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PREFACE

This book aims to present to first and second year graduate students a
beautiful and relatively accessible field of mathematics—the theory of singu-
larities of stable differentiable mappings.

The study of stable singularities 1s based on the now classical theories of
Hassler Whitney, who determined the generic singularities (or lack of them)
for mappings of R* — R™ (m > 2n — 1) and R? — R?, and Marston Morse,
who studied these singularities for R* — R. It was René Thom who noticed
(in the late ’50’s) that all of these results could be incorporated into one
theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42])
gave the first general exposition of this theory. However, these notes preceded
the work of Bernard Malgrange [23] on what 1s now known as the Malgrange
Preparation Theorem—which allows the relatively easy computation of
normal forms of stable singularities as well as the proof of the main theorem
in the subject—and the definitive work of John Mather. More recently, two
survey articles have appeared, by Arnold [4] and Wall [53], which have done
much to codify the new material; still there is no totally accessible description
of this subject for the beginning student. We hope that these notes will
partially fill this gap. In writing this manuscript, we have repeatedly cribbed
from the sources mentioned above—in particular, the Thom-Levine notes
and the six basic papers by Mather. This is one of those cases where the
hackneyed phrase *“if it were not for the efforts of . . . , this work would not
have been possible’ applies without qualification.

A few words about our approach to this material: We have avoided
(although our students may not always have believed us) doing proofs in the
greatest generality possible. For example, we assume in many places that
certain manifolds are compact and that, in general, manifolds have no
boundaries, in order to reduce the technical details. Also, we have tried to
give an abundance of low-dimensional examples, particularly in the later
chapters. For those topics that we do cover, we have attempted to *‘fill in
all the details,” realizing, as our personal experiences have shown, that this
phrase has a different interpretation from author to author, from chapter to
chapter, and—as we strongly suspect—from authors to readers. Finally, we
are aware that there are blocks of material which have been included for
completeness’ sake and which only a diehard perfectionist would slog through
—especially on the first reading although probably on the last as well. Con-
versely, there are sections which we consider to be right at the ‘““heart of the
matter.”” These considerations have led us to include a Reader’s Guide to
the various sections.

Chapter I: This 1s elementary manifold theory. The more sophisticated reader
will have seen most of this material already but is advised to glance through
1t in order to become familiar with the notational conventions used elsewhere
in the book. For the reader who has had some manifold theory before,
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vi Preface

Chapter I can be used as a source of standard facts which he may have
forgotten.

Chapter II: The main results on stability proved in the later chapters depend
on two deep theorems from analysis: Sard’s theorem and the Malgrange
preparation theorem. This chapter deals with Sard’s theorem in its various
forms. In §1 is proved the classical Sard’s theorem. Sections 2-4 give a
reformulation of it which is particularly convenient for applications to
differentiable maps: the Thom transversality theorem. These sections are
essential for what follows, but there are technical details that the reader is
well-advised to skip on the first reading. We suggest that the reader absorb
the notion of k-jets in §2, look over the first part of §3 (through Proposition
3.5) but assume, without going through the proofs, the material in the last
half of this section. (The results in the second half of §3 would be easier to
prove if the domain X were a compact manifold. Unfortunately, even 1if we
were only to work with compact domains, the stability problem leads us to
consider certain noncompact domains like X x X — AX.) In §4, the reader
should probably skip the details of the proof of the multijet transversality

theorem (Theorem 4.13). It is here that the difficulties with X x X — AX
make their first appearance.

Sections 5 and 6 include typical applications of the transversality theorem.
The tubular neighborhood theorem, §7, is a technical result inserted here
because it is easy to deduce from the Whitney embedding theorem 1n §53.

Chapter I1I: We recommend this chapter be read carefully, as it contains
in embryo the main ideas of the stability theory. The first section gives an
incorrect but heuristically useful ‘““proof’’ of the Mather stability theorem:
the equivalence of stability and infinitesimal stability. (The theorem 1s
actually proved in Chapter V.) For motivational reasons we discuss some
facts about infinite dimensional manifolds. These facts are used nowhere In
the subsequent chapters, so the reader should not be disturbed that they are
only sketchily developed. In the remaining three sections, we give all the
elementary examples of stable mappings. The proofs depend on the material
in Chapter II and the yet to be proved Mather criterion for stability.

Chapter IV gives the second main result from analysis needed for the stability
theory: the Malgrange preparation theorem. Like Chapter II, this chapter 1s
a little technical. We have provided a way for the reader to get through it
without getting bogged down in details: in the first section, we discuss the
classical Weierstrass preparation theorem—the holomorphic version of the
Malgrange theorem. The proof given is fairly easy to understand, and has
the virtue that the adaptation of it to a proof of the Malgrange preparation
theorem requires only one additional fact, namely, the Nirenberg extension
lemma (Proposition 2.4). The proof of this lemma can probably be skipped
by the reader on a first reading as it is hard and technical.

In the third section, the form of the preparation theorem we will be using
in subsequent chapters is given. The reader should take some pains to under-
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stand it (particularly if his background in algebra is a little shaky, as it is
couched in the language of rings and modules).

Chapter V contains the proof of Mather’s fundamental theorem on stability.
The chapter is divided into two halves; §§1-4 contain the proof that infinitesi-
mal stability implies stability and §§5 and 6 give the converse. In the process
of proving the equivalence between these two forms of stability we prove
their equivalence with other types of stability as well. For the reader who is
confused by the maze of implications we provide in §7 a short summary of
our line of argument.

It should be noted that in these arguments we assume the domain X is
compact and without boundary. These assumptions could be weakened but
at the expense of making the proof more complicated. One pleasant feature
of the proof given here is that it avoids Banach manifolds and the global
Mather division theorem.

Chapters VI and VII provide two classification schemes for stable singularities.
The one discussed in Chapter VI is due to Thom [46] and Boardman [6]. The
second scheme, due to Mather and presented in the last chapter, is based on
the “local ring” of a map. One of the main results of these two chapters is a
complete classification of all equidimensional stable maps and their singu-
larities in dimensions <4. (See VII, §6.) The reader should be warned that the
derivation of the ““normal forms”’ for some stable singularities (VII, §§4 and 5)
tend to be tedious and repetitive.

Finally, the Appendix contains, for completeness, a proof of all the facts
about Lie groups needed for the proofs of Theorems in Chapters V and VI.

This book is intended for first and second year graduate students who
have limited—or no—experience dealing with manifolds. We have assumed
throughout that the reader has a reasonable background in undergraduate
linear algebra, advanced calculus, point set topology, and algebra, and some
knowledge of the theory of functions of one complex variable and ordinary
differential equations. Our implementation of this assumption—i.e., the
decisions on which details to include in the text and which to omit—varied
according to which undergraduate courses we happened to be teaching, the
time of day, the tides, and possibly the economy. On the other hand, we are
reasonably confident that this type of background will be sufficient for
someone to read through the volume. Of course, we realize that a healthy
dose of that cure-all called “mathematical sophistication’ and a previous
exposure to the general theory of manifolds would do wonders in helping the
reader through the preliminaries and into the more interesting material of the
later chapters.

Finally, we note that we have made no attempt to create an encyclopedia
of known facts about stable mappings and their singularities, but rather to
present what we consider to be basic to understanding the volumes of
material that have been produced on the subject by many authors in the past
few years. For the reader who is interested in more advanced material, we
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recommend perusing the volumes of the “Proceedings of Liverpool Singu-
larities”’ [42, 43], Thom’s basic philosophical work, *‘Stabilité Structurelle
et Morphogenése” [47], Tougeron’s work, “Ideaux de Fonctions Differenti-
ables’ [50], Mather’s forthcoming book, and the articles referred to above.

There were many people who were involved in one way or another with
the writing of this book. The person to whom we are most indebted is John
Mather, whose papers [26-31] contain almost all the fundamental results of
stability theory, and with whom we were fortunately able to consult fre-
quently. We are also indebted to Harold Levine for having introduced us to
Mather’s work, and, for support and inspiration, to Shlomo Sternberg, Dave
Schaeffer, Rob Kirby, and John Guckenheimer. For help with the editing of
the manuscript we are grateful to Fred Kochman and Jim Damon. For
help with some of the figures we thank Molly Scheffe. Finally, our thanks

to Marni Elci, Phyllis Ruby, and Kathy Ramos for typing the manuscript
and, in particular, to Marni for helping to correct our execrable prose.

Cambridge, Mass. Martin Golubitsky
August, 1973 Victor W. Guillemin
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Chapter I

Preliminaries on Manifolds

§1. Manifolds

Let R denote the real numbers and R" denote n-dimensional Euclidean

space. Points of R™ will be denoted by n-tuples of real numbers (x,, ..., x,)

and R" will always be topologized in the standard way.
Let U be subset of R*. Then denote by U the closure of U, and by Int (U)

the interior of U.

Let U be an open set, f: U— R, and x € U. Denote by (df/ox;)(x) the
partial derivative of f with respect to the ith variable x; at x. To denote a
higher order mixed partial derivative, we will use multi-indices, i.e., let

a« = (a,...,a,) be an n-tuple of non-negative integers. Then

o'el olel
8xaf= mf Where Ial — a1+...+an
n

and f:U —r is k-times differentiable (or of class C*, or C*) if
(3'%f/dx*)(x) exists and is continuous for every n-tuple of non-negative
integers a with |a| < k. (Note that when a = (0,...,0), dl*“f/dx* is
defined to be f.) f 1s real analytic on U if the Taylor series of f about each
point in U converges to f in a neighbourhood (nbhd) of that point.
Suppose ¢ : U — R™ where U is an open subset of R" and f is some real-
valued function defined in the range of ¢; then ¢ * f = f « ¢ (wWhere - denotes
composition of mappings) is called the pull-back function of f by 4.

Definition 1.1. Let ¢: U — R™, U an open subset of R".

(a) ¢ is differentiable of class C* if the pull-back by ¢ of any k-times
differentiable real-valued function defined on the range of ¢ is k-times differ-

entiable.
(b) ¢ is smooth (or differentiable of class C®) if for every non-negative

integer k, ¢ is differentiable of class C*.
(c) ¢ is real analytic if the pull-back by ¢ of any real analytic real-valued

function defined on the range of ¢ is real analytic.

Let 6: U— R™ be C! differentiable in U and x, a point in U. Then by
Taylor’s theorem there exists a unique linear map (d¢).,: R* — R™ and a
function p: U — R™ such that

o(x) = ¢(xo) + (dd)x,(x — x0) + p(x)

for every x 1n a nbhd ¥V of x,, where

Iim IP(JC)‘ — 0.

x—bxo Ix - xol -

1



2 Preliminaries on Manifolds

Note that we will use |x| to denote the Euclidean norm (2 x;?)'/%. Let
(d¢),,: R* — R™ be the Jacobian of ¢ at x,; it 1S given with respect to the
coordinates Xxi,..., X, on R® and y,,...,y, on R™ by the m x n matrix

2 (xo))lsism

1Ss/sn

where ¢': R" = R(1 < i < m) are the m coordinate functions defining ¢.
The chain rule holds, of course. That i1s, if ¢: U - R”" and ¢ : V > R”

are both C! differentiable where U C R” and VV C R™ are open and V' D
S(U). then d(y - ¢), = (d¥) 4, - (d0),, for every x, in U

Theorem 1.2. (Inverse Function Theorem). Let U < R" be open and p be a
point in U. Let ¢: U—R" be a C* differentiable mapping. Assume that
(d), : R® — R* is invertible. Then there exists an open set V in R" contained in
the range of ¢ and a mapping . V — U, differentiable of class C*, such that
b+(x) = x for every x in V, and J-¢(x) = x for every x in Y(V).

Proof. See appendix of Sternberg; or Lang. [

Definition 1.3. A local homeomorphism of R" is a homeomorphism of
some open subset of R™ onto another. (So the domain of a local homeomorphism

need not be all of R".)

Let ¢ be a mapping. Denote by dom ¢ the domain of ¢. Also, 1f U < dom ¢
denote by ¢| U the restriction of ¢ to U. If X is a set, thenidy : X — X denotes
the identity mapping on X.

Definition 1.4. A pseudogroup on R" is a collection T" of local homeo-
morphisms on R" with the following properties:

(a) idgn is in I,

(b) if  and y are in T with dom = range of ¢ then Y- isin L, i.e., 1'is
closed under composition for all pairs of elements for which this operation makes
sense.

(c) if isin T, then = is in ' (where ¢ =1 denotes the inverse function of ¢)

(d) if ¢ is in T and U is an open subset of dom ¢, then ¢|U is in I, and

(€) if {U}ues (I some index set) is a collection of open subsets of R", ¢ is a
local homeomorphism of R* defined on U = \J,e; U,, and | U, is in T for every
oinl, then ¢ is in L.

Some examples of pseudogroups are:

(a) (diff)* = the set of all local diffeomorphisms on R" (» fixed) which are

differentiable of class C*.
(b) (diff)* = the set of local diffeomorphisms of R* (n fixed) which are

smooth.
(c) (diff)® = the set of all local difftomorphisms of R" (n fixed) which

are real analytic.
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To show that (a) and (b) satisfy the conditions of the definition you need
to use only the chain rule, the inverse function theorem, and the local charac-
ter of differentiability. For (c) you need the strengthened versions of the

above theorems for analytic functions.
A more general class of pseudogroups can be given as follows:

(d) Let G be a group of linear mappings of R* — R". Then the pseudo-
group I';” 1s the set

{¢ € (diff)* | Vx € dom ¢, (dd), € G}
(1) G = all linear maps on R" with positive determinant. Then I';* =

(diff)§ consists of orientation preserving C* mappings.

(1) G = all linear maps on R™ with determinant equal to 1. Then I';*
consists of all volume preserving C* mappings.

(111) Let (, ) be an inner product on R". Let G be the group of orthogonal
matrices relative to (, ); namely, 4 € G iff (x, y) = (4x, Ay) for every x, y
in R*. Then I';* consists of all C* isometries in R".

Defimition 1.5. Let I' be a pseudogroup on R" and X a Hausdorff topo-
logical space which satisfies the second axiom of countability. Let A be a subset
of all local homeomorphisms of X into R*, i.e., homeomorphisms which are
defined on an open subset of X and whose range is an open subset of R". Then

(1) A is a I'-atlas on X if

(@) X = Upea dom ¢
(b) if d, Y are in A, then y-¢~*|¢(dom ¢ N dom ) is in T..
(1) The elements of A are called charts on X.
(iii) Two TI'-atlases A, and A, on X are compatible if Y - ¢~ |p(dom ¢ N
dom ¢) is in 1" whenever ¢ is in A, and ¢ is in A,, and vice-versa.
(iv) A Hausdorff space X together with an equivalence class of compatible
I'-atlases is called a I'-structure on X.

Notes. (1) Recall that X satisfies the second axiom of countability if the
topology on X has a countable base.

(2) If X has a I'-structure, then X is locally compact, since it is locally
Euclidean.

Definition 1.6. Let X have a I'-structure.

(a) If I’ = (diffYcand k > 0, then X is a differentiable manifold of class C*.

(b) If I' = (diff)°, then X is a topological manifold.

(c) If T' = (diff)=, then X is a smooth manifold or a manifold of class C~.

(d) If I’ = (diff)®, then X is a real analytic manifold.

(e) If I’ = (diff)§ and k > O then X is an oriented C* differentiable mani-
fold. Any differentiable manifold which has a (diff)g structure in which the
charts are elements of the original (diff)! structure is orientable.

Examples

(1) Sn—l — {x — (xl,.. .9 xn)ER" Z xiz — 1}'
i=1

LetN=(1,0,...,0and S =(-1,0,...,0).
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Let ¢,:{S* ! — {N}} > R*"! be stereographic projection via N, 1.e.,
¢N(x19 ¢ v xn) = (1/(1 T xl))('x29 AR xn) and ¢S : {Sn—l T {S}} — Rn—l be
stereographic projection via S, 1.€., ¢s(x,, ..., x,) = (1/(1 + x,)) (x5, . .., X,).
Then ¢g-¢y~': R*~! — {0} > R"~! — {0} 1s given by y — y/|y|? for all y in
R*-! — {0} Since (¢s‘¢N_1)‘(¢S'¢N_1) = id we see that det (d¢s*¢N-l)y =
+ 1. Evaluate at y = (1,0, ..., 0) to see that, in fact, det (déds-¢y~1) = —1.
To show that S*~1! is an oriented analytic manifold we can change the last
coordinate of ¢, to —x,/(1 — x;) thus changing the determinant to + 1.

(2) P* = real projective n-space.

To define P* we introduce the equivalence relation ~ on R**! — {0}:
(X0, - . .5 Xn) ~ (X0, . . ., xn) Iff there 1s a real constant ¢ such that x, = cx;

for all i.

P* = R**! — {0}/~ is the set of these equivalence classes.

Let 7:R""!' — {0} — P” be the canonical projection. P" is given the
standard quotient space topology and note that with this topology # 1s an
open mapping. To show that P” has a manifold structure 1t 1s necessary to
produce local homeomorphisms of P” into R” which overlap properly.

Let V.= R"*! — {hyperplane x, =0} for 0 <i <n. V, is open in
R"*! — {0}, hence #(V,) = U, is open in P". Clearly P" = U, U --- UU,.
Define ¢.: U. = R" by

di(p) = (=D

X
and ~ indicates that coordinate i1s to be omitted. Using the equivalence rela-
tion defining P" and the fact that p i1s i1n U, one sees that ¢; 1s a well-defined
homeomorphism onto R".

¢(U; N U;) = R* — {hyperplane y; = 0} (i > J)

(X0y - o5 Xiy ..., Xp) Where p = w(xq,..., x;)

¢(U; N Uj) = R* — {hyperplane y;., = 0} (i <Jj)

where we assume y,,..., y, are the coordinates on R". So for i <j
¢, - &7 ' : R" — (hyperplane y, = 0} — R" — {hyperplane y,_; =0}. A
computation yields for i <

6, - & H(Visees V) = (Vs Vs Vivzooo s Yo s Vi1 oo s V)

Yi+1
which is a real analytic mapping so P” becomes a real analytic manifold.
When : < j another computation yields

n+1
— o (n+1)(i+))
det (dg,- o,%),, = (y-+1) (—1)

from which we see that real projective space in any odd dimension
(P2*+1 n > 0) is orientable. It can be proved that P%" is not orientable.

(3) G, . = Grassmannian space of k-planes through the origin 1n
R".
= set of all k-dimensional subspaces of Euclidean n-space.
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Note that G, ., = P™.
We will give G, , a decomposition space topology. Let W = all ordered
k-tuples P = (P, ..., P) of k linearly independent vectors in R*. W 1s an

open subset of
R*®---@ R
e e/

k - times

Define an equivalence relation ~ on W as follows:

P ~ Q lf {Pl"",Pk} and {Qla'--a Qk}

span the same k-dimensional subspace of R".

Clearly G, , can be identified with W/~ as sets so we may give Gy, the
topology induced by this identification. We now give G, , an analytic struc-
ture. Equip R* with an inner product (, ). Then given a subspace V of R",
there is an orthogonal projection =, of R" onto V. Suppose V is a k-dimen-
sional subspace of R". Let =y y = restriction of =, to U. Let Wy =
{Ue€ Gy, | my v is a bijection onto V}.

Let ¥+ = the orthogonal complement of V in R* Define

oy . Wy — Hom (V, V%)

as follows: Let U € W,,. Then p,(U) = m, . ‘75, € Hom(V,V*). We
leave it to the reader to check that p, is a homeomorphism. Now make the
identification Hom (V, V+) = R¥(*~5)_ o get a chart ¢, : W, - Rk"~5),
Again it is left to the reader to check that p, - p;} : R¥("~%) — R¥("~H) js
real analytic. Hence G, ,, is a real analytic manifold of dimension k(n — k)
Note that for k = 1 this is the same atlas that we constructed for P"~!
Thus G, , = P"".

Definition 1.7. Let X and Y be C* differentiable manifolds of dimension
n and m, respectively. Then X x Y can be made into a C* differentiable mani-
fold of dimension n + m in the following natural way. Let Ax and Ay be atlases
onXand Y.Letd € Ay, € Ay. Thend x y:dom¢ x domy — R* x R™ =
R™+* js given by ¢ x ¥(x,y) = (¢(x), ¥(»)) xe X,ye Y. ¢ x ¢ is clearly
a local homeomorphism of X x Y — R"*™ Then Ax.y = {¢ X § | ¢ € Ax,
s € Ay} is an atlas for X x Y.

Applications

(1) The r-Torus,
S x...x S?
T tmes

is a smooth manifold of dimension r.
(2) If X and Y are oriented manifolds, then sois X’ x Y.

Definition 1.8. Let X be a topological n-manifold, and p a point in X. A
set of local coordinates on X based at p is a collection of n real-valued func-
tions {¢,, . .., .} defined on an open nbhd U of p, (i.e., ¢,: U—R) so that

¢(p) =0(1 <i < n)and: U— R"defined by $(q) = ($:1(q), ..., $a(q)) isa
chart in the manifold structure on X.
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Clearly if ¢ is a chart of X based at p (i.e., ¢ is defined on a nbhd of p and
é(p) = 0) then the coordinate functions of ¢ define a system of local co-
ordinates on X based at p.

The common domain of a set of local coordinates based at p 1s a coordinate
nbhd of p.

§2. Differentiable Mappings and Submanifolds

Definition 2.1. Let Y be a C*-differentiable manifold of dimension m.

(a) Let f: Y — R be a function. f is C*-differentiable if for every chart
¢:domé — R™ f.d~!:ranged — R is a C*-differentiable mapping. [ is
smooth if f is C*-differentiable for every k.

(b) Let X be a C*-differentiable manifold. Then ¢: X — Y is C*-differ-
entiable if for every C*-differentiable function f: Y — R, the pullback f+¢ is
C*-differentiable. ¢ is smooth if ¢ is C*-differentiable for every k.

(c) We will use differentiable to mean C*-differentiable for k at least 1.

Remark. Suppose that é: X — Y i1s a mapping with p in X and g = ¢(p)
in Y. Let U and V be coordinate nbhds of X and Y based at p and g respec-
tively, and assume that ¢(U) < V. Suppose p: V— R™ and 7: U — R" are
charts. Then ¢ is C*-differentiable iff p+.7~*: range 7 < R* - R™ is C*-
differentiable. This shows that differentiability of a function between mani-
folds is a local question and 1s independent of the particular local representa-
tion used.

Definition 2.2. Let X and Y be differentiable manifolds of dimension n
and m, respectively. Let ¢ : X — Y be differentiable. Let p be in X, p a chart
on X with p in dom p, and = a chart on Y with #(dom p) < dom .

Then (dt+¢+p~1) iy : R > R™ is a linear mapping. Define rank of ¢ at p
to be rank (dr+¢+p~ 1) ,(n»-

Note. The definition of rank does not depend on which charts are se-
lected. Let o', " be charts with the above properties. Then on a nbhd of p

and f(p),
rank (d7’+¢+(p') ™y = rank (dr'er7 e7edep™lepe(p’) %) o)
= rank (dr-¢+p~1),0
by the chain rule and the fact that '-7~! and p+(p") ~* are in (diff).

Definition 2.3. Let X and Y be differentiable manifolds. Let ¢: X — Y
be a differentiable mapping. Suppose that at the point p in X, ¢ has the maximum
possible rank. Then

(a) if dim X < dim Y, ¢ is an immersion at p,

(b) if dim X > dim Y, ¢ is a submersion at p,

(c) if for every p in X, ¢ is an immersion (submersion) at p, then ¢ is an
immersion (submersion).



§2. Differentiable Mappings and Submanifolds 7

(d) if dim X = dim Y = n, ¢ is bijective, and the rank of ¢ is n at every
point of X, then ¢ is a diffeomorphism.

(€) if ¢: X — Y is an immersion and a homeomorphism (into), then it is an
embedding.

(f) if there exists a diffeomorphism of X — Y, then X and Y are diffeo-
morphic.

Note. 1f¢: X — Yisadiffeomorphism, thené¢-!: Y — Xis well-defined
and 1s as differentiable as ¢ is by the inverse function theorem (Theorem 1.2.)

We will show that locally immersions “look like” linear injections,
submersions “look like” projections, and diffeomorphisms “look like” the
identity mapping. (The notion of “looks like” will be made precise in 2.5
and 2.6.) To do this we use the implicit function theorem.

Let U; < R* and U, < R! be open sets. Let ¢: U, x U, — R! be differ-
entiable. Define (d,4)x,.,,) = (dé.,),, where x, 1n Uy, y, in U, and bxo: Uy —
R' is given by ¢,.(») = é(x,, y) for all y in U,.

Theorem 2.4. (Implicit Function Theorem). Suppose ¢: U, x U, — R} is
C*-differentiable and ¢(xo, yo) = yo. If (dy$)(x,.v,) IS Of rank 1, then there exist

open sets Uy < U, and U, < U,, with x, in Uy and y, in U}, and a Cs-differ-
entiable function ¢ : Uy x U, — U, such that ¢(x, Y(x, y)) = y for every x in
U, and y in U;. Moreover y can be chosen so that Y(x,, ¥,) = Vo.

Proof. Defined: U; x U, — R* x R'to bethe graph of ¢, i.e., d(x, y) =
(x, §(x, y)) for all x € U,, y € U,. In the standard coordinates x, .. ., x, on
R*and y,;, ..., y, on R}

(dP) .1y = (ﬁc(d_"_Tﬁ(;(—mp)

where I, is the k x k identity matrix. The assumption on (dyd)(x,.ve) IMplies
that the rank of (dd), .y, is k + /, i.e., (@), 4, is invertible. Apply the
inverse function theorem to find Uj, U; so that § = -1 | U; x U} is C*-

differentiable. Let §i(x, y) = (4,(x, ), ¥(x, ») be in R* x R Since ¢4 =
ldui x Ujs wC have that

(x, ¥) = $((x, y)) = Wi(x, y), d@ha(x, ¥), ¥a(x, ¥)))
Hence ¢,(x, y) = x and y = &(x, yq(x, ). Take ¥ = . ]

Corollary 2.5. Let U < R" be open, x, in U, and ¢ : U — R™ an immer-
sion at x,. Then there exists an open set U’ in U with x, in U’, an open set V in
R™ with §(U’) < V, and a map : V — R™ which is a diffeomorphism onto its
image so that A = t-¢ is the standard injection of R* — R" x R™~" pe-
stricted to U’. (Thus by a change of coordinates in the range, ¢ can be linearized
locally.)
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| Proof. Since (d$),, has rank n, there is an n x n minor which is non-
singular. Let ¢,, ..., ¢, be the coordinate functions defined by 4. Then

0% O %
Ox; 0x, 0x,
(d¢)xo =
Ofm Opm Odm
0x, oxg  ox,

The appropriate minor is determined by »# columns iy, . . ., i,.

Let =, be a linear isomorphism of R™ which maps ¢, ¢, (1 < j < n)
where ¢, is the unit vector along the jth coordinate. Then 7,-¢ has the
property that (dr,-¢4),, has rank » and the appropriate n x n minor which is
nonsingular is given by the first n-columns. By including 7, in the definition of

r we assume that ¢ has this property.

Write R” = R" X R’ where /=m — n and R" is given by the first
n-coordinates xy,..., x, and R' by the last l-coordinates y,,..., y. ¢:U
— R" X R’ is given by ¢ = (¢,, $,) where ¢,: U > R", ¢,: U - R/, and
(d¢,),, has rank n.

Since U is in R*, we may construct ¢: U x R'—R" x R! given by
(x, ¥) — ¢(x) + (0, y) where x is in U and y is in R'.

Then
(d¢1)xo 0
(dé)(xo.w =
* [,

which has rank m. By the inverse function theorem, there exists a differen-
tiable inverse 7 to ¢ defined on a nbhd of ¢(x,,0) = ¢(x,). Let A(x) =
T $(x,0) = (x,0). Then A:R" - R” X R' = R™ is given by A(x) = (x, 0)
which is a linear map of rank n. [J

Corollary 2.6. Let U — R" be open, z, a pointin U, and ¢:U = R" a
submersion at z,. Then there exists a nbhd U’ of z, in U, a diffeomorphism
o:U — R" (onto its image), and N a linear mapping of rank m so that
& =A-0on U. (In fact, A\ can be taken to be the standard projection of

R™ X R*~™ — R™. Thus by a change of coordinates in the domain, ¢ can be
linearized.)

Proof. Let R"=R™ X R’ with coordinates x,,...,x, on R™ and

y1, ..., y; on R\ By an appropriate choice of bases on R", this decomposi-
tion can be done so that (d qb) has rank m.

Define ¢: U = R™ X R by qb(x y) = (¢(x, y), y). Then

(45).. = ((dxqb)zo * )

0 | I

which has rank n. By the inverse function theorem ¢ is locally a diffeomor-
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phism. Let 0 = ¢ and A: R™ x R' — R™ be given by A(x, y) = x. Then
Acd(x, y) = Ad(x,y),y) = ¢(x,y). [

Definition 2.7. Let X be a C*-manifold of dimension n. Let Y be a subset

of X. Then Y is a submanifold of X of dimension m if for every point p in Y,
there exists a chart ¢ : dom ¢ — R" of the differentiable structure on X so that
¢~ (V) = Y N dom ¢ where

V = {(xla"'yxn)ERn‘xm-i-l == Xy = 0}
and x,, ..., X, are the canonical coordinates on R".

Note. If Y is a submanifold of a C*-differentiable manifold, then it
itself is a C*-differentiable manifold. Give Y the induced topology from X.
(Warning: There are weaker definitions of submanifold in which Y does not
bear the subspace topology. See Definition 2.9.) For each p in Y, let ¢, be
the chart on X, given in the definition of submanifold. Y N dom¢, 1s an
open set of Y and ¢,|Y: Y N dom¢, — R™ is a local homeomorphism. The
set of mappings {¢,|Y } oy give Y a C “_differentiable structure of dimen-
sion m.

Theorem 2.8. Let X and Y be C*-differentiable manifolds of dimensions n
and m respectively withn > m. Let ¢: X = Y be a C*-mapping. Then

(1) If ¢ is a submersion, then ¢(X) is an open subset of Y. In fact, ¢ is an
open mapping.

(2) Let Z be a submanifold of Y. If ¢ is a submersion at each point in ¢ ~(Z),
then $~1(Z) 1s a C* submanifold of X with codim é-1(Z) = codim Z where
codimZ = dim Y — dim Z.

Proof.

(1) Let U be an open set in X and V an open set in Y with ¢(U) < V and
yoln V. Lety: U— R"and p: V — R™ be charts. Choose x,1in U N ¢~ 1(y,).
All of this 1s possible since ¢ is continuous.

Nowp - ¢ -y~ !:U — R™is a submersion where U’ = {/(U) is open in
R". By Corollary 2.6 there exists a nbhd U” of ¢(x,) in U" and a
diffeomorphism o : U’ — o(U”) C R” and a linear mapping A of rank m
sothat p- ¢ -y '=A-o0onU”. Let ¥’ =0 -¢. Then ¢’ is a chart on X
with x, in domy’ and p- ¢ - (¢')~! = A. Since A:R" - R™ has rank m,
1t maps open sets to open sets. Choose W an open nbhd of x, in X so that
Y'(W) € o(U”). Then A(Y'(W))isopenin R™ and p~ ' (A(Y'(W))) = ¢ (W)
1s openin Y. So ¢(X) 1s open in Y.

(2) Note that A: R™ x R*~™ — R™ can be given by A(x, y) = x. Let p be
a chart which makes Z into a submanifold, i.e., one for which p(Z N dom p)
1s a hyperplane in R™. Now A« (dom ¢’ N~ 2Z)) < pedd~}Z) < p(Z) =
hyperplane by the choice of p. Thus ¢'(¢~1(Z) N dom ¢') < A~ '(hyperplane)
= hyperplane, since A i1s linear. Thus ¢’ 1s a chart near x, making ¢~(Z)
into a C*-submanifold of codimension = codimZ. [

Example. Let ¢:R"— R be given by é(x;,..., x,;) = x;2 +--- + x,2
This 1s a submersion on $*~! = ¢-1(1). Thus S*~!is an n — 1 dimensional
submanifold of R™".
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Note. Let X be a differentiable manifold, Y a set, and f/: X— Y a
bijection. Then there is a natural way to make Y into a differentiable mani-
fold. First declare that the topology on Y is the one which makes f a homeo-
morphism. Then define the charts on Y, to be the pull-backs via f~* of the
charts on X.

Definition 2.9. The image of a 1-1 immersion, made into a manifold in the
manner just described, is an immersed submanifold. (Warning: this definition
of immersed submanifold is not the same, in general, as that of a submanifold.
In particular, the topology of the immersed submanifold need not be the same

as the induced topology from the range.)

Proposition 2.10. Let ¢ : X — Y be an immersion. Then for every p in X,
there exists a nbhd U of p in X such that

(1) ¢|U: U — §(U) is a homeomorphism where $(U) is given the induced

topology from Y and
(2) &(U) is a submanifold of Y.

Proof. Given p in X, there exist open nbhds U of p in X and V of ¢é(p) in
Y with ¢(U) < V, charts p: U—->R" and r: V— R", and a linear map
A: R* — R™ of rank » so that the diagram

®

U——V

|

R» —— R"

commutes. This is possible by Corollary 2.5.

Now (1) follows since A: R® — R™ is a homeomorphism onto its image.
For (¢(U)) is homeomorphic to ¢(U) with the induced topology since 7 1s a
local homeomorphism defined on V. 7(¢(U)) < Im A since the diagram com-
mutes, thus A ~2(7(6(U))) is homeomorphic to $(U) with the induced topology
from Y. Finally p~ YA~ Y(r(¢(UV)))) = ¢ ¢(U) = U is homeomorphic to
$(U) with the induced topology from Y.

To see that ¢(U) is a submanifold, use the chart 7. Choose coordinates
on R™ so that A(x) = (x,0). This decomposes R™ into R” X R"~". Then
Tlp(U): ¢(U) =» R" X {0}. L

Notes. (1) Proposition 2.10 is only a local result since not every immer-
sion is 1:1. For instance, the mapping of R — R? given pictorially by

is an immersion (when drawn smoothly enough!).
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(2) The image of an immersion need not be a submanifold even if the
immersion is 1:1. For example, consider

D)

P

where P = Lim,_ ., ¢(¢). The induced topology on ¢(R) from R3 is not the

same (near P) as the induced manifold topology on #(R). The following
corollary is left as an exercise.

Corollary 2.11. Let ¢: X — Y be an immersion. Then

(1) For every y in Y, $=(y) is a discrete subset of X.

(2) H(X) is a submanifold of Y iff the topology induced on & X) from its
inclusion in Y is the same as its topology as an immersed submanifold.

Clearly, in the second example above, open nbhds of P in the two relevant
topologies on ¢(R) are different.

Definition 2.12. Let X and Y be topological spaces with d: X—>Y

continuous. Then ¢ is proper if for every compact subset K in Y, ¢~YK) is a
compact subset of X.

Theorem 2.13. Let X and Y be C* manifolds and let : X - Y be a C*
1:1 proper immersion. Then ¢(X) is a C* submanifold of Y.

Proof. Using Corollary 2.11 (2) we see that ¢(X) is a submanifold iff
¢: X — ¢(X) is a homeomorphism where ¢(X) is given the topology induced
from Y. Clearly ¢ : X — ¢(X) is continuous and bijective, so we need only
show that ¢~* is continuous. Let y;, y,, . .. be a sequence in #(X ) converging
to y 1n ¢(X). Let x; = ¢-%(y,) and x = ¢-1(y). It is enough to show that
Lim,_ . x; = x. Let K be a compact nbhd of y in Y. Since ¢(X) has the topol-
ogy induced from Y, K N ¢(X) is a nbhd of y in ¢(X) and we may assume,
without loss of generality, that each y, is in K. Since 4 is proper, ¢~ 1(K) is

compact and ¢|¢~(K):¢~}(K) - é(X) N K is a homeomorphism. Thus
Lim,_, x; = x by the continuity of ¢~ !|¢(X) N K. []

Note. A 1:1 immersion can be a submanifold even if the immersion is
not proper. Consider the spiral of R* — R? given pictorially by

——®

and analytically by f(r) = (cos(r)/r, sin(r)/r). Clearly, f is a 1-1 immer-
sion and f is not proper since f~!(B;) = [1, co) where B, is the closed disk
of radius 1 centered at the origin. But the two possible topologies on f (R™)
are the same so f(R*) is a submanifold of R2.
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Exercises:

(1) Let f: R® — R2 be defined by
(xl, JEIE xﬂ.)}_>(x12 + -t xn2, x12 o (x22 + 0t xn2))

(a) For which x in R™ is f a submersion at x?
(b) Let f, and f; be the coordinate functions of f. For which r, s in
R is f;~(r) N f2~%(s) a smooth submanifold of R".

(2) Let M, be the set of n x n real matrices. Let M,* be the set of matrices
in M, of rank k. Prove that M,* is a submanifold of M, and compute its

dimension. (Hint: Let § = (‘g g) be in M, where A € M,*. Show that

SeMkiff D— CA~'B =0.)

§3. Tangent Spaces

Definition 3.1. Let X be a differentiable n-manifold.

(1) Let c: R — X be differentiable with c(0) = p. Then c is a curve on X
based at p.

(2) Let ¢, and ¢y be curves on X based at p. Then c, is tangent to c; at p if
for every chart ¢ on X with p in dom ¢,

(*) (dd-c1)o = (do- C2)o-

This makes sense since ¢-c; and ¢-c, are mappings of open nbhds of O
in R into R".)

Lemma 3.2. If (*) holds for one chart ¢, then it holds for every chart.
Proof. Let ¢ be another chart defined near p. Then

(deci)o = (dpd™ bc1)o
= (&)™) om(dp-c1)o
= (df-d ™ o dd-ca)o = (dif+c2)o i
Definition 3.3. Let S,X denote the set of all curves on X based at p, p a
point in X. Let ¢y, c; € S, X. ¢; ~ ¢y if ¢, is tangent to ¢; at p. = IS clearly an
equivalence relation. The set T,X = S,X|~ is called the tangent space to X at
p. If ¢, is in S, X, let é, denote the equivalence class of ¢, in T, X.

Let ¢ be a chart on X with p indom ¢. Note that c,(t) = ¢~ (#(p) + tv)isa

curve on X based at p where v is some vector in R*. Define A\,*: R* — T, X by
Ad,p(v) — év.

Lemma 3.4. Let X be a differentiable n-manifold, p a point in X. Let ¢ be
a chart on X near p. Then A\,? : R* — T, X is bijective.

Proof.
(a) A,? is 1:1. Let vy, v, € R™ and A,%(v,) = AP(vg). Then ¢, and c,, are
tangent at p; i.e., (dd-c, )o = (dp-c,,)o. Now

(dﬁf"cvl)o = (dé-¢~(d(p) + tv1))o = (d(d(p) + tv1))o
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but 1 — ¢(p) + tv; has derivative at t = 0 equal to v,. Similarly for v,, so
vl - 02.

(b) A,P1s onto. Let o be in T, X. Let ¢ be a curve representing the equiva-
lence class «. Let v = (d¢-c), be a vector in R™. By the calculation in part (a),
(dp-cy)o = vso (dé-c,), = (dd-c), which implies that ¢ and c, are tangent at
p- Stated differently, A,P(v) = é, = é = «. []

Proposition 3.5. There exists a unique vector space structure on T, X such
that for every chart ¢ on X with p in dom ¢, the mapping A,» . R" > T, X is a
linear isomorphism.

Proof. Let ¢, Y be charts with p in dom ¢ N dom . Then
(*) (A®) 1A = (df-d~ypy : R* - R,

Assuming this formula, it is clear that if A,? is linear for some chart ¢, then
A,” 18 linear for any other chart . Let the vector space structure on T, X be
the one induced by A,? from R", i.e., if « and B are in T, X, then

@ + B = A"[(A°) () + (A7) 7'(B)]

We now prove the formula (*). Let v be in R* and let 4 = (df+¢ 1) (-
Then

(do-c,)o=(d(o(p) + t))=0v
= A7 Av = (dd),-d(}~((p) + tAv)),
Therefore A ,P(v) = A P(Av), which 1s what was to be shown. []

Definition 3.6. Let f: X — Y be a differentiable mapping with p in X
and q = f(p). Then f induces a linear map (df),: T,X — T,Y called the
Jacobian of f at p as follows: Let ¢ be in S, X, then f+c is in S,Y. To induce a

map from T, X — T,Y we need to know that if c;, ~ cyin S, X, then f+c, ~ f+c,
in S, Y. Let ¢ be a chart on X near p and ¢ a chart on Y near q. Then ¢, ~ c,
implies that (d¢°61)0 —_— (d¢'C2)0. Hence

(d'/’ 'f '01)0 = (d'l’ 'f "ﬁ-l)d:(p)(d‘ﬁ'cl)o

= (@) f+d™Dow(dbec3)o = (dfca)o
using the chain rule. So by definition, f+c, ~ f+cy. This defines (df),: T,X —
T.Y. To check that (df), is linear, we have the following formula:
(**) df ), = NUdpfd™Dom(As®) ™1

Let ¢ be in T,X. Then we may take c(t) = ¢~($(p) + tv) for some v in R™.
Now

A dh S8 Do As®) T7¢ = AH(dihof+$™D)op)(v)

which is equal to the equivalence class of the curve

ci(t) = ¥~ '(Y(q) + t(df-fod™)sm(V))

Thus (df ),(C) is the equivalence class of the curve

Ca(t) = f-¢~(¢(p) + tv).
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To see that ¢, and c, are tangent at q, we compute

(dif+c1)o = (@fd™ Do (V)

and
(difp+c3)o = (Aff+d™)ow(d(P(p) + t))o = (@f+d™1)ow(V)-

Remark. Using (**) and the fact that A, and A,? are isomorphisms we
have that f is an immersion at p if rank (df), = dim X and that f'1s a sub-
mersion at p if rank (df), = dim Y.

Definition 3.7. Let X be a differentiable manifold. Then
TX = U T,X = tangent bundle to X

e X

Let 7w : TX — X denote the natural projection.

Proposition 3.8. Let X be a C*-differentiable n-manifold (k > 0). Then
TX has, in a natural way, the structure of a C*~! manifold of dimension 2n.

Proof. Let p be a point in X, U an open nbhd of p in X, and ¢ a chart
with domain U. Let TyX = n~Y(U). Define ¢:TyX —$(U) x R* by
F(x) = (¢m(x),(A,*?) ~1()) for every « in Ty X. ¢ is bijective. We claim that
if {¢,} is an atlas on X, then TX can be topologized so that {,} is an atlas on
TX. Note that

$-4~Ya, v) = ($+47(a), (A7) A V))
= (¢+¢7(a), (-4 ")a(v))

where g = ¢~1(a), by using the formula (*) in Proposition 3.5. Now
é-p~1: R* —R" is Ck-differentiable and (df+¢~"): U x R*— U x R" is
Ck-1.differentiable since it is given by a matrix whose coefficients are first
partial derivatives of y+¢~! on U. Define the topology on TX so that all the
$, are homeomorphisms. Then TX has the structure of C*~*-differentiable
manifold. []

Notes. (1) Let V be a (finite dimensional) vector space with p in V.
It is obvious that there is a canonical identification of ¥ with T,V given by
v +—> ¢é where c(t) = p + tv.

(2) Let V be a vector space and let G(k, V') be the Grassmann manifold of
k-dimensional subspaces of V. Let W be in G(k, V). (We shall view W both
as a point in G(k, V) and a subspace of V.) We show that there is a canonical
identification of TwG(k, V) with Hom (W, V/W). Choose a complementary
subspace S to W in V. Let C(¢) be a curve in G(k, V) based at W. Define
A,: W— VW by A(w) = =(s,) where = : V — V[W is the obvious projection
and w = s, + ¢, where ¢, € C(¢) and s, € S. (Note that for ¢ small, writing
w = s, + ¢, is always possible.) First show that if C(¢) and C'(¢) are two
curves on G(k, V) tangent at W, then
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as mappings of W — V/W. Thus we have a linear mapping ¢ : TwG(k, V) —
Hom (W, V /W) given by

FO-Zm|

Next show that ¢ is, in fact, an isomorphism. Finally show that ¢ is indepen-
dent of the choice S. Hint: Let S’ be another complementary subspace to W
in V. Thens, — s, = ¢, — ¢;is in C(¢). Thus there is an «, in C(¢) such that
s, — 8§, = ta,, Now show that

dhy = )

= 0.

t=0

§4. Partitions of Unity

Manifolds are geometric objects that locally “look like” Euclidean space.

It would then be convenient to be able to do whatever analysis or calculus
that we have to do locally; i.e., in Euclidean space. The use of partitions of

unity is the technique to accomplish this goal.

Definition 4.1. Let X be a topological space.
(1) {U,}se; (I some index set) is a covering of X if each U, is contained in

Xand X = | Jper U,.

(2) Let {U,}zc; and {Vs}sc; be coverings of X. Then{V;}se; is a refinement of
{Upy}ee; if for every B in J, there is an o in I so that Vy < U,.

(3) Let {V;}sc; be a covering of X. Then {V}s¢; is locally finite if for every
p in X, there is a nbhd U of p in X so that U NV = & for all but a finite

number of B’s in J.
(4) X is paracompact if every open covering of X has a locally finite refine-

ment.

Proposition 4.2. Let X be a Hausdorlf topological space which is locally
compact and satisfies the second axiom of countability. Then X is paracom-
pact. In particular, all manifolds are paracompact. (Recall that X satisfies
the second axiom of countability if the topology on X has a countable

base.)

Proof. We first construct a sequence of compact sets K, K,, ... such
that

(1) K, < Int (K,,,) for all i, and
2 X =K.
=]

Since X is locally compact and second countable, we may choose a se-
quence of open sets N,, N,, ... each of which has compact closure and such
that the N,’s cover X. Let M,, = | J¥.; N,. Let K1 M,. Since K, is compact
there exists M, ,..., M, so that K; « M, U---UM,. Let K, = M, U-

U M, . Thus K; is compact and K; < Int (K)). Proceed inductively.
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Now let {W,}.c; be an open covering of X. We construct a locally finite
refinement. For each i, let W,/ ... W;k‘ be a finite subcovering of the

compact subset K; — Int (K;_,). Let V, W.'NInt (K., — Ki_3). Then
the collection {V}'} is a locally finite refinement of the covering {W,}. []

Corollary 4.3. Let X be a differentiable manifold and let {U,} < ; be an
open covering of X. Then there is a countable locally finite refinement

{Ve}pes of {Up,}ae such that

(a) For every B in J, there is a chart ¢g: Vg — B3 which is onto, and
(b) the sets Vg' = ¢3~'(B,) form a countable open covering of X, where
B ={x€R|x|<r}.

Proof. Choose K, K,, ... as in the proof of Proposition 4.2. For each
p in K; — Int (K,_,) choose an open nbhd ¥V’ of p so that

(i) V) < Int(K;,1 — K,_3) " U? where U? is some open set in the
covering {U,}.e; containing p, and

(1) V‘ 1s the domain of a chart ¢ V‘ — B, which is onto and satisfies

‘(p) = 0 Let W‘ = (¢ ') l(Bl) These sets coverK — Int(K;_,). Choose
a finite subcover. W, ..., W, ' Then the sets {W,'}13'<% give the
required locally ﬁmte cover []

Definition 4.4.
(1) Let X be a topological space and let f: X — R be continuous. Then the

support of f denoted supp (f) = closure of the set {x € X | f(x) # O}.

(2) Let X be a C*-differentiable manifold. Then a C*-partition of unity on
X is a collection { f,}4e; (I some index set) of C*-differentiable functions mapping
X into R such that

(a) {supp (f2)}ee: is a locally finite covering of X,
(b) f.(p) = O for every €I and p € X, and

(€) Seerfo(p) = 1 for every p € X. Note that condition (a) ensures that
this is a finite sum.
(3) A partition of unity {f,}se; on X is subordinate to a covering {Ug}ses if
for every o in I, there exists a B in J for which supp (f.) < U,.

Lemma 4.5. Let B be an open ball of radius r centered at x, in R*. Then
there exists a smooth function positive on B and zero off B.

Proof. It is enough to show that there exists a smooth function
v: R — R such that ¥(s) = 0 for s > 1 and ¢(s) > O for s < 1. If y exists,
then consider p:R"*— R defined by p(x) = ¥(|x — xo|?/r?). Clearly p is
smooth and has the desired properties. Now just define

0 ifs > 1
Y(S) = exp (—(;—_!_-—1')2) ifs <1

We leave it to the reader to check that y is indeed smooth. []
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Theorem 4.6. Let X be a C* differentiable manifold and let {U,} ; be
an open covering of X. Then there exists a countable partition of unity

(Pg}ges on X subordinate to the covering {U,},c,; Moreover, if I is
countable, then we may let J = I and assume that supp p, C U, for all a in
I

Proof. Let {V3}ge; be the locally finite refinement of {U, },; Whose
existence is guaranteed by Corollary 4.3. Define gz: X — R by

o= {0 iper
Es\P 0 otherwise

where y : R® — R is a smooth function which is positive on B; and zero off

B, (using Lemma 4.5). Let hA(p) = ;s 25(p). Then h is well-defined (i.e.,
the sum is finite), and C* since {V;};¢; is a locally finite covering for X. Also

h(p) > O for all p. Let p, = (1/h)gs. Then {p,};¢; is @ partition of unity sub-
ordinate to the cover {U,},;. For the moreover part, let U;, U,, ... be the
covering and let f; = >;¢;, ps Where B is in J; if supp ps < U, and supp
pst U, forj<i. [

Corollary 4.7. Let X be a C* differentiable manifold. Let U and V be open
subsets of X with U < V. Then there is a C* differentiable function f: X — R

such that
| if xeU
f(x) = {0 ifx¢V

0<f(x) <1 otherwise.

Proof. Let {f;, f2} be a partition of unity subordinate to the cover
{V, X — U} given by Theorem 4.6. Take f = f;. Certainly supp f < V and
f=lonUsince f=00nU. []

We present the following Proposition just to indicate the great number of
smooth functions which exist (as compared to, say, analytic functions).

Proposition 4.8. Let C be a closed subset of R™; then there exists a smooth
function f: R® — R such that f > 0 everywhere and C = f~1(0).

Proof. Cover R" — C by a countable sequence of open balls B,, B,, ...
each contained in R® — C. Let f; be a smooth function zero off B; and posi-

tive on B,. (Use Lemma 4.5.) Let

0'%lf,
M, = |sal|l£t( ox® )

(M, is well-defined since each 0'%'f;/0x* is compactly supported.) Let
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converges uniformly. Using a standard theorem from advanced calculus (see
Dieudonné, Foundations of Modern Analysis, 8.6.3, p. 157), 0'*!f/ox* exists

and i1s continuous for each «, so that f is smooth. Thus f is the desired
function. []

Exercise:

Let X be a smooth compact manifold. Show that there exists a 1:1
immersion of X into some Euclidean space, and thus conclude that any
compact manifold can be realized as a submanifold of R" for some large N.

§S. Vector Bundles

Definition 5.1.

(1) Let E and X be smooth manifolds and =: E — X a submersion. Let
Ey = w~*(U) for any subset U of X. Then E is a family of vector spaces over
X of dimension k if for every p in X, E, is a real vector space of dimension k

whose operations (addition and scalar multiplication) are compatible with the
topology on E, induced from E. Let k be denoted by dimy E.

(2) A section of E is a smooth mapping s: X — E such that =-s = idy.
C *(E) denotes the space of smooth sections of E.

(3) Let mg: E— X and ng: F — X be families of vector spaces over X.
Then ¢ : E — F is a homomorphism from E to F if

() mped = mg
(b) ¢ is smooth

(c) For everype X, ¢: E, — F, is a linear map.
¢ is an 1somorphism if ¢ is a diffeomorphism and a homomorphism.

Example. Let V be a vector space (finite dimensional), X a smooth
manifold, and £ = X x V. Let n: E— X be a projection on the first factor.
Then EZ, X 1s a family of vector spaces known as a product family. A

family of vector spaces F over X is trivial if it is isomorphic to some product
family.

Defnition 5.2. Let E B X be a family of vector spaces over X. E is a

vector bundle over X if every point p in X has an open nbhd U, so that the
family of vector spaces E u, is trivial (i.e., a vector bundle is a locally trivial

family of vector spaces). Note that dim E = dim X + dim x E.

Example. Let X be a smooth manifold. Then TX (the tangent bundle
over X) is a vector bundle with dimy TX = dim X. The charts that were
constructed 1n Proposition 3.8 to show that TX is a manifold also show that
It 1s a locally trivial family of vector spaces.

When working with a vector space V, it is often useful to consider certain
associated spaces such as the dual space V'*, the space S2(V*) of symmetric
bilinear forms on V, etc. In a similar fashion, when given a vector bundle E
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over X, it 1s sometimes useful to construct associated vector bundles over X.
For instance, one should be able to replace E, by E; (the dual space to E,)
for each p in X and make the new set into a vector bundle. One could also
replace E, by S*(EX) (the space of symmetric bilinear forms on E,), etc. The
following will show how to formalize such a process to yield new vector
bundles.

Let T be a covariant functor which takes (finite dimensional) vector
spaces Into (finite dimensional) vector spaces, (i.e., T : Vector spaces — Vector
spaces and if V' and W are vector spaces, then

T:Hom (V, W) — Hom (T'(V), T(W)).

This latter map has the property that if f: V— W and g: W —Z, then
T(g:f) =T(g)-T(f). Note that Hom (¥, W) denotes the set of linear
mappings from V to W and is vector space isomorphic to R™" where n =.

dim V and m = dim W.)

Defimition 5.3. T is smooth if for every pair of vector spaces V and W,
the mapping
T:Hom (V, W) — Hom (T(V), T(W))

is smooth. (Note that the above isomorphism of Hom (V, W) with R™" gives
Hom (V, W) the structure of a smooth manifold.)

Proposition 5.4. Let E be a vector bundle over X and T be a smooth
covariant functor defined on ( finite dimensional) vector spaces. Then T(E) =
\Urex T(E,) (disjoint union) has the structure of a vector bundle over X.

Proof. Let E be a set, X a smooth manifold, and 7: E — X a map.
Assume that E 1s a vector space for each p in X. To put a vector bundle
structure on E is to make E into a smooth manifold so that £ becomes a
vector bundle over X with projection map «. Suppose F 1s a vector bundle
and ¢: E — F is a byection which is linear on the fibers and for which
7 = @+ ¢. Then there is a unique way to put a manifold structure on E so
that £ becomes a vector bundle and ¢ an isomorphism.

(1) We note that if ¢: F— F is a homomorphism, then there is a map
T(d): T(E) - T(F) which 1s linear on fibers. T'(é)(e) = T(¢,)(e) where
¢, = d|E,: E, - F,forpe Xande € E,.SoT(¢) : U,ex T(E,) = Upex T(F,).

(2) Suppose that E = X x Vis a product family where V is some vector
space. Then T(E) = U,ex T(V) = X x T(V), the last equality being an
obvious bijection. Give T(E) a vector bundle structure by making this
identification an isomorphism.

(3) Next assume that E 1s a trivial bundle. Then there exists an iso-
morphism¢: E— X x V = F. As noted 1n (1), T(¢) : T(E) — T(F). Since
T(F) 1s a vector bundle (by (2)), we can give T(E) a vector bundle structure so
that 7'(¢) 1s an 1somorphism.

It 1s necessary to check that this vector bundle structure is independent
of the choice of ¢. So let ¢ : E— G be an i1somorphism where G = X x W.
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Then ¢y¢~1: X x V— X x W is an isomorphism and can be identified
with A: X — Hom (V, W) given by A(p) = ¢-¢~|{(p x V): V— W. Then
TWed ™ ): X xT(V)—> X x T(W) can be identified with T-A. Since
Y4~ 1s smooth, A is smooth and since T is a smooth functor T A is smooth.
Hence T(y-é~1) is smooth and an isomorphism. The diagram

T'(E) —C(LQ—* T(F)

N

rE) —2 . 1)

commutes and implies that the identity map on T(E) is smooth as a map
between the two possible vector bundle structures. Thus the two structures
are the same.

(4) Let E be an arbitrary vector bundle. For each p in X, there is an
open nbhd U, so that Ey  is a trivial bundle. By (3), T(Ey ) has a unique
structure as a vector bundle. Suppose U, N U, # @. Then T(Ey ~y ) has

two structures as a vector bundle, namely T'(Ey,)y,~v, and T(Ey )y ~v,. The
uniqueness of the structures on T(E v,) and T(Ey ) implies that these two

structures are the same. So we have a unique way of making T(E) into a
vector bundle. i

Note. A similar proposition clearly holds when T is contravariant or
when T 1s a functor of several variables, some covariant and some contra-
variant.

Examples.

(1) T(V) = V*—the dual vector space to V. T:Hom (V, W) —
Hom (W*, V'*) 1s given by A — A*—the adjoint of 4. T is a continuous
linear map and hence smooth. So E* = T(F) is a vector bundle. In particular,
if E = TX, then T(FE) is denoted T*X and is the cotangent bundle of X.

(2 T(Vy, Va) =V, DV,

T:Hom (V,, W;) x Hom (V3, W) - Hom (V, ® V,, W, @ W,)

is given by T'(f, g) > f @ g. T is continuous and bilinear, hence T is smooth.
Given two vector bundles E and F over X, T(E, F) is denoted by EP F
and is called the Whitney sum of E and F. Note that (E® F), = E, @ F,
for every pe X. Hence dimy (E @ F) = dimy E + dimy F.

(3) T(V) = S3*(V*)—the vector space of symmetric bilinear forms on V.
T:Hom (V, W)— Hom (S%(W?*), S4V*)) is defined as follows. Let
A€ Hom (V, W), Be S3(W?*), and v,, va € V. Then T(A)(B) is a symmetric
bilinear form on V given by T(A)(B)(v,, v3) = B(Av,, Av,). T is continuous
and linear, hence T is smooth. If E is a vector bundle over X, then T(E) =
S%(E*) is a vector bundle over X. dimy S%(E*) = n(n + 1)/2 where n =
dimy E
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(4) There 1s one more vector bundle which we shall need later. Let G, ,,
be the Grassmann manifold of k-planes in n-space. Let p be in G, , and let E,
be the k-dimensional subspace of R" associated with p. Then E = | J,eq, , E,
1s a vector bundle over G, , called the canonical bundle. Let p be the obvious
projection. Recall from Example (3) after Definition 1.6 the chart nbhds
W, of Gi.; 1.e., Wy, = {q€ Gy | 75,5, IS a bijection onto E,} where =g E,
1s given by the restriction to E, of orthogonal projection of R" — E,. The
mappings ¢,: Ey, — W, x E, defined by v+ (p(v), 7g,,,,5,(v)) give the
vector bundle structure to E. Check the details.

It 1s customary to give sections of certain vector bundles special names.

Definition 5.5. Let X be a smooth manifold.

(1) A section of TX is called a vector field.

(2) A section of T*X is called a 1-form.

(3) A sections: X — S*(E*) is a metric on E if s(p) is a positive definite,
symmetric, bilinear form for each p in X.

(4) A metric on TX is called a Riemannian metric.

P

Locally the above sections have standard coordinate representations.
and ¢: U — R”" the corresponding chart. Equipping R” with the standard
coordinates x,..., X, we may define

o | = @Yo 5=

O Y0\ 0x; Joww)
can be viewed as a vector field on R*.) Then (¢/0¢))|,, € T,X and 0/0¢,: U—-Ty X
1s a locally defined section on X. The vectors
are linearly independent at each p in U; so if s is a vector field on U, then
L 7
s(p) = D a(p) %

Let U be a coordinate nbhd on X with ¢,,..., ¢, the system of coordinates
J
where (0/0x;)|, is the unit vector in the x;-direction based at q. (Thus 9/ox,
_?_ n
Od;lp)1=1
{=]

14
We note that s: U —> TX 1s smooth iff q,: U —> R is smooth for1 < i < n.

So locally a vector field i1s a linear combination (over smooth functions) of the

coordinate vector fields 0/0¢,, . . ., 0/0d,.

If {dd,, ..., dd,} is the dual basis to 0d/oé,, ..., d/od, at each point of U,
then every 1-form s can be written locallyass = D7.; a;d¢,. Also,s: U—>T*X
1s smooth iff g;: U— R (1 < i < n) is smooth. Finally, if s 1s a Riemannian
metric, then locally s = 2>} ,.; ai; dd, dé,, i.e., if & ne T, X, then

n

s(6,m) = D aip)(ddy),(€)(d$)y(n).

{,J=]

Here agains: U— S%T*X)issmoothiffq;,: U— Rissmoothforl < i,j < n.
Note that since s 1s symmetric a;;, = a, for all i, j and that since s is positive

det (a;(p)) # O for each p in U.



22 Preliminaries on Manifolds

Proposition 5.6. Every vector bundle = : E — X has a metric.

Proof. Let E=XxV be a product bundle. Then S*E*) =
X x S3(V*) is also a product bundle. Now let B be any positive definite

symmetric bilinear form on V. Then define s: X - X x S%(V'*) by s(p) =
(p, B). s is smooth and a metric on S?(E*). If E is a trivial bundle then there

exists an isomorphism ¢: E— X x V (for some product bundle X x V).
¢ induces an isomorphism ¢@ : S3((X x V)*)— S?(E*). If s 1s a metric on
X x V, then ¢®.§ is a metric on E.

Finally, let E be an arbitrary vector bundle. For each p in X, choose an
open nbhd U, of p so that Ey 1s trivial. Let {V;}%; be a countable locally

finite reﬁnement of {U,},cx Let {p;};=, be a partition of unity sub-
ordinate to the cover {V },_1 of X. (See Theorem 4.6.) Let s; be a metric on

E, . Define 5;: X > S*(E*) by

.« _ [pp)s(p) forallpeV,
5(p) = { 0 otherwise;

then §, is a smooth section. Let s = > 2, §,. This sum makes sense since for
each p in X, only finitely many p,(p) are not zero. Let v € E,. Then

S(p)(v, v) = D pdP)sP)(v, v) > pP)s(P)(v, v)

where i is chosen so that p(p) > 0. Thus s(p) is positive definite
since s;(p)(v, v) #0, and s 1s a metric on E. ]

Given a Riemannian metric s: X — S%(T*X) where X is a connected
manifold, then there is a natural way to define a metricd: X x X— R so
that (X, d) is a metric space. (There is, unfortunately, no way to change the
fact that the word ‘“metric”’ has two different though related meanings!)

We show how to define d.

Let p and g be points in X and ¢ : R — X a (continuous, piecewise smooth)
curve with ¢(0) = p and c(1) = g. By piecewise smooth, we mean that the
curve is infinitely differentiable except at a finite number of points. Let
(d/dt)|,, be the tangent vector in T, R defined by the curve ¢+, + ¢ of
R — R. Then t — (d/dt)|, is the canonical vector field on R. Define f: R — R

by

)

fis a piecewise smooth function and ¢ = f ; f(t) dt makes sense. Note that ¢
is just the arc-length of the curve c relative to the Riemannian metric s.

Define d(p, q) to be the infimum of ¢ where c ranges over all piecewise smooth

curves connecting p to g.
It should be noted that d(p, q) is always defined and finite. Define an

equivalence relation ~ on X by p ~ ¢ if there exists a piecewise smooth curve
of finite length connecting p to g. Since X is locally Euclidean, the equivalence
classes are open. Since X is connected there is only one nonempty equiva-
lence class. All steps in showing that d is a metric are easy except showing that
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if d(p,q) =0, then p = ¢q. This will be proved later. In any case, d is a
pseudometric.

Example. Let x,, ..., x, be the standard coordinates of R*. s = >, , dx,?
1s a metric and induces the standard metric on R™. Let ¢c: R — R" be a curve
with c(t) = (c,(2), . . ., c,(2)). Note that

Hence

So

which 1s just the standard arc-length in R*. As is known from Euclidean
geometry of R" the shortest distance between two points is the straight line
distance, so this metric on R" is just the standard one.

Lemma 5.7. Let 5§ = J},., a,dxdx, be a Riemannian metric on R". Let
d be the induced pseudo-metric on R". Then on a given compact set K there
exist positive constants L and M so that Md(p, q) = d(p, q) = Ld(p, q) for
every p and q in K where d is the standard metric on R".

; d n dc; 0
[Nzl |~ & % o,
Thus
d d n dc; dc,
3 d - ’ d — — ___f.__.i.
St(( C)t( dt r) ( C)t( dt z)) i,jz-lau dat ot

Let v = (dcy/04,..., dc,/dt) and A = (a;;). Then s = v’/Av where v’ is
the transpose of v. Now ¢ — |A(¢t)| 1s a continuous function and hence is
bounded above by a positive constant M? on the compact set XK.

Thus s = v'(Av) < |4|v'v < M*'v = M?|v|°. Thus ¢ < (length of ¢ in
the standard metric) X M which implies that d( p, q) < Md( p, q). Since A
1s a positive definite, symmetric matrix at each point we also have that
v'Av > L?*|v|? and the rest of the proof follows as above. [

We can now prove the following:

Proposition 5.8. Lets be a Riemannian metric on a connected manifold X.
Let d be the corresponding pseudo-metric on X. Then d is a metric and the
topology induced by d on X is the same as the original topology on X.

Proof. Fix pin X. For this proof we will call an open set in the topology
induced by d on X, d-open. Then, it is sufficient to prove that every open nbhd
of p contains a d-open nbhd of p and, conversely, that every d-open nbhd of
p contains an open nbhd of p.
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Let U be an open nbhd of p. Choose U’, also an open nbhd of p, so that

(a) The closure of U’ is compact and is contained in U, and
(b) S*(T*X)|U’ is locally trivial.

Hence there exists a chart ¢: U’ = R” and a bundle homomorphism ¢
so that the diagram

SAT*X)|U’ N $(U’) x SR™)

| |

- ¢

U ———— $(U")

commutes, where n = dim X. Let B be an open ball in ¢(U’) of radius r
centered at ¢(p). (Note B is open in R™.) Let c: R — X be a curve centered
at p, 1.e., ¢(0) = p. Suppose that ¢([0, 1]) does not lie entirely within ¢ ~1(B).
We claim that this curve has length at least N for some constant N not de-

pending on c. If this last statement is true, then B(p, N) = {ge X | d(p, q) <
N} 1s contained in U’. Also this statement completes the proof that d is a

metric. For if p,q € X and p # g, then take U’ small enough so that p e U’
and g ¢ U’. Then the length of any curve connecting p to g is greater than N
and d(p, q) # 0.

To prove the claim, we note that ¢ ~!(¢~1(B)) is open in R, so that there
exists a smallest ¢ in (0, 1) for which c(¢) ¢ $~2(B). ¢ = length of ¢ is >
length of ¢([0, t]). Let s’ = $-s-¢~1. Then s’ is a Riemannian metric on
#(U") = R* and the length of ¢([0, ¢]) under the metric s is the same as the
length of (¢-c)([0, ¢]) under the metric s’. Using Lemma 5.7, we see that for
some constant L the length of (4:c)([0, ¢]) under s’ is > L x length of
(¢+c)([0, ¢]) using the standard metric on R*, since ¢(U’) is compact.

Now we note that since X is Hausdorff ¢(¢) is in U’. For if ¢(¢) ¢ U’, then
there exists an open subset ¥ of X such that c(t)e Vand VN ¢~(B) = &.
Also c¢~'(V) is open and contains ¢. Hence c~(V) N c~Y(¢-Y(B)) # &, a
contradiction. Thus ¢-¢[0, ¢] is a curve connecting p with some point outside
of B. Hence the length of ¢-¢[0, ¢] is >r, but length of ¢-c[0, ¢) = length of
¢+¢c[0, t]. Thus length of cis >L-r = N.

For the converse we suppose that U is some d-open nbhd of p. Make the
same construction as above for U’, ¢, &, s’, r, and B. Let ¢(g) € B. Then the
straight line, ¢, from ¢(p) to ¢(¢g) has length < r. By Lemma 5.7, the length of
¢ in the metric s’ is < Mr where M is a constant depending only on ¢(U"’).
Thus the length of ¢~'.c, a curve connecting p to g in X is < M.r and
g € B(p, Mr) = the ball in X of radius Mr about p. By choosing r small
enough B(p, Mr) < U since U is d-open and B(p, Mr) is a basic d-open set.
But the above says that ¢ ~*(B) < B(p, Mr) and é~!(B) is an open nbhd of

p. [
Lemma 5.9. Any differentiable manifold is metrizable.
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Proof. Let X;, X,, ... be the components of X and let d; be a metric on
X; making X, into a metric space. (Use Proposition 5.8.) Defined: X x X —
R by
min {dn(x, ), 1} it x,y€e X,
d(x,y) = { - . 4
1 if xe X;,ye X;, and i # j.

Then d is a metric on X compatible with the original topology. []

We need the following two results to show that X can be made into a
complete metric space.

Lemma 5.10. Let (X, d) be a metric space and f: X — R be a continuous
proper function. Then d': X x X —R defined by d'(p,q) = d(p,q) +
| f(p) — f(q)| for every p, q in X is a complete metric on X which is compatible
with the given topology on X.

Proof. That d’ is a metric is clear. Let T be the topology on X induced by
d and T’ the topology induced by d’. Since d’ is continuous in the topology T,
we have that 7' < T. Conversely, let U be in T and let p be in U. Choose ¢
so that B'(p,e) = {xe X|d'(x,p) < e < B(p,e) < U. Thus U is in T’
and T = T'. Finally we show that d’ is complete. Let {x,}=-, be a Cauchy
sequence in the d’ metric. Thus there exists a constant L > 0 so that
d'(x,4, x,) < L for all positive integers n. Hence | f(x;) — f(x,)| < L for all n,
and

{Xatn=1 < f7H[f(x1) — L, f(x1) + L)).

Since f'is proper this later set is compact and the sequence {x,},=, has a limit
point in X and thus converges. []

Proposition 5.11. There always exists a smooth proper function on a
smooth manifold X. In particular, any differentiable manifold can be made into
a complete metric space.

Proof. Let K;, K,, ... be a sequence of compact subsets of X such that
K<cInt(K,)fori=1,2,...and X = U2, K. Let L, = K; — Int (X|_,)
with L, = K;. Then U2, L, = U2, K; = X. Define smooth functions
p; - X — R such that

| on L,
p =140 on K;_; U (X — Ki41)
0<p<l on X.

Then let f = >, ip;. This sum is locally finite and hence is a smooth func-
tion. We claim that f'is, in fact, proper. First note that if p € L;, then i < f(p)
< 3i since f(p) = (i — Dpi-1(p) + ip(p) + (i + Dpi+1(p). Then to show
that f'is proper we need only show that f ~1([A4, B]) is compact where 4, B € R.
Given a p in L, such that f(p) € [4, B], we have the inequalities i < B and
3i > A, or that i e [4/3, B). Thus f~![A4, B] < \J; L, where i € [4/3, B] and
is then a closed subset of a compact set and hence compact.

The last assertion of the proposition follows immediately from Lemma

5.10. O
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We now define what we mean by subbundles of a vector bundle and give
one way to construct them.

Defimition 5.12. Let E be a vector bundle over X with projection n. F is a
subbundle of E if F is a smooth submanifold of E and =|F: F — X is a vector
bundle where, for each x in X, F, has the vector space structure induced from

E..

Definition 5.13. Let E— X and F — Y be vector bundles. ¢ : E— F is a
homomorphism if

(1) there exists a smooth function f: X — Y called the base mapping, so
that

commutes.
(2) ¢ is smooth.
(3) ¢,: E, — Fy, is linear where ¢, = ¢|E,.

Example. Let f: X — Y be a smooth mapping. The Jacobian of fis a
map (df),: T,X — T;,,Y for each pe X. So (df): TX — TY defined by
(df)|T,X = (df), is a mapping which is linear on the fibers. Locally, TX and
TY are trivial and via trivializations are just U x R® and ¥V x R™ where
n=dmX, m=dimY and U< R* V < R™ are open. (df): U x R" —
V' x R™ is given by (p, v) — (f(p), (df,)v) which is a smooth mapping. So
(df) 1s smooth and with this extended definition of a homomorphism be-
tween vector bundles, (df) is a homomorphism.

Proposition 5.14. Let E— X and F — Y be vector bundles and ¢ . E — F
be a homomorphism with base mapping f. Suppose ¢., has constant rank for all
pin X. Then Ker ¢ = |, ex Ker ¢, is a subbundle of E.

Proof. The problem of showing that Ker ¢ is a smooth manifold is a
local one. By using trivializations we may assume that U C R” and V' C R”
are open subsets with f: U -V, ¢: U X R* = ¥V X R and with the ap-
propriate diagram commuting where s = dim, E and ¢t = dimy F. Fix p in
U and choose W, a vector space complement to Ker ¢, in R*. Note that
¢,: W—f(p) XR 1s 1:1. Since ¢ is continuous and dim(Ker¢,) is
constant throughout U, there exists an open nbhd U’ of p on which
¢,: g X W—>f(q) XR is1:1 for all ¢ in U’, i.e., W is a vector space
complement to Ker ¢ , for all g in U’. Let W be a vector space complement
to ¢,(W) C f(p) X R. We can then restrict U’ to U”, also an open nbhd
of p on which W is a vector space complement to ¢ (W) in R’ for all g in
U”’. Let 6: V X R = R be projection on the second factor and 7: R’ —» Z
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= R’/W be the natural projection. Then g =7-0-¢: U’ X R > Z is a
smooth mapping. Note that 7- o - ¢(q, v) = 7- o(f(q), $,(v)) = 7(¢,(v))
and that 7(¢,(v)) =0 iff ¢ (v) =0 iff (¢,v) € Ker¢,. So g7 }(0) =
Ker(¢|U").

If we show that g is a submersion, then by Theorem 2.8 Ker ¢ N (U” x R?®)
1s a submanifold of U” x R*® and thus a submanifold of E. To show that g
IS a submersion, 1t 1s sufficient to show that if (¢, v) in U” x RS, r = g(g, v),
and ¢: R — Z 1s a (smooth) curve based at r, then there is a (smooth) curve
¢: R—> U" x R*based at (¢, v) with g-¢ = c. Let ¢ be such a curve. Note that
T @0(W)—>Z, 0:f(q) x ¢(W)—¢(W), and ¢,: W — ¢(W) are iso-
morphisms so that ¢,~*.0~1.7"1.c: R —>g x W is a smooth curve. Define

c b
- K1) = (re0+)2c(t) + v — (r+0:¢)~2+c(0)
cC:R—>q x W< U” x Wisasmooth curve based at (g, v) andg-¢ = ¢. []

Proposition 5.15. Let F be a subbundle of E. Then there exists another
subbundle G of E with F ® G = E. G is called a complementary subbundle to
F.

Proof. Choose a metric s: X —» S%(E*) as given by Proposition 5.6.
Let m.: E - E be given by orthogonal projection onto F using s, i.e., on
each fiber (7,),: E, = F), 1s orthogonal projection. 7, is a homomorphism
and G = Ker 7, 1s a subbundle of E by Proposition 5.14. At each p in
X,F;DQGP=EP sOE=F& G. [

§6. Integration of Vector Fields

There 1s a close relationship between vector fields and smoothly param-
etrized families of curves which we shall explore now.

Definition 6.1. A one parameter group on X is a smooth mapping
¢: X x R— X satisfying ¢, = idy and ¢,,; = d,+¢, for all s,t in R where

¢t(x) = ¢(x: t)'

Notes. (1) Let ¢ be a one-parameter group on X. Then ¢, 1s a diffeo-
morphism on X for each ¢. In fact, ¢_; = (¢ ~".

(2) Let {, be the tangent vector at ¢ = 0 to the curve p — ¢,(p). Then the
mapping p — (., defines a vector field on X called the infinitesimal generator
of é. (The joint smoothness of ¢ in p and ¢ guarantees that { is a smooth
section.) We call a curve c: I, — X an integral curve for { if (dc),((d/d?)|,) =
. for all r. The following lemma shows that the infinitesimal generator of ¢
is the vector field for which the curves ¢t — ¢,(p) are integral curves. (Note

Is - (—8, 8) < R')

Lemma 6.2. Let [ be a vector field on a manifold X with p in X. Then
there is a nbhd U of p in X, an ¢ > 0, and a unique smooth function
¢: U x I, > X satisfying;

(a) The curves t — ¢,q) are integral curves of { for all g in U,
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(b) ds+d: = ¢;1: on the domain ¢ (U) N U whenever |s|, |t|, and |s + t]
are < e; and

(€) ¢o = idy.

Proof. This 1s, in reality, a theorem about first order systems of ordinary
differential equations. First we transport the problem to R™. Let V be a chart
nbhd of p with chart 4 : ¥V — R". Choose another nbhd U of p with U compact
and contained in V. Let n = hy({|V); i.e., n, = (dh)n-1,({n-1)). 7 1S @ Vector
field defined on an open set in R" and can be written in the form »n =

>t.1 ni(0/0x;) where n; are smooth functions on h(V). Let U’ = A(U). Then
for every x in U’, we can consider the differential equations

(*) — = n(y)  with initial conditions

¥(0) = (31(0), ..., ya(0)) = x.

By standard theorems on the existence and uniqueness of solutions to a
system of o.d.e. [see, for example, Hurewicz, Lectures on Differential Equa-
tions, p. 28], there exists a smooth function ¢: U’ x (—e, €) = R" given by
Y(x, t) = y(t) where y 1s the solution to (*) at x. If ¢ is chosen sufficiently
small, we can assume that Im y < A(V'). Note that ¥(x, 0) = y(0) = x so
that Y, = idy.. Next we claim that -y, = i, , . when both sides are defined.
For 4,,, and -y, are both solutions to dy/dt = n(y) with initial values
Y,(x) when t = 0. By the uniqueness theorem for the initial value problem
these must be i1dentical.

Finally let ¢, = h='<y,ch. Then ¢: U x (—e, ¢) = X is well-defined and
satisfies (b) and (c). The uniqueness of ¢ follows from the local uniqueness of
y once (a) has been satisfied. To prove that  is the infinitesimal generator of

¢ we apply the following lemma. []

Lemma 6.3. Let h: X — Y be a diffeomorphism and ¢, a one parameter
group on X with infinitesimal generator {. Then hy( is the infinitesimal generator
of the one parameter group , = h+¢,-h~1.

Proof. For each g in Y, (hel), = (dM)n-1¢({n-10))- Now £ > ¢(h™(q))
is a curve representing ¢, -1, so that ¢ — h-¢,(h~*(q)) 1s a curve representing

(dh)n-1q)(Cn-1qy). [

Theorem 6.4. Let { be a compactly supported vector field on a manifold X ;
i.e., L is zero outside of some compact subset of X. Then there exists a unique

one parameter group ¢ for which  is the infinitesimal generator.

Proof. Let U be an open subset of X with U compact such that { = 0
off U. Applying Lemma 6.2 we can find for each point p in U an open nbhd
U, of p, a real number ¢, > 0, and a unique smooth function ¢,: U, X
(—e,, e,) — X satisfying (a), (b), and (c) of the last lemma. Choose a finite
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subcover of Uby U,,,, ..., U, and let ¢ = min, ;< e,. Define for |t| < e,
$:: X > X by

¢p(p,t) forall pin U,
— k
#dp) = p forallpin X — U U,,
j=1

¢; 1s well-defined and unique by the uniqueness part of Lemma 6.2. Note that
Po = idy.

Finally, define ¢: X x R— X by ¢, = (¢n,)" Where #n is an integer large
enough so that |¢/n| < e. This is well-defined for if m is another such integer,
then

(¢t/m)m = ((¢t/mn)n)m = (‘ﬁt/mn)n.m = ((¢t/mn)m)n = (¢tln)n

It is now easy to check that ¢ is a one parameter group whose infinitesimal
generator is {. []

Notes. (1) On a compact manifold there is a 1:1 correspondence be-
tween vector fields and one parameter groups.

(2) Forpin X, {, = 0iff (p) = p for all ¢. Clearly if ¢,(p) = p for all ¢,
then {, = (d¢,/dt)(p)|;=o = 0. Conversely, assume that {, = 0. If we can
show that ¢,(p) = p for all ¢ in some nbhd of 0, then by the arguments in
Theorem 6.4 we see that ¢,(p) = p for all ¢. Thus this question is a local one
and we may assume that X is an open nbhd of 0 in R" and that p = 0. Now
as in Lemma 6.2 ¢,(0) = y(¢) where y(t) = (3,(2), ..., y,(t)) is the solution
to the system of ordinary differential equations dy,/dt = n,(y) with initial
condition y,(0) = 0 where { = > ., ,(9/éx,). Since {, = 0, n,(0) = 0. Thus
y(t) = 0 is a solution to this system of equations. The uniqueness of such a
solution guarantees that ¢,(0) = O for small +.

Corollary 6.5. Let X be a manifold and let { and n be two vector fields on
X. Suppose that { is compactly supported and that v is the infinitesimal genera-
tor of a one parameter group. Then { + v is the infinitesimal generator of a one
parameter group.

Note. By taking n = 0 we see that this Corollary is a slight generaliza-
tion of the last Theorem.

Proof. The proof is essentially the same as that of the last theorem. The

only difference is in the definition of ¢. Let ¢ be the one parameter group
associated with n and define

¢P;(p’ t) fOI’ all p in Up‘
o p) = : - k
y(p,t) forpinXx - U,
=1

The rest of the proof proceeds as before. []



Chapter 11
Transversality

§1. Sard’s Theorem

In order to state and prove Sard’s Theorem we need to know some ele-

mentary (Lebesgue) measure theory.
Let a = (ay,...,a,) and b = (b,, ..., b,) be points of R* with g, < b,
(1 < i £ n). Denote by C(a, b) the open cube

{(ty,...,th) R g <t < b, 1 i < nj.

Define the volume of C(a, b) to be
vol [C(a, b)] = (bl - al)' "o ’(bn — ay)
Definition 1.1.

(1) Let S be a subset of R". Then S has measure zero if for every ¢ > 0,
there is a covering of S by a countable number of open cubes C,, C, ... SO
that >%, vol [C] < e.

(2) Let X be a differentiable n-manifold and let S be a subset of X. Then S

is of measure zero if there exists a countable open covering U,, U, ... of §
and charts ¢;: U;— R" so that ¢ (U, N S) is of measure zero in R".

To see that ““measure zero” is well-defined on a manifold, we need the
following two results:

Lemma 1.2. A countable union of sets of measure zero in R" is of measure
zero.

Proof. Let S;, S,, ... be sets of measure zero in R". Given e <0, cover
each S, by open cubes whose total volume is less than (¢/2'**). Then the
union of all of these cubes covers S = |J%, S; and has total volume less
thane. (]

Recall that if 4 : R" - R™ is a linear map, then
Av|
Al = [Av|
l l velsl.}'lP{O} IUI

Also, if I, , denotes the line between two points x and y in R*, then for any
C!l-differentiable function f: R* — R™

/(%) = f(¥)| < |x = y| sup |(df),l.

PElx v

(This is just a corollary to the Mean Value Theorem.)

Proposition 1.3. Let f:R" — R* be C!-differentiable and let S be a
measure zero subset of R*. Then f(S) has measure zero.

30
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Proof. Without loss of generality, S can be assumed to be contained in
some large open cube. On this cube |(df),| is bounded by some constant X, so
that if x, y e S, then |f(x) — f(»)| < K|x — y|. Given ¢ > 0, cover S by

open cubes C; whose total volume is less than ¢/(vVn K)*. We note that

f(C"i) I contained in a cube whose volume is (V7 K)" vol (C,) using the
above inequality. (To see this assume C, has equal length sides with length a.

Let p be the center of C,. Then f(C) is contained in the sphere of radius
(KV'n/2)a centered at f(p) which is, in turn, contained in a cube centered at

/(p) all of whose sides have length XV/n-a.) Thus the total volume of cubes
containing f(S) is less than e. []

This generalizes immediately to a statement of manifolds.

Corollary 1.4. Let X and Y be differentiable n-manifolds, let [ X—>Y
be a C'-differentiable, and let Z be a measure zero subset of X. Then f(Z) has
measure zero in Y.

Proof. Let ¢ be a chart on Y with domain V. Cover f~1(V) by a
countable open covering U,, U,, ... each of which is the domain for a chart
¢,: U; = R" and for which f(U)) is contained in V. Since Z is of measure
zero 1n X, ¢,(Z N U,) has measure zero in R”. Now - f+¢.71is C! on its
domain in R". By Proposition 1.3 ¢ - f - 6,71 - $,(Z N U,) = Y(f(Z¥ N U))
has measure zero in R". Hence U y/(f(Z N U)) = ¢(f(Z N V) is of
measure zero in R”. So f(Z) has measure zero in Y. []

Lemma 1.5. Let X be an n-dimensional submanifold of a differentiable
m-manifold Y with n < m. Then X is of measure zero in Y.

Proof. We first claim that an n-dimensional plane, R", in R™ is of measure
zero. R" can be subdivided into a countable number of unit n-cubes so it is
sufficient to show that the unit n-cube in R™ is of measure zero. Let ¢ > O be
given. The unit n-cube can be covered by (2/e)* cubes each of volume &
Then the total volume of the cubes is e™(2/e)* = 2"™~" which cdnverges to
zero as e+ 0 since m > n. Since X is a submanifold of Y, there exists a
countable covering U,, U,,... of Y with charts ¢,: U,— R™ such that
(Ui N X) 1s contained in a fixed n-plane in R™. Hence Y(U; N X') has
measure zero in R™ and X has measure zeroin Y. []

Proposition 1.6. Let X and Y be differentiable manifolds of dimensions n
and m respectively withn < m. Let f: X — Y be C ‘-differentiable, then f(X)
has measure zero in Y.

Proof. Let s =m — n. Define f: X x R®— Y by f(p, a) = f(p) for
everypin Xand ain R*. X x {0} is a submanifold of X x R*and, by Lemma
1.5, has measure zero in X x R®. By Corollary 1.4 f(X x {0} = f(X) has
measure zeroin Y. ]

We need one more result before coming to Sard’s Theorem, namely
Fubini’s Theorem for measure zero sets.
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Let i,: R""!—>R x R*™! = R" be the embedding given by i,(x) =
(a, x) where a 1s in R.

Theorem 1.7. Let A be a compact subset of R". Suppose that for every
acR, i,"Y(A) has measure zero in R"~'. Then A is of measure zero in
R".

Let I be a closed interval in R. Suppose I is covered by subintervals
[ay, b,], ..., [an, bn). Then the cover is minimal if the covering minus any one
element of the covering is no longer a covering.

Lemma 1.8. Let I = [a, b] be a closed interval in R. Then the sum of

the lengths of any minimal covering of I (by closed intervals in I) 1s less
than 2(b-a).

Proof. Order the intervals of a minimal covering [ay, b:], ..., [@m, byl
so that @, < a, <--- < a,. Then the minimality implies that b, < b, <---
< b,. Moreover, [a,, bl N [a,,:0, b0l = @ for 1 < k < m — 2. Other-
Wise a2 < by and [ay,y, byi1] < [ay, b] U [ai 42, b+ 2] since a, < a4
and b, ., < b, ... Hence the sum of the lengths of [a,, b,], [as, bs], [as, bs],. . .
1s less than b — a. Similarly for [a,, b5, [a@s, b4, . ... [

Lemma 1.9. Suppose the set i,~'(A) is covered by open sets {U,, ..., U}
of R*~1. Then there exists an open interval I, about a such that {U,, ..., U}
covers i,~(A) for every t in I,.

Proof. If there were no such interval, then there would exist a sequence
{t;}% 1 of real numbers with Lim,_, , #, = a and a point x; € i;, ~*(A) such that
x, 1s in the complement of U; U- - -U U,. Since (¢, x;) 1sin A and A4 1s com-
pact, there exists a subsequence of the x;’s which converges to some point
X in R*~! and for which (a, %) is in A. Since | Jf., U, is open, X ¢ | ., U..
But (a, X) € A implies that X € i,~'(A4) and the fact that {U,, ..., U} covers
i,~1(A) gives a contradiction. []

Proof of Theorem 1.7. Since A is compact and hence bounded, there is a
closed interval I such that 4 < I x R"~!, By hypothesis i, ~1(4) has measure
zero for each a in 1. Thus, given ¢ > 0, there 1s a cover of i,~'(4) by open
cubes in R*~1, {Cy4,. .., Cy % such that >{’2, vol (C;*) < e. By Lemma 1.9,
there exists an open interval I, in I about a so that C,%,..., Cy ® covers
i, 1(A) for every t in I,. Hence the collection of open sets {I, x C;%} covers A.
Thus there is a finite subcover {I, x C,%}15 =¥+ where B is some finite set.

Let J, = I,. The finite collection {J,},c5 covers I and can be assumed to
form a minimal covering of I. Then 22, vol [J, x C*] < evol [J,]. Hence

Ng

Z vol [J, X C%] < ¢ Z length (J,) < 2¢length (7).
1 aeB

aeB {=

Since vol [I, x C%] = vol [J, x C,%], the total volume of the covering of A

by {I, x C2}15 ="e can be made arbitrarily small, 4 has measure zero in
R [
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Since all of the results given in this section have been about measure zero
sets, 1t 1s instructive, perhaps, to show at this time the following obvious but
surprisingly complicated result.

Proposition 1.10. Let S be a nonempty open subset of R*. Then S is not
of measure zero.

Proof. Every open set S contains a nonempty open cube C whose
closure is contained in S. Let {C;}>, be an open covering of S by open cubes.
Since C is compact in R*, there is a finite subcover of C by C,, ..., C,. We
claim that vol [C] < >7_, vol [C,]. If this is true then we are done since
> ,vol [C] = >, vol [C] = vol [C] > 0. So the sums of the volumes
of cubes in a covering of S are bounded away from zero and S does not have
measure zero. T'o prove the claim, let N, = number of integer lattice points

of R" (1.e., points of R" all of whose coordinates are integers) which are con-
tained in C,. Now C, = C(a® b*) where a®, b* € R". Let a* = (a,%, ..., a,%
and b* = (b,% ..., b,%). Then for each j there are at most ,* — a,* + 1 and
at least /, = max {b, — a,* — 1, 0} integers in [a,% b,%]. Hence

ﬂ [* < N, < H (b — a* + 1).

Similarly let N = number of integer lattice points in C = C(a, b) and
obtain similar bounds on N. Certainly N < >, N, since {C,}™., covers C.
Hence

[14 = > T1®s# - af + 1)
§ =

a=]1jf=1

For A 1n R sufficiently large, let C* = C(Aa, Ab) and C,*(Aa%, Ab%). Apply the
above argument to C* and C,* to obtain

[T — 2, —1) < D> [T = Aaf + 1)
J=1

a=]1j=1

Hence

n

ﬂ(bf —a; — !X) s‘ﬁ ﬁ(b,“ — a + -IX)

i=1 =1 f=1
Taking the limits of both sides as A — c0 we get

m

vl [C]=T1¢-a)s 2 T167 - a9 = 3 vllCl 0

Defimition 1.11. Let X and Y be differentiable manifolds and f: X — Y
a C'-mapping. Then

(1) corank (df), = min (dim X, dim Y) — rank (df),.
(2) a point p € X is a critical point of fif corank (df), > O.
(3) The set of critical points of f is denoted by C[f].
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(3) a point q € Y is a critical value of f if g € f(C[f]).

(4) a point p € X is a regular point of fif p ¢ C[f].

(5) a point g € Y is a regular value of f if it is not a critical value of f. So,
in particular, a point not in Image f is a regular value.

Theorem 1.12. (Sard’s Theorem.) Let X and Y be smooth manifolds.
Let f: X — Y be a smooth mapping. Then the set of critical values of f has
measure zero in Y.

Notes. (1) Sard’s Theorem can be generalized as follows: Assume that
k > max(dim X — dim Y, 0). If f is a C*-differentiable mapping, then the
measure of the set of critical values 1s zero. Since we will be using only
smooth mappings in later chapters we will prove only the more restricted
version here.

(2) If dim X < dim Y then Sard’s Theorem follows directly from Pro-
position 1.6 and the fact that a subset of a set of measure zero has measure

zero (see [45)).

Sard’s Theorem is in reality a local theorem and follows from:

Proposition 1.13. Letf: U — R™ be smooth where U is an open set in R
Then the set of critical values of f is of measure zero in R™.

The proof of Theorem 1.12 proceeds from Proposition 1.13 precisely as
the proof of Corollary 1.4 proceeded from Proposition 1.3. The details are

left for the reader.
The proof of Proposition 1.13 will be done by induction on n. Start the

induction at n = 0. R? is, by convention, just a point and the proposition is

trivial in this case.
By induction, we assume that Sard’s Theorem holds for all smooth
mappings of R*~! — R™, where m is arbitrary.

Lemma A. Let f: U— R™ be smooth, where U is an open subset of R™.
Let fi,...,fmn: U—R be the coordinate functions given by f. Assume that
fi(x1, ..., X,) = Xy for all (x,,...,x,)€ U. Let C = critical point set of f.
Then f(C) has measure zero in R™.

Proof. The proposition is trivial for n = 1, so we may assume n > 1.
Given aeR, recall thati,: R*~! —>R" by i,(X) = (a, X) where x = (xg, ..., Xy,).
Define g,(x) = (fa(a, X), ..., fn(a, X)). Then the following diagram com-
mutes.

where U, = i, (V).
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(df )a,n = (}'-IW(Z,),) |

Note that

Hence rank (df), z = rank (dg,); + 1; i.e.,, X is a critical point of g, iff
(a, X) 1s a critical point of f. So the critical point set of g, is i, ~1(C).

By the induction hypothesis g,(i,~!(C)) is of measure zero in R™~1,
Since i, " '(f(C)) = g.(i,~*(C)) we may conclude by Theorem 1.7 that f(C)
has measure zero. (Note that C is a closed set, which is a countable union of
compact sets. Thus f(C) 1s a countable union of compact sets so that 1.7

applies.) [J

Let f: U— R™ be smooth. Let C = C[f] be the critical point set of f.
Denote by

||
C ={peC ‘

é—x;ﬁ(p) =0 whenever O < |a| <i and 1<1/< m}-

i=12...)
The outline of the rest of the proof of Sard’s Theorem is:

Lemma B. f(C — C,) has measure zero.
Lemma C. f(C, — C;,,) has measure zero for i > 1.

Lemma D. For some i, f(C,) has measure zero.

Proof of Lemma B. Let p be in C — C;. Then there exists some partial
derivative of f at p which is not zero. Assume that (9f;/0x,)(p) # 0. Let

h: U— R" be defined by A(x,,..., x,) = (fi(x1, ..., X5), Xg, . . ., X,). Then
at p

which 1s invertible. By the Inverse Function Theorem, there exists open sets
U'< Uand V < R" with p in U’ so that h: U’ — V is a diffeomorphism.
Let g: V— R™ be given by g = f-h~1, then f(C[f] N U’) = g(C[g]). Now
g1(V1s.-s¥n) = f1eh"¥(y1,...,¥s) = y1. SO we can apply Lemma A to g,
and get that g(C[g]) has measure zero in R™. []

Proof of Lemma C. On C, — C;,, all ith partial derivatives vanish but
not some (i + 1)st partial derivative. We may assume that g is an appropriate
ith partial derivative so that (dg/ox,)(p) # 0. Let h: U — R" be defined by
h(x) = (g(x), x,, . .., x,). Then (dh), is non-singular, so that s restricted to



Transversality

U, < U is a diffeomorphism, where U, is an open nbhd of p. Let ¥V = A(U}).
By definition g(C;) = 0, so A(C; N U;) < {0} x R*~!in R™. Let k: R*"!
R™ be defined by f-h~! restricted to ¥ N ({0} x R*~2).

Finally we note that f(C; N U;) < f(C[f] N U,) = k(C[k]) and that by the
induction hypothesis k(C[k]) has measure zero. Hence for eachpin C; — C,,,

there 1s a nbhd U, of p for which f(C, N U,) has measure zero. We can choose
a countable number of the U;’s to cover C; — C;+,. So f(C; — C;,,) has

measure zero in R™,
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Proof of Lemma D. Without loss of generality, we may assume that U
1s an open cube with sides of length b, since U may be covered by a countable
union of such sets, and that fis defined on a nbhd of U. By Taylor’s Theorem,
if x € Cy, and y € U, then (*) | f(¥) — f(x)| < K|x — y|**! where K is some
constant independent of y. Let r be a large integer. Subdivide U into subcubes
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