (C, 1) if x £ 1, and has the value
(xlog ) 1}J{ (loga-vl-)%} (0<<z< 1), 0 (x>1)

If x = 1, the integral for k(z) diverges to infinity, and k,(x) has
a discontinuity, as in example (8). The formula which results is

therefore J{ . "
_ 2(—logay
o) = () f “(—aylogay)i VW
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z=et y=e1, eHflet)=4(¢), eYHglet) =),
we obtain

o) = $(—8)— f l{jé(i+n)}¢()

The reciprocal formula is obtained by interchanging ¢ and . The
Fourier formula which results may be verified by using the integral

f S22 @ +p)} 5. A2V —2)}
V@A) (@+p) V=2

(12) The kernels which arise in the summation formulae obtained
formally in § 2.9 are Fourier kernels. For example, in the argument
of § 2.9 we obtain 2 cos 2mx and 4Ky(4mvx)—2nY,(4mvx) as the Mellin
transforms of {(1—s) 2(1—s)

{(s) ° 20
respectively. These functions of course satisfy (8.1.9).
Note also that, if k(z) is a Fourier kernel, so are vak(ax) and
AptA-Dk(2A),

8.5. L2-theory. In the theory of Fourier integrals we have proved
theorems of two kinds, theorems on convergence in the ordinary
sense, and theorems on mean-convergence. There are also theorems
of both kinds for general transforms; but here the mean-convergence
theory is both easier and more general than the other, and we begin
with this.

In the first place, we need only assume the existence of the function
RK(s) on the line 0 = }. The equation (8.1.9) then takes the form

KR(E+it)K(3—ut) = 1. (8.5.1)
We might simply write K(}+4) = ¢(¢), and $(t)$(—t) = 1; but we
shall retain the previous notation to preserve the appearance of the
formulae.

‘We should now have formally

A <p).

k(a:)=—2l; f R+t dt. (8.5.2)

There is no reason in general to suppose that this integral will exist
+ Watson, §13.47 (10).
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in any sense. However, the formula for k,(x) obtained by formal
integration will exist in the sense that

lim. R(%"'“ s gy, (8.5.3)

LS 3=t

If, as in most of our formulae, R(s) takes conjugate values for con-
jugate values of s, then (8.5.1) gives

IR(3+at)| = 1. (8.5.4)

Hence R(}+u)/(3—it) belongs to L*—c0,00), the integral in
(8.5.3) exists in the mean-square sense, and k,(x)/x belongs to
L*0,0).

It follows that our theorems have to be stated in terms, not of
k(z), but of ky(x). For example, (8.2.2) is no longer significant.
However, the formula obtained by formal integration with respect
to x is

f ey ()l () ‘i_’_j — min(z, £). (8.5.5)
0

This integral is absolutely convergent in the general case, and
(8.5.5) by itself may be taken as the basis of a Fourier theory.
The theory takes different forms according to whether (8.5.5)

appears explicitly or not. The results may be summed up in the
following theorems.

THEOREM 129. Let K(}+1it) be any function of t satisfying (8.5.1) and
(8.5.4), so that R(3+it)
31—t

belongs to L*(—o0,00). Let k,(x) be defined by (8.5.3). Let f(x) be any
function of L*0,0). Then the formula

o) = - [ o) s 2 (8.5.6)
o

defines almost everywhere a function g(x), also belonging to L¥*0,0);
the reciprocal formula

fay =2 f y(awg(u) 2 (8.5.7)
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" also holds almost everywhere; and
[y de = [ {ga))? do. (8.5.8)
0 °

TueoreEM 130. If K(}-+it) satisfies the conditions of Theorem 129,
then k,(x)[x belongs to L*(0,00), and (8.5.5) holds.

THEOREM 131. Let k,(x) be such that k,(x)/x belongs to L*0,00), and
let (8.5.5) hold for all values of x and ¢. Then the reciprocal formulae of
Theorem 129 hold.

Theorem 129 is thus a consequence of Theorems 130 and 131.
But it is possible to prove it directly.

The above theory is due to Watson. We shall call functions f(z)
and g(x) connected by (8.5.6), (8.5.7) k-transforms; and (8.5.8) the
Parseval formula for k-transforms.

8.6. Proofi of Theorems 129, 130. Let f(x) be any function
of L0, ), and (s) its Mellin transform, so that §(}-it) belongs
to L% —o0,). Since |[RK(3+1t)| = 1, K(E+it)F(3—1it) also belongs
to L2. Let g(x) be its Mellin transform. Then||

}+io

f g(u) du — 5% f R(s)ﬁ(l—s)g ds.
0 $—1i0

Now k,(x)/x is the Mellin transform of R(s)/(1—s). Hence, by the
Parseval formule for Mellin transforms,

Y+ i o :
2%; f ——?igl F(1—8)x—2ds = f ___klg(:;y ) fly) dy.
$—to 0
i [ yfey)
Hence glu) du = | =Y-= f(y) dy,

and (8.5.6) follows almost everywhere. The k-transform g(x) of f(x)

is thus the Mellin transform of K(s)F(1—s) (on o = }). By the same

rule, the k-transform of g(x) is the Mellin transform of
KEKR(1—8)F () = Fs).

Thus the k-transform of g(z) is f(x). All these transformations are

of the class L2 so that the necessary uniqueness theorems hold.

t Watson (2). 1 Busbridge (1).
|| This formula and the next come under Theorem 72, extended as in (2.1.23).
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Finally,

f @) de = IRGAHiOFA—it)|e dt

¥l

é""“s ég"-ag

1
2

B+l &t = [ (f)p de,
0
the Parseval theorem for k-transforms.

Theorem 130 also follows at once from the Parseval formula for
Mellin transforms. Since ,(x)/ is the Mellin transform of K(s)/(1—s),

@

J‘ ky(az) k,(bx) d — 1 HimR(.s)a—e K(1—s)bs-1 ds

ax bx 2mi 1—s 8
(1} $—iwo
$+i0
1 a-sbn—l

= 2m (1—s)s

1-io
by the functional equation for R(s). If @ > b, the integral may be
evaluated by moving the line of integration away to the right, and
the value is a-1. If @ > b, its value, obtained by moving the line of
integration to the left, is b-1. Also the integral on the left is con-
tinuous at @ = b. Hence the result.

8.7. Proof of Theorem 131.1 Suppose first that f(x) has a con-
tinuous derivative, and that it vanishes for all sufficiently small and
sufficiently large values of x. Let

0.0) = f 5% f10) da = f’%‘;’i’ () an

Then g,(y) is clearly differentiable, and

o . _l ¢ Y E{' — __l 3 "
o) = 6il4) = — 33 f k() (y) au=— f lay) (@) de.

Hence

f (e dy = f dy [ btenre s j ky(E)f () d¢
0 0 0 [1]

L3

= Tf’(x) ds _rf'(f) &t f Bl ) 4y

1 Titchmarsh (15); see also Planchere: (6).
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o]

= [f@de j f'Emin(z, §) d

8 ©

=[f@rd f 1 d¢ + f F©)% de f f'@) de

(-]

= —2 f f@)f (@) da
= [—={f@]; + [ {(f)f d
= f{ﬂx»* da.

All the transformations are easily justified if f(x) satisfies the given
conditions.

Next let f(x) be any function of L%0,00). Then it is known that
there is a sequence of functions f,(x), each satisfying the conditions
previously imposed on f(z), and such that

lim [ {f(z)—fo(@)}? dz = o.
n—»xo 0

Let g, (x) correspond to f,(z) in the same way as the above g(x) does
to f(z). Then

[ lon(@)—0:@) dz = [{fnl@)—Fo@)} da,
0 [}

which tends to 0 as m and n tend to infinity. Hence the sequence
g,(x) converges in mean, to a function g(x) say. Then

[ 9@} dz = lim [ {g,@)} de = lim [ {f,()}* dz = [ {f(e)}* d=,
0 0 0 . 0

the Parseval formula.
Also

Y v
| o) du = lim | g,(w) du
b "y
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so that g(y) = dij/- f ’ﬁ_(::l_/_) f(z) d=,

1]
i.e. g(y) is the k-transform of f(x).

Let ¢(x) be another function of L%(0,c0), and y(z) its k-transform,
Then the Parseval formula gives

[ 9@i@) de = [ f@)(x) da.
. (1] 0
Let $)=1(@<w), 0 (r>u)

@ u wy
Then f El(x_xy)‘,,(x) e — f kl(:y) o — f Ic_l:(cx_) i,
1} 0 P

uy
- d [ ki) ky(uy)
and hence YY) = - | 2 dz = 1,
dy of z y
F o key(uz) 3
Hence gx)—dx = | f(z) dz,

and the reciprocal formula (8.5.7) follows.

8.8. Necessity of the conditions.t It is also easily seen that
the conditions imposed on %,(z) and K(s) in the above theorem are
" necessary. For suppose that the reciprocal formulae

: ff(y) dy = fﬂg‘—)y(u) du, (8.8.1)
1] [}

fy(y) dy = f l—cl—(g@f(u) du (8.8.2)
0 0

hold for any function f(x) of L%(0, 0). Let f(x) = 1(x < £), 0(x > £).
Then (8.8.2) gives

z . ¢ i
fg(y)dy=f’i‘?du=f@§)ldv’
0 0 3

80 that g(x) = kl_(fi)

1 Busbridge (1).
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Substituting in (8.8.1), we obtain
[ ky(u)k,(Eu) »
f L1 du = min(z, §).

u
0

In particular (z = £ = 1) k,(u)/u belongs to L?0,00).
If ](s)/(1—s) is the Mellin transform of k,(x)/x, Parseval’s formula
for Mellin transforms gives

L e saa, flq(ax) ki), _ minia.0)

2mi 1—s ab
t—io
1 H g bs-1 min(a, b)
a-* bs-
But al — =\
ub also 27t [ l1—s s ab
}—iwo

Hence (taking b = 1)

i
1 [ 1=8E80—s) ..
2m'f (—g) & d=0

$—io
for all values of a. Since the integrand (as the product of functions
of L?) belongs to L, it follows from Theorem 32, p. 47, that it must
be null, i.e. that K()R(1—s) = 1.

8.9. The unsymmetrical formulae. For the transformation
arising from the equation (8.3.5) a similar set of theorems holds. We
now assume that $(344) and K(3+7t) are both bounded. Let
hy(x)/xz and k;(x)/x be the Mellin transforms of $(3-4¢)/(3—it) and
K(3+1t)/(3—1t). Then a given function f(x) of L#0,c0) has two trans-
forms

o) = & j "W ) dy,  gute) = 2 j 4 1y) ay.

The k- transform of g,(x) is f(z), and so is the h transform of g,(x).
The usual Parseval formula is replaced by the relation

[ 9@)guta) dz = [ {f@)}* dz,
0 . 0

together with the inequalities
[ lgp@) 2 dz < o [ {f@))? da,
0 [

[l dz < e [ {f@)}? de.
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The proof of Theorem 129 extends without substantial change to
this case. That of 131 holds only if K(}+1t) and $H(3+it) are con-
jugate, so that g,()g,(z) = |g,(z)|2. In the general case the result
still holds, but now we have to prove (8.3.5) as in § 8.8, and thence
proceed as in the proof of Theorem 129.

8.10. A convergence theorem. In the foregoing theory the trans-
formation is expressed in terms of k,(x), which is not necessarily
differentiable. To obtain the forms (8.1.5), (8.1.6) we require further
restrictions, both on the kernel and on the function represented.y

THEOREM 132. Suppose (i) that K(}+it) satisfies (8.5.1) and (8.5.4),
so that x-k,(x), defined by (8.2.3) with ¢ = }, belongs to L*0,0);
(ii) that k,(x) is the integral of k(x); (iii) that x—tk(x) 18 bounded.

Let fa) = [ ay, (8.10.1)
b
where $(y) belongs to L*0,c0). Then
flz) = f k(xu) du J- k(uy)f(y) dy (8.10.2)
—0 —0

for every positive x..
We have

)l < i{ [ areay | dy}* = o(e™)

as x — 0; and
1 X 1 © x %
w1 <3 [ l¢(y)ldy+;{ [ waray | dy} =o@)
0 X 0

as x - o0, by choosing first X and then z.
Let (x) be the k-transform of ¢(x). Then y(x) belongs to L2, and

f $y) dy = f B 4 ) du,

Let glu) = J' '/'—:)v—)dv. (8.10.3)

1 Hardy and Titchmarsh (8); see also Morgan (2).
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Then

[ oy — — fkl(xu)g'(u) du

3—>oA { [kl(xu)g(u)]s +z f k(zu)g(u) du} (8.10.4)

i
Now 9w < { f ) v | ;} = o(u)

as u —>o00; and R
F o)}
dv +U |¢(v)12dvff§] — o(u)

as u >0, by choosing first § and then . Hence the integrated
terms in (8.10.4) tend to 0, and we obtain

0
lg(w)| < sf ¥o)

f@) == f Hy)dy = f k(xu)g(u) du. (8.10.5)
Again, (8.10.3) may be written ~
glu) = f¢(v)~(v) dv,
where p(v) = 0 (v < u), 1o (v o> u). Hence by the Parseval formula

g(u) = [ $(v]A(v) do,

A(v)=%fp(t)wdt=(—?-f

0 %
(f) ky(€) (uv)
dv[ ko) } f 1(€) ge

uv

glw) = f $(v) dv f k6) ge f (ﬁ(v)kl"(::v) i

= 91('“)“92('“) _ (8.10.8)
say. Integrating by parts,

g.(w) = [vf(v) f k() df] J' of o) 1("“’) dv, (8.10.7)

[}] —

where
1(vt) dt

Hence
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and the integrated terms vanish since uf(v) = o(v'), and, since

ky(€)[€ is L2,

[ R

as in the case of g(u). Also

o) = [ 2E0] — | g0 s + [ o)) a,
~° ~ (8.10.8)

and the integrated terms vanish since v=¥k,(uv) = O(1).
From (8.10.6), (8.10.7), and (8.10.8) it follows that

g(u) = ]:wk(uv) f(v) dv, (8.10.9)

-0

and (8.10.5) and (8.10.9) give the theorem.
8.11. The resultant of two Fourier kernels.} Let

m(z) = [ kay)iy) dy
0

be the resultant of %(x) and I(x). Then a formal rule is that, if k(x)
and l(x) are Fourier kernels, so is m(z). We may, for example, put

000000

f f m(zu)m(ut) () dudt = j f j f k(zuy)k(utz)l(y)l(2)f(£) dudtdydz,
00 0000 . .
and the substitution ¢ = vz, y = 2w gives

f; f U2)i(ew) dedw ﬂwmmm)k(uv) f(g) dudv

-~ fw fw Uz)l(zw)f(@w) dzdw = f(z)
00 . :

if k and ! are Fourier kernels.
We can also argue in terms of Mellin transforms. If & and & are
the Mellin transforms of k and [, that of m is

M(s) = fm(x)xv,—l dz = fxs-l da fk(xy)l(y) dy
0 0 oo

o @

= f l(y) dy f k(zy)zs-t dx = fwl(y)y—s dy fk(u)us—l du
0 o [} o

= £(1—3s)K(s).
t Hardy (20).
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Hence  gpayim(1—s) — R(s)RA—5)2(1—8)2(s) = 1,
and the result again follows. The argument is still of course purely
formal.

The L2 theory gives

THEOREM 133. Let k,(x) and I,(x) satisfy the conditions of Theorem
131, and let m,(1/x) be the l-transform of ky(x)jx. Then my(x) also
satisfies the conditions of Theorem 131.

Here m,(1/z) is defined by

fml(é) du = joll(uﬂ Iilz(‘l)du.

Now my(a/x) is the I-transform of k,(ax)/x. Hence by Parseval’s

formula for I-transforms
m;___l(ax)ml(bx) de = | my(Zm b dx
2 Nz) Nz
ky(az)k, (bx)
x?

dx == min(a, b),

O 8@&_ 8

the required result.
As a particular case, let s;(z) = 0 (x < 1), 1 (z > 1), so that

g(zx) = ;f(;)’ flzx) = 59(5).

We call this the transformation S. If k, = I,, then

f mle) f BORG) 3y _ min(1, 2),
0

and my =s¢,. Ifl, = g, then

[fo=[Ha-fof)a

and m, = k,. Thus the resultant of k and % is s, the resultant of %
and s is k.

ExampLESs. (1) If k and  are the cosine and sine transformations,
z— ll 1

ml(x)—'"log 1 m(x )*—"1—“;—”‘2,
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and the m-transformation is

If f is even, this gives

Ly -2 [ 10 g

T \xr

the Hilbert transform of f(¢).
The resultant of this transformation and % is defined by

o

m(x) = ?—r J lffttl dt,

0

or, regarding k(z) as even, by
m(x) = 1 J‘ LiU) dt.
ko

x—1
—0o0

Thus the conjugate of a Fourier kernel is a Fourier kernel.

(2) The function I,(x) =z (x < 1), 0 (x > 1), satisfies (8.5.5). We
conclude that, if k(x) is a Fourier kernel, then so is

® 1 x
1
m(x) = | kt) diy(t) = | k(xt) dt —k(x) = = | k(u) du —k(z).

Similarly, takiﬁg L(x) =10 (x < 1), logz—1 (z > 1), we find that

¢ k()
J “u du —k(x)

is a Fourier kernel.
(3) The resultant of ttJ,(¢) and t-1J,_,(1/t) ist J;,_,(2t1).
(4) The resultant of ,/(2/m)cosx, \J/(2/m)x—1cosz1 is (§7.12)

2 (K (24) —Y(2n);
that of \/(2/m)sinz, /(2/m)a—1sina-1 is (2/m){Ky(2vx)+Yo(2v)}.

The last kernel is also the conjugate of Jy(2vx). *

(5) The resultant of Jy(2vx) and cosz is —sinz, and that of
Jy(2vz) and sinz is cosz. This may be proved as in § 7.12.

+ Watson, §13.61 (1), or as in §7.12.
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(6) We have
28inum ap+

at ! tJ, (xt)_, () dt = — — (G
if x # 1, while when x = 1 the integral diverges like
cos f &
- .

The divergence indicates that when we form the resultant of
z4J,(x) and z4J_,(x), there will be a discontinuity in m,(z) at z = 1.
In fact

xr
2sinun [ thti dt
my(w) = — ﬂ“ & @<D,

2smp,-rr i
f 3 +cosmr (x = 1).

The inversion formulae are

o) = 2sm#‘"'f (xt)p+t 2f(t) dt + cos;m—f( )

and the reciprocal formula.

(7) If we form the resultant m(z) of -/(2/m)cos z and Ji(2vz), and
then replace m(x) by 2-#x~m(1/2x), we obtain the Fourier kernel

(2x)*{cos(z—a}1r)J,(x)+sin(x——§rr)J_*l(x)}.

8.12. Convergence of k-integrals. We now leave the transform
theory, and prove quite independently a theorem on convergence in
the ordinary sense. To do this we have to make very special assump-
tions, and the theory is practically restricted to those examples in
§ 8.4 in which K(s) is a product of I'-functions. For such functions,
however, we obtain a direct generalization of Theorem 3.

THEOREM 134.1 Let R(8) be regular in a strip oy, < o < o,, where
o, < 0, o, > 1, except perhaps for a finite number of stmple poles on
the ymaginary axis; and let R(s) be of the forms

saofe+§+0(gr)),  mafr+3+0(gg)

1 Hardy and Titchmarsh (8).
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Jfor large positive and negative t respectively, where
Ry(8) = I'(s)cos dsn
18 the Mellin transform of cosx. Let R(s) satisfy (8.1.9), and let k(x)

be the Mellin transform of RK(s).

Let x > 0, and let f(y) be L(0, o), and be of bounded variation near
y=2x. Then

[ Fzu) du [ ke)f(y) dy = Hfl@+0)+f@—0)).  (8.12.1)
V] (1]

The function R¢(s) is regular in any strip ¢, < o < g,, except for
a finite number of simple poles at points where o < 0. If ¢ is large
and positive, then

Kolo+it) = Ct”'ief(llog:—n{1+% + O(tl?)}

where €' and a are complex, and a depends on o; and K,(c—it)
satisfies the conjugate formula.
The functions

T(s)sinjsm,  T(s) °‘ff§", T'(s) sg‘fi"

are the Mellin transforms of

. sinx sinx—zxcoszx
sinz, ot s

3

and are of the form

siofismt+0()], s+ ()
s~ 2o L)

ls|

for large ¢. If K(s) satisfies the conditions of the theorem, we can
find constants a,, a,, a;, a,, such that

RK(s) = KN(s)+K(s)+K(s),

where
KO(s) = a, I'(s)cos jsw+a, ['(s)sin {sa,
|(s) = a,T (s) cos %811 a,T (s) sin -%wr
and K9s) = Of IRo(«S)S"I} = 0(li|"")

for large s of the strip. Let kW(x),... be the Mellin transforms of
KA(s),....
Q
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8.13. LEMMA o. k() ts bounded for all positive x.
This is true for #V(z) and ¥3(x), so that it is enough to prove that
1 c+io
() = @)(g)~8
@) = o f RO(s)e-* ds
c—1io
is bounded. Ifz > 1, we take ¢ = 148, where 0 < 8§ < }, 148 < o,.
Since KG)(s) is then O(}s|3-1), k®(z) is bounded, and indeed is O(z~-1-3).
If 0 <2 <1, we take ¢ = —8, where 0; < —8 < 0. Then
1 —8+1o
8), = (3) -8
W) =g [ e da +p,
—~§—i
the latter term being the sum of the residues at any poles on the
imaginary axis. It is plain that p is bounded, and the integral is
bounded because K(s) = O(|s|~*-*). Hence k(z) is bounded for all
positive z.

8.14. Lemma B. Let

A
$Azy) = [ kew)kyw) du, (8.14.1)
1/A
where X > 1 and x 18 positive and fixed. Then
4] < Bz, ) (8.14.2)

for all positive y for which |y—z| > L.

In view of Lemma « we may replace ¢ by

A
x02,9) = [ Kou)k(yu) du
1

A
= [ {9+ @)} (yu)+ b (yu)+ B9 ()} du +
1

A
+ [ 19@uk(yu) du.
1

The last term is bounded because k¥(zu) = O(u~1-%) and k(yu) is
bounded.

Denote the integral involving k@ (zu)k@(yu) by x,,. Then x,, is
clearly bounded. Next, x, , splits up into four terms, a typical term
being
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A . 1y .
. sinyu—yucosyu , . sin yu—yu cos yu
fsmxu 7 du = f sin xu P du -+
i i
A . 3 A 3
sinzusinys , = [ sinzw cosyu ,
+ f pr f o
1y 1y

Since (sinz—x cos x)/x2 is positive increasing in 0 < x < 1, the first
term on the right is
1y
(sin1—cos 1) f sin zu du,
Uy

where 0 << u; << 1/y. The second and third are

S

Uy Us
J. sin zu sin yu du, — f sin zu cos yu du,
1y 1y
where u, > 1/y, ug > 1/y. All these are bounded, and the other
terms of y, , may be shown to be bounded in the same way. Hence
X1,2 is bounded.
A similar argument applies to x,; and y,,. Thus a typical term

of x,, 18
A . .
J‘smxu sinyu .
J wu yu
1/ A U,
= Jy+ f = s'ﬂy_.r_sinxu du -+ f sin zu sin yu du,
¥ xu xu

i 1y i Yy
and each of these is bounded.
A typical term in y, 4 is
' A c+iw
%—i J‘ cos xu du j (yu)—2RO(s) ds.
i PR
If & has no pole on the imaginary axis, we may take ¢ = 0, and

invert, and obtain
A

—'21 f yURE(it) dt f u~% cos xu du.
¥ra
s ;

The inner integral is O(A) = O(t) for ¢ > A, while for 0 <t < A it
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differs by O(t) from

A A
: A A g
J‘cosxu d [smxu] .t[cosxu] w(it4-1) [ coszu du,

u# zu |, aPy i |, x? ui+2
t

each term of which is O(f). Since ]®(it) = O(|t|~}) for large ¢, the
term in question is bounded.
If there are poles on the imaginary axis, it is sufficient to consider

one of them, say at 8 = 47 with residue C. Let

KO(8) = CT'(s—ir)+KH(s), ¥¥(x) = Czx—re—=4- k().
Then K@ satisfies the conditions imposed above on K@, and the
additional term is

A/
Cy-ir f u—re~ve coszu du = Cy~* f u=¥" coszu du = O(1)
1 1

by the argument used for the above inner integral. Hence y, is
bounded. Practically the same argument proves that y, 5 is bounded,
and the lemma follows.

8.15. LEMMA y. Let \
w29 = [ ke 12 au,

1A
x c+iw
1 xl—'l
where ky(z) = f k(u) du = 5 J. R(s)l_———sds'
0 c—iw

Then |$| < B(x,{) for A>1, >0, and 0 < z—{ <y <z+{;
and (A, z,y) converges (boundedly) as A — co to the limit
0 <=, % (=2, 1 (F>2).
Since k(u) = O(1), ky(u) = O(u) for small u, the integral over
(1/A, 1) is bounded. We naw write
k(x) = kV(z)+kO(z),
where & is the same as before; and

A
f k(xu)lcl%i) du

1

A A A
= J kO(zu) 7_0_31)7(4@4_) du + f k(xu)lcf:(fl—w du + ’- k) (zu) k——————(ll)?(‘y “) du.
1 1 .

1
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The first term is a multiple of

A
f (@, cos zu + azsinxu)“lsmy%-i- c:f(l—— cos yu) e

A

= a? J’ cosxuusmyu du +aya f cosxu—;os(x—{—y)u du +

4

1

[

2
u
1

each term of thch converges boundedly. Also k(u) and k{V(u) are
bounded,

A
+a2fsmxu(l——cosyu) du,

ko) = 0( fw (14 [¢))oHu=0 dt) = O(u-4),

taking o = }—38; and #{®(u), like uk®(x), is O(x—?). The remaining
terms are therefore bounded.

This proves the lemma except as regards the value of the limit.
To calculate this directly requires some further examination of the
argument, but the result can be obtained from the transform theory.
We have in fact proved that »

f“’ Eywk@u) 5
u

converges boundedly for x > 8, where 0 < & < 1, and uniformly
except near x = 1; hence, if its value is ¢(z),

f (u) du = f kl(x){kl(ng —k,(Gw)} du = min(z, 1)—3
i

V]
and hence dx)=1 (z<1), 0 (z>1)
Ifzx=1,

fkl(u)k(u) du = HE_ fk(u)k,w) - f M) 4,

and since each integral tends to a limit as X — o0, so does k3(X)/X,
and this limit must be zero since £3(X)/X2 belongs to L(0,c0). Hence

2 J‘ k1(u)’c(u)d f kz(‘“) du = 1
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8.16. The Riemann-Lebesgue theorem is here replaced by the
following theorem, due to Hobson (1).

Lemma 8. Let f(t) belong to L(a,b); let $(A,t) belong to L(a,b) for
all values of A, let it be bounded uniformly with respect to X in (@,b);
and let

8
f (1) dt >0
as A - oo, uniformly in aandﬁfora a<<B<<b Then
i t)d(A, t) dt = 0.
lim f OB Y
Suppose first that f(f) is absolutely continuous in (a,b). Let

i
[ $0.w) du = 1),

b b
Then [ S0\ 0) di = fO)Nb)— [ £/ (O)ps(M,2) .

Given ¢, we have
1A, 2)] < e (A>Xfe), a<t<D),
and hence

frosonal < {yorns [roia) o>xn.

The result therefore follows in this case.
In the general case we can, given e, define an absolutely con-
tinuous function y(¢) such that

f fO)—x(®)| dt < e.

Having fixed ¢ and x(¢), we can, by the first part, choose /\o so large
that

x(t)<[>(A, t) dt‘ <e

If [4(A, t)I < M, it follows that
<  xos00 al+

<etMe (A=A
This proves the lemma.
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8.17. Proof of Theorem 134. By Lemma « the integral

| kuy)fy) dy

is‘un.iformly convergent for 1/]A < u < A, so that we may multiply
by Ic(xu) and integrate under the integral sign. Hence

f k() du f k(uy)f(y) dy = j fy)bhz,y) dy
1A

8 z=f T ’ ©
e T ]
0 8 x z+{ A
TR Y
It follows from Lemma B that

3 ©
ILI<B[lfg)ldy<e, LI <B[If@)dy<e
[ A

for 6 = 8(e), A = A(e), A > 2.
Next B

A
[ #as = [ sow B g,

o 1/A

= ¢(A, 2, f)—¥(A, 2, ).
If a<B<z or x<a< B, this tends to 0, when A—>0, by
Lemma y. Hence, by Lemma 3§,

lim,=0, lml=0

Ao

when ¢, 8, and A are fixed.
We may suppose { small enough to ensure that f(y) is of bounded
variation in (x—{¢,z+{), and then

f@)—flz—0) = fi(y)—f:(y),
where f; and f, are positive and decreasing and tend to 0 when y - x
from below. Then

I3 = f(x—-O){l/l(A, x, x)—‘ﬁ(x’ z, x_C)}""
+ f F@)$0,9) dy — f @) ,y) dy.
The first term tends to %f(x—O) The second is

fie—0) f # dy = FiE— OO, 2.1 —hA, 22—},
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where x—{ < 7 < z, and, since ¥ is bounded, this is less than ¢ (for
all A in question) if { is sufficiently small. A similar argument
applies to the third term. Hence

|Bm I, 4f@—0)| <

A-»0

if { is sufficiently small. There is a corresponding result for I,, and
it follows that

f k(ww) j kuy)fty) dy = Hf(z+0)+fz—0)}.

“© 1A
The u-integrand is, however, bounded as % — 0, so that this may
be replaced by (8.12.1). This proves the theorem.

It is easily verified that the R(s) which gives rise to Hankel’s
theorem satisfies the above conditions if v > —}; and so do all
the other R’s which are products of I'-functions if the parameters
involved are subject to suitable restrictions.

8.18. Hankel’s theorem.t The most important particular case
of the foregoing theorem is that in which k(z) = vz J,(x). This case
can be obtained much more simply.

TurorEM 135. If f(z) belongs to L(0,00), and is of bounded variation
near the point x, then for v > —}

Hf@+0)+f@—0)} = j T (@u)y(zu) du j T (uy)(uy)f) dy.
0 . (8.18.1)
Let 3 be a small positive number. Then

A z—8
[ Sewau) du [ J@y)y)ily) dy
1] [

z—8 A
=z [ Vyfly) dy f Ty(u)d, (uy)u du

Vyf(y) dy (8.18.2)

e f "5 O h(0g)— 9, 1 09), )

xz_ya

= O(v}) f J(Ay) «/yf(?/) dy +0(‘\/A) f Jv+1(A?I) y’f(?/) dy,

(8.18.3)
1 Watson, Chap. 14.
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for any fixed 2 and 8. Now
1A N 1A
[ o 39 0y — 0( [ carsis dy)
0 0

—ofx ‘fy,+. ) dy) = O :flf(y)l dy) =0 (0.

Fordy = 1 we have

A cos \y+ Bsin My 1
W) =g 1° ((Ay)*)'

The O-term contributes

(A-* f )l ”’”)

1/)‘ 1/vA z=8
= o+ [ iwidg)+o(r [ sl dg) = o0
1A
and the main term oontnbutes
z—-3
-~ f (4 cos dy+ Bsin Ay) ;il_giz dy = o (A1)
1A

by the Riemann-Lebesgue theorem. The second term in (8.18.3)
may be dealt with in a similar way. Hence (8.18.2) tends to 0 as
A—>o00.
Next, we may invert
A ©
[ HauWzu) du [ Juy)wyfty) dy
0 z+38
by the uniform convergence of the y-integral. The proof that this
part tends to 0 is then similar, but simpler, since here y is not small.
We can suppose 8 so small that f(y) is of bounded variation over
(x—8,24-8). Then so is y—-#f(y). Hence in (x,z+8) we can write
¥y Hly) = 27 H(@4-0)+ x:(y) — xa(¥),

where x, and y, are positive, increasing, and less than . Then
z+8

A
f @ (eu) du f Jy(uy)(uy)f(y) dy

z+8
=z j J(@uyu du f J(uy)y {2 40)+ x1(y) — x2(¥)} dy.
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The first term in the bracket contributes

zf(z+0) fJ (xu)[J, 1o (e +8)ul(x4-8) 11—, . (xu)a+1] du

- z7f(x+0)(x¥ —$a*) = Lf(x-0),
by (7 11.15). The second term contributes
z+98

N j Jy(wuyu du j T (uy)y* +1x,(y) dy

z+8

= V& [ x(y dyf J(@u)d,(yu)u du
0

x
z+6

A
= Vony@+8) [ g dy [ J@uyu)u du
£ 0

A
= Vz x(2+3) f T ()] (@+8) 1, i{ (@48} — 41, 1 (Eu)] du
where 2 < ¢ < z+8. Now for x > zy > 0, y > z,,

j I (@u)d, 1 (yu) du

¢ 5 A A
= O0(1)4= | cos(z—}vr—}m)sin(x—fvmr—}or ) et O
= 0(1)

for all \. The contribution of the y, term is therefore O(¢). Similarly
so is that of the x, term.

The theorem therefore follows on choosing first & sufficiently
small, and then, having fixed 3, A sufficiently large.

8.19. Formulae derived from Hankel’s theorem. Simple
pairs of Hankel transforms may be derived from (7.4.6), (7.11.6),
(7.11.8)—(7.11.15), and (7.11.17). Another elegant pair is

2sv—1r(v+gww(%€)”«/xJ,<px)=L(qx>,

{&—(p—)-H(p+9)—2Plat~  (Ip—gql <z <p+9)
0 elsewhere. (8.19.1)
To prove this,t put v= —}, p=2A—4, =1 y=sin* in

1 This is Sonine’s proof referred to by Watson, § 11.41.



8.19 GENERAL TRANSFORMATIONS 243
(7.14.9). We obtain

Sl (a2 1-b2 .
o A({Q/z(i;;)u)} J@r )f sin+1g Jj_y(a sin §) e "d"(s .

Putting a = ¢sing, b = p—gcos¢, and multiplying by sin*+$ and

integrating, we obtain

[ S0 +q? —2pgcosd)} . in?$ d
(p*+¢"—2pg cos §)

A " T ’
— ;7,(2_) J sinM g do f sin 0 J;_(q sin 0 sin ) eécosbw—aoosd) g
- .

}

«/(2 ) Sln’"f*e eivcosd gg f sin*+ J,_;(gsin @sin $) e—tacosfeosd g4
T

=g f sin?+ig eir cos0 5ind-19 J, (g) df
0

= 2T+ Vr(pg) -2 K(p)h(g)- (8.19.3)
The result stated follows on taking p2-}-q2—2pgcos¢ = ¢ as a new
variable.

The reciprocal formulat is

[/ at-ri ) (g o) da
’ — {uz”‘ (p__q)z}v—i{(p_'_q)z_u}}v—i (819.4)

2%=Im D(v+$)(pqu)’

if |[p—q| < u < p+q, and 0 otherwise.
Still other results can now be deduced from the Parseval formula.}
For example, (7.11.12) gives the Hankel transforms

x“"**K,\(ax), 2A+vakwv+i1"()‘+y+ 1) (a2+x2)"\‘”‘1, (8.19.5)

and we deduce

f x"+F+2”+1K,\(ax)KF(bx) dx
0 22+ o

A+v+1(b2 +x2)p.+v+1'

_ 2A+#+2Va)‘bFP(A+V+ 1)F(H+V+ 1) f (az_i_x?)
. R

t See Watson, § 13.46; Nicholson (1). } See Titchmarsh (11).
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We can put z = btanf and expand the integral in powers of
(b62—a?)/b?; if @ = b, the result (with v = $p—3A—3u—1)is

f K)(ax)K,(ax)zr~! dx
2 I‘(P+ "_l‘.)P(P—"J”‘)P(P”A_“)P(”er"‘) (8.19.6)

~ T 2 2 2
Similarly, from the Hankel transforms (see (7.11.14))
xv+§\/.” xv+*
mﬁ(ax)lfv(ax), m, (8.19.7)
we deduce

v—3 v v
2+ DTG (ﬁ){)‘(%vw, (5.10.8)
and from (8.19.1), with p = ¢, we deduce
»-2  [)(2v)
2 w{T(p+3)P0(3v)

j? J¥ax)KE(ax)ax? ' do =
0

(8.19.9)

[ Tipr» dx = F
0



IX
SELF-RECIPROCAL FUNCTIONS

9.1. Formalities. IN previous chapters we have noticed a number of
functions which are their own Fourier cosine or sine transforms, i.e.
functions f(x) such that

f@ =/ G f f(@)eoszy dy (0.L.1)
or flz) = J(%) f f(y)sin zy dy. (9.1.2)

The simplest solutions of (9.1.1) are
zt, e, sechiz(}n)}.
Similar solutions of (9.1.2) are . .
@M1 zJ(2m)
There are also functions which are their own Hankel transforms
of order v, i.e. solutions of

@) = [ flyWey,(zy) dy. (9.1.3)
0

Solutions of (9.1.1), (9.1.2), (9.1.3) will be called E, R, R, re-
spectively.

Other functions are ‘skew-reciprocal’, i.e. satisfy (9.1.1), (9.1.2),
or (9.1.3) with the sign of the right-hand side changed. Such functions
will be called —R,, —R,, — R, respectively.

The first problem of this chapter is to determine all self-reciprocal
functions; or (since complete generality is hardly attainable) all such
functions of certain classes, such as the class L2. We shall take (9.1.1)
as the typical case.

In a sense, there is an immediate solution. If g(x) belongs to L2,
then g(x)+ G,() is also a function of L?, and is plainly self-reciprocal.
Also any self-reciprocal f(z) may be expressed as

}(@)+1f@) = 3f@)+1E ().
The formula g(z)-+ G,(x) therefore gives the complete solution of the
problem.

it
z-t,. e,
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On the other hand, it is obvious that none of the examples quoted
above have been obtained in this way, and the solution does not
enable us to decide (unless by actual verification) whether a given
S(x) is self-reciprocal. To determine whether f(x) is of the form g+-G,
is to solve another integral equation, viz.

. b4 3
flx) = g(x)-I-A/(;) f g(y)coszy dy. (9.1.4)
0
We shall consider such equations in §11.15; but it is easier to attack

(9.1.1) directly.
Let §(s) be the Mellin transform of f(x). Then (9.1.1) gives formally

&s) = A/ (%) Ix"l dzx f J(y)coszy dy

Lol

= J(%)! fy) dyfxs—lcosxydx

=/ (?T) [(s)cos Jsr f - dy,

ie. §(s) satisfies the functional equation

(s) = J (%) T'(s)cos Jom §(1—s). (9.1.5)
If now we write F(s) = 28I (1s)f(s), then
() = P(1—s), (9.1.6)
and, by Mellin’s formula, g
flz) = E};z f 28T (3 )(s)z~* ds. (9.1.7)

We may therefore expect (9.1.7), where i(s) satisfies (9.1.6), i.e. is
an even function of s—%, to be a general formula for functions of R,.
The simplest example is
) =1,  flz) = 2e¥.
We can deal with (9.1.2), or generally (9.1.3), in a similar way. If
f(z) satisfies (9.1.3), then

0 @

98— k]_" 1 l
36 = [ v dy f et ay) do = LD f Wy~ ay,
2

0
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; T'dv+is+D

L. S L] —s). 1.
ie Bo) = 2t B g0 (9.1.8)
Putting §(s) = 288 (dv+4s-+1)(s), we obtain as a general solution
of (9.1.3)

¢+iw
10 =55 [ #Thrtietipords,  (0.19)
where §(s) again satisfies (9.1.6).

9.2. Another formal solution of the problem is obtained by
considering

x(s) = fwf(x)e‘*"z’ de. (9.2.1)
Then (9.1.1) gives ’

X(6) = J
J H 2 f 1) dy f e cos zy dov

GRS

) e~z f f(y)coszy dy

Il

= f fwee dy,
ie. xte) =3 x(;) (9.2.2)
If u(s) = sty(sh), then  p(s) = ,L(é.) (9.2.3)

We may write (9.2.1) as
) = [ (@u)-ifi(2uhie-r du,
1]

and the reciprocal formula is
¢+t

oy = o [ xioheds,
“etio
or f@) = % f p(s)ete’ss—t ds, (9.2.4)

Hence (9.2.4), where p(s) satisfies (9.2.3), may be expected to be R,
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The simplest example is
= x-t,
For general v, let ©
x(8) = [ flz)ar et da. (9.2.5)
0

Thén (9.1.3) gives
x(e) = [ ezt da f FyW(ey)J,(zy) dy

8°

= [ foy dy f e~ 9T 41] (zy) da

SOy Lz dy

1 1
e X\g)

If p(s) = siv+iy(st), then u(s) again satisfies (9.2.3), and

I
c%a ®

¢+1i0
at-v
—_ 1z'so—-iv—1
fo) =% f p(s)etees1— g, (9.2.6)
c—1iw
9.3. Still other formulae of the same kind can be obtained by
replacing the e-#" of the above example by other functions which

are self-reciprocal, and which also are the kernels of a general
transformation. We may take, for example, the function

ot J_y(32?).
Proceeding as before, we obtain

Xo) = [y (hstetfe) do = §x(§),

and f(x) can be expressed in terms of x(s) by Hankel’s theorem.
This transformation has been studied in detail by Mehrotra (8).

9.4. Functions of L2. We shall now justify the above arguments
under a variety of conditions. The simplest conditions are provided
by the L2-theory of Mellin transforms.

THEOREM 136.1 A necessary and sufficient condition that a function
f(x) of L¥0,00) should be its own cosine transform 1is that it should

1 Hardy and Titchmarsh (4). Proof suggested by Miss Busbridge.
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be of the form (9.1.7), where ¢ = }, the integral is a mean-square

tntegral, B(h-+it) = BHT(E+Hit)(h+it) (0.4.1)
belongs to L*(—o0,0), and (9.1.8) kolds, i.e. Y(}+it) is an even function
of t.

In view of the L2 theory of Mellin transforms, all that we have to
prove is the equivalence of the self-reciprocal property of f(x) to
(9.1.6).

Now f(y) and sinzy/y belong to L2(0,c0), and the Mellin transform
of the latter is

L'(3-+1t)cos ym(34-it) wt-#/(3 —it).

Hence 3}
1

- (—3) _[ s@—it)r(ﬁu)cos%w(ﬁa)f_—’zdt.
Also f 1) dy=%_ f B+ g de

If f is self-reciprocal, the right-hand sides must be equal; since each
integrand belongs to L(~c0,c0), they must be equal almost every-
where (Theorem 32, p. 47). Hence y(}-it) is even. Conversely, if
P(3+14t) is even, the right-hand sides are equal; hence so are the
left-hand sides, and so f is self-reciprocal.

9.5. Functions of L».

THEOREM 137. If @ function f(z) of L?(0,00), where 1 < p < 2, is
it8 own cosine transform, then it is of the form (9.1.7), where
&(s) = 2¥C({s)(s)
18 an analytic function which (i) is regular in the strip
1 1 F D
7 <7< (p p_l), (9.5.1)
(ii) tends to O uniformly as 8 > co inside any interior strip, and (iii)
satisfies (9.1.5); the integral in (9.1.7) is a mean-square integral along
any line of the strip (9.5.1).
This is a one-sided theorem, with conditions which are necessary
only and not sufficient. o
R
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If f(x) belongs to L, its cosine transform belongs to L#', so that
f(z) here belongs to both L? and L?, and therefore to all inter-
mediate classes L2. In particular it belongs to L2, and so satisfies the
conditions of Theorem 136.

The function (s) reduces to the F(4+t) of Theorem 136 when
8 = }-it, but F(s) is now an analytic function, regular in the strip
(9.5.1). In fact

| f@) 2ot de
1

1 rqr 1 © « .y
< ( J. I dx)l’p ( "xp(a—l) dx)llp n ( J. P dx)l/zz ( J- " dx)l/p ’
0 0 M i

and these integrals converge for vhe values of o stated. It follows in
the usual manner that §(s) is regular in the strip, and bounded in
any interior strip.

Again, we can write &(s) in the form

] ©
) = ( |+ fA + | )f(x)xv-lx“ do = Fu(s)+Gale)+Folo)-
0 ] A

Let » > 0, and
1p+n < o< lp—r (95.2)
8

Then  [§u(6)] < ( f T dx)"”'( [ avto- dx)”” — o)
0 o

as 8 - 0, and we can therefore choose & so that |¥,;| < € for all sin
(9.5.2). Similarly, we can choose A so that |F;] < e. When & and A
are fixed, §, — 0 uniformly as s -0 in (9.5.2). Hence § — 0 uni-
formly in (9.5.2).

Tt follows from Theorem 136 that §(s) satisfies (9.1.5) on s = }+1,
and so throughout (9.5.1).

Thus {(s) possesses the properties stated in the theorem, and it
remains only to prove (9.1.7). "This is true for ¢ = }, by Theorem 136,
so that it is sufficient to prove that the value of the integral is
independent of ¢; and this follows by the argument of § 5.4.

9.6. The previous theorem is a one-sided theorem, and we cannot,
in view of the asymmetry of the theory of transforms about the
number 2, expect in this case a theorem as satisfactory as Theorem
136. There is, however, a very similar class of functions for which
we can obtain a complete solution.
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We shall say that f(x) belongs to L¥(0,00), where 1 < p < 2, if
z%f(x) belongs to L2(0,00) for

SRS B DS S
T TP eSS

It is plain that f(x) then belongs to L#(0,1) for ¢ < 2. Suppose now
that p < ¢ < 2. Then we can choose a < o, 80 that 2go > 2—gq; and
then

9de < | | x2*|f|2 dx - x—20l2-0) dy (ot < o0,
I
1 1 1

so that f(x) belongs to L2. If also f(x) is its own cosine transform, it
belongs to L, so that a self-reciprocal f(z) of L* belongs to all
L-classes between L? and L?’, though not usually to either of these.
The class of self-reciprocal functions of L} is thus in this respect
a little wider than the class of those of L?. In other respects it is.
narrower. Suppose, for example, that h(x) is defined by
hz) =27 (mI—-1<e<<nl+l, n=23,..),
and k(z) = 0 elsewhere. Then A(x) belongs to L* for every positive
r, but to no L3, since 3 2-"" is convergent; but ¥ (n!)2*2-2 divergent
for every positive a. The cosine transform of h(x) is

ni+1
i !
Hy(r) = A/(%) z 2-n j cosxy dy = 2/(%)5“;372 0082:4:’
n!

'
which is continuous and O(x-1) at infinity, so that H,(z) belongs to
Lr for r > 1, and to L} for 1 < p < 2. Thus k(zx)+ H,(z) is a self-
reciprocal function which belongs to L” for all » > 1, but to no Ly.

THEOREM 138. A mecessary and sufficient condition that a function
f(x) of LE(0,00) should be its own cosine transform is that it should be
of the form (9.1.7), where §(s) satisfies the conditions (i), (ii), (iii) of
Theorem 1317, and (iv) belongs to L*(—o0,00), qua function of ¢, for
all o of (9.5.1).

(i) The condition i3 mecessary. Since f(x) belongs to Lr for
p <r < p’, we have only to show that F(s) satisfies condition (iv).
This results immediately from the theory of transforms, since

5(6) = [ flehaetaioi s,
[

and z°-¥f(z) belongs to L? if jo—}| < ap, i.e. if 1/p’ < ¢ < 1/p.
(i) The condition is sufficient. Since (s) belongs to L? on the
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line s = c-it, the integral (9.1.7) exists as a mean-square integral
for all ¢ in question, and as before its value is independent of c¢. It
therefore defines a function f(x) independent of ¢. Since

) =% f F(c+ityet-4 dt

for |c—}| < o, and the right-hand side belongs to L? for every such
¢, f(x) belongs to L¥. Finally, by Theorem 136, f(x) is self-reciprocal.

9.7. Analytic functions. We shall say that f(x) belongs to
A(x,a), where 0 < o < 7, @ < 4, if (i) it is an analytic function of
x = re'® regular in the angle defined by » > 0, 0] < «, and (ii) it
is O(|z|-2-¢) for small z, and O(|zie-1+¢) for large z, for every positive
e and uniformly in any angle || < a—9 < a.

THEOREM 139. A necessary and sufficient condition that a function
Sf(x) of A(a, a) should be its own cosine transform is that it should be of
the form (9.1.7), where yi(8) 18 regular, and satisfies (9.1.6), in the strip

a<o<l—a; (9.7.1)
P(8) = O(eltm—o+nit) (9.7.2)
for every positive  and uniformly in any strip interior to (9.7.1); and
¢ 18 any value of o in (9.7.1).
(i) The condition is necessary. The integral

fof(:v)ac‘*1 dx (9.7.3)
0

is absolutely convergent for a < 0 < 1—a, so that §(s) is regular
in (9.7.1). Also, f(x) belongs to L2, and it follows from Theorem 136
that §(s) satisfies (9.1.5) on o = }, and therefore throughout (9.7.1),
or, what is the same thing, y)(s) satisfies (9.1.6).

Also, f(x) satisfies the conditions of Theorem 31, with 8 = « and
b = 1—a. Since

W) = F(®)29T(3s),  |T(ks)| ~ Ce-tmijefiot,

it follows that )(s) satisfies the conditions stated.

(ii) The condition is also sufficient because Theorems 31 and 136,
on which we have based the argument, are reversible.

9.8. More general conditions. The next theorem is of a more
general kind. here f(z) does not necessarily belong to any L- or
A(a, a)-class
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TurEoREM 140. Let f(x) be integrable over any finite interval; let

F(z) = J (?r) f Sf(y)coszy dy (9.8.1)
exist for every x; and let °
Fo) = [ flaj-tdo (9.8.2)

exist for |o—3}| < «, where o > 0. Then a necessary and sufficient
condition that Fi(x) = f(x) almost everywhere is that F(s) should satisfy
(9.1.5) for |o—1}| < a.

Let $ < B < 3+a, and

o) = [ fE)ER-1 de.
Then g(x) is bounded. Hence if o < 8
x x
f f@)xt-1de = f g (x)x*-P dx
1 1

X
= 9(X)X*F—(s—P) [ g(a)o*-1 da
1

X
= 01)-+0((s| [ ov-6-4 ) = 0(1)
for all X. Similarly, ) '
[ fyst dz = O(1t))

X
for 0 > 4—a. Thus

b 4
[ f@)2-2 dz = O(1t))
1/X .
in any strip interior to lo—3}| < a.

It follows by dominated convergence that
34140
[ s

$—icw

xaa

(8—1)(e—2)(s— 3)

(/6)~
f 6% a | -2~

2m

=1 f fE)=—£) d,
(]
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and that
1 e I'(s)cos ism o\t ds
%‘HL = 1)e—2)6=3) S1—s)
= 2%” 1TWJI‘(s—3)cos Ysm F(1—s)ax3-*ds
a*j: $+im
-z J' (&) de f I'(s— 3)cos Jom (€)= ds
e
S f 7O 4 f I(s)sin Jsm (x€)~ ds
—2%—iw

ff(f)smxf xfdf

If ¥(s) satisfies (9.1.5), it follows that

f O a—t) dg = J() ff(é) —sinzf 4.

But, as in the proof of Theorem 118, (9.8.1) gives

fd“fﬁ’c(v)dv=A/() j f(g) cosx§d£

We may integrate over (0,) by uniform convergence; hence

T z £ u
[ fO@—82d¢ = [ dt [ du [ F(o) dv,
0 o 0 0

and, differentiating three times, it follows that f(x) = F(x) almost
everywhere.

Conversely, if f(x) = F,(z) almost everywhere, the argument shows
that $+io
1 [ Be)—yemTE)os s F(1—s) .4 o
2m ) (s—1)(8—2)(s—3)

3—io
for all values of z. Since the integrand belongs to L, it must be null
(Theorem 32, second part). Hence $(s) satisfies (9.1.5) on ¢ = }, and
so throughout its region of regularity.
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If the conditions are satisfied, f(z) is represented by (9.1.7) in the
(C, 1) sense, by Theorem 32.

9.9. A general theorem. Even if (as in the case f(z) = z~#) the
integral (9.8.2) does not exist for any s, it is possible to obtain a result
corresponding to (9.1.5), but involving the functions §.(s), F_(s).
We shall deduce our result from the following theorem, which is
frequently useful.

THEOREM 141. Let $(w) be regular in the strip a, < v < a,, and
let p(u-+1wv) be L(—o0,0) (or L*—o0,0)), and tend to 0 as u — +- 0,
for v in the above interval. Let Y(w) have similar propertzes n
by < v < by, whereb, < a,. Let

ia+c b+
f P(w)e=izw dw + f Plw)e=120 dw = 0 (9.9.1)
b— 0
for all z, wkere a, < a < ay b <b<<by. Then ¢ and J are regular
for b, < v < a,, their sum 1s 0 in this strip, and they tend to 0, as
u—> 4 oo, uniformly in any interior strip.

Consider first the L case. Multiply (9.9.1) by ei=t, where { = £+,
a < 7 < a,, and integrate with respect to x over (0, cv). We can
invert the order of integration by absolute convergence, and we obtain

ia+o

f ¢(w)d w -+ f ") dw=0 (a<n<ay). (9.9.2)

Now move the line of mtegratlon of the ¢-integral to v = a,. We
obtain

ias+ o ib+ o
f ) ) dw + f g(_i)cdw — —2mid(l) (a <7 <ay).
iy~ ib—o (9.93)

The left-hand side is now regular for b < n < a,. It therefore pro-
vides the analytic continuation of —2wig({) throughout this strip.
Similarly, multiplying (9.9.1) by ei*{, where b; < n < b, and inte-
grating over (—o0,0), we obtain (9.9.2) with b, < n < b. Moving
the line of integration of the y-integral to = b;, we obtain
ia+ o ib, -+ ®©
f $(w) ) du + f ,%(i% dw = 2mig(l) (by < 7 < b).
i, —co (9.9.4)
This provides the analytic continuation of 2#i({) over b, < 7 < a.
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If b < 7 < a, the left-hand sides of (9.9.3) and (9.9.4) are equal,
by an obvious application of Cauchy’s theorem. Hence

$(&) = —¥(0)
in the strip

"T” $(w)
dw

iay—

U W U
1 . 1 .
< m(_l +J )[?5(“'*'@“2)[ du +IU_—f_|_Jt; [b(ut1a,)| du,

which tends to 0 as ¢ - 400, by choosing first U and then £. Similarly,
for the other term on the left of (9.9.3). Hence ¢({) - 0 uniformly in
the strip.

In the L2 case (9.9.2) follows from (9.9.1) by the L? case of
Parseval’s formula, and the argumert then proceeds as before; in

the last part we put
3
[ j e f l¢(u+@“z)|2d’“}

iay+
" $(w)
, f w—g | S
+{ ] f 1¢(u+m>1=du}*
lw—w 2

iag— o

and again choose first U and then ¢.

9.10. Application. THEOREM 142. Let f(x) be integrable over every
Jfinite interval, and tend to 0 at infinity, and let

2 —>00
foy =/ B) [ roeossyay (9.10.1)
0
for all but a finite set of values of x. Then almost everywhere
1 a+io 1 P+ico
fa@) =g [ Belowrrdsto B £ §-o)o~ do
a—i® —B—iwo

B<O0, a>1), (9.10.2)
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where the integrals are (C, 1) integrals; F_(s) is regular for o < 0, and
F+(8) for o > 1; and the functions

g0/ (%)3_(1—s)r(s)cos o,

_(s)—J(§)§+(l —8)I'(s)cos Jsm

&
are regular for 0 < o < 1, except possibly for simple poles at 8 = 0;
and their sum is 0 in the strip.

Let  fi@)=[fa)du, fyo) = f fi(w) du,
V]

etc. Then, as in the proof of Theorem 113, (9.10.1) gives
2\ . 1—
fol@) = J (;) ff(y)-‘;oz—sxy dy. (9.10.4)
0

@ 1
Let  §(9) = [f@atds, §io) = [ fla)es-do.
1 0

(9.10.3)

These are clearly regular for ¢ < 0 and ¢ > 1respectively; and (9.10.2)
holds by the (C, 1) analogue of Theorem 24, for Mellin integrals. Let

—3+i0
1 8
o0 =5 | BTy
T e
2m f J( )3+(1—8)I’(s)cos%31r—l)—(§——2)
| e L
+-2—ﬂ—ii_f Bl =g @

2m f J ( )i} (1—8)I'(s)cos }sm —%—2—) ds

= d)l(x)+(D2(x)+(D3(z)+(I>4(x).
We may insert the above integrals for §_(s), etc., and invert, by
absolute convergence. We obtain

@ -$+i0
oz N (x/y)*—*
O)(@) = 5 f fy) dy I —he=2)*
1 —§—iwo

F

= [fe)e—ydy @>1), 0 (z<1),

1
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§+1i0

(z/y)*~
a()——ff(y) y f gy de

1
~ [y dy @=>),

§

x 1

[w@w) dy —= [ fw)dy (@ < 1).

[} x

x 1
Hence  @,@)+®y(x) = [ f)e—y) dy —= [ fy) dy
for all z > 0. Also ° ’

1 — 3§+ i

®y2) = — J( )2,” [rordy [ Te—2)c08 pomay)ds

0 —~}—im

- J (g) fl 0 i Tt I Y
m y
0

© §+iw

o) = — [ (3)“— [ rwray f I(s—2)cos Jem (zy)* ds

1 §—io

- ) frwerzt

Altogeth
e Z: —cos xy .
@ = fio)— | ( ) f S5 4y 4ot b,
0

where a and b are constants. Hence, by (9.10.4),
—}+1i0

- _fiw {%_(s)— J ( )8+(1_s)r‘(s)cos jsmta-t26° 1:(81521_): js 2)
+ :I:o‘8+(3)—A/(%)?Y-(I—S)P(s)cos %3,,.__(1_%3;-1}(8_“,21;55-2)
=0

for every ‘positive z. The result therefore follows from Theorem
141, with an obvious change of variable.
A similar result holds if f(z) does not tend to 0, but (9.10.1) holds
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everywhere. The proof is similar, but with an extra factor s—3 in
the denominator.

9.11. The Second Solution. A similar set of theorems might be
constructed for the second solution obtained in § 9.2. It will perhaps
be sufficient to prove one of them, and we take the case of analytic
functions. We shall say that f(z) belongs to A*(w,a), where
0 < w< im0 <a< i, if (i) it is an analytic function of z = rei?
regular in the angle A* defined by r > 0, |0| < w, and (ii) it is
O(|z|~2-%-3) for small z, and O(|z|*-#+3) for large , for every positive
8 and uniformly in any angle || < w—7 < w.

THEOREM 143. A necessary and sufficient condition that a function
f(x) of A*(w, a) should be its own cosine transform s that it should be of
the form (9.2.4), where ¢ 13 any positive number, the integral is the limit
of an integral over (c—iT, c+1iT), and u(s) has the properties

(i) p(8) = p(pe®) is an analytic function of s, regular in the angle
B(w, a) defined by p > 0, |¢| < in+2w;

(i) w(s) s O(|s|-12-%) for small s, and O(|s|ta+3) for large s, for every
positive 8 and uniformly in any angle |¢p| < Ir+2w—{ < }r+2w;

(iil) p(s) satisfies (9.2.3) in B(w, a).

The conditions of regularity and order follow from Theorem 31.

It is then only a question of proving that (9.2.3) is necessary and
sufficient for f(x) to be self-reciprocal.

Integrating (9.2.4), we get

¢+t

{ L |
fl()~——f pt L ds
c—10
1 ¢+1io
—_— —§otxts
=5 J- uis)s—et='s ds,

the other term being zero, by an obvious application of Cauchy’s

theorem. Again,
c+ixo

sinzy _ ~m e s-vds)g—1 dg.
Y T 4m
c—1i%
and hence

c+iw

ff () sir;xy dy = % f er*g—1 dg f fy)evies dy
0 g

c~—10
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»\/ c+ic
= 7’; f e s~y {(2s)~1} ds
c—1o
c+iwo
= “/—(27.7) e*z"’s-*;z(g) ds,

4
¢—iwo

the inversion being justified by absolute convergence. It follows
that

re- /() f 1= ay Eiﬁj: er=s-tfu)—p(()) ds,

and hence that the condition (9.2.3) is both necessary and sufficient.

9.12. Examples.
(1) If (s) = 1 in (9.1.7), then
fle) = 274", flz) = ot-boreie-ie

in the cosine and general cases respectively. The conditions of
Theorem 139 (and a fortior: those of the less special theorems) are
satisfied.

If Y(s) = P(3—s), where P(u) is an even polynomial, or an even
integral function of order less than 1, we find that

_ o ¢ (et
\ fl)=2 Zo R Penth)
is its own cosine transform. If P()is a polynomial, f(x) = e-#'Q(x2),
where Q(u) is a polynomial.
(2) Sonine’s polynomials 7%(x) are defined by

n

. . (__l)rxn—r
() = TZO M (n—r) D(ntv—r+1)

If f(x) = 2T (x)e ¥,
then
- (=1y
$) = | flx)es=dx = Zn-Tve—le+br gy
J. z rl (n—r)! I‘(n—{-v—r—i—l)!

= i ( 1) (+%)r—n—v—1 l__(%_s)n

r! (n—r)! n! (34-s)n+v+1’

If 9(x) = 27 e T(a?),
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then ®
‘[,(8) = 8*"4—‘ f g(x)xl"f-ie-}w’a dx

= Jebrib ff(f)e—lfs d¢ = _(3§+8-i)-l'—1(1+:)“.
Hence wls) = (_l)n"(’;')’

and g(r) is 4+ R, according as # is even or odd.}
The parabolic cylinder functions D, (x) may be defined for integral

n by on

T(2*) = @n)ive —_el=' D, (xv2)
n _ on+t 1ot
and eTHx?) = me hn+1(ZV2).

Thus D,,(x+2) is 4 R, according as  is even or odd, and D, ,,(zv2)
is 4- R, according as n is even or odd. This is equivalent to the self-
reciprocal property of Hermite polynomials (§ 3.8). In fact it is easily
verified that
Hy,(x) = (2n)! Vi T (22), Hy, (x) = (2n+1)!'Vr e TH(x?).
In the case v = } Parseval’s formula gives

c+io

f (@)= do = 5:; j $(w)b(s—w) dw
) .

c—1%

1 G—wpr—stwr
T 2mi(nl)r ) (3wt e—w)r

Denoting this by «(s), and putting w = w’+}s, we obtain
¢’ +io
1 {3—3s)>—w'f» . ,
“O= gy ) {araer—wyen

Changing s into 1/s, and then puttmg w' = w"[s, it follows that
: w(l/8) = 8%w(8).

If now pa(8) = 8 J' 2D, (x) . oe-4=" da,
(2n+1
we have pate) = LAV,

+ A. Milne (1), B. M. Wilson (1).
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and hence p,(s) satisfies (9.2.3). Hencet

x—}Dgnﬁl(x)
is R,.

For negative (not necessarily integral) » we have

— _e‘iz’ ¢ —ti—y-n—1
D) = i J' e-ta-ig-n-1 gy,
0

It follows that

P@Er(—in—1s)
2in+is+11"(_n) -

J 2*-1et?’ D (x) dx =
0

It is then easily verified from the formulae of § 9.1 that}

gv+ielz’ _D~2v_3(x)’ zv-tel®' D 2,(T)
are RB,.
(3) If f(x) = sechz \/(}n), we find that
2\
50) = 2(%) Tez),
1 1 1
where L(s) = F—§§+5§——"" (9.12.1)

and &(s) satisfies (9.1.5) by the functional equation for L(s) (§2.11).
This is another example of Theorem 139.

1 1
@) = Gen 1 aiom)
we find that §(s) = (27)-¥I'(s){(s). Taking v = } in the formulae
at the end of § 9.1, we obtain

$(s) = I T (3s)l(s) = (591)

If

where £(s) is Riemann’s ¢-function. This is an example of the
analogue of Theorem 139 for sine transforms.

Other self-reciprocal functions are associated in a similar way
with the functional equations of other Dirichlet’s L-functions. For
example the functions

cosh(§zvr) 1
cosh(zvr)’  1+2cosh{z,/(3n)}

1 Mitra (1), Watson (4). i Varma (1).
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are R,; they are associated with
1
fle) = Z it )

1 1
Lqle) = ZO (amy e
respectively. And
sinh($zvr)_ sinh{z,/(1m)}
cosh(zvm) ’ 2 cosh{z\/(37)}—1
are R,; they are associated with

26 = > W)

1
L) = Z( {(6 iy (6r+5)s} |
respectively.

(4) It is easily verified from (7.1.8), (7.1.9) that
f(@) = cos(3a?—3m)
is its own cosine transform. This does not belong to any L-class,
but is an example of Theorem 140. The integral (9.8.2) exists for
0 <o < 2, and F(s) = 2t-1T'(ds)cos Ltm(s—13) satisfies (9.1.5).
() The function f(x) = x~* is its own cosine transform, and is an
example of Theorem 142. Here

C B=Ip Be=—

and

R e

which has a simple pole at s = 0, and is regular for ¢ > 0.
A more general example of the same kind is

f@) = 29D (da)x—o+ 24 (3—3a)zel (0 < a < 1).
(6) It follows from (7.5.6) and (7.5.7) that
cos a?+-sin §2?
cosh{zy/(37)}
is R,, and from (7.5.10) that
sin {2

sinh{zy/(3m)}
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is R,. These are examples of Theorems 139 and 143, but y(s) and
1(8) do not seem to be particularly simple.

(7) Taking f(@) = 24, (3a2),

7t2-tv-1

Piv+3+1s)T (v +5—1s)
so that y(s) = y(1—s). By Theorem 140 f(x) is its own Hankel
transform of order v. In this case, however, f(z) behaves like av+}
for small z, and z-* for large x, and does not belong to L2, or to any
Lr for which p < 2.

In the case v = —} the resulting formula is

J (1_27) j?«/yJ_*(Qyz)cos xy dy = NxJ_y(3x?).

we find ¥(s) =

Differentiating twice with respect to z, we obtain formally

A/ (%) I yW_y(By*)cos zy dy = 23J_y(3a?).

This is true if the integral is taken in the (C, 1) sense, but it does not
come under any of our general theorems. A discussion of functions
self-reciprocal in this sense is given by Mehrotra (8).
(8) Let  f(z) = (@ —b3-2J, {by@—b%} (z>b > 0),
Then . 0 (0 <z <b).
(o) = [ e @b, by (2*— b}

b

— pe-tv f (14-u2)iev-Dyiv+iJ, . (b%u) du
0

_ WK, (6%
= TRl
by (7.11.6); and, K,(z) being an even function of u, (9.1.8) follows.
Here f(x) is O{(x—b)¥-#} near x = b, and O(z—#-1) at infinity;
it belongs to L? if » >0, and to L? and L} if v > [1—2/p|.
If —1 <v < 0itis a case of Theorem 140.
(9) The function
f@) = @i (e a?) K, ylaf@®+at) (@ > 0)
is R, (see Watson § 13.47 (2)). By Watson § 13.47 (6) we find

00 = 4] B
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9.13. Lattice-point formulae. There are some interesting
examples of self-reciprocal functions in the analytic theory of num-
bers.t Let r(n) denote the number of representations of » as a sum
of two squares, and let

P)= 3 r(n)—mz, (9.13.1)

osn<z
the dash implying the insertion of a factor } in the last term of the
sum when z is an integer. Then

belongs to R, fe)y == {P('%zr)“l} (9.13.2)

It is clear from the definition that f(x) = O(x%) as - 0. That
P(x) = O(x}) as x> o0 is comparatively trivial, and in fact it is
known} that P(z) = O(x}). Hence f(z) = O(z~!) as x >co. Hence
f(x)is L? and is L? and L3 if p > ¢.

We have

(s) = f { (2_)_1}# §dy = }(2m)be-t f (Pz)—L)aho-t d,

the integral being convergent, and &(s) analytlc, for —}<o<i.
The last integral is

l —mx\atetdy = — — { — e\ xhe—t

of ([ rm—mlahtde = — it [ 3 ) )kt d,
and this provides the analytic continuation of F(s) to 0 < —1, there
being a simple pole at s = —}. If o < —}

f (—mx)rts-tde = ——
1

1s +i
and —
| S rmpitdr = 3 | )+ o)t do
= Z{r(1)+ Ay )}———(”“)” *%_”M
.
where Z(s) = zr(n) 4¢(s) L(s),

n=1
1 See Hardy (17), Hardy and Titchmarsh (4), 212-3.
1 Landau, Vorlesungen iiber Zahlentheorie, 2, 204-8.
S



266 SELF-RECIPROCAL FUNCTIONS Chap. IX

L(s) being (9.12.1). Hence
— 8~ Z(% %8)
&(s) = $(2m)t !W.

T'(s)
I'1—s)
by the functional equations for {(s) and L(s) (pp. 65-6), or inde-
pendently.t Hence $(s) satisfies (9.1.8) with v = 2, and so f(z) is R,.

It follows from the analogue for J,-transforms of Theorem 136
(p. 248) that (9.1.3), with » = 2, holds in the mean-square sense.
In fact it holds in the ordinary sense, i.e.

E*{ (52) 1}‘2 Ti/l—*{?(g“:r)—l}(fy)%(fy)dy (9.13.3)

for every positive £. To prove this we require the analogue for
Jy-transforms of Theorem 58 (p. 83). It is easy to obtain this
analogue by adapting the argument of § 8.18. There we justified the
inversion of

Z(s)

Now Z(1—8) = 71~

A ©
[ Fupfiew) du [ J,uy)wy)fy) dy
0 0

by the uniform convergence of the inner integral. If f(x) is L2, the
inversion is justified by the mean convergence of the inner integral,
and the result is a case of Parseval’s formula for Hankel transforms.
Having obtained the inversion, the rest of the proof is the same as
that given in § 8.18.

Putting y = t/¢, £ = \/(2nx), (9.13.3) gives

Pa)—1 [ (sf £ Jy(t) R L)
omx f ‘P(41r2x)_l}_2z— = f P(4 22:) Tt
Now ° °

2mV{(N +1)x} N 2mvintDay

S8R 50

P(4w2x)_t_ dt_nzo 2 J([ ) {(O)+ i) — } 2t @
N

_ ({2my(nx)}  J[2mf{(n+1)a}]

= Z{r(OH— +r(n)}{ 2 (nz) lzm/{(n-[—l)x} }

2rV{(N + 1)z}

tJy(t) dt

T dmx

T See e.g. Mordell (2), Potter (1).
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= S DI} o)y gy AT
n=0

2my(nx) 2mJ{(N+ 1)z}

_ﬁ {—zm/{(N+ 1)y 2 (N +1)z}]+2 (J)‘ Jy(t) dt +o (1)}

for N oo, z fixed. The terms involving J;[2m{(N +1)x}] are

—{r(O) oA () — (N 1)} 15’:;{5\1,"3;’;}]: oW,

and, since [ Jy(¢) dt = 1, we obtain finallyt
Plx) = x/x;%%z.flﬁmj(nx)}. (9.13.4)

It has been proved by Walfisz} and Oppenheim|| that, if r,(n) is
the number of representations of z as a sum of p squares, and

— ip
P () = ! __T i
W0 = 2 B it g
then P(x) = xt? Z %E%)J*p&n\/(nx)},

1
the series being summable by Cesaro’s means of sufficiently high

order. It follows that e
-sofof)-o
P\orw

belongs to R,,,. If we take p = 3, and use Walfisz’s result
Py(z) = O(x't+<), we find that f(x) falls under the obvious extension
of Theorem 136. This is not true for any larger p.

If we take p = 1, we find that

fiw) = (4(2:) [\/(zw)]) ’

where [u] is the integral part of u, belongs to R;, as may be verified
directly.

'9.14. Formulae connecting different classes of self-reci-
procal functions.tt The simplest such formula is given by
RuLE 1. If f(x) is its own cosine (sine) transform, then

ff ()e-=t dt (9.14.1)
18 its own sine (cosine) transform

t See Hardy and Landau (1), Hardy (15). } Walfisz (1), (2). || Oppenheim (1)
1t Phillips (1), Hardy and Titchmarsh (8), Mehrotra (1), (6).
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Supposing, for example, that f(z) is its own cosine transform, we
have

«©

J (f—r) f g(t)sinxt dt = J (%) fsinxt dt ! f@et dy
— O [ e ay [ ewsi
_A/(W)Jf(y)dyje" sin xt d¢
= J (;2;) I ()] 5%?,2 dy.

9
Now A/ (v:r) xz-T-yz is the cosine transform of =¥, and f(y) is its own

cosine transform. Hence Parseval’s theorem for cosine transforms

gives w ®
A [ 1) dy = [ fwye=v dy = g,
U J a2y J

and the rule follows. The example with f(t) = sech{t,/(37)}, g(x) R,,
has been observed by various authors. Rule 1 is a particular case of

RuLk 2. If f(x) belongs to R,, and

¢+ 10
Mo =5 [ 2T+ TG+ b+ asla s,
e—iw (9.14.2)
where x(8) = x(1—s), (9.14.3)
then 9() = [ fl)kizy) dy (9.14.4)
0
belongs to R,.
A general formula for f(z) of R, is
c+iw
fla) = %@ f WD(3+iutdopp(s)e—ds,  (9.14.5)

where (s) = $(1—s). By (2.1.22),
: c+1io

00) = 5 [ BVTEH bW 502 T+ -t o) X
o X T(3+ jo+bo)x(s)z— ds
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ctio
= é—lﬁ j 28T (L4 Jv+- 38l (s)x—2 ds,
where  y(s) = 2T(F+dp— 1) T (F+ du-+1e)p(1—s)x(s).
Since Py(8) = Yy (1—s),

g(x) is of the same form as (9.14.5), with p replaced by v. This
proves the rule.

Since the rule is symmetrical in p and v, a kernel which transforms
R into R, a.lso effects the converse transformation.

Takmg p=1%v= —1, or vice versa, we obtain

k(z) = .21/2 f T(s)x(s)z—" ds,

where x(s) satisfies (9.14 3), as the general kernel which transforms R,
into R, (or vice versa). Rule 1 is the case x(s) = 1/27. Taking

1 1 V3
X&) = ST —3s) TaaTG—f) ¢ PG,

we obtain

k(@) = Jo(z),  adofx), =t Ky(3z)
as other kernels with the same property.
Taking x(s) = 2i#+*-1 in the general rule, we obtain
k(z) = 2+ HE, . (2),
and, in particular, K (x) transforms R, into itself.

Takin () 2bv-tud
8$) = N
g X = T et TG +3e—19)
we obtain k(z) = xir-HJ,, 4 (2);
nd takin () b
a 8) = ,
SIS \ P W BN ¥ 7 o )
we obtain k(z) = i, o (2).

Naturally any of these rules, once they have been obtained, can
be verified in the same way as Rule 1.

9.15. Other rules for such transformations may be obtained by
combining those already known. For example, if we iterate Rule 1,
we obtain

g(x) = fe—:y dy J f(t)evt dt = J‘tzf_f—fg—vdt (9.15.1)

0
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as a function which is R, (R,) if f(z) is R, (R,). This transformation
is not of the above form; but it is of the form

o) = f sw?) ay (915.2)
0

with k(u) = 1/(1+u). This suggests a general rule for transformations
of this type.
RuLE 3. If f(x) belongs to R, and
1 c+iwo
K@) =g [ TQ-+Hiu+HI0D@+b— o ds
et (9.15.3)
where x(s) = x(1—3s), then (9.15.2) belongs to R,.
If f(x) is given by (9.14.5), (2.1.17) gives
1 c+iw
o) = gz [ PTU+b+ i)l s
c—iw
where  yy(s) = I'(3+3p+36)T'(§+2n—1s)d(s)x(1—s).
This verifies the rule as before. .
In the particular case p = v, (9.15.3) reduces simply to
1 c+io
M) =5 | mateled,
c—1io
where y,(s) = x,(1—s); and this is equivalent to

k(ﬁ) — 2k(z). (9.15.4)

Hence

RuULE 4. If f(x) belongs to R,, and k(x) satisfies (9.15.4), then g(x),
defined by (9.15.2), belongs to R,.

It is easy to verify this directly in the usual way.

Particular cases are 1
He) = ey
zHeB-D
or, more generally, k(x) = m

Taking f(z) = a¥+le-#*', which belongs to R,,and a = 2, 8 = 1—v,
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1 7 _ ‘yi-v y2v—1
= - vig—iyt(L <
o) = 1 [ yriew(t) 7 (145) 7 gy
[

— yt-veir* f {2v-1g-i Ji

we obtain

(putting z*+y% = tz) as a function of R,. In particulary
eis* [ o4 dt

T

is R, -
The formula  g(z) = f y*+Hh(y)e- 2V dy
' 0

for functions of R, where A(y) = k(1/y), is derivable from the above
rule by taking f(z) = a*+te-#', and making obvious transforma-
tions.

Taking u = —14, v = }, we obtain

RuLE 5. If f(z) belongs to R,, and
c+1io

k(x):—zl—i j X e gs,

sin {em

c—io

where x(8) = x(1—3s), then

o@) = 1 ffw(g) dy
:

belongs to R,
For example, if x(s) = 1, then k(x) = 1/(142?), and
— f(y)
g(x) =x x2+y2 y

If x(8) = Vn/T'(3+38)I"(1—13), thenﬂ
k(z) = (l_xz)_* o<z<l, 0 (z>1),

F fly) dy
and x) = LA A Ml S,
9 J J@—y?)
There are, of course, similar rules for transformations from R,
to R,.

1 Hardy (1).
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9.16. The main interest of the above rules is in their formal
appearance. A considerable variety of theorems about them could
be constructed.t We shall give here only one, applying to Rule 2.
The reader should have little difficulty in dealing with the other
rules in the same way.

THEOREM 144. Let f(x) and k(x) be L2(0,00), and let f(x) be R,. Let
9@) = [ fly)k(zy) dy (9.16.1)
J .

be also L¥0,00). Then, in order that g(x) should be R,, it is necessary
and sufficient that K(s), the Mellin transform of k(x), should be of the

form K() = 20E+Hipt+3Td++1ax6),  (9.16.2)
where x(3) = x(1—s), and the right-hand side is L%(}—ic0, }4ic0).

By Theorem 72, with g(x) replaced by k(xy).
4+

[ tomendy= o [ s@R0—oypas
0 $—io
The Mellin transform of g(z) is therefore
G(8) = F(1—8)K(s).
By the analogue for B, of Theorem 136
F(8) = 20T (1 +du+1a)(s),
where )(s) = $(1—s). If g(x) is R,, we have also
6(s) = 2¥T'(}+dv+13s)w(s),
where w(s) = w(1—s). Hence
(e) = ~ 22T ldvt do)uls)
20D (34 tu—de)(1—s)’
which is of the form (9.16.2), with
x(8) = V2D(}+3u+18)T'(F+3p—18)(s) (1 —s)
satisfying x(s) = x(1—s). Hence the form (9.16.2) is necessary; and
the reversed argument shows that it is sufficient.

9.17. A series formula for self-reciprocal functions may be
derived from the function

1) = {yamy )

1 See e.g. Mehrotra (1).
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which belongs to R;. Let k(x) be a kernel which transforms R, to R,.
Then, by Rule 3,

c+1io

Ic(x)=%i f 2T (36)T (34 Jv+38)x(e)2* do;
c—::iuo
and xk'_(x):-% f 2T(1+38) D3+ dv-+Bo)x(s)e—* ds
_c—i:o

is a kernel which transforms R, to E,. Hence

9@) = [ fy)ayk'(zy) dy
0

nv(27)

,.2 f {\/(%ﬂ)‘”“}k'(xy) dy

(n—1)v(2m)

I

nv(em nv(27)

=§1 {[(\/737)'—7&l)k(xy)](n-wm—«/(%") f k(zy) dy}

(n—1)V(27)
= > kney(en)— o T f (u) du

n=1

should be a function of R,. .
The rule may be verified as follows. Let

c+iwo
k(z) = 2%" f K@) ds (c > 0).
c—ixo

Then
2 k{nz./(2m)} =

¢ +1io

o | %@ S fayen)rde @ >1)

n=1

al~

¢ —10
¢’ +io

RK(8)(27)-18L(8)x 4 ds

c+io
l .
= —— 18 -
o f R(s)(2m) 4L (s)a ds +
" e+iw

Hence g(z) = % f K(8)(2m)-18L(8)x~* ds.

c—iw

I
(]
Y

K|(1)
J(2w)w'
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If k(x) transforms R, to R,, then by Rule 3
K(s) = 2’F(%8)P(i+%v+%8)x(8),
where x(s) = x(1—s). Hence
G(s) = RK(s)(2m)¥L(s)

= 28D} + v+ 18)x4(s),
where x1(8) = 7T ($8){(s)x(s).
Hence x1(8) = x1(1—38)

by the functional equation for {(s).
Hence g(x) belongs to R,, by (9.1.9).
As examples, let k(x) = e%, v = 4. Then
1 1
9) = G 1 mjzm)
is R,, asin § 9.12 (3).
Taking k(z) = Jy(), another R, function ist

2
J; 2m)} -
2 "{m\/ J 2‘”) /\/(ﬁ\) n<zfv(2m)
Takmg k(z) = xtHK,, i(x), we obtain}
Z {nx(2m) Ky, y{nay(2m)}—

as a functlon of R,.
1 See § 2.10 (vi). 1 Watson (1).

1 1
J@i—2n2r) " 2

2T (3+ 1)
x
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DIFFERENTIAL AND DIFFERENCE EQUATIONS

10.1. Introduction. I~ this chapter we use Fourier’s integral
formula and its related formulae to obtain the solutions of certain
differential equations. The general method is to transform a
differential (or other functional) equation, involving an unknown
function, into a relation involving the Fourier transform, or some
similar transform, of the original function. The new relation may
be simpler, and so lead to the solution.

That certain differential equations can be solved by means of
definite integrals was shown by Laplace and Cauchy. The main
object of this chapter is to present some cases of this familiar method
as exercises in the use of Fourier’s integral formula.

The chapter is merely a collection of examples illustrating the
possibilities of the method. Most of them are familiar, and the solu-
tions are to be found in standard works. The methods usually
employed, however, are more or less tentative, and often make no
explicit use of Fourier’s theorem. Here we aim at solving the
equations subject to simple conditions which justify @ priori the
process used.

10.2. Ordinary differential equations. We shall first give a
method of solving ordinary linear differential equations, due to
Bromwich.t The method, in its rigorous form, depends on Theorems
33 and 34.

One of Bromwich’s examples is

d? d d
(=

d
( +6)’”+(dtz dt)-"=°’

where x(0) = x,, 2'(0) = x,, ¥(0) = y,, ¥'(0) =y, are given con-
stants.

It can be seen a prior: that z(f) and y(¢) are integral functions of
exponential type. For example, by further differentiation and
elimination we obtain

2" (t)Fc, 2"(t) Fepx' (t)Fcyz(t) = 0.
t Bromwich (1).

(10.2.1)
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Hence Zn3(8) ¢y 2 +A(t) + ¢y 2 HV(8) +-c4 2M(E) = 0.
If |2m(t)| < {K(@)}™ for m = 1,2,...,n+2, it follows that
[Z9(E) | < (Jea| ...+ les KE @)} +2 < {K(@)}+2

provided that K(f) > 1, K(f) > |¢s|+...+|c;]- Hence z(t) is ex-
pansible by Taylor’s theorem, and

w) = | S 200
‘n=0

so that z(t) is an integral function of exponential type. Similarly
for y(¢).
Hence, by Theorem 33,

ot) = o [ G0 du, 90 = o [ n(wiertdu,
c C

Z (EOPH" _ xon,

(10.2.2)
where £(w) and 7(w) are regular for |w| > R, say, and zero at infinity;
and C is a simple closed curve surrounding |w| =

The differential equations then give

[ {E )2 — ) —n(w)(w—1)}ev* duw = 0,
C

(10.2.3)
[ {€@)(w+8)+n(w)(w—w)le dw = 0.
(o}
Let
£(w)(w?—dw) — 7 (w)(w—1) = p(w),
£(w)(w+6)+7(w) (w2 —w) = qaw). } (10.2.4)

Then p(w) and g(w) are regular for |w| > R, except for poles of the
first order at infinity. Hence, by Theorem 34, they are linear
functions of w, say

p(w) = a+bw, g(w) = a+pw. (10.2.5)
Also, from (10.2.2),

Ty = 2Lméf &(w) dw, Z, = 5% J E(w)w dw,
¢

and hence, by Laurent’s theorem,

fw) =0+ +0(—1—) (10.2.6)

fw®
for large |w|. Similarly,

n(w) = y°+Z,‘2 (Izzl") (10.2.7)
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Substituting (10.2.5), (10.2.6), (10.2.7) in (10.2.4), and equating
coefficients, we find
p(w) = (w—4)2o+2,—Yo q(w) = zo+(w—1)yo+¥1-
Solving (10.2.4) for £ and 7, we obtain
_ wp(w)—+q(w) _ —(w46)p(w)+ (w—4w)g(w)
) = ere—2e— "™ T w-Du—9w@—3)

The values of z(t) and y(t) now follow from (10.2.2) by the calculus

of residues. For example, the term in z(t) corresponding to the pole
atw= —1is

—p(—=D+g(—1) et — 62y —2, —Yo+Y1 e
12 12

Naturally the method is quite general. Another simple example is

d%x de |,
-Jt?+2n-£+n r = 0,

dy dy ., dx

T Tt = kg

where z(0) = 0, 2'(0) = A, ¥(0) = 0, y’'(0) = 0. This is given by
Jefireys, Operational Methods, § 3.31, as an example of the operational
equivalent of the above method.

10.3. If we are given a linear equation whose coefficients are
polynomials of degree m, and treat it by the above method, we have
to integrate by parts m times, and the transform of the original function
satisfies a differential equation of the mth order. Consider, for
example, Bessel’s equation,

d%  1dz v?
“2 L =)=,
dx2+x Fral ( xz)z
where v > 0. Putting z = 2"y, we obtain

d¥y  2v+1dy N
c_i?_'_ x ﬁ—{—y——O.

Let us seek a solution which is an integral function of exponential
type. Let it be

y = —?.Lm J. n(w)e*? dw.
¢
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Then

1
Y = ~5 7’ (w)e¥ dw,
¢
dy 1 »
ie = 30 n(w)we™ dw,
¢
d2 1

v = — 5 [ om0+ e du
¢

Hence f {(1+w?)y (w)— (2v—1)wn(w)}e*™ dw = 0.
&

The factor in brackets has at most a pole of the first order at infinity;
hence, by Theorem 34,

(14’ (10) — (2v— Dom(w) = a,
dw
) = a1ty [ S b1y
Since n(w) is regular at infinity, b6 = 0, and

—_— 2\v—%
7(w) = a(1+u) f T
where we take the branches of (w2+ 1)»-% and ({24-1)*+} which are
real on the real axis, and suppose the plane cut along the imaginary
axis from —i to ¢. Then

y= -—J‘(l+w2 ~*e”“’dwf e 1"+*

This can be reduced to a more familiar form. Let w be a point on
the imaginary axis between 0 and 7, w’ the same point after a circuit
has been made round ¢. Then

() =) B
d
= a(l‘l"wz)v—*f (§2+1)v+} —ae?m D] tw?)-d f (§2+€1)v+}"
—w dz B L w dC
Now @y T |

where the suffix denotes the branch obtained by cuts from —ico to
—t and ¢ to t00. Hence ~

(w) ﬂ(w) = a(1+w2)v aK(1+w2)v—§

j (€2+1)”H
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where K depends on v only. Hence

1 1
y=K, f (1—v?)yr-teizo dy = K, f (1—v2)»-# cos zv dv.
- 0

10.4. If we put z = 2y, 22 = 4¢ in Bessel’s equation, we obtain
djz-{—(l—v) +y=0. (10.4.1)
The solution corresponding to z = J,(z) is not an integral function
for general v. Let us look instead for solutions y(f) such that
y(t) = O(e*) as t - oo for some positive ¢, and y(0) = 0.

Such a solution is representable by a Fourier integral, by Theorem
24. Let f(t) = y(t) fort > 0, and f(t) = 0 for ¢ < 0. Then F_(w) = 0,
and F (w) is

Y(w) = x/(%ﬂ) f y(t)et dt (10.4.2)

for v > ¢. Since y(¢) is continuous and of bounded variation in any
finite interval, Theorem 24 gives
ia+A
y(t) = J( hm f Y (w)e—tt duw, (10.4.3)

w,—

fort >0,a >c.
Integratmg (10.4.2) by parts, we have

JemY(w) = — L j v (0)e dt, (10.4.4)

the integrated term vanishing. Slmﬂarly,

=]

J@mY (w) = f ity (t)eit di

0
- “% f () +ty' ()} db. (10.4.5)
1]

Integrating by parts again,

Jem¥ ') = f {2/ (t)+ty" () dt
0

=L f {1y () —y)}edt  (10.4.6)

w2
0
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by (10.4.1). The last integral is convergent since (10.4.4) is; the
integrated term 1
— YO+ ()

must therefore tend to a limit as ¢ —+ co, and the limit can only be 0.
From (10.4.2), (10.4.4), and (10.4.6) it follows that

: v+1
V) = (- )T
Hence Y (w) = Kuw--tetiv,

t e—iu~t+lliw
)= o f -
This is in fact a multiple of #*J,(2+¢), by (7.13.9).

10.5. A similar method may be used to solve differential equations
with a given function on the right-hand side. To take a simple case,
consider

Y vy =40 @¢>0),
where all the functions concerned are of the form O(e¥) as ¢ — 0.
Ifv >c,
y(t)eiwt dt
__?@_?/(_0)_%2 f y" (e dt,

w w?

Jem)Y (w) =

CQ___‘S .

I

0
integrating by parts twice. Hence

I S P U PN
o) = Joms j Bt dt = o f W O+Ry ) de

— —wr)+ 20T ey,

N@m)  y(2m)
. (D 1 0)—y'(0
ie. V) = o i
Hence for a suﬂiclently large, in particular @ > ¢,
1 D(w) 1 wwy(0)—y'(0)) -
v = Tem tim J: . {k*—»uﬂ Em BP—u? ;e e dw.



10.5, 10.8 DIFFERENCE EQUATIONS 281

In the first part we can insert the Fourier integral for ®(w), and
invert, by absolute convergence We obtain

t
1 J' (@) dz f etute = % J' $(@)sin k(t—z) de,
[}

evaluating the inner mtegra,l by the calculus of residues. The remain-

ing terms are sin kt

y(0)cos kt +y'(0)-

Hence

y(t) = y(0)cos ki+y'(0) sin kt

+L j H(x)sin k(t—x) dz,
the usual solution.

10.6. Partial differential equations. Obtain the solution v(z,t) of

v o

T2l (—0 <z t>0 10.6.1

=g (—w<a<w, t>0) (10.6.1)
such that v(x, 0) = f(z) (—0 < & << ®).

This is the classical problem of the flow of heat in an infinite rod
with a given initial temperature distribution, v being the temperature,
¢t the time, and x the distance along the rod.}

Formally we proceed as follows. Let

1 .
1% — ) y izt do.
(E’ t) = (2'”) f @(x, t)e r

Then - o

aV gzt 1 ) 1ot
J(2w> f = 7@ f s

—% J\ vei"fdx= ——ng’

integrating by parts twice, and assuming that the terms at the
limits vanish. Hence

V(1) = A(E)etY,
where A(£) depends on ¢ only. Putting ¢ = 0,

@

A(§)=m_

t Riemann-Weber, 2, § 36; Carslaw, Heat, § 16.
T

1 f f@)eiet dx = F(g),
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F being the transform of f. Hence
V(g’ t) = F(g)e—f'l,
and the solution is

o(, ) = f F(g)e-tt-ist g,

«/(2 )
or, in terms of f(x),

1

v(x,t) = o

i

1

2

e-§'1-1xt g f flu)e  du

i
8% =g l8k'—"o8

flu) du f e-ti-it@~u) d¢

U [ s vous
= W _J; flu)e-¥a-wlt dy, (10.6.2)

That in fact v(x,t) - f(x) as {0 follows from the theory of
Weierstrass’s singular integral. The method.would be justified e.g.
if all the functions concerned belong to L(—o0,00). But the follow-
ing procedure is much more general.

Suppose that |v(z,t)| < Ke’® for some ¢ and all t, with similar con-
ditions on any of the partial derivatives which occur. We shall say that
such a function is of exponential type.

Let v(z,t) > f(x), as £—> 0, for almost all values of z. Then
If(x)| < Ke'®l almost everywhere.

Let

1 ¢ 12 — 1 i 1zl /-
o) = 5 of o et dz,  V(L1) = vl f oz, et de,

where { = £4-in. Then V, exists and is regular for 5 > ¢, V_ for

n < —C¢.
Now if > ¢,
6V+ — { v izl —_ % ixl
J(2n)§t— = f—t—e dx = i dx
0 o
= [P et] — il f P giat g
ox 0 7
0
= [Z—ge‘xl] z{[vewc] f velst dx

= —,(0,8)+3v(0,8)—L2/( 2#)V+(C, ).
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This is an ordinary differential equation, of which (e.g. as in § 10.5)
the solution is t
—;'l . ’
jkz,,) f {v,(0, 7)—1Lv(0, 7)}el'” dr.
0
Making i—> 0’ _

=l = L izl Jp —
AQ) = lm V) = o f f@)et de = F(Q)

Vil t) = A(Det—

by dominated convergence, since v(x,t) — f(x) for almost all z, and
[v(z, t)eit| < Keo-m=,
Hence ViL,t) = Fy(L)e-b—x(L, ),
where y({,?) is an integral function of { which - 0 as ¢ > 4 c0.
In the corresponding argument with V_ the integrated terms
appear with the opposite sign, and we obtain
V4, t) = F_(De*4-x(L, 1)
Hence, by Theorem 24,

ia+A

1 .. . .
vt = o lim | Ewer—xmetar+
o
1 ib+A
+aim [ et et
ib-A
The contribution of x is plainly 0. The contribution of F, is

ia+ o @ @ e+
L[ etritay f Fluped du = L f Flu) du f e-Ut-ilia-w) g
27 27

ia—o 0 0 ig—

(inverting by absolute convergence)

= W(ln?) f J(u)e~ a0 gy,
0
Similarly for F_, and we obtain (10.6.2) as before.

We do not know whether, for a unique solution, it is necessary to
assume that v(x,f) is of exponential type. But some condition
bearing on v(z,?) and not merely on f(z) is necessary. It is an easily
verified rule that, if v(z, t) is a solution of (10.6.1), then so is

t—‘}e**z"'v S_C’ ._._].'. .
4 t
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Hence, v(z,?) = z being a solution, so is
at-te-iot

as is easily verified; and this function tends to 0, as ¢ - 0, for every
x, without vanishing identically. It is of course unbounded near
xz = 0ast—>0 (eg. for x = ), so that it does not satisfy the con-
ditions of the above analysis.

10.7. Obtain the solution v(x,t) of

v o

such that v(z,0) = 0 (x > 0), v(0,t) = f(¢) (¢ > 0).

This is the problemt of the conduction of heat in a semi-infinite
rod, initially at zero temperature, the end being suddenly raised to,
and maintained at, a given temperature f(¢).

For a formal solution let

V(& t) = / (2) f v(x, t)sin éx dx.
( ) f —~sm£x dx
= ( ) J ——sinfx dx
= ._A/(%)ffe;—vcosfx dx
= —J(g)g{[v cosfx]:—}—ffvsinfx dx]
— J ( )éf(t) —gw,
Hence . = A(£)et"4- J ( ) e'f"f ef*uf(u) du.
Since v(x,0) = 0, V,(£,0) = 0, and hence A(f) = 0. Hence
v(x,t) = ;—‘: f £e—$'sin ¢x d§ f et'uf(u) du
(] 0

t Riemann-Weber, 2, § 40; Carslaw, Heat, § 23. '
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2 ! -
_ 2 f Flu) du f £etu-Din £z dg
ki
0 0 .

=% — )t gy
= 2~/"_ff(u)(t u)~te du

0
That this tends to f(z) in general follows from Theorem 13.
For a rigorous proof suppose again that v(z,?) is of exponential
type. Let

VL =1 J' o, et dz (> o).
N(2m)

Then o ©
ov o %
| Lt = | Z_¢il=

(2m) - = fat ez dx Pl dx

0 0

= —0,(0, 1) +ilf(t)—(2m)(?V,
integrating by parts twice. Hence

.t
V@0 = AQe+ 2 [ (=00, wje du

As before, A({) = 0; if f(z) and v,(0,u) are bounded in a finite
interval, the other term is

t
Ofe-¢* [ ¢1e au) = 061
0
as £ > +oo. Hence, by L2 theory,

ia+®
1 d S|
—_ .2 z {'l {l
v(x, 1) o T - d{f{z{f(u) v,(0, u)}et™ du
ia—o
for z > 0, while the right-hand side is 0 for < 0. The repeated
integral is absolutely convergent, and we may invert, and then

replace a by 0 The term in f(u) contributes

Qﬂ dz f S(w) du f (1 —e-#=)ef'u-0 g¢

1_ i f S(u){1—e-tetle-wy «/

t
= 43 fw)e-teie-w

0

)

du
(t—u)t’
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The contribution of the other term is an even function of 2. Changing
the sign of z and subtracting, we obtain the same result as before.

10.8. Obtain the solution of
o _ 0 _ s
ot~ ox? ’
where v(x,0) = 0 (x > 0), ©(0,¢) = f(t) (¢ > 0).
Proceeding as before, we obtain

%If* = (;2;) f (g—z—;;— azv)sin Ex dx
0
= JBJero—gm—oa.

V, = A(§)e~€ oy A/ (%)fe‘(f'“‘”‘ f e€'+eMuf(y) du,

A(€) = 0 as before, and

Hence

t )
o, t) = 2 f f(w) du J £e€+Xu—0gin & dE
WB 0
t
- % f Fla)(t— 1) -te---i2=w) dy,
™
0

The rigorous solution may be obtained as before.

10.9. Solvet

v
Et.=a§—a2v 0 <ax<l),
where v =1, (x =0,t>0),v=0(=0,0<z <), and
ov
— = =l,
=0 (=10

Here we take ¢ as the variable of the Fourier integral, and suppose
that |v(z,t)| < Kedtl for all z. Let

Vi, {) — W‘%) f oz, el dt (> o).
(4]

1 See Jeffreys, Operational Methods, p. 70.
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Then

oV oilt
ot ¢(2w) f a2’
= —1— ZLalett dt
Jem) f (& ”)e
— 1 eill]” m,thd __,w,illd
T 2 BRI E o |
= (a2—1Q)V.
Hence V = A({)cosh{y/(a*—i{)x}+ B({)sinh{,/(a®—12{)x}.
When z = 0 ©
Qg — — Y0
" F(0,0) = «/(2 ) et dt ’iC\/(27T)
)
Hence A = W;'C—x/(%"‘)'
oV

When z = 1, e = = 0. Hence
A({)sinh{/(a®—i)l}+ B(¢)cosh{y/(a>*— i)} = 0.

cosh (o —it)a) — SR BHE 2 )

Hence

—__%
it |
vy coshf{{/(a?—il)(z—1)}
18y/(2m)  {cosh(e2—i0)l}
Hence for ¢t > 0 iatw
Vy cosh{/(:>—i)(x—1)} . d
v 1) = T 2m f CO{;I/I{\/ (o2—10)l} )} v g

Here arg./(o«>—il) varies from }m to —}=, and the integral is
absolutely convergent if 0 <<z < 1.

ig—o

10.10. Obtain the solution oft

o o ldv

o cr2+r or (¢>0,7>a)
such that v(r,0) = 0 (r > a), v(a,t) = f(t).

1 See Nicholson (2), Goldstein (2).
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Suppose that v(r,£) = O(e+). If

VD = W%?) f vir, De e (7> o),
0

then @
2V 10 ov
T4 ) = | el
J(?ﬂ')(arz + V) f 5 et dt
0

r or
= oo —il [ veitt dt
0

= —ilJ2m)V.
The solution of this may be written
V(r,0) = AQHP{rJGO}H+ BOHP{r{(0)},

HP ) = Jy2)+iXo(z),  HP(R) = Jolz)—i¥(z).
Let { = &4k, (i) = {' = £'+iy’. Then
f:z_nlg — —k,
i.e. {’ varies along a branch of this rectangular hyperbola, say the
upper branch. On it

|HO (L) ~

where

Ae™" Aem’
—_, H@ (7)) ~ e
gy O e
Since V(r, {) = O(er) in the upper half-plane, we must have B({) = 0.
Also, as r > a,

1 2 1 —
anewﬁjﬂmam—Fm.

F
Hence A(L) = ITSF’{E(«%@'CT}’

and the solution is

ik+w
1 HP{VE0)}
0= gam | O Epieiy
ik—w©

where }7 < arg \[(i{) < §n.
For suitable functions f(f) we can make k — 0, and obtain the
solution in the form of integrals along the real axis.
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10.11. Obtain the solution of

0%
v ax2 oy? =0 @=00<y<0
such that v=f®) (@=0,0<z<o0),

v=20 (y=105,0< z<<o0),
v=20 x=10,0<y<b).
This is the problem of the steady distribution of heat in a semi-

infinite strip with the edges kept at given temperatures.t
Formally, let

Vié,y) = J (—27_;) fv(x, y)sin £z d.

o, (2) f O e do
Sy p 2
- B 3

J ) f?—xzsinfx dx
° o©

J( )[%sinfx]:‘l—A/(%)f f Z;:cosgx dx

= »/(,2",. fvcosgx]:+A/(§)§2fvsin§xdx

V..
Hence V, = A(€)cosh £y+ B(€)sinh £y.

Then

[

II
|

]

Making y—> 0, A(£) = J (1_“:) f flz)sin & da,
0

so that 4(£) is the sine transform of f(x), 4(¢) = F,(£).
Putting y = b,
A(€)cosh £b+ B(€)sinh éb = 0,
B(¢) = —coth £b E(§).
Hence = F,(£)(cosh £y—sinh £y coth £b)
sinh §(b—
= F(¢ )—~s—i§;Tby‘)’

1 Carslaw, Heat, § 45.
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and oz, y) = J (%) fm n(g)%f%;_wsinfx dt.
[1]

In terms of f this gives

v(x,y) = %ff(u) dufilgsthﬁ(l———ng;y)sinfxsinfu d¢

Y ( 1
_s‘“T f s (u)(cos(b—y)w/b+cosh(x~—u)1r,/b—
0

1
- cos(b— y)w/b—{—cosh(x—{-u)vr/b) du

That this tends to }{f(x+ 0)+f(x—0)} wherever it exists, follows
from Theorem 18; for

sinh ¢(b—y) — gtu_ _§bsmh &y
sinh &b sinh &b’

and the contribution of the last term is clearly 0.

Suppose now that v(x,y) = O(e®) as x - co, uniformly with respect
to y, where w[b < ¢ < 2m/b.

Let V(¢,y) = \/(2 ] f v(x, y)ese dx,

where ¢ < 7 < 2n/b. Then
N@m )—~ f eilr dx
= — f 2—9:;(:"5“5 dx

3v X (=<} . . @
_ Y iz ilz1® 2 i{x
= [axe ]0 +e{veis] "¢ (! ve’?® dx

= g(y)+(2m)?V,
where g(y) = v,(0,y). Hence

V() = AQcosh Zy+ BOsinh iy + 7 f sinh {(y—u)g(w) du.

Making y — 0, we obtain, by dominated convergence,

A() dz = F({),
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and making y — b,
0 = A({)cosh [+ BOsinh 2o+ o 2 = f sinh {(b—u)g(w) du.

Hence
V(L,y) = Fotnhib—y) , sinhiy—b)

smh T y(@m)sinh %) o bug(w) du —

sinh {y

b
——— 22 __ | sinh{(b—wu)g(u) du.
J(27){ sinh {b J

Hence if ¢ < a < 2n/b,

smh {(b Y) itz
4(2) f T Y g+

ia+®
1 sinh {(y—b)sinh{u__.r. .,
+§;f9(u)d“ f E Y Fdl

{sinh ¢b

b
_1 J‘ o) du J‘ sinh {ysinh {(b—u)e_i& dr
ﬂ'y ia e
= v(x, y) (x > 0)7 0 (x < O)'
Replacing z by —z and subtracting, we find that, for x > 0, v(z, y)
is equal to the above expression with e~ replaced by —2isin {z. In
this form, if we replace @ by 0 in the last two terms, we obtain 0;
but if @ > /b, the pole at { = in/b gives a residue term of the form

Ksin"_;/sinh’;_x. (10.11.1)

In the first term we may insert the Fourier integral for F({) and
invert, by absolute convergence. The result (again allowing for the
pole at { = ixn[b) is

| Fuyx(w) du,

where 0

1 . my 1 1
x(u) = —sm—( -

20 b b—y r—u b—y z+u )

cos 5 1r+cosh—b—ar cos —b—rr+cosh 5"
2. my —mufb,
bsm b 7Y inh T2 5 Le

We obtain the same solution asrbefore, plus a term of the form
(10.11.1), which is a solution of the corresponding problem with f = 0.



292 DIFFERENTIAL AND Chap. X

The solution in this case is therefore not unique, unless we make
some hypothesis which excludes such a term.

10.12. Obtain the solution of
% _ %
=g (O <E<®0, 1>0),
such that y(z, 0) = f(z), y(x, 0) = ¢(a).
This is the problem of the motion of an infinite string with a given
initial displacement and velocity, y being the displacement at distance

z along the string at time ¢.
For a formal solution, let

1 [ .
Y0 = 75 f y(@, t)eits d.
Then _ww
¥ 1 Py e,
e J%)Iaﬂe dx
1 [y
= M J‘ 6x2e dx
= —fzys

integrating by parts twice. Hence
Y = A(€)cos ét+ B(€)sin €L,
and clearly A(¢) = F(§), ¢B(€) = G(§). Hence

f F(f)coséte-b2 df +—— GO g —>’gin £te—i= dE.

The first term is
Zla—r J {e-ite-dpeitva) dg f fw)e du = Y fe—t)+-fz-+1)},
and the second is

L Sln gte-—;fz df f g(u)e1fu du
27 Y3
- x4+t

=1£r f g(u) du J- sin £t cos é(x—u) d¢ =1 j g(u) du.
—® ¢

3

0 x—
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x4+t

Hence  y(z,t) = Hfl+t)+fla—t}+1 [ glu)du,
z~t

the classical solution.
For a rigorous solution let y(z,t) = O(e'*!), and similarly for the
partial derivatives. Let

@ 0
Y.(L,0) = «7(%;) f gz, et dz, Y. (1) = 7(276 J' Yz, t)eit= da,
0 —o0

where Y, exists for n > ¢, Y_ for n < —c. Now

-]

Y, (% g, mff_?/ ile
\/(21r)§—2—_ j-a—t-ie dr = f i dx
B 1]

= [’deih]o __iC[yeiZz]:_ e UJ' yeilz da
= —(t)+il(t)— {3 (2m)Y,,
where ¢(t) = ¥,(0,t), (t) = y(0,t). Hence

Y, = A({)cos {t+ B({)sin {t— sin {(t—u){$(u)—ill(w)} du,

¢
1
V(2m)L 6"
and the initial conditions give A({) = F,({), {B({) = G .({). Then
Y ({,1) = F.({)cos L+-L1G ({)sin Lt+-x(L, 1),

where yx is an integral function which tends to 0 for { = £k,
£ > 4oo. Similarly,

Y_(L,t) = F_({)cos {t+-L2GQ_(L)sin Lt— x(L, 8).
Now ia+A b+

I e 1 _
y(x,t)——m}l_{g. Y, (e dg +«7(?”—)§]—T° Y_(L,t)e-H=dg,

ia— -
where @ > ¢, b < —c. The contribution of x({,?) to this is 0. The
contribution of F is
1 ia+A
- lim F ~i(z-H) | p~illx—~t)
J(27T) A——»oo. f +(€)%{e +e }dl +
1w

ib+A

+\/(—;n) i’;”u‘oaj ) F_(Q)He W0 te-bat) al = Hf(e+0)+f@—1).
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The contribution of G, is
ia+ o

2m ¢
0 ta—o0

(inverting by the bounded convergence of the (-integral). The
{-integral is = if x—¢ < w < 2+4t, and otherwise 0. Similarly for
G_, and we obtain the same result as before.

10.13 Obtain the solution oft

Py %y
wom=0 0<z<lt>0
such that y(os t) =0, y(l9 t) =0, ?/(fc, 0) =f(x)’ and yt(x’ 0) =0.
This is the problem of the vibration of an elastic string with fixed
ends, y being the displacement of the string at distance x along the
string at time ¢.
Suppose that y(x,t) and its derivatives are O(e?) for some c. Let

1 [ ;
YD) = s f Yo, e i
0

for n > ¢. Then

@ o]

&Y (6 oy
‘/(277)5:}3 = fgi-?—;ewdt = f—az-z-e &dt
0

_ [ ] _; ma_?/ il
__[-éie‘ . 74 ate dt
0

= —il[yei])” — 2 f yeill dt = ilf(z)—L%/(2m)Y.
Hence 0

Y = A({)cos {x+ B({)sin Lz + -/(;—") f f(w)sin L(x—u) du.
v 0

The initial conditions give Y (0, ) = 0,Y (!, {) = 0. Hence 4({) = 0,
and

. ]
B({)sin {l+ W% f sin {(1—u) f(w) du = 0.
0

+ Riemann-Weber, 2, § 85.
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Hence )

Y= J(zﬂ)sslll:lgff(u)smz(l —u) du +«/(2 )ff(u)sm{(x—u) du
*/(;‘n) smsfn(la < f flulsin Gu du —
. . l
- ﬁﬂ%i% f flwsin {(—u) du.
Hence iato - *
y(x,t) = Elr-@ f g—n%—z——me‘w 74 f f(u)sin {u du +
iat o

+2_1;i f ss’:‘n ?e—»a dl f f(w)sin {(l—u) du. (10.13.1)

If we replace ¢ by t+2! and subtract, we introduce a factor
2isin {le—¥, and the resulting integrals tend to 0 when a@ - —oo, if
t > 0. Hence the solution has the period 2/, and we may suppose
0 < t < 2I. We then write

i 2 i,
sin{l sin {{
and the contribution of the last term is seen to be 0 on making
a - 0. The contribution of the first term may then be deduced from
Fourier’s theorem. For example, the first term in (10.13.1) gives

ia+o

— J {eil@-z-b_gileb} gL f flu)(etv—e-itv) du.

The first terms in each bracket give

—if(@l—z—1)
if 20— 2z < t < 2l—zx, and otherwise 0. The complete solution may

where f(x) is defined outside (0,1) by saying that it is odd and has
the period 2!.

If f"(x) exists everywhere and is continuous, the whole process is
plainly valid. In other cases the differential equation is not satisfied
everywhere, and the given conditions are not strictly consistent.
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Suppose, for example, that f(z)=2 0<z< }), flz)=1—=
(31 < 2 <1). Then f'(x) = 1 or —1, and f’(x) = 0 where it exists.

To cover a case of this kind we could restate the problem by assum-
ing that, instead of the differential equation, y satisfies

(%Z;)z =, (63::):,”l %zf?/dx

for every ¢, for all but a finite number of values of z, and that oy/ox
is bounded in z for each ¢. Then

(aag)xsx, (Z)x_x J(zw) {(@x)m . (%)z=x,}em dt
= \W%;T—)J‘ (;;:2 J. ydx)eill dt

(2”)[f ydxela]o —\Té%femdtj.ydx

x;
(a.ssuming that d% f yder—>0ast—> ())

&

«/(2 ] f(x)dx ngde

&Yy . . 1{f(x)
Hence P exists, and is equal to == \/( o)

proceeds as before.
Another equationt which may be solved in a similar way is

Ry oYy
o oxt

where g is a constant, y(z, 0) = g(lx—3x2), ¥(0,¢) = 0, y,(z,0) = 0.

—{2Y. The analysis then

=g <z <,

10.14. The problem7 of the waves on a plane sheet of water, caused
by a disturbance of strength f(t) at a fixed point (the origin), depends
on the solution of

o (% | 104
26 _ 1% 0, ¢ > 0),
o (arz 81') (r>0,¢>0)

T Jefireys, Operational Methods, p. 59. I Lamb, Hydrodynamics, p. 297.
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where lim( 21rr%) f@&) (¢ >0).
Let O(r,{) = J(z ; f B(r, tyeitt .
ay

Then (6r3+r Br) (211)_[ e o

If the surface of the water is initially ﬂa,t and at rest, ¢(r,0) = 0 and
#(r,0) = 0, and the usual partial integration shows that the right-
hand side is —¢*b. Hence?}

r{ T
o, ) = @R (F)+ B (%)
Since ® must be bounded for I({) > 0, B({) = 0. Also

1 i o .
F{) = Jer )ff(t)e Udt = hm J(zﬂ)rf e Udt}
v [0 OO . 2w — %
= l‘l’%( 2"’5;) = }i'?TA(C)H?)(EL) = 2rd(l).
Hence 1 r
(s, 2) = %F(C)Ha“(f),
a4 o
#) = o = f Fu (et ar
iat®
-2 f f(w) du f H:,v(ff)eilw—o at.
The inner integral is 0 if t < u-+r/c, and otherwise it is
2
Jw—02—r¥c%}’
Hence cosh-tet/r
d 1
(r,t) = f J{(t—%)2jr2/c2} = f f (t—g cosh )\) d)\.‘
0
10.15. Obtain the solution of }
%=u (x>0, y>0)

such that u(z, 0) = a, u(0,y) = a.
t+ See Watson, § 3.6. 1 Bateman, Partial Differential Equations, p. 125.

U
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1 ¢ .
Let Uy) = —5— j u(, y)eile dx
A(27) J
for 4 > ¢. Then

oU 1 8ue£ t d
o «/(2") %y
1 [au e"C”‘] i g
o= e | 2 — et dg
Jem|ay T zw(zn) f Gty
_v

g’
since (with sufficient continuity) «,(0,y) = 0. Hence

U(L,y) = A(L)evE.

Making y — 0,
A = aeiledy = — 0
O = Tem of ST
ik+ oo
a eiﬂlg—iic
Hence w(x,y) = — 5 T
ik—wo
= al,{2|(zy)}
by (7.13.9).

10.16. Differential-difference equations.t We shall illustrate
the general method of solution by considering the simple special case

@)= %b{f(erh)—f(x—h)}. (10.16.1)

We shall first assume that f(z) = O(e®™) for some positive c. It
follows by repeated appeal to the equation that f(x) has derivatives
of all orders, each of which is O(e°*!); and if f(x) satisfies the eqliation,
so does f*(x) = f(x)—f(0)—zf'(0), and f*(0) = f*'(0) = 0. Hence we
may suppose without loss of generality that f(0) = f'(0) = 0.

Define F, (w), F_(w) as usual, for v > ¢, v < —c respectively. Then

1 Hilb (2), Titchmarsh (16), Kitagawa (1), Dickson (1).
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as |w| — o0; and similarly for F_(w). Hence (1.3.4) and the formula
obtained from it by differentiating under the integral sign are both
valid; and (10.16.1) gives

ia+eo
. e—thw__ gihw .
J. (—T«W—— ——T)F+(w)e"w dw + cee 0,

where ... indicates the corresponding term with b and F_ instead
of a and F,. Hence, by Theorem 141,

(sin hw sin hw

L _w)ﬂ(w):x(w% (‘h

where y(w) is regular forb < v < a,and x(w) - 0asu - $00. Hence

~w)F_<w) — —x(w),

b+
w)e—wcw h X(w)e—ixw
@) = \/(2 ) f s1nhw—hwdw —J(@2m) f sinvhw-—hwdw'
ia—w b—ow

This is the sum of the residues at poles in the strip b <v < a. There
is a triple pole at the origin, giving a quadratic in z. The other zeros
of the denominator give exponential terms. Hence

f(x) = A+ Bx+Cx?+ Y C e~ (10.16.2)

where A, B, C, C, are constants, and w, runs through zeros of sin hw—hw
other than 0 such that |I(w,)| < c.
If we do not assume that f(x) = O(e“!), we can proceed as follows.

. 1 g
Let »Fa,ﬁ(w) ~ S J F@)en de.
Then
B+h
J. fla+h)er dx = J fla)ez=h) dy
a+h

= e-w’h'\/(2"){ a,ﬂ(w)+Fﬁ,ﬁ+h(w)‘Fa,a+h(w)}’
and similarly with —hA. Also

B
[ 1@yt daz = f(B)esB—f(e)eio*—iwy(2m)F plov).

On multiplying (10.16.1) by e®* and integrating over (, B), we thus
obtain

J(2m)ih~Y(sin hw—hw)F, g(w) = P (w)—Dg(w),
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where
Oufw) = f(@eion— V2 oiinp, _o0)—ctrF,_, (),

and similarly for @p(w). Now

e+

fla) = \/(2 ) f Fgwe=dw (o <z <f)
ig—oo
for any real a. Choose a so that no zero of sinhw—hAw bhas the
imaginary part a, e.g. take a positive and sufficiently small. Then

ta+w ia+w 3
f q)a(w)e—zwz _hl. (I)B(w)e-—zwx dw
2m sin hw—-hw 2m sin hw—hw

ia-a
It is easily verlﬁed that for a fixed g, and I(w) = v > 0,
Dg(w) = O(e®P),
Also we can choose a sequence of contours, e.g. the squares C, with
vertices at 2nwh~1(4-14-1), on which [sin hAw—hw| > C|w|. The usual
_ process of contour integration then gives

(I)ﬂ(’l))e’“‘”‘c d)B(w,)e—twvm
2m f sxnhw——hw = z coshw,—1 (@ <B—h),

where w, runs through the zeros of sin Aw— hw in the upper half-plane.
The coefficients in this series are independent of B, since

Do) = mt|r @)~ B+ +2lhf(ﬁ—h)}+
+ezw,,ﬁ(@w _|_ e-thw, 2lheihw,,) = 0.

Similarly the term involving @, gives a series depending on the zeros
of sinhw—hw in the lower half-plane, convergent for z > a+th,
together with a quadratic in  arising from the triple zero at w = 0.
The result is that (10.16.2) again holds, w, now running through all
zeros of sin hw— hw except w = 0, and the series converging uniformly
in any finite interval.

10.17. The equationt
n—1
o)+ S a,fe+b,) = 9(@)

1 For another method see Schmidt (1).
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can be treated in a similar way. Consider the case in which each
function is O(ec*!). By putting

£4(0) = F@O—FO) = T o 0(0)

we can reduce it to a similar problem in which

£(0) = f/(0) = ... = fo-1(0) = 0;
and repeated partial integration then shows that w»F,(w) belongs to
L3(ia—oc0,ta+0) if @ > ¢, and similarly for F_(w). It follows as in
the previous section that

ia+wo
J’ {F.(w)K (w)— Q. (w)}e== dw +... = 0
where K@) = (—iwy+S a,(—iw)re—om,
v=0

and the integrals are mean-square integrals. Hence, by Theorem 141,
F,(w)K(w)—G,(w) = x(w), F_(w)K(w)—G_(w) = —x(w)
where x(w) is regular for b < v < a. Hence

" Gu ),
T = J(z)f Kaw) © ot

176 (w0)—x(w)
w)— x(w
+~/(27r) K(w)

e~ dap,

where a and b can be chosen so that all the zeros of K(w) in
—c<K<v<ec,

but no others, lie in 4 < » < a. The terms involving x(w) can be

calculated by the theorem of residues. The result is

ia b+
_ 1 G (w) g—izw G_(w)
f(”)—«/@w)m_fw Kw) 0t

et dyy |

«/(2") K (w)
+ 3 emiom,

where w, runs through the zeros of K(w) in the strip —c < v < e,
and C, is a constant for simple zeros, a linear function of x for double
zeros, and so on.

We have used L2 theory in the proof, but there is no difficulty in
avoiding it, e.g. by first integrating twice, so that all the integrals
dealt with are absolutely convergent.

The problem can also be solved by the method of the last section
in the case in which the functions are not O(ec®),
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10.18. Difference equations. A pure difference equation can be
solved in the same way. Take, for example,
fla+h)—f() = g()
with the usual assumptions about f and g. This is equivalent to

ta+ o
j {F,(w)e-ierv_ F (w)ei=0— G (w)e~=} dw +
: ® ib+ 0 ’
f (F_(w)e-i@+Dwo_F_(w)e~i=w— G_(w)e==} dw = 0.
b—o
Hence Fw)(e-w—1)— G, (w) = x(w),

F_(w)(e™—1)—G_(w) = —x(w),
where y(w) is regular for b < v < a. Hence

x(w)+G+(w) —izw oy
flx) = «/(2 3 f e dw

e—w;

ia—o

j x(w)—G (w)
J(21r) e~

The terms involving y(w) merely represent a function of period 1,
which is obviously part of the solution. Hence the solution is

e-ixw dw.

flz) = f*@)+ mﬂ) f < Jf)l e-izw duy +

b+

J- G.‘ (w) e—txw dap,

(271) w1

b~

where f*(z) is any function of period 1. :
The formulae are valid in the L2 sense if g(x)e—* belongs to L2 for
some ¢. Under more special circumstances we can reduce it to
other forms. If we expand 1/(e~*—1) in powers of ¢~*, we obtain

formally f@) = f*@)—g(@&)—gla-+ 1=
which is obviously a solution if the series converges.



XI
INTEGRAL EQUATIONS

11.1. Introduction. THE most familiar form of integral equation is
b
f@) = g@)+A [ Kz, y)fw) dy,

where g(x) and k(x,y) are given functions, and f(z) is to be deter-
mined.

The equation can be solved by means of Fourier integrals in certain
special cases; these are, roughly, the cases in which k(, y) is of such a
form that the integral is a ‘resultant’ of one kind or another.

We shall usually suppress the factor A, which is of no importance
in most of our results.

First take k(x,y) = k(x—y), and the limits —oo, 0, so that the
equation is -

f@) = 9@+ [ ke—y)f@)dy (—o <z <o). (1LL1)
A formal solution may be obtained as follows. With our standard
notation for transforms, we have

F(u) = :/-(;—ﬂ‘) f {g(w)-l- j k(x—y)f(y) dy}eix“dx

G(uw)-+ f(./) dy k(x—./ Jei= dx
/

o

= G(u)+ «/(2 ) f fy) dy J k(t)el(uﬂ)u di

G(w)+/(2m) F(u) K (). (11.1.2)
G(u)
1—JCmK @)

and the solution may be written

Hence F(u) = (11.1.3)

fl

e~m du. (11.1.4)

\/(21r) f I—J ‘77T)K
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Also, (11.1.4) gives

VR S 1)

fie)=ge) 4‘2"’_!0 (—enx

— K(u) —iru
= f G(u)mme du.

— G(u)} e~izu dy

K(u)
1—/(2m) K (u)
and m(z) is the transform of M(u), this gives

f@) = g@)+ [ gomiz—1) de (11.1.5)

— 0

If ‘ M(u) =

as another formal solution.
The equation

f@) = g+ f f(y)k(g)id;—’ (11.1.6)

may be reduced to the form (11.1.1), or solved similarly by Mellin
integrals. The formal process is

F(6) = G(s)+ f o1 da f f(y)k(g)%’!
= G(e)+ f 1% f et ds

= 6()+ [ flwly~ dy [ kupw-t du
0 0

= 6(8)+F(8)K(s),
and the solution is etim
1
flx) = 5 1(_5(;:8):6*’ ds. (11.L.7)

This can also be reduced to a form corresponding to (11.1.5).

The simplest conditions under which the process is valid are
given by

THEOREM 145." Let g(x) belong to L*(—o0,0), and k(x) to L(—o0,00),
and let the upper bound of K(u) be less than 1/,/(2m). Then (11.1.4) gives
a solution of the equation of the class L?, and any other solution of L* is
equal to it almost everywhere.
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Clearly G(u)/{1—.,/(27)K(u)} belongs to L2, so that (11.1.4) exists
in the L2 sense, and defines a function f(x) of L?; asin § 3.13

Mz) = | klz—y)fty) dy
exists for almost all z, and belongs to L?; and, by Theorem 65, if
F, H, K are the transforms of f, h, k,
J(@m)G () K (u)
H(u) = J2m)F(u)K(u) = 1 em KD JemKw)"

Hence the transform of g(x)-A(z) is

J@2m)G(u)K(w) G(w) _
Gw) + 1—J@mE®) ~ 1—y@mK@) Flw).
Hence 9(@)-+h(@) = f@)

almost everywhere, i.e. the equation is satisfied.

Conversely, if f and g are L2, k is L, and (11.1.1) holds, then by
Theorem 65 (11.1.2) holds, and hence (11.1.4). This proves the
theorem.

If also k is L2, s0 are K and M, and (11.1.5) is equivalent to (11.1.4).

11.2. The homogeneous equation. We have shown that, so
far as the class L? goes, the solution is unique. But under special
circumstances there may be other solutions not of L2, If there were
two solutions of (11.1.1), their difference would satisfy the homo-
geneous equation

f@)= [ Me—yf@)dy (—o<z<w).  (11.21)
This equation is satisfied formally by putting f(x) = €%, if a is such
that .
j k(t)et dt = 1. (11.2.2)
We shall next show that, under fairly simple conditions, the only
solutions of the homogeneous equation are of this type.

THEOREM 146. Let 0 < ¢ < ¢, and let e'@k(x) belong to L and
e~lf(x) to L¥—c0,00). Then, if f(x) satisfies (11.2.1), it is of the form

fl@) = f G, , zP-le-i0z, (11.2.3)

where w, runs through all the zeros of 1 —\/(27) K (w) such that |[I(w,)| < ¢
the C, ,, are constants, and q is the order of multiplicity of the zero w,.
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It is at once verified that (11.2.3) is a solution of (11.2.1).

To prove the theorem we observe that, with the usual notation,
K(w) is analytic for —¢’ < v < ¢/, F,(w) is analytic for » > ¢, and
F_(w) analytic for v < —c¢. Forc¢ <a < ¢’

iat+m
@5 | B =f@ @>0, 0 @<o
w o)
in the mean-square sense; and by Theorem 65

ia+-©

[ Me—p)fw)dy = [ Fw)K@)ei=e dw,

0 ia— oo

also in the mean-square sense. Similarly for F_(w), with a replaced
by b, where —¢’ << b << —c. Hence (11.2.1) gives

ia+ o
[ Fw)i—yemE@w)e= dw +
fa=c b+
+ f F_(w){1—(2m) K (w)}e~i dw = 0
ib—o0

in the mean-square sense.

It therefore follows from Theorem 141 that F,(w){1—,/(27)K (w)}
and F_(w){1—,/(27)K(w)} can both be continued throughout the strip
b<v<a, and F (w) = —F_(w) in this strip. Hence F (w) and
F_(w) are regular in the strip except possibly for poles at the zeros
of 1—,/(2m)K(w).

We can now write

ia+ o b+
Fr —txw —iTw
fla) = (2 =y L  (w)e==0 du — (2) f P (w)e-i=w du,

and, since F,(w) >0 as u— 400, we can evaluate the right-hand
side by the calculus of residues in the usual way. This proves the
theorem.

In particular, the result is true if k(z) = O(e~"*!) and f(x) = O(e°'*!),
where 0 << ¢ < ¢’. In this case it can be obtained without recourse
to L2 theory. For, ifc <a <1,
ta+T k! +T
im [ ) gy — gim L ot f f@)eie da

T—w 'w—’l T—>0 ,\/(277)
ia—T
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@© ia+T
1 . eizw
H falT
= JJ(@m)i fw f@)eist de
0

by dominated convergence; and similarly

Jim f F(w)K(w? dw J‘ f@) do J‘ o) dyhm J- ew(mw) dio

w—{

=i [ fo) do | Hgetam ay
0 -z

=1 i el dt i f@)k(t—z) dz.

fova]

0

Hence
f +(w){l «/(2")K(w)} dw
J w—{
= J(zm)i [ e dt{f(t)— [ ret—a) d:v}.

Similarly ° °

P B (w1 —(2m)K c : |

f ~(o) ;i(c") W} gy — — J(om)i f ol dt f F)k(t—2) da.
ib—oo 0 —wm

Hence the sum of the terms on the left is zero, the result of Theorem
141 again holds, and the theorem follows as before.

11.3. Examples. (i) Let
glx) = e,  kiz) =2e® (x<0), 0 (z>0).

Then -
G(u) = ;/ér—j J- e-li+izu dp — J (1%) i+l—zl,2 ,

A e A1

¥ A solution under different conditions is given by Bochner (2).
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The L2 solution is therefore
e—i:nu

1 @
J@ =2 f Aty I—rFm ™

Suppose, for example, that 0 << A << 1. Then
2 2
= _" _e*= — 2 ei-Mx
J(x) 3 Ae (x > 0), 3¢ (x < 0).

This is plainly a solution, and so the only L2 solution. There are
similar solutions for other values of A.
The equation is ©
f@) = e 42" [ e3f(y) dy, (11.3.1)
x
and is reducible to differential equations. Let

]

$@) = [eW@) dy, ¢@) = —ef(@).

T

Then, for z > 0, —¢'(x) = e~=4AP(x),
Ry, p
80 that d(z) = m-}-Oe .
For z < 0, —¢'(x) = 14-Ad(x),
so that é(x) = ——;—I- Cle=,

Since ¢(x) is continuous at x = 0, ¢’ = C} §%+; Hence

flx) = %\e-wqu AN (@ > 0)

_ (2_fx+ oa)dl—m (z < 0).

The complete solution therefore contains a term with an arbitrary
constant; and in fact f(z) = e1-De

is a solution of the homogeneous equation
f@) =X [ evf(y) dy, (11.3.2)
T

corresponding to the zero w = (1—A) of the function
A
1—J(2m)K(w) = l—ﬁ_% .
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(i) Lett k(x) = e~ (A < }). Then

o= ke 0= el
m(z) = A e-lziva-2n,

Ja—zx
and, if g(z) is L3, the L2 solution is

fl@) = 9(%)+ﬁ f g(t)e-1t-=va-2% gy

_ 14w?—2A
Also 1—J(2m)K(w) = —Tra
so that Aexa-2) | Be-av1-2)

is a solution of the homogeneous equation if A > 0.

(iii) Consider the homogeneous equation in which k(z) = e-i*',

(iv) Let A= Z k( ) = Then

1+x2’g( )= i1 1+ T2t
K(u) = J (%T)e""', G(u) = isgnu me v,

and the solution is

_e—lul

twsgnue ¥ .
1@ = 75 f e-isv du

— J(@m) f sinzu , \/(277)( cothm:—%).

This just fails to come under the above conditions, and in fact f(z) is
not L2,
(v) Let} lc(u) = A/(1-+wu) in (11.1.6). Then K(s) = /\7r cosec 8w, and

the solution is ctio

10 = 5 [ Tt da

1—Am cosec sm

c+io
A
or f@) = g@)+ 5 f T Gle)at ds.
c—i®

1 Picard (1). 1 A. C. Dixon (1).
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If A = sinasr, where 0 < « < }, we have

c+iw .
sin ar tan amr u—%—yl+e
s du =
21n

sin sr—sin am T 1—u?

[ 4 c—1iw©
and, by Parseval’s formula, the solution may be written

tan am f oy )(90/?/)“1 "‘—2(5”/.1/)

fz) = gle)+2——

—X

(vi) The homogeneous equation

f@) = A j JW) g, (11.3.3)

is reduced by the substitutions ;
z=¢, y=e, fe) =)

[ _st)

— 0

The only solutions of this of the form ¢(¢) = O(e?d), 0 < ¢ < 1, are
exponentials. We have

A e
ke) = 2 cosh 3¢’ Kw) = ~2 cosh mw’
A
and 1—\/(2m)K(w) = cos:;l-;rw'

This has an infinity of zeros, some of which may lie in —} < v < 4,
and give solutions. For example, if X = 1/, there is a double zero

at w = 0, and $(é) = A+ B¢
is the solution, i.e. - f(z) = fii_g%”og_x_

is the solution of (11.3.3).
That there are in fact no other solutions of any kind is proved by
Hardy and Titchmarsh (3).

(vii) The homogeneous equation
o) = o [ C—ufE)dy @ <a<D) (134
0

is reduced by the substitution
r = ef, y =€, eaff(ef) = ¢(¢)
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to the form  $(¢) = f (eE-1—1)2-1g(n) di.

r‘( )
Here k(¢) = )(e‘f—l)"‘“ (=0, 0 (¢(<0),
A D(l—iw—a)

and K(w) = (v > —(1—a)).

J@m) TT(1—w)

11.4. Various forms. Various other forms of equation are
reducible to that just ‘considered.
For example, considert

f(@) = gla)+ f ( )f(y) ay. (11.4.1)

Putting x = e~£, y = e~", and writing
flet) = ¢(6),  glef) = (&),  Kk(ef) = (£),

we obtain $(6) = O+ [ x(E—n)p(n) dn. (11.4.2)
¢

This is of the standard form if «(¢) = 0 for ¢ > 0.
Another related form is

g(z) = f k(g)ﬂy) dy. (11.43)

If fi(x) = J f(t) dt, and k is an integral,
0

fz k(%)f (y) dy = k(l)fl(x)——xl- f k’(%) f1) dy,

and if k(1) £ 0 the equation is

y(x)
Jilx) = g_/k(—l)— ( )fx(./) dy.

This is of the same form as (11.4.1).

11.5. The equation with finite limits. Another equation of
some interest is obtained by putting f(z) = 0, g(x) = 0, k(z) = 0,
for x < 0, in (11.1.1). We obtain the equation

f@) = g@)+ [ ke—p)f@)dy (@>0),  (1151)
(1}

1 Browne (1).
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considered by Doetscht and Fock.] Theorem 145 of course still
applies; but now there is a more general solution of the same type.

THEOREM 147. Let g(x)e—°* belong to L*0,00), and k(z)e™* to
L(0,0), for some positive c. Then there is just one solution f(x) of
(11.5.1) such that f(x)e—~* belongs to L*0,0) for some positive ¢’; it 18
given by

G(w)

fx) = J(2ﬂ) l\_’rg . f/\ l—_me"m dw  (11.5.2)

if a is sufficiently large.

The equation (11.5.1) is unchanged if we replace f(x), g(x), and k(x)
by f(x)e—2=, g(x)e~**, and k(x)e~** respectively, and we may argue in
terms of these functions; or, what comes to the same thing, we may
apply the argument of § 11.1 to K(u-+1ia), etc., instead of to K(u).
We have
1

«/(2 ) N(2m)

if a is sufficiently large. The solution then proceeds as before.
The solution (11.5.2) may also be written
ia+A

f@) = glz)+ Lim. f G‘”’)l—j%%

Suppose that k(x)e—< is also Lz. Then K(w) is L?, and hence so is

K (u-ia)| < f k() le—= da <

e=iz0 dw, (11.5.3)

_ K(w)
M(w) = T=jemEw)’ (11.5.4)
ia+2A
and m(x) = TG 2 ) f M (w)e—i=v dw.

ias
Making a — o, it is seen that m(z) = 0 for x < 0. The solution
can therefore be put in the form

f@) = g@)+ [glyIma—y) dy. (11.5.5)
(1}
The relation (11.5.4) is equivalent to

m(x) = k(x)+ f k(tym(xz—t) th; (11.5.8)

t Doetsch (1), (2). 1 Fock (1).
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in fact it is at once verified that (11.5.5) is a solution of (11.5.1) if
(11.5.6) holds and the inversions are justified.
(11.5.4) also gives

Mw) = 3 Emir-E@)",
and this is equivalent to
m(x) = 3 kK(z),
1

n=

where EVx) = k(x), E™(z) = fk(t)k(“‘l)(x——t) dt.

This is the well-known Volterra form of the solution.}

It has been proved} by Wiener that, if k(x) is L(0,00), a necessary
and sufficient condition that (11.5.6) should have a solution A(r) of
L(0,c0) is that 1—./(27)K(u) # 0 for » real. This is bound up with
Wiener’s Tauberian theory, which we do not discuss here.

ExamprEs. (i) Let k(z) = Ae® (x > 0), 0 (z < 0). Then
A _ 1 2
Tt MW= J@m) I A+’
m(x) = Ae?+N,

JemK(w) = —

Hence the solution of

fl@) = g(@)+A [ e-fy) dy

i f@) = gla)+ [ drme-vgy) dy.
0

x
If ¢(x) = [ e-¥f(y) dy, the equation reduces to the differential
0

equation &' (x)—Ap(x) = e—2g(z).

This gives for f(z) the above solution, together with AeX+)=; but
A = 0, since all the other terms vanish for < 0.

(ii) Let|| k(x) be a finite sum of exponentials,
k(x) = Per*4Qet* ... (xz > 0).

1 P Q
°n ) =~ am it gt
t 8See Goursat’s Cours d’analyse, t. 3, § 548-9. ‘
} Paley and Wiener, Fourier Transforms, § 18. I E. T. Whittaker (1).

X
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Hence M(w) is a rational function, and may be written
(pt+ww)(g+ww)...
M(w) = . . K(w),
©) = aFaw)prie)..
where 1a, 1,... are the zeros of 1—,/(27)K(w). The calculus of residues
then gives

m(x) — (p—a)(q—a)---ew,

(B—)y—a)...
since 4/(2m)K (1a) = 1.
A similar expression may be obtained for the solution if k(x) is a
polynomial.

(ili) Lett g(x) = k(x) = My(2). Then
AT A1
izw
Glw) = E(w) = 5 of h@)el de = 7o T

and the solution is

ia+ o a+io

A e—lxw eIB
f T 3™ = 2 fi Jiraa @0
,J(l-]—.s) s
2m f T—224s? e ds +
a—io A a+1io Az a+io o=
8 I8 —_— __<_8__ —
T om - Toxre” &+ f g™
A (. hy)
= = sm{\/(l——)«z)(x—y)}—‘— dy +
V(1 A“)!
+Acos{y/(1— A2)x}+J(l Az)sm{J(l A%)a},

by (7.13.2), (7.13.3), and (7.13.8).

11.6. Another type. Another integral equation which can be
solved formally by means of Fourier integrals is

o) = | Ma—u)i) dy. (e

—®©

This gives formally
Gw) =

o]

«/(2 fe”“dxfk(x —)f(y) dy

1 Fock (1).
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= J(;") ff(y)dy f k(z—y)ei=* do

@

= ~/(—;1;5 f f(?/) d?/ f k(t)eit+vu gy

= J(2m) F(u)K (u). (11.6.2)
Hence the solution is
1 G(u)

For this to be an actual solution K(u) has to satisfy special condi-
tions.

TarOREM 148. Let g(x) belong to L*(—o0,0), and k(x) to L(—c0,0).
Then, in order that there should be a solution f(x) of L¥*(—c0,0), it 18
necessary. and sufficient that G(u)/K (u) should belong to L —c0,c0).

Suppose that g, k, and f belong to the given L-classes, and (11.6.1)
holds. Then (11.6.2) holds, by Theorem 65, p. 90, and F is L2
Hence G/K is L2

Conversely, if G/K is L2, then f, defined by (11.6.3), is L2, and,
by Theorem 65, the transform of the right-hand side of (11.6.1) is

JemE@ -1 W _ g,

V(@) K(u)

e~izu dy, (11.6.3)

Hence (11.6.1) holds.
A similar equation soluble in terms of Mellin transforms is

9(@) = [ kay)f(y) dy. (11.6.4)

Thié gives formally

«©

G(s) = [ 2t dz [ k(y)fiy) dy
(1]

0

= ff(y) dy f k(xy)ae -1 de

— [ o+ dy f e du

= F(1—8)K(s).
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61—
Hence F(s) = =
and the solution is et iv
1 G(1—s) _
f@) = 5— | Ri—s)° s ds (11.6.5)
11.7. Laplace’s integral equation. This is
9@) = [ f)e dy. (11.7.1)
A formal solution : tio
fa) = o [ 0= g, (11.7.2)

2t I'(1—s)

§—iw
is given by (11.6.5). The equation can, however, be solved directly
by Fourier’s integral formula. This gives

gi) = [ fly)e-i=v dy,

and hence flx) = 5}- f giy)e=v dy (x> 0), (11.7.3)
T

the right-hand side being zero for z < 0.

If g(x) is given originally for real x, the solution (11.7.3) involves
an appeal to analytic continuation. The solution (11.7.2), with the
usual definition of ®, only involves explicitly g(z) for real x; but
it contains the factor 1/I'(1—s), which is exponentially large at
infinity, and it seems difficult to justify it except by an argument
involving analytic continuation. In fact the equation (11.7.1) can
only be satisfied if g(x) has the values assumed on the real axis by an
analytic function g(z) regular for x > 0, so that some reference to
the analytic character of g(z) is almost inevitable.

We shall prove that a necessary and sufficient condition that (11.7.2)
should exist in the mean-square sense, and define a solution of (11.7.1)
belonging to L*(0,c0), 18 that g(x) should have the values assumed on
the real axis by an analytic function g(z), regular for |argz| < dm, and
such that ® »

f lgre®) 2 dr < K (11.7.4)
[V}

for —im < 6 < im.
Suppose first that f(x) satisfies the equation and belongs to L*(0,0).



11.7, 11.8 INTEGRAL EQUATIONS 317

Plainly g(z) is regular for R(z) > 0, i.e. |argz| < }j=. Now by
Theorem 99, p. 131, we can write :

Ju) = f(w)+fio(w),
where f(,)(w) is regular for argw > 0, f_,(w) for argw < 0. Then if
—ir <0< im,

g(reif) = f e~reuf \(u) du + J. e~ePuf_\(u) du.

0 0
In the first integral we can turn the line of integration through an
angle 47w—#, and in the second through —4n—6. We obtain

oo @©
(rei®) = eH4n-D) [ =inf,(peiim—0) dp -~ [ g, y(pe=im+9) dp,
. 0 0

and since f,) and fi_, belong to L2 along every line argw = const,
(11.7.4) follows.

Conversely, suppose that g(z) satisfies the above condition. We
have

6(1—s) = ~fg(zr:)x"’ dz.
0
If ¢ > 0, we rotate the line of integration through —3}, giving,

G(1—8) = —i [ g(—iy)(ye-im)= dy

— - {gimiog-int f g(—iy)y-o-4 dy.
0

For ¢ = } this is e~} multiplied by a function of L%(0,00); a similar
argument with ¢ < 0 and a rotation through 4= shows that G(1—s)
is e-i7!l multiplied by a function of L% —o0,0). Also

1/T(1—s)| = O(ei™™).
Hence the integral in (11.7.2) exists in the mean-square sense. That
the f(x) so defined satisfies the equation follows from Theorem 72.

Alternative forms of solution have been given by Widder (1),
Paley and Wiener, § 13.

11.8. Stieltjes’s integral equation. If we iterate the previous
equation, i.e. put

9@) = [fe)e=vdy,  h@) = [gly)e= dy,
0 0
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we obtain formally

h(z) = j? e~V dy f fm)eve du
(1] 0

= fo flu) du fr‘““’” dy
0 0

o0

[ f)
_fmdu, (11.8.1)

0

another integral equation of a similar type. This equation has been

considered in connexion with Stieltjes’s moment problem.¥}
Putting z = ef, y = e, e¥h(ef) = P(£), e¥éf(ef) = $(¢), the equation
becomes w '

é(n) d 11

= TAU_  dm. .8.2
W6 = [ sy dn (11.8.2)

— o

This is of the form (11.6.1), with
k(¢) = }sech §¢, K(u) = \(3m)sechwu,
and the formal solution is

$(¢) = ;x/%’; f ¥ (u)cosh mu e—%% du

o

— (_2# f Ill'(u)(e—i(§+irr)u+e—i(f—in)u) du
— i) —im), (11.83)
or flx) = %{h(xei")—h(xe-"")}. (11.8.4)

An appeal to analytic continuation is again obviously involved.

We shall show that a necessary and sufficient condition that (11.8.3)
should define a solution of (11.8.2) belonging to L*(—o0,0) 18 that
Ji(z) should be an analytic function, regular for —m <y <, and that

-]

[ Wa+iy)dy < K

-0
Jor —m <y < m.
+ See Hardy (7), Paley and Wiener, § 14.
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As in § 5.4, the condition implies that there are limit-functions
Y(z+1im) and Y(z—1in) belonging to L3 —c0,0).

If ¢ is L? and ¢ is defined by (11.8.2), then i(2) is plainly analytic
for —m < y < 7; and by Theorem 64,

D(u)

e—izu du,
cosh 7u

¢w—%)f
where @ is the transform of ¢. Hence

L

[ werinpay = [ S e

2 )
ST f coshzmu® du.
Hence the condition is necessary.
Conversely, if i is of the given form, then

e (y) = f Y€ Fim)eds du

~/(2 )
belong to L20,00) and L?(—o0, 0) respectively. Hence ¥'(u)cosh 7y
belongs to L%*(—o0,00), and (11.8.3) defines a function ¢ of L2 That
it is a solution of (11.8.2) follows from Theorem 64.

In terms of the original functions, a necessary and sufficient condi-
tion for (11.8.1) to have a solution of L? is that g(z) = g(re®) should
be analytic for —7 < 8 < =, and that

[ lgtre®)|2 dr
1]

should be bounded for —7 < 8§ < =.
That (11.8.4) is a solution of the original problem is easily verified,
for the right-hand side of (11.8.1) is then

[ h(uein)  h(ueim)
2n x+u du — 27r x+u da.
0

Rotating the line of integration of the second integral through 2,
and allowing for the residue at u = xef", we see that this is equal
to h(x).
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11.9. Stieltjes’s moment problem.t A note on Stiéltjes
moment problem itself may be inserted here. The problem is to
determine f(x) such that

fx"f(x) dr=c¢c, (n=0,1,.),

0

where ¢, c,,... are given.

Suppose that f(x)em 18 L(0, oo) Jor some positive k. Let

(8)‘2( Lo f f()=0( oo e

= f fx)cos svx dx = 2 f Ef(£2)cos € d¢.
) 0

The inversion is justified by the convergence of

f [f(x)] 272,—:')2'n dr = f f(z)cosh|s|vzx dz,
H n=0 : S

provided that |s| < k. The final integral, however, converges if
8 = o+, —k <t < k. Hence ¢(s) is an analytic function, regular
in this strip, and ¢(s) > 0 as ¢ > 400 in the strip. Also

£f(£%) —_—_71”1\1_& f (l—g)tﬁ(s)cossfds

for almost all {. Hence f(x) is unique apart from sets of zero measure.
To show that this is actually a solution, we have, if a > 0,

—isf 1\ n
L oo e

Hence

[ ef(@) de = 2 [ gmfien) dg
(1] (1} :

(—1)+12n e

" 2! f I€1£(€%) dg f gy

— ia—o

T See Hardy (7).
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ia+ o ©
(—1)*+12n! ds
= . o | 1glsenet ag
e iafm 82 +1_'c[
ia+o
—1)n+12p!
~ (S J' 4 as

The inversion is justified by absolute convergence if » > 0, and by
the bounded convergence of the s-integral if n = 0; in the latter case

ia+A
the final integral is }1m f . The result is, of course, a case of Par-
—>® g\
seval’s formula.

Now
C dotia) , [ dl—o'tia) ,,_ [ $—ia)
[ it = | Eoimnte == | wamate
since ¢ is even. Hence
1 ia+oo¢() 1 ia+o —ia+o ¢(8) ( 1) g
3 —1)nHe
i Eﬁ_ﬁds:rﬂi( f f )32”+1d8= 2n!
ia—o ia— o —ig—©

by the theorem of residues. The desired result therefore follows.
The method, of course, does not show whether a particular set of
¢,, correspond to a function f(z) of the class considered. For example,
if ¢, = 1 for every n, then $(s) = cos s, which is not the transform of
a function integrable in the ordinary sense. It is here that Stieltjes
integrals become relevant.
If ¢, = 1/(n+1), then

$(8) = 28~%(ssins{-coss—1),

and o
1 2ging 1—coss
§f(§2)=1—ff( 5 )cosafds
[}]
=¢ (0<é<D, 0 (¢>D)
Since

J ane-=#eos% gin(xk sin o) de = .1_1"(”+ l)sin (nt+1)a

1 p© K®

0
if w > 0 and 0 < « < 3w, the function

flx) = e-=+oosum gin(x# sin pr)



322 INTEGRAL EQUATIONS Chap. XI

satisfies J ef(x)de =0 (n=0,1,.)

V]
for every value of u less than 1. The solution is therefore not unique
if we merely assume that f(x) = O(e~**"), where p < .

11.10. Finite limits. The equation
9(@) = [ Ka—y)fy) dy (@ > 0) (11.10.1)
1]

is, formally, the particular case of (11.6.1) in which f(x) and k(x),
and so also g(x), vanish for # << 0. The formal process of § 11.6 gives

as before G(w) = J(2m)F(w)K (w), (11.10.2)

and the formal solution is
1 G(w)
ia—o
As before, for this to be a solution, special conditions on K(w) or
special relations between G(w) and K(w) are required.

THEOREM 149. Let g(x)e—* belong to L*0,00), and k(z)e* to
L(0,00). Then, in order that there should be a solution f(x) such that
Sf(x)e—= belongs to L*0,00), it 18 necessary and sufficient that

(u+v)
f lK(u+w)

where M is a constant independent of v, for all v > ¢

We can replace f(x), g(x), and k(z) in (11.10.1) by e—2f(x), e-%%g(x)
and e~**f(x) respectively, and the result follows from Theorems 148
and 95.

e~ dy, (11.10.3)

u << M,

That the solution of (11.10.1), if it exists, is unique, can be proved
more generally.

THEOREM 150. Let f(x)e—=* and k(x)e—°* belong to L(0, o0) for some
positive ¢, and let

[He—y)f@)dy =0 (z>0).
(1}

Then at least one of k and f 18 null.
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For (11.10.2) holds, the inversion in the proof being justified by
absolute convergence; and now G(w) = 0. Hence either F(w) or K(w)
is 0 for all w, and the corresponding f or k is null, by Theorem 14.

We shall next show that the same result holds without any restric-
tion on the behaviour of the functions at infinity.} We use the
following lemmas.

LEMMA o. Let $(w) be regular in the upper half-plane,
$(w) = O(ek™),  |p(u)| <1 (w = utw),
and let ¢(iv) be real. If € > 0, the connected region in which
Ip(w)| = 1+,
if it exists, contains arbitrarily large purely imaginary values of w.

Let w, be a point (if there is one) at which |$(w,)| > 1+¢, let D be
the connected region containing w, in which |¢(w)| > 14-¢, and let
D, and D, be the parts of D in the first and second quadrants. If the
lemma is false, D, and D, meet at most along a finite stretch of the
imaginary axis. Let |¢(w)| < m on this stretch. Since ¢(w) = 1+
on the boundary of D, |¢(w)| < M ~ max(l+¢, m) on the boundary
of D, and so, by the Phragmén-Lindelsf theorem, throughout D;;
and similarly throughout D,.

But actually m < 1+, so that M = 14e. For the function
P(w) = (w4i)~"(w), where n > 0, satisfies [(w)| < 1+e on the
boundary of D, and ¢(w) > 0 as |w| -o0 in D. Hence [§(w)| < 1+-€
throughout D. Hence ’

[p(w)| < (14-€)fw+s|

throughout D, and, making n — 0, |$(w)| < 14-. Since the reversed
inequality also holds, ¢(w) = C, where |C| = 1+-e. This is incon-
sistent with |$(u)| < 1, so that D must contain arbitrarily large
purely imaginary values. Also since $(iv) is real, the region

lp(1+w)| = 1+

is symmetrical about the imaginary axis, and it is easily seen that
two regions with the properties of the above D would have to overlap.
Hence there is only one such connected region.

+ Titchmarsh (8), Crum (2).
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LemMa B. Let F(w) and K(w). both have the properties of the above
d(w), and let |F(w)K(w)| < e, where y >0, for all v > 0. Then
there exist o and B such that o+ = y,and |F(w)| < e, |K(w)| < e-F°
Jor all v > 0.

Consider the regions D and D’ in which

[Fw)ex™| = 14e,  |K(w)eP?| > 14,
where o’ and B’ are any fixed real numbers whose sum is y, and € > 0.
We shall show that either D or D’ is empty.

By applying Lemma o to F(w)e*® and K (w)eB™, we see that D and
D', if they exist, both contain arbitrarily large purely imaginary
values of w. Let iv; be a point of D, iv, a point of D’ with v, > v,,
and ¢v, a point of D with v; > v,. Since D is a connected region, and
is symmetrical about the imaginary axis, there must be a closed curve
joining 4w, and dv,, lying entirely in D, surrounding ¢v,. On this
|F(w)e*?| > 14-¢, and so

|K)er—nv| < 1/(1+¢).
This inequality therefore holds throughout the area enclosed by the
curve, and in particular at iv,. This involves a contradiction, so that
either D or D' is empty.

Suppose that, for some w, and w,,

|F(w,)| > e and |K(w,)| > e-Fm
Then, for some positive e,
|Fwy)] = (14e)em,  |K(w,)| > (1+e)eFo.
Since we have shown that this cannot be so, it follows that either
|FP(w)| < e-*®forallv > 0, or [K(w)| < e-B?forall v > 0. Let o be
the upper bound of values of o’ for which the first inequality holds.
If it held for all ', F(w) would be identically zero; if it held for no o',
the second inequality would hold for all 8, and K(w) would be
identically zero. Otherwise 0 < a <00, |F(w)| < e~(*-<” for all w
and arbitrarily small ¢, and so |[F(w)| < e~®. If o = a+te, the
second of the above alternatives holds, so that
|K(w)] < e~r—a— = e—(B—erw
for all w, and so |K(w)| < eP? for all w. This proves the lemmn.
THEOREM 151. Let f and k belong to L(0,vy), and let

9(@) = [ fy)k(@—y) dy = 0
0
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for almost all x in (0,y). Then f(x) = 0 for almost all z in (0,a), and
k(z) = 0 for almost all x in (0,B), where a+B = .

We may suppose that

Y Y
1 1
o | f@Ide <1, o) k@) de <1,
\/(2");! \/(2"")5[

and that f(x) and k(x) are null for £ < 0 and z > y. Then g(z) is null
for x <y and z > 2y, and

x

2y 2y
[ lg@) d= < [ d= [ (f@)kz—y)| dy
§ l;v ’ 2y
= [ If@) dy [ Iklz—y)] dz
0 v

2y 2y
< [ 1f@)l dy [ [k(o)] dt < 2w
0 0

As before, the transforms F(w) of f(z), etc., are related by
G(w) = J(2m)F(w)K(w);
hence

sy
|Fw)K(w)| = o f g(x)emdxi f l9(@)| dz < e7.

Hence, by Lemma B, elther F(w) =0 or K(w) = 0, or there exist «
and B such that a+B8 =1y, and |[F(w)| < e, |K(w)| < e-P* for
v > 0. Now -

ff(x) dz = el

«/(2 lim f F(w)

by Theorem 22, and the ordinary method of integrating round a
contour in the upper half-plane shows that this is 0 if { <«. Hence
f(2) is null in (0, a), and similarly k(x) is null in (0, B).

THEOREM 152. If f and k are integrable over any finite interval, k is
not null, and
x
f feez—y)dy =0 (0 <z <o),

then f is null in (0,00).

By the previous theorem f is null in (0,), where a+8 =y, y is
arbitrarily large, 8 bounded.
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11.11. Another example of an equation with finite limits is}

f@) = fl k() flz—1) dt, (11.1L.1)
0

where k(t) belongs to L2(0, 1), and f(¢) to L2 over any finite interval.
Here the integral represents a continuous function, so that f(z) is, in
fact, continuous.

Let f(x) = e*g(x). Then

1
g(x) = f k(t)e—ctg(x—t) dt.
0

1
Taking ¢ so large that f |k(t)|e—t dt < 1, it follows that
0

lg(x)] < max |g(¢)|,
r—1<é<e

IS

and hence that g(z) is bounded as x — 0. Hence f(x) = O(e®). If we
assume also that f(x) = O(e?®) as - —o0, the theory of §11.2
applies, (11.11.1) being the particular case of (11.2.1) in which
k) = 0fort < 0 and for ¢ > 1.

We can, however, prove without this assumption

THEOREM 153. The solution of (11.11.1) s
flz) =3 C,e-twa, (11.11.2)

where w, runs through the zeros of
1
Gw) = 1— f k(t)ert di
0

with I(w,) < ¢, and C, is a constant at simple zeros, linear at double
zeros, etc.

1
Let’ F a(W) - W
(cf. § 10.16). Then F,(w) is regular for v > ¢, with the above ¢. The
formal argument is then as follows. Ifa > ¢,

—iwz . f(x) ( > a),
Nem) f F (w)e~2 dy = {0 (@ <a). (11.11.4)

ia—o

f F@)ew= da (11.11.3)

ia+o

t Schurer (1), Titchmarsh (16).
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Hence, if £ > a1,

ia+oo

1 1
[ rore—na = F(w)e-= dw j k(t)e di,
0 0

L
V@) )

and (11.11.1) gives
ia+w
j F(w)Gw)e-»*dw =0 (x >a+t1).
ia—ow
Multiplying by e*, where { = £4-i7, n > a, and integrating over
(x+1,00), we obtain
e+ 3
F, G(w)M dw =20
a(w) c__w _ ¥

ia—o

The result may be justified by mean-square theory, as in
Theorem 141.
Moving the integral to the parallel line through ia’, where a’ > 7,

we obtain

ia’+ o

eUL-wXo+1) .
| Ao =2 do = —2riF 060

ia’—o
The left-hand side is an analytic function of {, régular for n <a’.
It therefore provides the analytic continuation of the right-hand
gide throughout < a'. ‘It follows that F,({) is regular for n <a’,
except possibly for poles at the zeros of G({). Also

F(DG() = o(em*+D)

as { - co uniformly for y < @ < a’. If the zeros of G({) are separated
by suitable contours on which |G({)| > const., (11.11.2) follows on
applying the usual contour integration to (11.11.4). The result cer-
tainly holds if k(¢) is absolutely continuous near { = 1, and k(1) 5 0;
for then we can integrate by parts and obtain

G = 1 ()

w '\l

from which the result easily follows.
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Finally, the C, are independent of «; for example, at a simple zero
of G(w),

ia’+ o

_ 1 F(0)G(w )ew(w —wXo+1) dw
- 4(2")0'(w,)wf " w—w
ia’+o
3_01 _ f(a)eiwv(aﬂ) G(w)e—iw
b 2mG@w,) ) w—w dw +
@elwp?a+l) 1
+ T, f F (w)Gw)e=4e+D g,

Each of these integrals is zero by Cauchy’s theorem, the integrands
being regular in the half-plane below the path of integration.

Similar methods can be applied to the solution of many other
problems. } '

11.12. Examples. The following example of (11.10.1) is considered
by Bateman (6). A tradesman buys and sells various articles. It
is assumed (i) that buying and selling are continuous processes, and
that goods bought begin to be sold at once ; (ii) that when the trades-
man buys a new supply of any article, he buys just as much as he
can sell in time 7', the same for all such purchases; (iii) that the new
supply sells uniformly during the time T'.

The tradesman starts with a new supply of unit value, and it is
required to find the law according to which purchases must be made
if the value of the stock is to remain constant.

The amount of the original stock remaining after time ¢ is &(¢),

where k) =1—¢4T ¢<T), 0 @¢t>T).

Suppose that articles of value f(r) 5t are purchased in the interval of
time between r and 7+387. This stock is reduced by sales in such a
way that the value of the remainder at time ¢ > = is

k(t—7)f(7) ér.

The value at time ¢ of the unsold stock due to purchases is therefore
¢
fk(t—f)f(r) dr.
0

1 Busbridge (6), Cooper (2).
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Hence f satisfies the integral equation ‘

i
1—k(2) = fk(t—-r)f(‘r) dr.
9

K(w) = j ( )e“"’ dt = 4(;17)( = +.l;,:j'fr)

1 [
— | e dt—K(w)
el
1

Here
and

X 1 1—eiT

= TJemw (w) = T J@m Twr
We can take I(w) > 0, and the solution is

1 ia+ o 1 _—
= —— _ 1= i
f@) = 5 f in—i—l—ei"’Te dw (a > 0).
ia—o .

This can be expanded in various forms. If we move the line of
integration to a parallel line through w = —b, where b > 0, we -

obtain —ib+o
iy = 2 1 1—ew
T T 2n wT+1—eT
—ib—o

e~ dw,
and the last integral is exponentially small as ¢ —oo. Further terms
in the approximation arise from the zeros of the denominator.t
11.13. As another example we shall sum the series}
flx) = z nd,, (x) (€). (11.13.1)
We have |J,(x)| < 1 for all % and z, and hence
Wale)| = |5 Una @)+ Tunl@l)] < =

forn > 1and x > 0. Also, for a fixed £, as n > 0
J(§) = O{(3€)"/n!}.
Hence we may multiply (11.13.1) by Jy(t—=2)/x and integrate term-

1 See also Goldstein (1). 1 See Watson, § 16.32.
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- by-term over (0,t). We obtain

t » ¢ ‘
f f—(g—)Jo(t—x) dz="3 nJ(@) J ‘@Jo(t—x) dz
0 0

n=1

= 3 HO1,0) = V(= WI@RO,

by (7.14.6) and the ‘addition formula’ for Bessel coefficients.}

This is an integral equation for f(x)/x of the form (11.10.1); by the
above inequalities, f(x)/ is bounded, so that it is given by (11.10.3).
Here ®

1 izw
K ) = gy [ e e = gy

0
where % > 0, and the branch which is real and positive on the real
axis is taken. Similarly,

o) = 57?12777] {"°<”‘—f)—%(x>%(§>}efww dz
2~/(277) zwf {(@—E)—Ji(@)o(€)}e™ de

on integrating by parts Hence

x

f@) _ Ja—u?) ), e .
fz) %M f e-iew du oj (=) — LT dt

where @ > 0. . Now
ta+A

—~lim f et du f {ht—O— DIt dt

4771\-»0
= —HJ(x—€)—Jy(x)Jo(€)},
and the remainder is

f At g, f (=)~ T O Ee dt
0
-1 J (T(6—E)— T (OTe(E)} dt f wei(t—x)w du.

The inner integral is 0 if ¢ > = (by makmg a—>o). For t < x its
t See Watson, § 2.4.
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derivative with respect to t is 2aJ;((—x)/(t—=), by (7.13.8). Hence,
on integrating the repeated integral by parts, we obtain

3 [ e—o—roney= a
0

_1 f s~ x’ dt —3J(@)f8),

by (7.14.6). Hence
o _ f w2 ) =5 f ao—6 2= a
again by (7.14.6).
11.14. Abel’s integral equation. This is
g(x) = 0f}(x—y)“"f(y) dy O<a<l),

and is of the form (11.10.1), with k(z) = x~* Here
N(@m) ] Jer)

where (—iw)>-1 is real on the positive imaginary axis. The formal
solution is therefore

o 1 G(w)
fl) = Jem(l—a) j (—rw)>-1

If this is an L2 solution, its integral is

e—1aw gy,

Gw) 1—e-txw

hlw) = J(zﬂ)r(l—a) f o w dw

‘l'a+ @
1 e—ixw

=2‘rrF(l——-o¢) _ ()

+
lwit—z)_ g
____.__1_ ; f g(t) dt f e

wa— 0

The inner integral is 0 if ¢ > x (by making @ — +00). For0 <? <z
the contribution of e is still 0, while the other part is (by deforming

! dw f g(t)er dt



332 INTEGRAL EQUATIONS Chap. XI

the line of integration into the negative imaginary axis)
f y-agni-2)(gire_g-ima)(_3) dy = 2sin ma ['(1—a)(x—28)*-1.
[\]

Hence @) = Snme f (x—1)*-1g(t) dt,
0

k

sin 7o
ku

and fla) = 2o 4 [ e—trgra
0

the usual form of solution.}

11.15. An equation of Fox. Another equation of ‘resultant’
type is -
f@) = g@)+ [ ka+y)f)dy. (11.15.1)

This is equivalent to the equation considered by Fox (2). The solu-
tion is a little more elaborate. We have as before

Flu) = 6(u) + 4—(;—,;) f eiet dy f k@-+9)f(@) dy

= G+ s [ Sy [ bty de

—0 ¢

= G(u)+;,éﬂ—, [ 1w ay f (t)esuit- d

= G(u)++/(27)F(—u)K(u).
Changing the sign of u,
F(—u) = G(—u)+2m)F(w)K(—u),
and, eliminating F(—u),

_ Gu)+4/(2m)G(—u)K(»)
Flu) = 1—27K(u)K(—u)

G(u)-l-\/(%n')G(—u)K(u) e—izu gy

1 @
Hence  f2) = 75 f 1—2nK(w)K(—u)
—® (11.15.2)
The form actually considered by Fox is
f@) = g(o)+ [ kuz)f(w) du, (11.15.3)
0

t See Bosanquet (1) for a direct study of the solution.
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which is connected with (11.15.1) by obvious transformations. The
corresponding analysis for this equation goes in terms of Mellin
transforms, and the solution is

c+io

fl@) = 5:; [ @(lsi;z(;lﬁ(_l_;)")x—s ds.  (11.15.4)

c—1©
THEOREM 154. Let g(x) belong to L2 and k(x) to L, and let the upper
bound of K (u)K(—u) be less than 1/2x. Then the equation (11.15.1) has
just one solution of L2, given by (11.15.2).
As in §11.1, f(z) belongs to L? and satisfies the equation. Also the
difference between two solutions of L? satisfies

@

f@) = | kz+y)ft)dy, (11.15.5)
and so its transform satisfies
, F(u) = J(2n)F(—u)K(u). (11.15.6)
Hence F(—u) = (2n)F(u)K(—u),
and so F(u)F(—u){1—2nK(u)K(—u)} = 0.

Hence F(u) or F(—u) is 0 for almost all ». But, by (11.15.6), if
F(—u) = 0, then F(u) = 0. Hence F(u) = 0 for almost all , and
hence f(x) = 0 for almost all z.

There are obvious extensions, e.g. we could simply say that
[1—2nK(u)K(—u)| = 4 > 0.

ExampLES. (i) In (11.15.3) let

k(x) = A J (?T)cosx.

Then R(s8) = AI'(8)cos }sm,
and K(8)K(1—s8) = A%
Hence, if A2 3 1, the solution is

1 ¢+io

f {®(3)+AG(1—s)I'(s)cos §sm}z—* ds

c—i®o

1 X 9 by
- l—Azg(xH— 1—a2 J (;) f g(u)cos zu du.
’ 0

This may be verified by Fourier’s cosine formula.
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(if) In (11.15.8) let k(z) = mte—= and

g(x)=l~og(i—+x) 0 <z <), lig_(lxﬂ’)._g @ > 1).

Then K(s) = =-iI(s), @(s)=i(.1 —1),

and the solution is

c+ 10
1 T -
f@ = o f {'s—_——l—«/qu"(s—l)}x * ds
c—iw
1—e-= l—e?2 o

= W

O<z<l), «/n—x-— - (x > 1).

11.16. ‘Dual’ integral equations. In some problems the un-
known function satisfies one integral equation over part of the range
(0,00), and a different equation over the rest of the range.

For example,t let v(p, z) be the potential of a flat circular electrified
disk of conducting material, its centre being at the origin, and its
axis along the axis of z. The potential satisfies the differential

equation 2 low o%
o 1w, 9V _ 11.16.
aP2+p 3p+322 0 (11.16.1)
Let V(u,z) = f pv(p, 2)o(pu) dp (2 > 0). (11.16.2)
0
eV [ &% Fl o o
= | = — | (¢S +Z)i(pu) dp,
Then = Pz o) du f(p 3p2+ 3p) b(pw) dp
0 0
3 % 0081) ,
and pazdlpw) dp= — | —{Jo(pu)+pudo(pu)} dp.
0 P 0 P
Hence

0

oV F ov / , "
R f % pudo(pu) dp = —u f v{J5(pu)+pudg(pu)} dp
0 0

= u? f vpdy(pu) dp = uV.
0
Hence V = A(u)e~"“+ B(u)e¥?,

1 Riemann-Weber, 1, § 134.
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and plainly B(u) = 0. Hence, by Hankel’s theorem,
vlp,2) = [ ud(ule="Jofpu) du.
0

Taking the radius of the disk to be unity, the boundary conditions

are
ov

v=const. (z=0, 0 <p < 1); E;=0 (z=0,p>1).
Hence, writing ud (u) = f(u), f(u) must satisfy
f F)ylpu) du = glp) (0 <p<1), (11.16.3)
(1]
ff(u)u%(fm) du=0 (p>1) (11.16.4)
0

where, in the above case, g(p) is a constant.
To solve these equations formallyt, apply Parseval’s formula for
Mellin transforms to the left-hand sides. We obtain

k4140
1 2-T(3—138) , 4 7, _
om f m"’wp lds=g(p) 0<p<),

o (11.16.5)

k+io
2_1;; J g(s)%?i)ps—zds —0 (p>1), (11.16.6)

where 0 < k < 1. Putting

k—io

F(s) = f-?(%"i—%x(s), (11.16.7)

the equations become

k+io
1 L38) (o)pr-rds =glp) (0<p<1),

2m ) T(+39)
k—iw (11.16.8)
k+1io

2—1"7. f %%E%%x(s)p"lds=0 (e>1. (11.16.9)

k—io
In this form the D-function factor in (11.16.8) has no poles or zeros
for ¢ > 0, and that in (11.16.9) has no poles er zeros for o < 1.
+ See also Busbridge (2), Copson (2).
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Multiplying (11.16.8) by p~*, where o—u > 0, and integrating
over (0, 1), we obtain
k+io

1 TG %8 0 [y e
| Tt wds—fgwp dp = 6(1—w) (u< k).

—i%©

Moving the line of integration to o = k' < u,

. K +ico F(%ﬁ)_ _&(E)— =(5(l—w)_F(l;(_}}_z;Z,v) (w).

2mk’_m I'(3+14s) s—w
The left-hand side is regular for « > &', and so for u > 0. Hence so
is the right-hand side. Hence so also is

xto)— T 60—
Hence (assuming suitable conditions at infinity)
1 ) {x(s)— I'(3+1s) @(1_8)}%) =0 (u<k).

2mt I'(3s)
ki (11.16.10)

Slmﬂa.rly, multiplying (11.16.9) by p~%, where o—u < 0, and
integrating over (1, oo), we obtain

it
1 F(l 18) x(9) X
2m f rg— %8)8-——wd8_0 (> K).

K —io

We conclude as before that {I'(1—}s)/T"(}—1s)}x(s), and so x(s), is
regular for 0 < 1. Hence

K -+ )
1 x@) . ’

o f X0 gy —0 (@>w).

K —io
Moving the line of integration from &’ to k > u,

k+io

1 x®) 4. _

o f X0 gy — yw) (@<, (11.16.11)
k—io

From (11.16.10), (11.16.11)

k+io
1 [ D@+1s) G(1—s)
x(w) = 5— ot T8 s—w o es=b (11.16.12)
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and this, with (11.16.7) and Mellin’s inversion formula for f(x), gives
the solution.
If g(p) = v, = const., then

1
®(1—s) = v, [ p~*ds = 2,
[1]

[T TGt & _ v
(1—s8)(38) s—w  Vm(l—w)

(from the pole at 8 = 1). Hence

(s) = N 2:T'(3s) _ v,2*-'T'(J9)
7 Na(1—e) T(3—138) ~nD(3—13s)

= Y

and, by (7.9.6), flu) = %’ ‘%‘ (11.16.13)
Hence ® .
v = g}:-“f e-‘“.]o(pu)s%'f du
0
— 2% s -
B armm{«/{(p—l)’-l-z’}-i-«/{(1>+1)’-%-2’}}’

the solution obtained by Weber.
The pair of equationst

[vfaian dy=g@) ©<z<1), (1L1614)
0

[foVzpdy=0 (=>1) (11.16.15)
1]
can be solved in a similar way. They are equivalent to

K+
1 F'(3+3v+is)

RN . x@ar1-eds = glz) (0 <z < 1),
2mk A P+iv—3a+1e)

e (11.16.16)
+io
SR S T O N
2 ) Tatbrlego o =0 E>D
ki (11.16.17)

e T+ 1)
where B = 2 F it bt da g X

1 Seo King (1).
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Multiplying (11.16.16) by x*~%, where o—u > 0, and integrating
over (0, 1), we obtain

k+ i 1
1 C+dv+4s)  x(8) 40 _ w0 Jp — Ga—
é_"'ik_m TG+b—Iat1s) s—wds = J gx)z** dx = G(a—w-+1).

Moving the line of integration to ¢ = k&’ < u, we obtain

1T Tatbe) xe) g,
21”:1.' - T@+dv—iatis)s—w

ot §

(34 b+ ) -
Tt I—lat ) < Ol D:

Hence the right-hand side is regular for » > 0, and we deduce as
before that

k+io
1 Dbt g
| (O TRte se)i = 0 ek

From (11.16. 17) we deduce (11.16.11) as before. Hence

k~io

I‘(%Hv—%a—l—%s) Glat1—s) ;.

xlw) = TGt Itle)  s—w

k+io 1 1
— _1_ I3+v—1Latis) ds A Ad—a dax s~w-1 4
2 | TTa+E) f o f w

51- J. g dA f ~w-1dy ki:F(H%”—%"“L%")(%)-“ds

L(3+4v+1s)

P(’}"‘) f 9N d)‘l' ~W—1(F)"‘°‘+1 Az)ia-1 " '

) Jr d"f sone(G) (1)

— a-w J v+1(] —p2)ia-1 g,
TG Of 5 #ofy(pﬂ)p (1—p?) p
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Hence

ki
_1 2o+ +38)
fl@) = — f T ie—in)” x(8)z=¢ ds

1 1
= il 0a J p* dp f 9(pu)p+(1—p?)e-tdp x

0 0

k+1i0
o TG+l
< [ T e

k—icw
1
(2z)1-d
I'(3a) J
For this form of the solution to hold we must suppose that « > 0;

the previous equations correspond to v = 0, &« = —1.
As an example, let « = 1, v = 0, g(z) = 1; the solution is

B, o) dis f lom)p" 1 (1—pt)=-1 dp.

gsinx cos x)

o) = (555"

X

11.17. The method of Hopf and Wiener.t A method of Hopf
and Wiener for solving the homogeneous equation

f@) = [Me—y)f)dy @<z <)  (LITD
o

will now be given. It depends on the following lemma.

LemMA. Let ¢(w) be an analytic function, regular in the strip

—l<v<],andlet
f Ip(u+iv)|2du < K = K(a)

in any interior strip —1 < —a < v < a < 1 (80 that, in particular,
by the lemma of §5.4, ¢(u+iv) > 0 as u - + oo uniformly in any
interior strip). _

In any interior strip —1 < —B < v < B <1, 1—¢(w) has only
a finite number of zeros. If they are w,..., w,, we can write

1— $w) = ilgw;(w wy)...(w—w,), (11.17.2)

1 Wiener and Hopf (1) ; Hopf, Radiative Equilibrium, Chap.IV; Paley and Wiener,
Fourter Transforms, Chap. IV,
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where ¢,(w) 18 regular and free from zeros in v < B, ¢,(w) is regular
and free from zeros in v > —B, and, in their respective half-planes of
regularity,
[$1(w)] > Klw|=#"*,  |$y(w)] > K|wlt**,  (11.17.3)
where k 18 a positive integer depending on ¢.
_ (w21)in w—1i\*
ety = O—g o ()
where (w2 1)#* is that single-valued branch in the strip —8 < v < B
which behaves like w* for large w, and where % is an integer still to
be determined. Then y(w) > 1 as u — +oo. Hence we can choose
k so that the variation of log y)(w) along the whole strip is 0. Having
fixed £, let log y)(w) denote the branch which tends to 0 as u > +c0.

Since
i) = (1=t 1+0( )]
[log ¥(w)| belongs to L? uniformly in the strlp Hence

log h(u) = 5. f l°g¢‘("')d = f 8 4() 4,

—27—00 iy—o

= x(W)—xo(w) (—y <v<y)

where 0 < 8 <y < 1, but y—8 is so small that no zeros of y(w)
liein B < v < y. Now y,(w) is regular for v > —v, and regular and

bounded for v > —fB; and similarly y, for v < B. Since
e (y—g)-in-k
1—¢(w) = X W"—
the result now follows. S
Suppose now that f(z) is a function which satisfies (11.17.1) for’
all real z, and is O(e®) as x - 0, where 0 < ¢ < 1; and let
k(z) = O(e~*%!), or more generally let eX=lk(x) belong to L*(—c0,0)

- for all A < 1. Then as z - —o0

(w—w,)...(w—w,),

fm=4ﬂwmwwww}

- for any A < 1, where h(y) is L*(—o00,00); and by choosing A > ¢, and -

applying Schwarz’s mequa,hty, we have

: f(z) = 0(e™)
for any A < 1. Thus F,(w) is regular for v > ¢, F_(w) is regular for
- v<1,and K(w) is regular for —1 < v < 1.
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Now '

o0

[ Me—w)fw)dy = [ ka—y)fi(y) dy
0

(where fy(y) = f(y) (y > 0), 0 (y < 0))
ia+-o
= f F (w)K(w)e"mvdw (c <a<<1),
ia—o
by Theorem 64. The equation (11.17.1) therefore gives
ia-+® ia+ o
j F,(w){1—4/(2m) K (w)}e-= dw + j F_(w)e—i® dw = 0.
ta-—o ia—©
Here each integrand is regular throughout the strip ¢ < v < 1, and
50 in this strip we must have

F {1 —J@mK@)+F(0) =0,
which implies that in fact each term is regular for v<1. If
Wy,..., W, are the zeros of 1—J(2m)K(w) in —B<v <58, by the

!
. F+(w)4—51@ (w—w,)...(w—w,)+F_(w) = 0,

$(w)
where ¢, and ¢, have the properties stated in the lemma. We can
write this
F0) i) (—0,) = — s
ba(w) $1(w)

and here the left-hand side is regular for v > —p, the right-hand side

for v < B. Hence each side is an integral function, and by (11.17.3)

this must be a polynomial of degree not exceeding In+k. Hence
B () — ) P(@)

(w—w,)...(w—w,)’

where P(w) is a polynomial. Hence
ia+ o
1 (W) PW)  _izw
fe) = Jen ) e e M

satisfies the original equation (and vanishes for z < 0).
"As a simple example, let

k() =A@ (0 <A< 3),

K(w) = «W%‘"‘) J‘ e-\zi+izw dop —

— 0

1—J(2m)K(w) = 1—

a1
Jem) T+u®

A w—(2A—1)
1+w? w4l
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The roots are w = +,/(2A—1) = w,, w,, and

_ (w—wy)(w—w,)
1—emE) = et
h) = i) = wei,

(w+i)P (w)

ia+

P(w) = const.,
w+% —tzw
J(zw) f by R

{1+J(1 2A)€"”"(1 2N 1— ‘\/(l—'zA)e z«/(l—-ﬁl)}
2J(1—22) 2J(1—23)

11.18. An equation of A. C. Dixon. A similar problem is pre-
sented by the equationt

f(z) =

1
- f@)
f(x) = g(z)+-A [ mdt' (11.18.1)
0
This is satisfied formally by
1
f@) = g@)+A [ g¥)x(z, ) dt (11.18.2)
1]
if x(z,t) satisfies the integral equa.tion
x, t)
X(@ ) = ) f -2 (11.18.3)

Puttingz = e$,y = e, ¢t = e-ﬁ, thls is

e~Hy(et,eP) = o¥ +A f e ¥x(e~", e7F) dn,

ettef 2 cosh }(¢—1)
or, writing ¢-iéy(e-¥,e) = ¢<e),
$(n) ,
$(€) = _£+e -+ f2cosh%(£_n) (11.18.4)
Suppose ﬁhat ¢(€) = O(ecf) as f——> 00, where 0 < ¢ < 3. Theri, as
in § 11.17, $(¢) = O(e¥t) as ¢ > —oo. Letc<a<§ Then(I)+(w)

is regular for v > ¢, ®_(w) is regular for v < }, and so (11.18.4) is
equivalent to

i@+ © ia+ ©
J. <I>+(w)e~i5w dw-+ f CI)_(w)e—ifw dw
ia— iga—©

t A. C. Dixon (2).
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b+ iﬁ-m'wﬁ ia+ o
— J (f) f € e~%w dw-+mA (). e~€w dw
2 ) cosh 7w _ cosh 77w ’
where —} < b <} Wecan take b = a. It follows that
A w\ etp+ifw
7 - [l= 11.18.6
@) (1 coshqrw) A/ (2) cosh 7w ( )

and —®_(w) are regular and equal in the strip —a < v < a. Hence
(11.18.5) is regular for v < . Hence @ (w) is regular for v < %,
except possibly for simple poles at the zeros of cosh aw—mA. Suppose
for example that =\ = sinam, where 0 < a < 3. Then the zeros

are 8t (1 )i, (—F— )iy (—h ki, (i
@, (w)

Hence Y(w) = T(—3+ bo— i) (1 —Ja— biw)

is regular for v < . ‘
To cancel the poles of sech 7w in (11.18.5) we must also have

1
e
at w = —11,..., —(n+3)i,.... Hence

1 e+
—_—— = a,,
W) T(—3+ie—in)(—ja—4n) "
say. The most obvious function with these properties is
g < (=0 e,
F(}—w) & n! w+(n+3)
and it is easily verified that this does in fact give a solution.
The difference between two solutions of (11.18.4) satisfies

O (w) = —

eiﬂ+iﬂw
)

¥{—(nt1i} =

¥(w) =

N )
$(é) = Aof Soomh 1E—m) " (11.18.6)
which is of the form (11.17.1). Here
A
1—yJ@mK@) = 1————

B 2T (3 —iw)D(3+iw)
~ TG—la+bw) T (F—a—3iw) D¢+ ta+ 2iw)D (G + da—Fiw)

— %&—&aww)&—%—%@w):
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where by(0) — A 27T (3 +iw)
T T —fat 3w T (3 +-datdw)’
1
2

_ I¢—ta— 4w (§+3a—Liw)
$o(w) = ;(%_W))

‘have the properties stated in § 11.17,

11.19. A problem of radiative equilibrium.t Consider a
medium stratified in planes perpendicular to the axis of x, extending
indefinitely on the positive side of its boundary = = 0,

Let I (a function of z and ) be the intensity of radiation of all wave-
lengths, at any point, in a direction making an angle 6 with the nega-
tive direction of the axis of . Let p be the density at any point, and

'k the coefficient of mass-absorption, supposed independent of the
wave-length. Let B (a function of x) be the intensity of black-body
radiation corresponding to the temperature of the matter at x.

The rate of absorption of energy per unit volume from the radia-

- tion in a solid angle w is
kp [ [ I d,

while the rate of emission is
kp ff Bdw = kpBow.

Consider a narrow circular cylinder, area of cross-section a, the
centres of whose ends are at x and z’, and whose axis makes an angle
0 with the negative z-axis. The energy radiated from the 2’-end
through a distant area in the line of the axis of the cylinder, at which
all points of the cylinder subtend approximately the same small solid
angle w, is I(z’, f)aw; this is made up of I(x,#)aw from the z-end,

together with J‘ kp(B—Iw dv

from the interior of the cylinder, v being its element of volume.
In the limit as ¢ - 0, w —> 0 we obtain

Iz, 0) = I(z,0)— f kp(B— I)sec d,
and, making &’ - z, *
g_i — kpsecO(I—B). (11.19.1)

For radiative equilibrium, the rate of absorption of energy per
- 1 E. A, Milne (1), Hopf (3); Hopf, Radiative Equilibrium.
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unit volume from all directions is equal to the rate of emission in all
directions; this gives o w '
' 4ﬂkpB'=kpjd¢jzsinedo

0 0

= 2nkp f Isiné do,
0
ie. 2B = Jf Isin6 df. (11 19.2)
)]
Putting r= f kp dz,
[1]
(11.19.1) becomes g;l = sec§(I— B). (11.19.3)
Hence I= e’“"o{K— f B(t)sec § e~¥cect dt}.

The boundary condition is that the incident radiation is zero, i.e.
that I = 0 for x = 0, 47 < 0 < 7. Hence

I = —¢-roect f B(t)secOetsect dt  (3n < 0 < ).
0 (11.19.4)

For 0 < 6 < }w we choose K so that I is not exponentially large as
T — 00, i.e. we obtain

I = ¢roecd fB(t)sec()e—‘m" dt (0<6<in)
Inserting these results in (11.19.2), we obtain
B(r) =1} ]‘"e’mosinﬂ de j?B(t)sec()e"“"" dt —
0 M
—3 fe’m"sinl) deB(t)secGe"‘“"" dt
t L4 0
=3 fB(t) dt Te«#womne d6 —
T 0

—3 [ By dt [ et tano
;6[}3(;) thjd tand d6

z
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= f B(t)k(r—t) dt, (11.19.5)
b

where k(E) = f e~Ei5000 tan 6 40 — } f .

1l
We can now appeal to the theory of § 11.17. We have, if v < 1,

[ «©

K(w)=z/%§ﬂ—) f eiwdxf%:\d.k:;/—é—ﬂ—)fcosxwdwfe—;—dz\

0

1 e® 1 arctanw
=i smx'w dx
N(@mw J. \/(211) TTw
arctan w

so that 1—J(2m)K(w) = 1—
w

This has a double zero at the origin, and no other zeros in the strip
—1 < v < 1. Hence, with the notation of §11.17, we put

_ arctan w\w?41
o) = (1-22) 2,
no additional factor being needed. Hence
e arctanz\z?+1) dz
2
. xa(w) = 5 f lo {(l— . ) = }z—w (v <)
1,y—-oo

Also P(w) = a-Bw, where « and § are constants, and the solution is

« +Bw e—rrw+x2(w) dw

) = @ j

ia—
11.20. The limiting form of Milne’s equation.t Writing
f B(r) dr =kf(:c), (11.19.5) may also be written
0o

I O
f(x)—%ff(t)dtlzil Sy
—%j——dy f et

max(0,x—y)
1t E. A, Mllne (1), Hardy and Txtchm&rsh (1), (2). See also Hopf (2)
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xz

=1 j ) —fw—y)} dy +} j ¢ f(e-+y) dy.
o ¥ (11.20.1)

For large values of z this approximates to the form
F -V
f@ =1 f Clety—fe—yidy.  (1.202)
) 0
THEOREM 155. If f(x) = O(ef%), where 0 << ¢ < 1, and both sides

of (11.20.2) are finite and equal for every z, then f(x) is a quadratic.
The formal argument is similar to that of § 11.2. We have

ta+ b+
(@) J( 5 f F(w)e—=0 dw 4L J(z ] f F_(w)e-i=v du,
ia*w (11.20.3)
where 1 >a >¢, —1 < b < —¢. Hence
' 9% ia+ o
f+y)—flz—y) = _\/(T;)—' f F, (w)sinywe-=w dy — ...,
[ S tpa+a—se—n ay
(1]
ia-+ o
= \/(2 j f F (w)e~izw dwfgsmyw dy —.
ia+ o
f F (w)arctan we—i=w dy — -
(11 20.4)

the dots indicating in each case the correspondmg term involving
F_(w). Also .

id+co

= ~iaw — e 11.20.5
f'(x) \/(2 )WJ F (w)we-=* dw ‘ ( )
Hence (11.20.2) gives
iaf“w F (w)(w—arctan w)e==* dw +-... =

Hence, by Theorem 141, p. 255, F,(w) and F_(w) are regular for
b < v < a, except possibly for a triple pole at the origin corre-
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sponding to the triple zero of w—arctanw; and F, (w) = —F_(w).
Evaluating (11.20.3) by the calculus of residues, it follows that f(x)
is a quadratic.

To justify the process we shall first prove that e=f'(x) belongs to
L2(—o0,0) if ¢’ > c. For (11.20.2) gives

fx) = %ff(x‘f'y)—f(x—y) dy +
Y
0

+%U"’_ !

= 3b(@)+1h(2),
say. If |f(z)] < Keo,

{flxz+y)—flx—y)} dy + f %’{f(xﬂ)—f(w—y)} dy]

1 ©
)| < K J‘ (e f-ecl-l) dy +- f e~v(eole+ul - gele-vl) dy < Keolel,
0 1

x+1

We may write | d(x) = f Zj—:(—f); dt,

where the integral is a principal value at ¢ = x. We now appeal to
the theory of conjugate functions. Let

g2
b= [ La

£—-2
é+1 &+

2
Then j $1(@)[? dz < f I$:(@)|? dzr = = f )2 de

‘b (033) Also, for §—1 <& < {+1,

[#i(0)—d(@)] < J tf—f’gdt | f 10,
{Jj’ £+2 }
< ( f - If(t)l”dt) ( f = )2 f If(t)lzdt)

< (f [f(t]zdt%



11.20,11.21 INTEGRAL EQUATIONS 349
Altogether it follows that ‘
é+1 E+2
| b@rde <4 f f(e)[2 dz < K ¢4
£
Hence ' £+1 »
f If ()[2 dz < K e%¥),

§+1
f e~ f'(x)|2 dx < K e¥e-e)E!,
é-1
and the result stated follows. ,

It now follows that the integrals (11.20.5) exist in the mean-square
sense, wF (w) being L*ia—o0,1a-}o0) if @ > ¢. Also the inversion
of (11.20.4) is justified by absolute convergence; for sinyw is O(e?¥)
for all 4, and O(jyw]) for small |yw|, and so is

O(lyw|te)
for all ¥ and w; and
ia+ o -
J' [17’_’_(1'0)'“){> dwi f y—*g(a—l)il dy
ig—o 0

is convergent. This completes the proof.
It has been proved by a more complicated methodt that the result
holds under less restrictive assumptions.

11.21. Bateman’s equation.f Suppose that a function f(x) is
represented by Fourier’s single-integral formula (1.1.7), not merely
in the limit, but for some value of A, A = a say, exactly. Then

fl@) = f fly )Sma(w Y gy (11.21.1)

for a given a and all .

This is an integral equation of the form (11.2.1), but the conditions
if §11.2 are not satisfied, and the solution takes quite a different
form.

Suppose that f(x) belongs to L?*(—o0,0). Let

g(z) = sinazjz,  G@) = \Im) (| <a), 0 (jz| > a).

1" Hardy and Titchmarsh (9).
1 Bateman (1), Hardy (2), Hardy and Titchmarsh (1), (2).
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Then (2.1.8) gives

ff( )smax y)dy J( ) f F(e-#ds. (11.21.2)

Hence flz) = j F(t)e~i= dt, (11.21.3)

«/(2 )
i.e. f(x) is a finite trigonometrical integral. Conversely, if f(x) is of
the form (11.21.3), where F is L?, (11.21.1) follows from (11.21.2).
Hence

THEOREM 156. A necessary and sufficient condition that a function
. f(=) of L? should be a solution of (11.21.1) is that it should be of the form
(11.21.3), where F is L*(—a,a).

There are, however, simple solutions of (11.21.1) not belonging
to L2; for example, cosbz and sinbx are solutions if —a <b<a,
though not if |b| > |a|. The next theorem includes these solu-
tions.

TaroreM 157. Let f(x)/(1+ |x|) belong to L¥(—o0,0), and let
—J: cos . f(x) dz, J‘ cos f(x) da
z

sm sin 4

——00

exist. Then, if f(x) satisfies (11.21.1), it is of the form

fl@) = fO)+ | x(w)e=i=* du,

-a

where x(u) belongs to L*(—a, a).

It is easily verified that
f(eiyu__eiyasgn u)e—izu dy = g?_/ Sin‘a(x—?/)__smay}.
: z =y Y
Hence o
1 sina(x—y) sin a,y}
x)—f(0) = — — ) d.
f@)—1(0) f{xy U fw) dy

— éai f (:’/) dy f (ewu__etyasgn u)g—izu gy

—a
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C n ’ (=00
—_ _f_ e—ixu du M (eiyu__eiuasgnu) dy
2 Y

if we can invert the order of integration. This is obviously per-
missible for the part with |y| < 1, and for the part involving e®vassn
and |y| > 1. Also f(y)/y is L}—o0,—1) and L*1,c0), and the
integrals -1

f IO givu dy, jf eVt dy

exist in the mean-square sense. The inversion for these is a case of
Parseval’s formula in L2 theory. The y-integral represents a function
of L¥—a,a), and this is the result stated.

TaEOREM 158. Let
fx) = f(0)+= f x(u)e—i=v du,
where x(u)/(a*—u?) t8 L(—a,a). Then
A .
f)=2lim [ =W fia—y) dy.

We may suppose f(0) = 0. Then
A A

[ ey = [ ¥ ey iy [ swgetesmdu
iy —A

a A a A
=2 f x(u)e—-ixu du f lnay etvu dy — f X(u)e—iz'u du f sin ay eivu dy.
—a A a ey

The first term tends to =z f e==uy(u) du = =f(x), by the bounded

_convergence of the inner mtegral The second term is

—2i f e~"uy(u) du f sin ay sin yu dy

a
. » sin(fe—u)A sin(au)A
= —9 e —_—
f x(u){ a—u atu } du,
-a
which tends to 0 as A —>oo with the given conditions, Hence the
result.
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The function f(z) == sinbz (|b] < a) is a case of both these
theorems; f(x) = sinax is not a solution of the equation.

Also, if 0 < m < n, 2~™J () is a solution of the equation with
a=1. For

n(x) . xn-m —_— n—3 1T,
2 —2nvnr(n+é)fl (=g dy

gn—-m

1

. d\r-m a2\n—} i

= SR TmT D) (Zz?/) (=g e dy.
-1

11.22. Kapteyn’s equation.f A Neumann series (for an odd
function) is an expansion of the form

1@ = 3 G on a(®)- (11.22.1)

If f(z) is given, the coefficients a,,,, may be obtained formally as
follows. We have (e.g. from (7.10.1))

? dt 0 (m#Em),
!szﬂ(t)«fzm(t) T= Ydnt2) m—n) (11.22.2)

Hence, multiplying by J;,,,(t)/t and integrating over (0,c0), we
obtain

Uy 41 = (4m+-2) f f(t)‘fz%‘(t) dt. (11.22.3)
1]

The series formed with these coefficients is

S (44 2)naae) j oK
(1]

n=0

- f s =0<4n+2)‘72,,ﬂ(oc)a;m(t))
ato

0
(provided that we may in term-by-term)

tegra
f 0 dt f (A AN da—v) do
0

_3 f Jy(@—0) dv f 1) {Jl(t f) +Jlt(:_-t;v)} dt

1 See Watson, § 16.4, Hardy and Titchmarsh (l) Also Sears and Titchmarsh (1).
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by §11.12. The inner integral is

ff( +v)J‘(“) du + ff(“ v)Jl( ) du
’ 0

and the last term gives

f Jz—0) dv j f@= gy — f fw) du j Ha—) 5= gy

= [ fph(e—u) du = fle)— j F (Mo(z—) du
[\]

[
on integrating by parts. The sum of the series is therefore f(x) if

f fa—u) du = f Jz—u) du f (fe-tur+fe—u) i ag,
and, by Theorem 150, this implies that
Jw)=% j {f(§+u)+f(§—u)}‘]—‘é—§~) d¢. (11.22.4)
(1)

This is Kapteyn’s integral equation.

11.23. Before proceeding to rigorous analysis, we shall prove the
following lemma.

LeMMA. Forxz > 0,1 > 0,
n§0(4n+ 2) | o +1(®)zn41(8)]| = Of{min(a?, z¥)min(s, ¢-4)}.

We have Jo@) = 0@1)  (n < }), (11.23.1)
= 0(1) (all n and z), (11.23.2)

and  J(@) = O{Qg} - 0{:/17&(.;_:)"] (@ll n and z), (11.23.3

so that in particular
J,(z) = 0(2-") (n = ex). (11.23.4)
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For 2 > 1, 2ex < ¢ the above sum is therefore

exr n E1] n @©
2+ 2 o)+ 2 ol
— O(%1)- O+ O(e-4) — O(?).

Forl<ax<t< 2exitis

(23

On)+ 2 o(é’%) — 0(x?) = O(ait-1).

2n+1=3

i 0{%3“"(%)”l+io{ )

2n+1=3 it
- ofsovncn - ff)

> O{xat”(geﬁ)%’ — 0.

THEOREM 159. Let f(x) be an odd function of x, and let f(x)/(1+ |x|)}
belong to L(—o0,0). Then a necessary and sufficient condition that
f(x) should be expressible by the Neumann series (11.22.1), with the
coefficients (11.22.3), is that f(x) should satisfy (11.22.4),

Suppose first that f(z) is expressible by the above series.
It follows from the lemma that, for a fixed z,

Forx<<1,t1litis

3 (4042 a(@Won 28] = Ofmin(1,4h),

and the inversion of the above summation and integration is ]ustlﬁed
by absolute convergence.

It is also clear from (11.23.3) that, if f(x) is expressible by (11.22.1),
it is (like the sum of a power series) differentiable any number of
times within the range of convergence of the series (here 0 to o).
The final integration by parts is therefore justified. Hence Kapteyn’s
equation holds.

Conversely, if (11.22.4) holds, then f'(u) is continuous, by the
uniform convergence of the integral. The argument can therefore be
reversed.
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11.24. Solution of Kapteyn’s equation. Since, in §11.22, f(z)
is odd, (11.22.4) may be written

(5) dt, (11.24.1)

fu)=1% j {flut-8)—fu—

or @)= —% ff(x y)J‘(y)sgny dy, (11.24.2)

and in this form f(z) is not necessarily odd.
TaEOREM 160. Let f(x) belong to L¥(—o0,00). Then a necessary and
sufficient condition that (11.24. 2) should hold for all values of x is that
fl@) = f $(u)e-i=* du,

where $(u) belongs to L*(—1,1).
The Fourier transform of g(z) = z~1Jy(x)sgnz is

Q(x) = zJ( )J'Il(y)smxydy
=[G wr<n 3 () >

Hence, if F is the transform of f,

j -9 Pegnyay = — [} ’lm%id,+

) f o ) 2

—1} of the integral of this Wlth respect to z is
-1

_ 1 F(t)e—i=t fl_t
Jem ) pHJe-=1

+

1 o
1 it 1 F(t)e ™= dt
N j Py dé + o0 j E—1) T

and, by the theory of §3 the necessary a,nd sufficient condition
that this should equal f(x), or differ from it by a constant, is that
F(t) = 0 for |t| > 1. This proves the theorem.
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TurorEM 161. If
1

f@) = f0)+= [ x(wei= du,

|
-

where x(u)[\(1—u?) belongs to L(—1,1), then f(x) is a solution of
(11.24.1).

The term f(0) is a solution, so may be omitted. We then have

5 | teto—se—ai a

3 [ e a f x(wle-ierbu du —

[]

—%f 2 o—g) df_fl su)e-ie-bm dy

= —1T

.!-'*-—a,..

x(u)e-i=+ du f "léf) sin éu d¢ -+
0

1 ©
+ f x(w)e=i=v du f Jy(€)cos éu d¢

1
= —ix f x(w)ue—=v dy 4 f x(u)e=i=% dy = f'(x)
-1
{Watson, § 13.42) if the inversions are ]ustlﬁed.
The repeated integral with the factor x outside is absolutely
convergent; the inversion of the other is justified by dominated
convergence provided that

] Jl(f)OOSfudfl T
for all 7'.

Here the leading term in the asymptotic expansion gives terms like

T T
cosécoséu ,. [ cosé(l—u) _ 1
f st oot g _lf e R 0{\/__(1_“)}4-...,

and the result follows.
f(x) = sinz is an example of this theorem.
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TarEoREM 162. Let f(x)/(1+|z|) belong to L*(—00,0), and
f(@)/(1+ |z|) to L(—00,00). Then, if f(x) satisfies Kapteyn’s equation,

f@)="x

where x(u) belongs to L3(—1, 1).

The formal argument here is that, if f(x) satisfies Kapteyn’s
equation, it is expansible in the form (11.22.1); and then

1 X . _ «© @ - .
p J f(x)§m£(i—xx) dx = Z Yan+1 f sm(g_xx).g,,ﬂ(x) dx

x(u)e—=* du,

..-'ﬁv-

n=0 - f

— a0

= 2 A1 Senna(§) = f(€)-

Thus f(z) satisfies Bateman’s equation (with a = 1), and so is equal
to a Fourier integral with limits (—1,1). Owing to convergence
difficulties we have to apply the argument indirectly. We have
instead

1 [ fo)—a,Jy(@) sin(E—2) , < gy [ SE—2) Fyni(®)
D[RO g = 5 e | SRS s

-~ a0

n=1

i a2n+1e)'2n+1(§) _fe—a,h()
P & , &

This inversion is justified by absolute convergence, since the lemma
of §11.23 shows that

S tnta) [ [0 ar | |22 [T
n=1 H - §—=x x
is convergent.
It now follows from Theorem 156 that
f_ﬂLa‘;l___ f ¢(u)e—wu du

where ¢(u) belongs to L*(—1,1). Hence

$(u) =§l; f J@;:;—‘Il@e"“ dr (—l<u<l),



358 INTEGRAL EQUATIONS " Chap. XI

and, since {f(x)—a, J;(z)}/x belongs to L*—o0,0), ¢(x) is the integral
of the integral of a function of L2. Integrating by parts twice, we
obtain
1
@::1_']1@ p— x(aeix+be—iz)+(ceiz+de—iz)+ f x(u)e-““ du,

-1
where x is L% —1,1); since the left-hand side is L*(— o0, ), a, b, c,
and d must vanish. This proves the theorem.

11.25. A differential equation of fractional order. The
integral equationt

fle) = F?;) f (y—2)*-f(y) dy (11.25.1)

may be regarded as a differential equation of order «. Suppose, for
example, that « is a positive integer p, that f(x) tends to 0, as z - oo,
with sufficient rapidity, and that

@ =[fo)dy, o) = [ (@) dy....

Then, if we integrate repeatedly by parts, and write z for f,(2),
(11.25.1) becomes
drz _ (—1)PAz.
_ da?
The only solutions of this are finite combinations of exponentials.
The general equation (11.25.1) is of the form (11.2.1), with

Axa

k(z) = T

The theory of §11.2 is not applicable, since k(x) does not satisfy

(11.2.3). But the equation still has exponential solutions. The

conditions that f(x) = e-2* should be a solution are that R(a) > 0

and A = a®, where a* means e*1°8¢, and log a has its principal value.
If X > 0, @ may have any of the values

Negrmile  (p — 0, 41,...)
for which |2rm/a| < 7. If a < 4, and in particular if « < 1, the

only admissible value of @ is AV*, We shall prove that in this case,
at any rate, the solution is unique.

(x>0, 0 (zx<O).

1 Hardy and Titchmarsh (7).
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TuEorREM 163. Let f(x) be integrable over amy finite interval
0<z, T <2 letd >0,0<a< 1, and let

fl@) = %a) f (y—2)-Y(y) dy (11.25.2)

for every positive x. Then
flz) = Ceos,

where a = A2, and C is a constant.
If §(s) is the Mellin transform of f(x), we have formally

FHs) = ﬁ j -1 do f (y—2)-Y(y) dy

o y
A
— d S T a—ld
—F(a)J-f(y) yofw“ (y—=)*1dx

AT (s)
= Fsta) F(s+a).
We shall prove that this is in fact true, and base our solution on it;
but we cannot justify the inversions as they stand, and we have to

proceed indirectly. We require the following lemma.
1 c
Lett fi@) =~ | fo)y—=2)*dy
'«

for every positive x. Then, if B > 0,

._1_*_ i * __#\g1 - 1 :  varpe

ie. 25 =Frp (11.25.3)
To prove this, we have to justify the inversion
[

[ a—8p1dz [ foy—211dy = [ ) dy [ (e—8F-y—2)o o
—~¢ —z ' —¢ g:

c c I3 y

Clearly j f:f f

£+8  —=x £+8  £+9
and it is sufficient to prove that

£4-8 o
1= f T dyf (x—&)B-Yy—x)*-1dxr -0

1 See Bosanquet (1) for a proof under much more general conditions.
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£48
and J = f fy) dy f (@—&)f-Yy—=z)*-1dz -> 0
£+8
‘as § > 0. Now

" TFh)

and the result for this follows from the second mean-value theorem
and the existence of f f)(y—€)*-1dy.

Also
J = j F@)y—)=- dy f (x—-f)ﬂ-l( ‘g) ~ i,

é+8
and the inner integral is steadlly increasing with y, and its value
when y = ¢ is O(88). Hence the result for this part also follows from
the second mean-value theorem.

Proof of Theorem 163. Let ¢ > 1, 0 << z < ¢, and write

T)I(E) f F@)y—8)=E-1dy,
—¢

16 = 75 f Ja)y—t dy + s f f)y—=)= dy

= M¥@x)+Mg(x),
say. Then ¢
) = ﬁ’({“—) f (@) +9@)y—z)-1 dy
. = Afh(2)+ g @)

by (11.25.3). Hence
f@) = Ag(x)+A%z () + AL ().
 Repeating the argument, we obtain
f(x) = 2g(@)+2%g% @)+ ... + A" -pal(®) +A"au(x), (11.25.4)

¢
* = 1 — a1
where A L
By taking n large enough, in particular noe > 1, we obtain
1 d
@) < 4@+ [ 1#w)] dy. (11.25.5)

where ¢(x) is bounded as z - 0. Hence f(z) is bounded as =z — 0;
otherwise there would be a sequence of values of = such that
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If@)] = fy) (= <y<e¢), |f(x)] > o0, which is inconsistent with
(11.25.5). It then follows that f* (z) is continuous for 0 < # < ¢,and
hence so is f(z). Denote its limit as z — 0 by f(0).

We can also differentiate (11.25.4), and it follows that f'(x) is
bounded near the origin. The argument could be carried on in-
definitely, but all we require is that

fl@)—f(0) = O()

as z —> 0.

Now §(s) = f (f@)—f (O dz + j f@ps-rdz 179,

primarily for 0 < ¢ < «, and then, as an analytic continuation of
F(s), for —1 < o < a. Since

J FO)z1 dz = —ﬁf_) (o < 0),
1

we have §(s) = ]m{f(:z:)——f(O)}:z:"—1 dz (—1<o<0)
0

Inserting values of f(x) and f(0) given by (11.25.2), we obtain formally

—>00 —>®0

‘3(s)=f,—?a—) f -1 do f {y—2) 1~y fy) dy +

T

+F?—) _fwxs—l dx fx ¥*-1f(y) dy
I‘( ) f /@ dyf e H(y—=)*1—y*}dx +
+1 p( j f y*-f(y) dy J »-1dx

1"( ) f fly ){I;,(Zs_rl‘_({:‘))ysm_l_y%““‘} dy &

_A__ [ y8+a—1
+ e f f@yrra-t dy
AT(s)
I'+a)

We shall show that this process is valid if —a < 0 < 0.
Aa

_are) [ o
T I(s+a) J ety =

&(s+a).
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For the first term, the integral over y <{ N can plainly be inverted,
and it is sufficient to prove that

N —®
[erds | {y—2)'—y> ) dy (11.25.6)
o N
and sz dx TQ{(y—x)““—y“'l}f(y) dy (11.25.7)
N z

tend to 0 as N - co. Now by the second mean-value theorem

—wo ¢
. a-1
{y—aypr—y=Bfg) dy = {(1— 5] 1} | v V@) dy;
N
N N
the last integral is bounded, and

N 1
[ao((1-2) 1) ao = 3o [ (@ -1yt = 059,
3 o
giving the result for (11.25.6). Also (11.25.7) is
F(“) f @ Yf(x) dw — J. asldx f ¥ f(y) dy,

which plainly tends to 0.
The inversion of the second term is equivalent to integration by
parts:

—0

. I o T e
ledxjy 1f(y) dy [j lf(y)dy] jxs 1f(a) de,

0
and the mtegrated term tends to 0 at each limit.

ofa B(8)
Let x(s) = ¢ )’

Then the above result is equivalent to

x(s+o) = x(s).
Thus x(s) has the period «, and is regular for —1 < ¢ < 0, and so

everywhere. Also, if h(zx) = f f@y*tdy = o(1),

§(s) = O+ [ flw)estde
1
= O(1)+h(1)+(s—0) f h(x)2s-o-1dx

=0(lt) (=1<e<0).



11.25, 11.26 INTEGRAL EQUATIONS 363
Hence x(s) = O(|t|4ei=t)
for —1 < o < 0, and so on any line parallel to the imaginary axis.
Hence
alogz
( 2m )
is one-valued, and O(log4rri®) as |z| = r -0, and O(log4(1/r)r-%°)
as r - 0. Hence x(s) is a constant,

() = CT(s)r~%l,
and, by Theorem 32,
c k+io
= — [(!
f@) =5 f D —*lz—=ds (0 <k < a)
k—io

— Ce— xAlI“

11.26. A probability problem.t A function f(z), such that
f(x) = 0and

ff(x) dr = 1,

defines a law of errors, which asserts that the probability that the
error in making a certain measurement lies within the range (z;, 2,)

Xy
is f f(x) dz; or that, for small 8z, the probability that the error lies
Ty

in (x,x+43z) is to a first approximation f(x) dx.

Suppose that we observe two quantities P and @, and that the
errors in observing them, p and g, are distributed according to laws
f(zx) and g(x). It is required to find the corresponding law for P+@.

If p and ¢ are capable of taking integer values only, and the pro-.
portion of times that p is  is f(z), and that ¢ is y is g(y), then the
proportion of times that p+q is £ is

> Z; f@)g(y) = gf (@)g(¢—2),

r+y=

i.e. the ‘resultant’ of f and g.
In the continuous case, a similar argument with f(z)8r and
g(y) 8y leads to

[ f@gE—a) dz

t Pélya (2).
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as the law for p-}-q. We can prove this rigorously as follows. Strictly,
p and g run through sets of points E, and E, such that

mE(p <o) = [ fu)du, mEg<z)= | gu)du.

-0

Let hi@ = [ fa)du,  gy(2) = [ glu)du.

Consider the sum
§=_3 q—nd)A{n+1)8}—fi(n8)].

The term in n represents the probability that p is in (n3, (n+1)3) and
q is < £—nd. For such p and ¢, p+¢ < £+43. On the other hand,
if p+qg< ¢ then 73 < p < (n+1)3 and ¢ << £—nd for some n.

Hence "?'E(P-{-q = f) <8 K mE(P+q = §+8)
Since f is L, and g, is continuous and tends to 0 as x - —oo and
to 1 as z - 0, it is easily seen that

(n+1)8
im § [ f0gE—0—aE—nd)dt =0,
0n="w -5 »
i.e. that IimS = f f@)g:(€—1) dt.
80 o

Hence

mB(p+q < §) = [ fO)g(é—1) dt
© ;—a—ot «© £
= ff(t) dt f g(x) de = ff(t) dt J g(u—1t) du

¢ ©
= [ du [ jegu—1)at,
which is equivalent to the result stated.
If f(x) gives a law of errors, so does % f(g) We now ask for what

law of errors the resultant of two laws of this form is also of the same
form.

TurorEM 164. Let f(x) = 0, let f(x) and x%f(x) belong to L(—oo 00),

and let
: (E) = f () ( —-y) dy (11.26.1)

for every x, where a, b, ¢, are given positive numbers.
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Then the conditions are conststent only if c? = a®+-b2%; and in that

case 1 I
— —izk
1) = 55
almost everywhere, where k 18 a constant.
The integral

a“"‘*a

z™f(x) de = K,

exists form = 0, 1, 2. Now, form = 0,1

%J: xmf(.c"f)dx - ;15 f dz j: xmf(a)f(”f}) dy

»

and, in the three cases m = 0, 1, 2 this gives

K, = K, (11.26.2)
cK, = aK, K+ bK, K,, (11.26.3)

2K, = a?K, Ky+2abK3+b2K, K,. (11.26.4)

Assuming that f(x) is not null, (11.26.2) gives K, = 1. Hence
(11.26.3) gives (@+b—c)K, = 0, (11.26.5)
and (11.26.4) gives (c*—a?—b?)K, = 2abK1. (11.26.6)

But by Schwarz’s inequality

K} < KK, = K,,
so that (11.26.6) gives

—a?—b? < 2ab,
¢ < a+tb.
Hence (11.26.5) gives K, = 0, and (11.26.6) gives
c? = a®+b%
a ' b
Let -c— = a, *c— = B.

Then, putting z = ¢, y = ¢, (11.26.1) becomes

J¢) = ﬁf ()( )dn, (11.26.7)

where o?+p2=1.. (11.26.8)
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Let O(x) = (27)F(z) = f f(t)ei=t dt.

Then, by Theorem 41, (11.26.7) gives
D(z) = O(ax) P(Brr). (11.26.9)

Using (11.26.9) for each term on the right, we obtain

B(z) = B(ae) D (Boz) Do) D(B'),
and so generally

O(z) = QY1 2) P(Yim,2 %) P (Vi ),
where m = 2%, and the m numbers y,,1,..., ¥ n are the 2* terms
obtained by expanding (a8

Hence YmatYmeT ot Vmm = () = 1.
Also y,, ,, is of the form o7, where p+¢ = n; and hence, supposing

o= B’ we have Y, Lo (p=12,..,m).

Hence maxy,, , - 0 as m — 0.
Now since f(x), 2f(x), and x%f(x) belong to L, ®(x), ®’(x), and ®"(x)
are continuous; and ®
00 = [ ft)dt = K, = 1,
Q’(0) = J f(tyit dt = iKy = 0,

-0
0

and O"(0) = — f 2f(t) dt = —F,
say. Hence, in the neighbourhood of z = 0,

log ®(x) = u(z)+w(),
where u(x) and v(z) are continuous, and

4(0) = v(0) = w'(0) = v'(0) = 0,
and u"(0) = —Fk, 2"(0) = 0.
Hence m
log ®(x) ‘—“le{u(ym,p. x)+7:v(')’m,p. x)}

m
= %12 zlygt,#‘{u”(om,y Ym,u x) + “}”(O;n,,; Ym,p x)}’
p=

where 0 <6, , <1, 0<6,, <1l Asm-oc0, each y,,, -0, and
hence so does each 8,,,¥,, and uniformly with respect to p.
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Hence m
log®(x) = %x2p§=:1ﬁ"’ W{—k+o(1)}
= — Yo (1),
ie. log®(z) = — ka2, D(x) = e,
and so (by Theorem 27) almost everywhere
f@) = 5 j ottt g — ﬁnﬂ o1k,

— 0

i.e. the law is Gauss’s law.

11.27. A problem in statistical dynamics.t Consider an

assemblage of atoms moving in one dimension in such a way that the
v+0v

fraction of them with velocities between v and v-9v is f fx) dz.
v

w+ dw
At a subsequent instant let a fraction f & (v, z) dz of those with

w
velocity v have acquired increments of velocity between w and w--3w.

Then, by an argument similar to that used in the previous section,

the fraction of the whole which finish with velocities between v and
v+
v'+-8 is f g(x) dx, where

g(v") = [ f@)$(v,v'~v) dv. (11.27.1)
For a steady state g = f, so that f satisfies the integral equation
fo') = f f@)p(v,v"—v) do. (11.27.2)

Suppose now that the motion is defined as follows. The centre of
mass of atoms moving with velocity v moves according to the
equation av

=\ A>0),

so that after time ¢ its velocity is ve~*. Superimposed on this motion,
the atoms are given increments of velocity « in time ¢, the proportion
of those with increment between u and u—+8u being #)(u) Su; and this
increment is uncorrelated with v, so that the proportion of those

+ E. A. Milne (2); Fowler, Statistical Mechanics, §19.5. Milne’s original method
requires heavier restrictions than those assumed here.



368 INTEGRAL EQUATIONS Chap. XI

with velocity v having the additional increment between u and
u—+8u is also yY(u)du. It follows that

d(v, ve¥—vtu) = P(u),
where i(u) is independent of v, but of course depends on ¢. Putting
v’ = ve~M4y, this is

(v, —v) = (v’ —veN),
The condition for a steady state is therefore

fw) = | Jopo'—ve¥) do,

where, as in the last section,

ff(x) de=1, fz/v(x) dxr = 1.
Let F and ¥ be the transforms of f and . Then

@

F(é) = ﬁﬂi f o8 g f FoW(o —veN) do

-

= «/—(;;-)— j f(v) dv f l/’(’l)’—ve—N)y:&;’ v’

- ﬁ f f(v) dv f (@)eiteeN itz g
= J(2m)F(ée M) ¥ (£).

Wenow show that a certain assumption about the limiting behaviour
of i(x) as t - 0 actually determines all the functions completely. We
assume that positive and negative increments » are equally likely, so
that (u) = $(—wu); and also that, as ¢ — 0, for any fixed positive 3,

3 ©
f 22p(z) dx ~ at, f Y(x) dx = o (1),
0 )
where a is a constant. It follows that, as ¢ - 0, for a fixed ¢,

JEm¥(E)—1= [ d@)et—1)de = 2 [ §(z)(coséx—1) de
—® 0

= —§2 f 24(x) dz + ft/t(x)O(x“) dx +O( f P(x) dx)
0 )

0

= —&{at+o (t)}+0(8%)+o(?),
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and by choosing first 8§ and then ¢ sufficiently small it follows that
JEem)¥(¢)—1 ~ —£%alt.

Hence
F(¢)—F((e™) _ Flée™{Jem¥(E)—1) = afF()
E—fe M E—te N A
as t - 0; ie. F'(€) = —agX1F(§).

Hence F(¢) = Ce o'
and C = F(0) = (2x)-t. Hence

1 [ VA—i A\ ,
—_ —tafrA-itz — ~Aza
J@) 27 f ¢ dé (211:1) ¢ ’

i.e. the distribution is ‘Maxwellian’.
Hence also

1 Ry 1 agr |
YO = Jom TEe™ 4<2w)exP‘“ o (1=e9)
and hence

#6) = (5o oxp| — i

2ma(1—e—2X) T 2a(l—e)f°
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PART TWO

Where Part 1 gave a theory of eigenfunction expansions associated with
ordinary second-order differential equations, Part II constructs a similar
theory for partial differential equations of the second order. It starts from
the case of a rectangle with potential-function zero (ordinary multiple Fourier
series), and is extended by limiting processes to general second-order equa-
tions in the whole space. Theorems on the nature of the spectrum, the distribu-
tion of the eigenvalues, and the convergence or summability of the eigenfunction
expansion are proved. There follow chapters on perturbation theory (in-
volving both discrete and continuous spectra) and on the case where the
potential function is periodic In the last chapter theorems in general analysis
which are quoted in the main texts are proved,
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