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Preface

The theory of fields 1s one of the oldest and most beautiful subjects in
algebra. It 1s a natural starting point for those interested in learning algebra,
since the algebra needed for the theory of fields arises naturally in the theory’s
development and a wide selection of important algebraic methods are used.
At the same time, the theory of fields is an area in which intensive work on
basic questions is still being done.

This book was written with the objective of exposing the reader to a
thorough treatment of the classical theory of fields and classical Galois
theory, to more modern approaches to the theory of fields and to one approach
to a current problem in the theory of fields, the problem of determining the
structure of radical field extensions.

I have written the book in the form of a text book, and assume that the
reader 1s familar with the elementary properties of vector spaces and linear
transformations. The other basic algebra needed for the book is developed in
Chapter 0, although a reader with very little background in algebra should
also consult other sources. Exercises varying from quite easy to very difficult
are included at the end of each chapter. Some of these exercises supplement
the text and are referred to at points where readers may want to see further
discussion. Others are used to cover in outline form important material
peripheral to the main themes in the book.

Chapters 1-4 give a comprehensive treatment of the more classical side of
the theory of fields and Galois theory. Chapter 1 and 2 are concerned with
the general structure of polynomials and extension fields. Galois theory is
developed extensively in Chapter 3. Chapter 4 covers the fundamental
theorems on algebraic function fields and relates algebraic function fields
and affine algebraic varieties.

In Chapter 5, I discuss three modern versions of Galois theory, in which
the Galois group of an extension is replaced by a ring, a Lie ring and a biring
respectively. In Chapter 6, I describe the structure of radical extensions and
their associated birings in terms of tori.

In Appendix S, I introduce the language of sets and describe the set theory
needed for the book. Witt vectors are needed in 3.10, and their properties
are developed in Appendix W. Tensor products are used quite often in
Chapters 5 and 6, and are discussed in Appendix T.

/In order to put the material of Chapters 5 and -6 in the proper formal
framework, I have included a fairly thorough treatment of algebras, coalgebras
and bialgebras in the appendices. In Appendix A, the structure of finite
dimensional commutative algebras is determined. In Appendix C, I discuss
coalgebras and develop the structure theory of cocommutative coalgebras.

vii
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viii Preface

In Appendix B, I develop a theory of K/k-bialgebras which generalizes the
usual theory of k-bialgebras.

To those already familiar with the theory of fields, some further remarks
may be of interest. In Chapter 2, the proof that the set k., of separable
elements of a finite dimensional field extension of & is a simple field extension
of k is simplified by a theorem on conjugates (see 2.2.10). At the beginning of
Chapter 3, a generalization of the Dedekind Independence Theorem 1is
proved (see 3.1.1). This is used to prove a theorem on Galois descent (see
3.2.5) which is then used to prove the Galois Correspondence Theorem
(see 3.3.3). In 3.4, the proof of the Normal Basis Theorem is simplified
by a theorem on conjugates (see 3.4.1). In Chapter 4, I prove that a p-basis
of an arbitrary separable extension K/k is algebraically independent (see
4.3.17), which greatly simplifies the proofs of theorems on separating tran-
scendency bases. In Chapter 5, I give a new treatment of the Jacobson-
Bourbaki Correspondence Theorem (see 5.1.7) and an accompanying descent
theorem (see 5.1.10), and of the Jacobson Differential Correspondence
Theorem (see 5.2.6) and its accompanying descent theorem (see 5.2.9), inspired
by work of Pierre Cartier and Gerhard Hochschild. In 5.3, I develop a Galois
theory of normal extensions based on the biring H(K/k) of an extension
K/k. The structure of K/k is related to the structure of H(K/k) (see 5.3.20), a
Biring Correspondence Theorem is proved (see 5.3.12) and a radical splitting
theorem for H(K/k) is proved for finite dimensional normal extensions
(see 5.3.21). This theory is parallel in some respects to a powerful Galois
theory of normal extensions based on the universal cosplit measuring k-
bialgebra of an extension K/k, developed by Moss Sweedler [20], but has the
advantage that the biring H(K/k) consists of linear transformations of K/k
and is therefore more easily studied. In Chapter 6, I discuss in detail the
structure of finite dimensional radical extensions K/k and their birings
H(K/k), in terms of tori. Tori are then used in proving a fairly deep generaliza-
tion of a theorem of Jacobson on finite dimensional Lie rings of derivations
of K (see 6.4.2). In Appendix B, I develop a formal theory of K/k-bialgebras,
which reduces to the usual theory of k-bialgebras when K = k. I then define
and discuss the K-measuring K/k-bialgebras and their k-forms, and determine
the structure of the finite dimensional conormal K-measuring K/k-bialgebras
and their cosplit k-forms. The theory thus developed places the material of
Chapters 5 and 6 in a formal framework within which the structure of
H(K/k) can be more efiectively studied.

Other approaches to the theory of radical extensions are outlined in E.5 and
E.6 in the form of exercises. An outline of the proof of a theorem of Murray
Gerstenhaber on subspaces of Der K closed under pth powers-is given (see
E.5.8). Higher derivations are introduced, and a sketch of the proof of Moss
Sweedler’s theorem characterizing in terms of higher derivations those finite di-
mensional radical extensions which are internal tensor products of simple ex-
tensions is given (see E.6.11, E.6.14). Moss Sweedler’s universal cosplit
measuring k-bialgebra is introduced and discussed in E.6.21 and E.6.22. The
Pickert invariants of a radical extension are discussed in E.6.24 and E.6.25.
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Reflected in this book are the ideas of many people who have influenced
me directly and through their work in my thinking about fields. I would
particularly like to mention George Seligman, with whom I first studied
fields, Nathan Jacobson, whose work on fields i1s the basis for a large part of
this book and Moss Sweedler, whose work on coalgebras, bialgebras and field
theory is reflected in the last part of this book. Since a reflection is not real
substitute for an original idea, readers are urged to explore the books and
papers listed in the reference section, especially [2], [5], [9), [10], [11], [12],
[18], [19], [20].

Much of this book is based on a course on bialgebras and courses on field
theory given at the University of Michigan in 1969, 1971 and 1972. Most of
the material of Chapters 5 and 6 and of Appendix B is the outgrowth of
preliminary research described at the 1971 Conference on Lie Algebras and
Related Topics at Ohio State University.

I would like to take this opportunity to express my thanks to my friend
and former student, Pedro Sanchez, whose lecture notes to my courses made
easier the writing of parts of this book, and to Hershey Kisilevsky, who
showed me the irreducible polynomial used in proving 3.12.2. I also wish to
thank the National Science Foundation for their support of research de-
scribed here, and to express my appreciation to the California Institute of
Technology, whose generous support during the academic year 1972-3
enabled the remaining research to be completed at this early date. Finally,
I would like to express my thanks to Catherine Rader and Frances Williams,
whose superb typing made as painless as possible the job of preparing the
manuscript.

Ann Arbor, Michigan and
Pasadena, California, March 1, 1973 David J. Winter
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0 Introduction

In this chapter, we give a brief but fairly self-contained introduction to
abstract algebra, in order to develop the language, conventions and basic
algebra used throughout the remainder of the book. Our notation for sets
of objects and for operations on sets 1s given in Appendix S.

We begin with basic material on groups, rings and fields. We then briefly
discuss transformation groups. Finally, we discuss the Krull Closure in a
group in anticipation of its role in Chapter 3.

0.1 Basic algebra

A product on a set S'is a mapping from S x S to S, which we may denote
(x, y)—=xoyp. A subset T of a set S with product x o y is closed (or closed
under x o y)if x o ye T for all x, ye T. A product x o y on S is associative if
(xoy)oz =xo(yoz)for x, y,ze S. An element e of a set § with product
x o yisanidentityof Sife o x = x o e = xforx € S. One shows easily that S has
at most one such e (see E.0.1). If such an e exists, S is said to have an identity .

A monoid (or semigroup with identity) is a set S with an associative product
x o y such that S has an identity. A submonoid of a monoid Sis a closed subset
T of S containing the identity of S. Such a T together with the product x o y
(x, ye T) is a monoid. For any element x of a monoid S, we let x° be the
identity element of § and x® = xox o--.-0x(n times) for any positive
integer n. In particular, x* = x for x € S. For x € S, the set T consisting of
x% x!,... is a submonoid of § and x™*" = x™ o x", (x™)* = x™" for all
nonnegative integers m, n (see E.0.4). In a monoid S, an inverse of an element
x €S is an element y € S such that xoy = yox = e, e being the identity
element of S. For each x € S, x has at most one inverse y (see E.0.2). If
x € S has an inverse, then we say that x 1s a unit or an invertible element of S,
and we denote the inverse of x by x~. The set S* of units of S'is a submonoid
of S and (xop)" =y~ ox~, (x7)” = x for x,yeS* (see E.0.3). For
x € §*, wedefine x‘~™ = (x~)" for any positive integer n. In particular, x ! =
x~ for x € §*. We call x" the nth power of x with respect to the product o.
For x € S*, the set consisting of x°% x~1, x!, x~2, x%, ... is a submonoid of S
and x™*" = x™o x™ (x™)" = x™" for all integers m, n (see E.0.4). Elements
x, y of monoid § commute if xoy = yox. A monoid S is Abelian (or com-
mutative) if x oy = yo x for x, ye S. If S is an Abelian monoid containing
elements x,...,x, we let [[I'x; denote x, o---0Xx, and then have
(I I x)™ = T IT (x;)" for any nonegative integer »n (see E.0.J).

A group is a monoid S every element of which is a unit. Thus, a groupisa
monoid S such that S = S*. For any monoid S, $* 1s a group called the
group of units of S. A subgroup of a group S 1s a submonoid 7 of S such that

1



2 Introduction

x~ e T for all x e T. A subgroup T of a group S with product x o y (x, y € §)
is a group with product x o y (x, y e T). A group S is Abelian if it is Abelian
as a monoid. If x4, . . ., x,, areelements of an Abelian group S, then (] [T x;) ™ =
[T (x)~ and (TI? x)" = []? (x)" for any integer n (see E.O.5).

A ring is a set A with two products x + y and xy, called addition and
multiplication respectively, such that 4 with addition is an Abelian group, 4
with multiplication is a monoid and x(y + z) = xy + xz, (x + y)z = xz +
yz for x, y, z € A. A subring of a ring A is a subset B of ¥ which is a subgroup
-of A with addition and a submonoid of 4 with multiplication. A subring B
of a ring A4 together with the addition x + y and multiplication xy (x, y € B)
is a ring. The identities of a ring 4 with respect to addition and multiplication
are denoted 0 and e respectively. The element e is the identity of the ring 4.
For x € A, x" is the nth power of x with respect to multiplication. We let
—x be the additive inverse of x in 4, so that x + (—x) = 0, and we let
y—x=y+ (—x)forx, ye A. We thendefine0-x =0,n-x=x+---+ x
(n times) and (—n)-x = n-(—x) for any positive integer n, so that n-x is the
nth power of x with respect to addition. In particular, 1-x = x for x € 4.
One easily proves the basic equations x0 = 0x =0, (—x)y = —(xy) =
x(—y) for x,ye A and the basic equations (m + n)-x = m-x + n -Xx,
m-(n-x) = (mn)-x, m-(x + y) = m-x + m-y for x, y€ A and any integers
m and n (see E.0.4).

A ring A is commutative if the monoid 4 with multiplication 1s commuta-
tive, that is, if xy = yx for x, y € A. An element x of A is a unit of the ring
A if x is a unit in the monoid 4 with multiplication. The group of units of
A 1s denoted A*.

A ring A is an integral domain if Aiscommutativeand 4 — {0} 1s nonempty
and closed under multiplication xy. In an integral domain, e ¥ 0 (see
E.0.7). A field is an integral domain K such that the group of units K* is
K — {0}, that is, such that each nonzero element is a unit. Every subring of a
field is an integral domain. A subfield of a field K is a subring k of K such that
xek — {0} > x~t ek — {0}. A subfield of a field K is a field. Every integral
domain A is a subring of some field Ksuchthat K = {xy~'|x€ 4, ye 4 — {0}},
and such a field K is a field of quotients of A (see E.0.10). Any two fields of
quotients of A4 are essentially the same (see E.O.11).

A homomorphism/isomorphism from a monoid or group S with product
x o y and identity e to a monoid or group S’ with product x’ o’ y’ and identity
e’ is a mapping/bijective mapping ffrom Sto S’ such thatf(x o y) = f(x) o f(y)
and f(e) = e'. If an isomorphism from S to S’ exists, S and S’ are isomorphic.
An automorphism of S is an isomorphism from S to S.

A homomorphism/isomorphism from a ring or field 4 to a ring or field 4’
is a mapping/bijective mapping f from A4 to 4’ such that fis a homomorphism/
isomorphism of monoids from 4 with addition to 4" with addition and from
A with multiplication to A4’ with multiplication. If an isomorphism from
A to A’ exists, 4 and A’ are isomorphic. An automorphism of A 1s an 1s0-
morphism from A4 to A.

An ideal of a ring A is a nonempty subset I of A4 closed under addition such
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that xye I for x€e 4, ye I and for x € I, y € A. The sets {0} and A are ideals
of 4. In a commutative ring A4, the set x4 = {xa|ae A} (x€ A) is an
ideal of A4 called the principle ideal generated by x. If 4 is an integral domain
and every i1deal of A is principal, 4 is a principle ideal domain.

Suppose that S is an Abelian group with product x + y and that T is a
subgroup of S. Welet x + T={x + y|yeT} for xeS. Then xex + T
and x 4+ T is the coset of T in S containing x. Two cosets x + TTand x’ + T
are equal if and onlyif x — x'eT.If x — x" ¢ T, x + T and x’ + T are dis-
joint (see E.0.17). Thus, an element x is contained in precisely one coset,
namely x + T. We let S/T be the set {x + T | x € S} of cosets of T in S. We
can define a product (x + T) + (y + T) = (x + y) + Tin T, and S/T with
this product is an Abelian group (see E.0.17).

Next, let 4 be a ring and 7 an ideal of 4. We can also define a product
(x + I)(y + I) = xy + I, and A/I with the so defined additive and multi-
plicative products is a ring (see E.0.18). The mapping f(x) = x + I (x € A) is
a homomorphism from A4 to 4/I. The ring A/ is the quotient ring of Aby I, f
the quotient homomorphism.

1 If f: A— B is a homomorphism from a ring 4 to a ring B, then the set

Kernel f = {ac A | f(a) = 0} is an ideal of A called the kernel of f. The set
Image f = {f(a) | a € A} is a subring of B called the image of f. There is an
isomorphism from A4/Kernel f'to Image f which sends a + Kernel fto f(a) for
a € A (see E.0.19). In particular, f'is injective if and only if Kernel f = {0}.

Now suppose that 4 1s a commutative ring and let 7 be an ideal of 4. Then
I'1s maximal if I # A and the only ideals of 4 containing I are  and 4. One
shows easily that 4 1s maximal if and only if 4/I is a field (see E.0.23). If 4/1
is an integral domain, then 7 is a prime ideal. Equivalently, 7 is a prime ideal
if 7 # A and xy ¢ I for x ¢ I and y ¢ I. The kernel of any homomorphism f
from A into an integral domain is prime.

We now let K and L denote fields and let 1 denote the identity of K. Then
K has no ideals other than {0} and K, since K/{0} is a field.

0.1.1 Proposition. Every homomorphism f from K to L is injective.

Proof. Kernel f1s an ideal of K. Since f(1) # 0, Kernel f # K. Thus,
Kernel f = {0} and fis injective. []

For ag,...,a,€K, we let Dta,X'= a,X° + ...+ a,X" denote the
infinity-tple (ay, .. ., a,, 0, ...) (all entries are 0 after the (n 4+ 1)-st). This is
called the polynomial with coefficients a,, . . ., a,. The polynomials aX°(a € K)
are the constant polynomials, or the polynomials of degree 0. The degree of a
nonconstant polynomial >3 a; X*?, denoted Deg >% a, X, is the integer d such
that a; # 0 and a; = O for i > d. The leading coefficient of >t a, X! is a,
where d = Deg >3 g, X". If the leading coefficient of >% a,X* is 1, we say that
>oa X' is monic. One shows easily that two polynomials >% q;X* and
20 b, X' are equal if and only if @; = b; for 1 < i < n. The set of polynomials
with coefficients in K is denoted K[X]. We let

n

Saxi+Shxt = (@ + b)X’
0 0 0



4 Introduction

and

m+n

(o)) - $er

where ¢, = >, ,-x a;b;, define addition and multiplication in K[X]. One
eastly shows that K[ X'] with these products is a commutative ring. Note that
Deg (f(X)g(X)) = Deg f(X) + Deg g(X) for nonzero f(X), g(X)e K[X]
(see E.0.24). It follows that K[X] is an integral domain. It 1s convenient to
“identify”’ a with aX° for ae K and 1 with X° (see E.0.9). Then K is the
subset of constant polynomials and K is a subring of K[X]. The group of
units of K[X]i1s K* = K — {0} (see E.0.25).

0.1.2 Proposition. K[X]i1s a principle ideal domain.

Proof. Let I be a nonzero ideal of K[X]. Take f(X) to be a nonzero
element of I of least degree, g(X) a nonzero element of /. What we must
show 1s that g( X) 1s a multiple f(X)A(X) of f(X) (for some A(X) € K[X]).
Suppose not, and take the degree of g(X) to be minimal such that g(X) el —
{0} and g(X) is not a multiple of f(X). Choose X* such that Deg (f(X)X* —
(a./b,)g(X)) < Deg g(X) where a,, b, are the leading coefhicients of f(X),
g(X) respectively. By the minimality assumption, f(X)X* — (a,/b,)g(X) is a
multiple of f(X). But then g(X) obviously is also a multiple of f(X), a
contradiction. Thus, every g(X) € I is a multiple of f(X). [

The group of units of K[X] is K*. Elements f(X), g(X) e K[X] are
associates if f(X) = cg(X) for some unit ¢ € K*. Equivalently, f(X) and
g(X) are associates if f(X) divides g(X) and g(X) divides f(X), where we
say that f(X) divides g(X) if g(X) = f(X)h(X) for some h(X)e K[X].
If /(X) 1s not a unit and if only units and associates of f(X) divide f(X), then
f(X) 1s irreducible.

0.1.3 Proposition. The following conditions are equivalent, for
J(X) € K[X]

1. f(X) is irreducible;
2. the ideal f(X)K[X] is maximal; “
3. the 1deal f(X)K[X] 1s prime.

Proof. Let I = f(X)K[X]. Suppose that f(X) i1s irreducible and that
J is an ideal of K[X] containing I. Then the generator g( X) of J divides f(X)
and is either a unit or an associate of f(X), Thus,J = 4 orJ = [is maximal.
Suppose next that 71s maximal. Then A/7 is a field, so that /1s prime. Finally,
let I be prime and let f(X) = g(X)A(X). Then g(X) e I or h(X) € I. Thus,
f(X) divides g(X) or A(X). But g(X) and A(X) divide f(X). Thus, g(X) or
h(X) i1s an associate of f(X) and A(X) or g(X) a unit. []

0.1.4 Proposition. let f(X) be irreducible and suppose that f(X)
divides g(X)A(X). Then f(X) divides g(X) or A(X).

Proof. Let d(X) be the generator of the ideal I = {f(X)a(X) +
g(X)b(X) | a(X), b(X) € K[X]} of K[X]. Then d( X) divides each element of
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1. Since f(X), g(X) € I, d(X) divides f(X) and g(X). Since f(X) is irreducible,
d(X) is a unit ¢ or d(X) 1s an associate of f(X). In the latter case, f(X)
divides g(X) since d(X) does. In the former case ¢ = f(X)a(X) + g(X)b(X)
for some a(X), b(X) € K[X]. Then ch(X) = f(X)a(X)h(X) + g(X)(X)b(X).
Since f(X) divides g(X)A(X), f(X) divides ch(X), hence divides A(X). [

0.1.5 Theorem. A nonconstantpolynomial f(X) e K[X]can befactored
into f(X) = [ [T g(X) where the g,(X) are monic irreducible elements of
K[X]. Moreover, the factors 4;(X) of any other such factorization f(X) =
[ 1t Ah(X) with A(X) e K[X] irreducible can be rearranged to f(X) = [?
h.(X) so that g,(X) = hy(X)..., gn(X) = h,(X) (in particular, m = n).

Proof. The existence of the factorization is seen by a simple induction
on Deg f(X). The uniqueness follows easily from 0.1.4 (see E.0.39). []

0.1.6 Proposition. Let R be a commutative ring containing x and con-
taining the field £ as subring. Then there is precisely one homomorphism
e: k[X] — R such that e(a) = a for ac k and e(X) = x.

Proof. Since each nonzero f(X) € k[X] has the form >% a, X! (a, # 0)
where n and the g; are uniquely determined by f(X), we may define e by
e(O2 a; X') = D2 ax'. We leave the remaining details to the reader. []

The homomorphism e described in 0.1.6 is the evaluation homomorphism
from k[X] to R at x. It1sconvenient to denote e( /(X)) by f(x) for f(X) € k[ X].

Commutative rings isomorphic to k[ X] also have the properties described
for k[ X]1n the last few paragraphs. Such rings are used often in this book and
are referred to as follows.

0.1.7 Definition. Let R be a commutative ring containing x and con-
taining the field k£ as subring. Suppose that the evaluation homomorphism
f(X) — f(x) from k[ X] to R is an isomorphism. Then we say that x is an inde-
terminant over k and R 1s a polynomial ring over k in the indeterminant x,
and we denote R by k[x].

We now consider a polynomial ring k[x] over k in an indeterminant x and
its field of quotients k(x). The elements of k[x] are of the form f(x) = >% a,x’
(a, € k for all i) and the elements of k(x) are of the form u(x)/v(x) where
u(x) € k[x] and v(x) € k[x] — {0}. Let k(x)[ X ] be the polynomial ring over the
field £(x) in an indeterminant X, and let k[x][X] be the subring of k(x)[X]
consisting of the polynomials in X of the form >} a,(x)X* where the g,(x)
are elements of k[x] for 1 < i < n.

0.1.8 Definition. An element f(X) = D% a(x) X" of k[x])[X] is primitive
if no irreducible element of k[x] divides a;(x) for all i.

For any f(X) € k(x)[ X ], one can write f(X) = a(x)f*(X) where f*(X) is
a primitive element of k[x][X] and a(x) € k(x).

0.1.9 Proposition. Let a(x)f*(X) = b(x)g*(X) where f*(X), g*(X) are

primitive elements of k[x])[X] and a(x), b(x) € k(x) — {0}. Then f*(X) =
dg*(X) for some d € k.
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Proof. Let a(x) = s(x)/t(x) and b(x) = u(x)/v(x) where s(x), t(x), u(x),
v(x) € k[x]. Then s(x)v(x)f*(X) = t(x)u(x)g*(X). By 0.1.5, the coefficients
in k[x] of the left hand side s(x)v(x)f*(X) have a common divisor m(x) of
greatest degree, which is unique up to a constant multiple. Since f*(X) is
primitive, s(x)v(x) i1s such a common divisor, so that s(x)v(x) i1s a constant
multiple of m(x). The same argument applies to the right hand side of the
equation. Consequently, s(x)v(x)d = t(x)u(x) for some d € k. It follows that

s(xX)o(x)f*(X) = s(x)p(x)dg*(X) and f*(X) = dg*(X). [0

0.1.10 Proposition. Let f*(X) and g*(X) be primitive elements of
k[x][X]. Then f*(X)g*(X) is a primitive element of k[x][X].

Proof. Let f*(X) = >Pa(x)X*and g*(X) = 23 bi(x)X’. Let ¢(x) be an
irreducible element of k[x], and let a;,(x) and b,(x) be the first coefficients of
f*(X) and g*(X) respectively which are not divisible by c¢(x). Then the
(i + j)th coefficient of f*(X)g*(X) is a(x)bf(x) + 27-1 @-(X)bs1+(X) +

1 a4 (x)b,_«(x), which is not divisible by c(x) since the latter two sums
are divisible by c(x) and a;(x)b,(x) is not divisible by c(x) (see 0.1.4). [I

0.1.11 Theorem. Let f(X), g(X), h(X)ek(x)[X] and let f(X) =
a(x)f*(X), g(X) = b(x)g*(X), h(X) = c(x)h*(X) where f*(X), g*(X),
h*(X) are primitive elements of k[x][X]. Then if f(X)g(X) = h(X), we
have f¥*(X)g*(X) = dh*(X), for some de k.

Proof. Let f(X)g(X) = h(X). Then we have a(x)b(x)f*(X)g*(X) =
c(x)h*(X). Since f*(X)g*(X) and A*(X) are primitive, it follows that
*(X)g*(X) = dh*(X) for some de k, by 0.1.9. []

The observations that we have just made show that k[x][X] has a unique
factorization property analogous to the unique factorization property of
k(x)[X] described in 0.1.5. More generally, the integral domain k[ X;, ..., X,]
= (...((k[X.D[X2)])...[X,]) (constructed by iterating the construction of
k[x][X] and called the polynomial ring over k in the n indeterminants X3, .. .,
X,) has such a unique factorization property. (see E.0.49).

0.2 Groups

We now let G_be a group with identity element e. It is often convenient to
denote e by 1 and the subgroup {e} by 1. If' S is a collection of subgroups of
G, then (Nyes H is a subgroup of G. If S < G and S is the collection of sub-
groups of G containing S, then {S> = (\yes His the subgroup of G generated
by S.If S = {54, ..., sn}, wedenote {S> by {sy, ..., s,). Inparticular, (g ) 1s the
subgroup of G generated by g. If G = {g>, then G is cyclic with generator g.
The order of G is the cardinality (number of elements) of G and 1s denoted
|G|. The order of an element of g of G is the order of {(g) and is denoted"| g .
The mapping e : Z — { g ) defined by a(m) = g™ for m € Z is a homomorphism
from Z as additive group onto {g>. (See E.0.4). The kernel of « is an 1deal
I of Z, so that I = {0} or I = Zn (set of multiples of n) for some positive
integer »n (see E.0.30). Thus, {g> is isomorphic to Z or to the additive group
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{0,1,...,n — 1} of integers modulo 7. (See E.0.38). It follows that if |g] is
infinite, then (g) = {g™|/m =0, +1, +2,...} and the powers g™(m € Z) are
distinct. And if |g| is finite, then {(g> = (g% g?%,...,g"" > where |g| = n
and where 7 is the least positive integer such that g™ = e. Moreover, g™ = e if
and only if »n divides m.

Let H be a subgroup of a group G and let x € G. We let xH denote the
set {xh|h € H} and call xH the left coset of H in G defined by x. The set of left
cosets of H in G is denoted G/H. Left cosets xH and yH are equal if and only
if x~'ye H If x~'y ¢ H, the xH and yH are disjoint (see E.0.68). Thus, each
element x of G 1s contained in precisely one left coset of H in G, namely xH.
The index of H in G is the cardinality (number of elements) |G/H| of G/H
and i1s denoted G: H. The index G:1 of 1in G is the order of G. Since the cardi-
nality of xH is H:1 for all x € G, we have the following theorem.

0.2.1 Theorem. Let G be a group, H a subgroup of G. Then G:1 =
(G:H)(H:1). In particular, the order H:1 of any subgroup H and the order
|g| of any element g of a finite group G divide the order G:1 of G. []

If Gq,..., G, are groups, the set G; x ... x G, together with the product
(g1s---s8n)(hy, ..., 0) = (g1hy, ..., g.0,) is a group called the outer direct
product of G,,..., G, and denoted [ [? G, (outer direct product). If G is a
group and if G,, ..., G, are subgroups of G such that the mappingf: [ 1% G;
(outer direct product) — G defined by f(g:,...,8,) = g1... g, IS an iso-
morphism, then we say that G is the inner direct product of G4, ..., G, and
write G = [ [? G; (inner direct product). Note that |[[? G;| = [ [? |G;| for
any inner or outer direct product [ [} G..

Suppose that G is a finite Abelian group. For any prime number p, the
set G, = {ge G | g’ = efor some f} is a subgroup of G. The order of G, is a
power of p, as we now show by induction on the order of G,. If |G,| = 1,
the assertion i1s trivial. Otherwise, let g be an element of G, — {e} and let
H = {g). Since G 1s Abelian, we may pass from the group G, to the group
G,/H. By induction, its order G,: H is a power of p. Since the order of
H = {(g) 1s a power of p, the order G,:1 = (G,: H)(H :1) is a power of p.

We claim that G = [ ]? G,, (internal direct product) where |G| = []? p/+.
To see this, consider the homomorphism f:] [} G, (outer direct product) — G
defined by f(g1,..., &) = &1,..., €n. We must show that Kernel f = 1 and
Image f = G. Let p be a prime and let (g, ..., g,) be an element of []} G,,
(outer direct product) of order p. Then g/ = e for all j. Since g, € Gp, we
have g; = e for p # p,. But then p = p, and f(g,,..., g,) = g has order p
for some i, so that (g,,...,g,) ¢ Kernel f. If Kernel f # 1, then one sees
easily that Kernel f would contain an element (g4,..., g,) of prime order,
which we have just seen to be impossible. Thus, Kernel f = 1. Next, let
g € G and note that the order of g is of the form |g| = [t p%, by 0.2.1.
Since the integers |g|/p:°, ..., |g|/p.°» have greatest common divisor 1,
we can express 1 as a linear combination 1 = m,(|g|/p,%) + -+ +
m,(|g|/p.f») where my,...,m,€Z (see E.0.41). Letting g, = g% where
d; = m(|g|/p), we have g =g!= gZ?d‘ =[1tg, and gP* =e for
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1 <i<nThus,g=f(g,...,g,)and g e Image f. We have now shown that
G = Image f and 1 = Kernel f, so that G = [ [} G, (inner direct product).

The assumption in the preceding paragraph that G be a finite Abelian
group can be replaced by the much weaker assumption that G be a finite
nilpotent group, that is, that the subset G, = {ge€ G | g?”’ = e for some f} be
a subgroup of G for every primé p. For then each G, is a subgroup of G whose
order is a power of p (see 0.3.2). And one sees easily that for any two distinct
prime numbers p and g, the elements of G, commute with the elements of G,
(see E.0.70), so that fis a homomorphism. The remainder of the discussion
goes through as in the Abelian case, and again we have G = [ [T G,, (inner
direct product). We state this for future reference.

0.2.2 Theorem. Let G be a finite nilpotent group. Then G = | [T G,,
(inner direct product) where G:1 = [ [? p,% is the prime decomposition of the
order of G. T[]

A basis for a finite Abelian group G is a set of distinct nonidentity elements
g1,...,8m Of G such that G = {g,>---<{g,> (internal direct product). For
distinct nonidentity elements g4, . . ., g,, of G to be a basis for G, it is necessary
and sufficient that G = {g,,...,2,> and that [[} g% = e if and only if
g% =eforl <i < m, the e, being integers for 1 < i < n.

Every nontrivial finite Abelian group G has a basis. To prove this, we
first note that since G = [ [} G,, (internal direct product) where G:1 = [ [1 p.%
is the prime decomposition of G:1, it suffices to consider the case where
G = G,and G:1 = p® p being a prime number. We now procede by induction
on G:1. If G:1 = p, then G = {g) for any g€ G — 1. Suppose that G:1 =
p? > pandlet G* = {g? | g € G}. Then G 2 G?, as one easily verifies, and we
may assume that G? = 1 or G® has a basis g4,..., g,. In the former case,
the argument 1s as for vector spaces—in fact, Abelian groups G such that

» = 1 may be regarded as vector spaces over the field {0,1,...,p — 1}
of p elements (see E.0.38). In the latter case, let A,, ..., h, be elements of G
such that 4 =g, for1 <i <vr, and let H = <hy,..., h,>. Then hy,..., A,
is a basis for H. For suppose that [ [] 4,4 = e. We must show that #,% = e
for 1 < i < r. Taking pth powers, we have [ [} gt = e, so that g, = e and
ple; for 1 < i < r. Letting e, = pf;, we have e = [ [} h* = [ i g/+. Thus,
e =g rand e = hf% for 1 < i < r. Note that there is nothing more to prove
if G = H, so that we may assume G 2 H. Letting X denote the coset xH for
x € G, we choose, by induction, a basis X,,..., X, for G = G/H. Since
G? = HP?, there exist u;,...,u,€ H such that x? = u? for 1 <j < s.
Letting y; = xu;~*, we have y, = X, and y» = e for 1 <j < 5. We claim
that 4,,..., h,, y1,..., ys is a basis for G. It is clear that G = <{Ah,, ..., h,,
Vis-..s Vsy. Suppose that e =[[1 A% [[5 y//1. Then é =[]} y/s, so that
e = ylrand p|f;forl < j < s.Butthene = y/s,sincee = y?,forl <j < s.
Thus,e = [[§ A% ande = b forl <i < r. Thus, hy,..., 0, yi,..., Y182
basis for G. We state this theorem for future reference.

0.2.3 Theorem. Every nontrivial Abelian group G has a basis. []
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The exponent Exp G of a finite group G is the least integer m such that
g" = eforall geg.

0.2.4 Theorem. Let G be a finite nilpotent group. Then G has an
element of order Exp G.

Proof. We know that G = [ ]} G,, (internal direct product) (see 0.2.2).
Since the elements of G, all have orders which are powers of p, (see 0.3.2),
G,, has an element g; whose order is the exponent of G, . Letting |g;| = p;*,
the element g = [ [} g; has order [ [ p,%, and one easily sees that [ [} p,% is
the exponent of G. ]

We now turn to an arbitrary group G. For x € G, we let Int x(g) =
*g = xgx~'for g € G. Then Int x: G — G is an automorphism of G, called the
inner automorphism of G determined by x. Note that Int e: G — G is idg; and
Int(xy) = Int x o Int y. Thus, Int is a homomorphism from G to the group of
bijections from G to G (see E.0.82). We let Int G = {Intg | g€ G} and
C(G)={xeG|Intx =inte} = {xeG|xg = gx for all ge G}. The sub-
group C(G) of G is called the center of G.

A subgroup H of a group G is normal in G if Int x(H) = H for all x € G.
For a subgroup H of G to be normal, it is necessary and sufficient that
xH = Hx for all x € G, where Hx = {hx | he H}. If H is a normal subgroup
of G, then the product (xH)(yH) = (xy) H(x, y € G) is well defined and
G/H = {xH | x € G} together with this product is a group, called the quotient
group of G by H (see E.0.69). For any normal subgroup H of a group G, the
mapping f: G — G/H defined by f(x) = xH (x € G) is a surjective homomor-
phism with Kernel H, and is called the quotient homomorphism from G to G/H.

If fis a homomorphism from a group G to a group G’, then Kernel f =
{xe G| f(x) = e} is a normal subgroup of G, Image f = {f(x) | xe G} is a
subgroup of G’ and there is an isomorphism from G/Kernel f to Image f
mapping x Kernel f to f(x) for all x € G. In particular, f is injective if and
only if Kernel f = 1.

If N and H are subgroups of a group G and if N is normal in G, then
NH = {xy | x € N; y € H} is a subgroup of G and N is a normal subgroup of
NH. Furthermore, N N H is a normal subgroup of H and there is an iso-
morphism from NH/N to H/N n H mapping xN to x(N N H) for all xe H
(see E.0.71). |

A tower m Gisachainl < G, <--.- < G, = G of subgroups of G. If
G;1s normal in G; ., and G;,,/G; iscyclicfor 1 < i < n — 1, then this tower
1s cyclic. If G has a cyclic tower, G is solvable. If N is a normal subgroup of
G, then G 1s solvable if and only if N'and G/N are solvable (see E.0.76).

0.3 Transformation groups

Let G be a group, e the identity element of G. A G-space is a set X together
with a product »: G x X — X, denoted (g, x) — gx for g G, x € X, such
that ex = x and (gh)x = g(hx) for g, he G, x€ X. A G-space X determines
a homomorphism from G into the group F(X, X)* of bijective functions from
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the set X to itself (see E.0.82). The kernel of this homomorphism is N =
{ge G| gx = xfor x€ X}, and is called the kernel of G on X. If N =1,
then X is faithful.

A G-morphism from a G-space X to a G-space Y is a mapping f from X
to Y such that f(gx) = gf(x) for g€ G, xe€ X. A G-isomorphism from
X to Y is a bijective G-morphism from X to Y. A G-automorphism of
X is a G-isomorphism from X to X. The set of G-morphisms from X
to Y/G-isomorphisms from X to Y/G-automorphisms of X is denoted
Homg(X, Y)/Isomgy(X, Y)/AutgX.

A subset Y of a G-space X is G-stable (or stable under G) if g(Y) =Y
for g € G. Such a Y together with 7|, .y is @ G-space called a G-subspace of X.

For x € X, we let Gx denote {gx | g € G} and call Gx the G-orbit of x
(or the orbit of x under G, or the orbit of G containing x). A subset Y of X
is G-stable if and only if ¥ = |J,cy Gy. We let X¢ = {xe X | Gx = {x}}
and call X¢ the set of fixed points of G in X.

We may regard G together with the group product G X G — G as a G-
space. More generally, G/H with the product G x G/H — G/H given by
g(xH) = gxH (g € G, x € G) is a G-space for any subgroup H of G.

We let G, = {ge G| gx = x} and call G, the isotropy subgroup of x.
Then there is a G-isomorphism from G/G, (as a G-space) to Gx (as G-space)
mapping gG, to gx for g € G. In particular, G: G, = |Gx| (the cardinality
of Gx) for xe G. If X = Gx for some (or every) x € X, we say that G is
transitive on X (or X is a transitive G-space). If Gx = X and G, = 1 for
some (or every) x € X, we say that G is simply transitive on X (or X is a
simply transitive G-space). Thus, G is simply transitive on X if and only if
the mapping f.: G — X sending g to gx for g€ C 1s a G-isomorphism for
some (or every) x € X. Also, G is simply transitive on X if and only if for
any x, y € X, there exists a unique g € G such that gx = y.

A G-group is a group H together with a product G x H — H with respect
to which H is a G-space such that g(xy) = (gx)(gy) for ge G, x,ye H.
For g € G, the mapping x — gx on a G-group H is an automorphism of H.
Thus, products with respect to which a group H i1s a G-group correspond to
homomorphisms from G to the group Aut H of automorphisms of H. We
carry over to G-groups the terminology kernel, faithful, G-morphism, G-
isomorphism, etc. which we introduced for G-spaces. Note that if H is a
G-group, the set H¢ of fixed points of G in H is a subgroup of H.

A very important instance of a G-group is the group G itself, together with
the product G x G — G defined by (g, x)—>%x =g x g7 (ge G, x€G). In
this case, the orbit of xe G is %°x = {gxg~'|g € G}, and is called the
conjugacy class of x in G. The elements of x are the conjugates of x in G.
For %x to consist of the single point x, it is necessary and sufficient that x
be an element of the center C(G) of G. For a finite group, we therefore have
the decomposition G = C(G) U %x; U ... U %, (disjoint union) where
“x., ..., %x, are those distinct orbits of G having two or more elements.
Since |®x| = G:G, for x € G, this yields the class equation G:1 = C(G):1 +
G:G,, + -+ G:G, of G. The subgroup G, occurring in the class equa: ‘on
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is the centralizer {g € G | gx = xg} of x in G. We can easily prove the follow-
ing basic theorem, needed for the proof of 3.12.2.

0.3.1 Theorem. Let G be a finite group and let p be a prime number
dividing G:1. Then G has an element of order p.

Proof. We prove this by induction on G:1. If G:1 = 1, the assertion
is trivial. Suppose next that G:1 > 1 and consider the class equation
G:1=C(G):1+G:G,, +---+ G:G,, of G. If any of the proper sub-
groups G,, (1 < i < m) has order divisible by p, then it has an element of
order p, as desired. Otherwise, since p divides G:1 = (G: G, )(G,,:1), p must
divide G:G,, for 1 < i < m. From the class equation, it follows that p
divides C(G):1. Since C(G) is Abelian, C(G) therefore has an element of
order p (see 0.2.2). T[]

A p-group 1s a group G such that the order of each element of G is a
power of p.

0.3.2 Corollary. Letp be a prime number and let G be a finite p-group.
Then the order G:1 of G is a power of p.

Proof. Suppose not. Then there is a prime number g such that g # p
and g divides G:1. But then G has an element of order g, a contradiction. []

Another important consequence of the class equation is the following
theorem. |

0.3.3 Theorem. The center C(G) of a nontrivial finite p-group G is
nontrivial.

Proof. Since G:1 is a power of p, p divides G:G,, for 1 < i < m. Thus,
p divides C(G):1. (We refer, of course, to the class equation). []

0.3.4 Corollary. Every nilpotent group is solvable.

Proof. Suppose not and take a nonsolvable nilpotent group G of minimal
order. We have seen that G = [ [t G, (inner direct product), where we may
suppose that G, is nontrivial for 1 < i/ < n. If n > 2, then G,, and G/G,, ~
| I3 G,, are solvable, by the minimality assumption, so that G itselfis solvable—
a contradiction. Otherwise n = 1 and G is a p-group for p = p,. But then
C(G) # 1. Thus, G/C(G) is solvable, by the minimality assumption. Since
C(G) is solvable (in fact Abelian), G is therefore solvable. []

We now let X be a set of n distinct elements. The symmetric group on X

1s the group S(X) of bijective mappings from X to X. Thus, for o, r € S(X),
o 7 18 the element of S(X) such that (o7)(x) = o(7(x)) for x € X. We may
regard X as S(x)-space. If x;,..., x, are r > 2 distinct elements of X, then
[X1, ..., x,] denotes the element o of S(X) such that o(x;) = x5, o(x3)=xXa,
.oy 0(X,-1) = X, 0(x,) = x; and o(x) = x forall xe X — {x,,..., x,}, and
i1s called the cycle or r-cycle determined by x,, . . ., x,. Two cycles [x;, .. ., x,]
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and [y1,..., V] are disjoint if x; # y, for 1 <i<rand 1 <j<s If
[xX1,...,X,] =0 and [yi,..., y;] = 7 are disjoint cycles, then or = 7o.
Any nonidentity element o€ S(X) can be expressed as a product ¢ =
[x1, .o s X [ V1s oo os Vsl v+ [21,. ... 2] of pairwise disjoint cycles, and the
pairwise disjoint cycles occurring in such a decomposition of ¢ are unique
up to the order of their occurrence. When one regards X as a{c)-space, the
orbits of two or more elements under the cycle group <o) are then the sets
{X1s . vs Xpbs { V15« « o5 Vsbs -+ o5 {215 - « -» Zi}. TO prove all this, take x,; arbitrarily
such that o(x;) # x; and let x;, xo = a(x,), X3 = o%(xy),..., X, = 0"~ 1(x)
be the orbit of x; under {¢>. Then choose y, arbitrarily outside the orbit
of x; such that o(y,) # y; and let yi, yo = o(y1), ys = 0*(y1), ...5 Vs =
o*~1(y,) be the orbit of y, under (o). Continuation of this process leads
eventually to the last orbit z,, z, = o(z,), ..., z; = ¢ 1(z,) of two or more
elements. Theno = [x,,...,x1[y,....¥]...[z1, ..., 2], because the left hand
side and right hand agree for all x € X. It is clear that the disjoint cycles
occurring in such a decomposition of o are unique up to the order of their
occurrence.

Note that for r > 3 and distinct elements x4, ..., X, of X, [xo, x1}[X1, .. -,
x,] = [xg, ..., x,] and [x1,..., X%)[*» X,—1] = [X1,..., X,-1]. It follows
that [xn xr-—l] "o [x2a xl][xh SIS xr] = id = [xla . 'axr][xrs xr—l] "t [x29 xl]a
where id is the identity of S(X). Taking inverses, we have [x;,..., x,] =
[xls x2] " [xr—ls xr]'

For any two distinct elements x, y of X, the 2-cycle [x, y] is called the
transposition of x and y. It follows from the preceding paragraph that any
r-cycle is the product of r — 1 transpositions. Consequently, any element
o € S[X] can be written as a product of >7 (r, — 1) transpositions, where
r, ..., r, are the number of elements in the m distinct orbits of <o) in X.

Fix an ordering x,, . . ., x, of all n elements of X. For i # j, the orientation
of the ordered pair (x;, x,) is f(x;,, x;) = +1 if i < j and f(x;, x;) = —1 1f
j < i. For 0 € S(X), we define (—1)° = [, <, f(a(x)), o(x;)). Note that(—1)°
is —1 raised to the sth power where s is the number of pairs (x;, x;) (i < j)
whose orientation is changed by o. If 7 is a transposition, then one sees easily
that (—1)° = —(=1) = (=1 (—D’forall ce S(X).lf 6 = 74, 73, ..., 74
where 74, 7o,..., 7, are transpositions, it follows that (—1)° = (—1)", so
that (—1)?is +1if risevenand —1ifris odd. It follows thatifc = =, ..., 7,
and ¢ = 1, ..., .- Where the 7, and 7;. are transpositions, then r is even/odd
if and only if r' is even/odd. We say that o is even/odd if o has a decomposii:ion
r = 71,,..., 7, Where r is even/odd. Note that every o € S(X) is either even
or odd (but not both). Note also that o,0, is even if and only if o, and o, are
both even or both odd, for all o;, 0, € S(X). Finally, note that (—1)° =
+1/(—~1)? = —1 if o is even/odd, and that (—1)%% = (—1)% (—1)°z for all
o1, o9 € S(X).

The subset A(X) = {o € S(X) | o is even} is a subgroup of S(X), called the
alternating group on X. If o is any fixed transposition and + € S(X) — A(X),
then o~ *r € A(X) (both ¢~ ! and 7 are odd). Thus, S(X) = A(X) U o A(X).
It follows that S(X):A(X) = 2 for n» > 2. Furthermore, A(X) is a normal
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subgroup of S(X). For if reA(X) and ¢eS(X), then (—1)°7"" =
(=D (=) (=) = (=1 (=1)y" =1

It is convenient at this point to take X = {1, .. ., n}. The symmetric group
S({1,...,n}) on {1,...,n} is called the symmetric group on n letters and is
denoted S(n). Similarly, the alternating group A({1,...,n}) on {1,..., n} is
called the alternating group on n letters and is denoted A(n).

For n > 5, one can prove that A(n) is simple in the sense that the only
normal subgroups of A(n) are A(n) and 1. We do not prove this here, but we
do note that S(n) is not solvable for n > 5. To see this, simply observe that
S(n), for n > 5, contains a subgroup isomorphic to A(5). Since A(5) is simple
(see E.0.84), A(5) is not solvable. Thus, S(n) is not solvable.

We conclude this section with the following theorem, which weneed in3.12.

0.3.5 Theorem. Let p be a prime number. Then for any transposition
o and p-cycle 7 in S(p), S(p) is generated by o and 7.

Proof. For convenience, we reorder the elements so that ¢ = [1, 2].
Since some power of the p-cycle ~ maps 1 to 2, we may replace = by this
power and reorder 3,...,psothat r = [1,2,3,..., p]. For any 8 € S(p) and
i # j, we have 8[i, j16-1 = [8(i), 6(j)]). Upon using this formula repeatedly,
we see that the subgroup H generated by cand rcontainso = [1,2], ro 771 =
[2,3,] 72077 2=]3,4],..., 7 %201 ? =[p — 1, p]. Itfollows that H con-
tains [1, 2], [1, 3] = [1, 2][2, 3][1, 2], [1, 4] = [1, 3][3, 4][1, 3], ..., [1,p] =
[1,p — 1][p — 1, p][l, p — 1]. Finally, H contains [i,j] = [1, i][1, j][1, i]
for alli # j. It follows that S(p) = H, since every element of S(p) is a product
of transpositions. []

0.4 The Krull Closure in a group G

Let G be a group with identity element e, N the set of normal subgroups
N of G of finite index. For any subset S of G, let S = (\yen NS Where NS
denotes {xs | x € N, s € S}. The set S is the Krull Closure of S and S is closed
if § = S.

0.4.1 Proposition. Let H be a subgroup of G of finite index. Then H is
closed.

Proof. GJ/H is finite. Regard G/H as G-space and let N be the kernel of
G on G/H. Then G/N is isomorphic to a subgroup of the group F(G/H, G/H)*
of transformations of the finite set G/H. Thus, N € N. But NH = H, by the
definition of N, so that H = H and H is closed. ]

For most of our purposes, the above discussion suffices. However, for the
sake of completeness, we develop the above ideas further. The Krull Topology
on G is the topology on G having the set {Ny | N € N, y € G} of cosets as base
of open sets. The Krull Closure S of S is the closure of S of S in the Krull
Topology (see E.0.85 and E.O.87).

~ 0.4.2 Proposition. The open subgroups of G are the subgroups of G of
finite index.
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Proof. If H is an open subgroup of G, then N < H for some N € N, so
that H is of finite index. If H is a subgroup of G of finite index, then H is
closed, by 0.4.1. But then the distinct cosets H, Hy,, ..., Hy, of Hin G are
closed, and H is open as the complement of the closed subset Hy, U ... U Hy,

of G. []

The following two corollaries are immediate consequences of the preceding
proposition. They relate the Krull Topology to the discrete and product
topologies (see E.0.85).

0.4.3 Corollary. A homomorphism ffrom G with the Krull Topology
to a group with the discrete topology is continuous if and only if the kernel
of fis a subgroup of G of finite index. [}

0.4.4 Definition. lLet X be a G-space and let G/X/G x X have the
Krull/discrete/product topology. If the product mapping G x X — X is
continuous, we say that G acts continuously on X.

0.4.5 Corollary. Let X be a G-space. Then G acts continously on X
if and only if the G-orbits in X are finite.

E.0 Exercises to Chapter 0

E.0.1 (Identity). Let S be a set with product xo y(x, y € S). Show that
if e and f are identities of S, then e = f.

E.0.2 (Inverses). Let S be a monoid and let x €. S. Show that if y and z
are inverses of x, then y = z.

E.0.3 (Inverses). Let S be a monoid. Show that
(@A) (xoy)" =y ox~ and (x7)” = x for x, yeS*;
(b) S* is a submonoid of S.

E.0.4 (Powers). Let S be a monoid and let 7 be the set consisting of the
powers x°, x1, x2, ... of a fixed element x of S. Show that

(a) x™*t" = x™o x™ and (x™)* = x™" for all nonnegative integers m, n;
(b) T is submonoid of S.
2

Suppose that x € S* and let 7’ be the set of powers x° x~1, xt, x~%, x4, ...
of x. Show that

(c) x"*"® = x™ o x" and (x™)" = x™" for all integers m and n;

(d) (x*)- = x~" for all integers n;

(e) T’ is a subgroup of S*.
E.0.5. Let S be a monoid and let x,,..., x, €S. Suppose that the x;

commute pairwise. Show that (x;... x,)" = x;"... x,” for any non-
negative integer n. (If the x; are in S*, this equation holds for any integer n).

E.0.6. Show that there is a ring 4 which possesses precisely one element.
Such a ring is called a null ring. Show that any two null rings are isomorphic.

E.0.7. Let A be a ring and suppose the zero element O of A is also the identity
element of 4. Show that A4 is the null ring 4 = {0}.
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E.0.8 (Imbeddings). Let A and B be rings and let f: B— A be an imbedding
of B into A, that is let f be an injective homomorphism from B into 4. Show
thatif 4 and Baredisjointand 4" = (4 — f(B)) U B, then A’ can be regarded
as a ring such that the mappingf/': 4" — A defined by f'(a) = aforae A’ — B
and f'(b) = f(b) for b € B is an isomorphism.

E.0.9 (Imbeddings). For any two sets A4 and B, there exists a bijective
function g from A to a set disjoint from B. Using this fact, show that if 4 and
B are rings and f: B— A is an imbedding of B into A, then there exists a ring
A’ containing B as a subring and an isomorphism f': A4’ — A4 such that
1'(b) = f(b) for b € B.

E.0.10 (Field of Quotients). Let A be an integral domain and let x/y =
{(u,v) |ue A, ved — {0} and xv = uy} for xe A and ye 4 — {0}. Let
K={x/y|xeA, ye A — {0}}. Show that

(@) (x,y)ex/y(xed,yed — {0});

(b) if x/y # x'/y’, then x/y and x’/y" are disjoint (x, x" € A4, y,y' € A —
{0});

(¢c) x/y =x'/y'ifandonlyifxy’ = xy' = x'y(x,x' € A4,y,y € A — {0});

(d) x/y = xz/yz(x€A,y,ze A — {0});

(e) fu/v = u'/v" and x/y = x'/y’, then (uy + xv)fvy = W'y + xV')/v'y’
and uxfvy = u'x'[v'y (u,u', x,x’ € A,v,0v',y,y'e A — {0});

(f) K together with the products wu/v + x/y = (uy + xv)/vy and
(u/v)(x/y) = ux/vy is a field with zero and identity elements 0/1 and
1/1 and inverses (x/y)~! = y/x (x/y e K — {0/1});

(g) the mapping f: A — K defined by f(x) = x/1 is an imbedding of A
into K is a field of quotients of f(A).

E.0.11 (Field of Quotients). Show that every integral domain A has a field
of quotients. (Use E.0.9 and E.0.10). Show that if K and L are fields of
quotients of an integral domain A, then there exists an isomorphism f: K — L
such that f(a) = afor ae A.

E.0.12. Letf: G — H be a mapping from a group G to a group H such that

f(xy) = f(x)f(y) for x, y € G. Show that f maps the identity element of G
to the identity element of H and f(x~) = f(x)~ for x € G.

E.0.13. Let 4 be a ring and let 7 be an ideal of 4. Show that O € 7 and that /
1s a subgroup of A as group with addition.

E.0.14. Let A be a commutative ring and let x € A. Show that xA is an
ideal of A.

E.0.15. Let Abearingandletl,,..., I, beidealsof 4. LetI; + --- + I,
betheset {x; + ---+ x,|x;el,for1 <i <n}andlet],... I, be the set
of all finite sums of products x; ... x, (x;€ I, for 1 < i < n). Show that

(a) I + --- + I, is an ideal of A containing the ideals I, .. ., I,;
(b) I, n---N 1, 1is an ideal of 4;
(¢) I,,...,I,1s an ideal of 4 containedin I, N--- NI,

E.0.16. Let Rbe a ring and let {R, | « € 4} be a collection of subrings of R.
Show (),c4 R, is a subring of R.
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E.0.17. Let S be an Abelian group and let T be a4 subgroup of S. Show that

(a) x + T and x" + T are either equal or disjoint (x, x’ € S);

(b)) x+ T=x"+Tifand only if x — x' e T (x, x' € S);

C©ifx+T=x"+Tandy+T=y'+T,then(x + y) + T = (x’ +
y)+T(x,py,x,y €S5);

(d) S/T together with the product(x + T) + (y + T) = (x + y) + Tis
a group, the identity of S/T is 0 + T where O is the identity of .S and
the inverse of x + T is (—x) + T where —x is the inverse of x
(x €.5);

(e) the mapping f: S — S/T defined by f(x) = x + T is a surjective
homomorphism and Kernel f = T.

E.0.18. Let 4 be a ring, let I be an ideal of 4 and consider 4/1 = {x + I|
x € A}. Show that

@ ifx+I=x"+Tand y+ I=y + 1 then (xy) + I = (x'y") + 1
(x, y, X', y' € A);

(b) A/Itogether with the products(x + I) + (y + I) = (x + y) + ITand
(x + I)(y + I) = (xy) + 1Iis a ring, and the identity element of A4/]
i1s e + I where e is the identity element of A4;

(c) the mapping f: A — A/I defined by f(x) = x + I is a surjective
homomorphism and Kernel f = 1.

E.0.19 (First Homomorphism Theorem). LetA4and Bberingsandf: 4 — B
a homomorphism. Show that

(a) if a + Kernel f = a’ + Kernel £, then f(a) = f(a’) (a, a’ € A);
(b) the mapping f: A/Kernel f — f(A) defined by f(a + Kernel ) = f(a)
1S an 1somorphism;

(c) A and A/{0} are isomorphic;

(d) fis injective if and only if Kernel f = {0}.
E.0.20 (Second Homomorphism Theorem). Let 4 be a ring, B a subring of
A, I an 1deal of A. Show that B + I = {b + x|b € B, x €I} is a subring of
A and B N I1s an 1deal of B. Show that there is an isomorphism f: B/B N I —
(B + I)/Isuch that f(b + BN I) = b + Iforall b € B.

E.0.21. Describe and prove the analogues for groups of the First and
Second Homomorphism Theorems for rings.

E.0.22. Let A be a ring with ideal 4. Describe a natural bijection from the
set of ideals of A4 containing I to the set of ideals of A/I.

E.0.23. Let A be a commutative ring with ideal I. Show that
(a) I1s maximal if and only if 4/I is a field;
(b) I1s prime if and only if 4/I is an integral domain;
(c) A 1s a field if and.only if 4 # {0} and the only ideals of 4 are {0}
and A.

E.0.24. Let K be a field and let f(X), g(X) € K[X] — {0}. Show that

(a) Deg(f(X)g(X)) = Deg/f(X) + Degg(X);
(b) Deg(f(X) + g(X)) < Max (Deg f(X), Deg g(X)) (the maximum of
the two integers Deg f(X) and Deg g(X)).




Exercises to Chapter 0 17

E.0.25. The group of units of K[X], for K a field, is the set K* of nonzero
constant polynomials.

E.0.26. Let Kbea field, g(X) an irreducible element of K[X] and A, (X), ...,
h,(X)elementsof K[X]suchthatg(X)divides] [ #4,(X). Show that g(X)divides
hi(X)for some i. Supposing, further, that g(X) and the 4(X)(1 < i < n) are
monic and irreducible, show that g(X) = h(X) for some i. Using these
observations, give the details to the proof of 0.1.5.

E.0.27 (Ring of Integers). A ring of integers is a ring Z having a nonempty
subset N closed under addition and multiplication and consisting of elements
denoted 1,2 =1+ 1,3 =2 + 1,... such that

1. (trichotomy) for x € Z, precisely one of the following possibilities
occurs: x = 0 (x 1s zero), x € N (x is positive), —x € N (x is negative);

2. (induction) if S i1s a subset of N containing 1 such that x € S implies
x+ leSforallxeZ, then S = N.

The axioms of set theory imply that there exists a ring of integers. Show that

(a) N 1s infinite (e.g. show that f(x) = x + 1 is injective but not sur-
jective from N to N):

(b) (order properties) letting x < y and x £ y, mean that y — xe N
and y — x ¢ N respectively, we have

(1) (trichtomy) for x, y € N, precisely one of the following possibili-
tiesoccurs: x = y,x < y, y < X;
(i1) (antireflexitivity) x € x (x € Z);
(1) (transitivity) x < y and y < z imply that x < z (x, y, z € Z);
(1v) (linearity) u < v and x < y imply that u + x < v + y; and
0 < wand x < y imply that wx < wy (u, v, w, x, y € Z);

(¢) (least element property) for any subset 7" of N, either 7T has a least
element or T 1s empty (consider S = N — T and use the induction
property of N);

(d) (universality property) for any ring 4 with identity element e, there is
a unique homomorphism f: Z — A4 (define f on N inductively by
f(1) =e, f(x +1) = f(x) + e, define f(0) = 0 and define f(—x) =
— f(x) for x € N).

E.0.28 (Ring of Integers). Show that if Z and Z’ are both rings of integers,

then there is a unique isomorphism from Z to Z’. (Use the universality prop-
erty).

E.0.29 (Euclidean Algorithm). Let Z be the ring of integers and leta, b € N.
Show that there exist m, r € Z such that b = ma + r and 0 < r < a. (Use
the least element property to get a least remainder r).

E.0.30 (Ring of Integers). Show that the ring Z of integers is a principle
ideal domain. (Use the Euclidean Algorithm and compare with 0.1.2).

E.0.31 (Ring of Integers). For integers m and n, we say that a|b (a divides b)
if b = ma for some m € Z. A prime integer is an integer p > 1 such that a|p
if and only if @ = + 1 or @ = + p. Show that for any prime p, p|xy implies
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p divides x or p divides y(x, y € Z) (compare with.1.4). Show that a positive
integer p is prime if and only if the ideal Zp is a prime ideal.
E.0.32 (Ring of Integers). Show that for any integer b > 1, b can be ex-

pressed uniquely as b = [ [T p;% where the p; are primes, the e; are positive
integers and p; < Py < -+ < pm. (Compare with 0.1.5).

E.0.33 (Ring of Integers). Let py,..., p, be distinct prime numbers. Show
that p, + ([ I2 p; + 1) for 1 < i < n. Use this to show that there are infinitely
many prime numbers.

E.0.34 (Field of Rational Numbers). Let Q be the field of quotients of the
ring Z of integers. We call Q the field of rational numbers. Let P = {yx~' | x,
y € N}. Show that

(a) P is closed under addition and multiplication and Q satisfies the
law of trichotomy with respect to P (see E.0.27);

(b) letting x < y and x £ y mean that y — x€ P and y — x ¢ P respec-
tively, then x < y (x, y € Q) satisfies the laws of trichotomy, anti-
reflexitivity, transitivity and linearity, and the order x < y(x, y € Z)
in Z is preserved by the imbedding x — x/1 of Z in Q, thatis, x < y
if and only if x/1 < y/1 for x, y € Z.

E.0.35 (Field of Real Numbers). An ordered field is a field K together with
a subset P closed under addition and multiplication such that K satisfies the
law of trichotomy with respectto P. Let x < yand x £ ymeanthaty — xe P
and y — x ¢ P respectively and note that x < y (x, y € K) satisfies the laws
of trichotomy, antireflexitivity, transitivity and linearity. A sequence i K
is a function f from N to K and is denoted f3, f5, . . . where f; = f(i) (i€ N).
The set R(K) of sequences in K is a ring with respect to the addition and
multiplication defined by (f + £)(i) = f(i) = g(i) and (fg)(i) = f(i)g(i)
(ie N, f, g€ R(K)). A sequence f; in K is convergent if there exists x € K such
that for each positive ¢ in K there exists Ne Nsuchthatx — e < f; < x + ¢
fori > N. A sequence f; in K is a Cauchy sequence if for each positive ¢ in K,
there exists N € N such that —¢ < f; —f; < efor i, j = N. If every Cauchy
sequence in K is convergent, then K is complete. Taking K to be the field Q
of rational numbers, show that

(a) the set of R; of Cauchy sequences in Q is a subring of R(Q);

(b) the set R, = {f € R(Q) | f converges to 0} is an ideal in R¢;

(c) the ring R = Rg/R, is a field, called the field of real numbers, and R
together with R, = {f + R, | f¢ Roand 0 < f; for all but finitely
many i} is a complete ordered field;

(d) the function « from Q to R which maps each x € Q to f + R, where
f is the constant sequence f; = x for all i is an imbedding of Q in R
mapping P to a subset of R ;

(f) «(Q) is dense in R in the sense that for every positive ¢ in R and every
y € R, there exists x € Q such that y — ¢ < a(x) < y + ¢;

(g) R is Archimedian in the sense that for x, y in P, there exists n in N
such that y < nx.

Can this discussion for Q be generalized to any Archimedian ordered field K'?
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E.0.36 (Field of Real Numbers). Show that any complete Archimedian
ordered field is isomorphic to the field R of real numbers. Does this imply that
every Archimedian ordered field is isomorphic to a subfield of the field R of
real numbers ?

E.0.37 (Field of Complex Numbers). Let R be the field of real numbers.
Show that C = R[X]/R[X](X2% + 1) is a field, called the field of complex
numbers. Show that B: R— C, defined by B(x) = x + R[X]}(X2 + 1) for
x € R, 1s an imbedding of R in C. Show that C with addition and the scalar
multiplication x - z (x € R, z € C) defined by x-z = B(x)zis a two dimensional
real vector space with identity e and basis e, i where i2 = —e. Thus, show that
C ={z|z=a-e + b-i with a, b€ R}, that B: R— C is given by B(a) = a-e
(a € R) and that multiplication in C is given by (a-e + b-i) (c-e + d-i) =
(ac — bd)-e + (ad + bc)-i(a, b, ¢, d e R).

E.0.38 (Ring of Integers Modulo a). Let a € N. Then we let Z, denote the
ring Z, = Z/Za and call Z, the ring of integers modulo a. Letting b = b + Za
forbeZ,showthatZ, = {0, 1, ..., a — 1}. Show that Z, is an integral domain
if and only if Z, is a field if and only if ¢ is a prime.

E.0.39 (Unique Factorization Domains). Let 4 be a commutative ring.
We say that a|b (read a divides b) if b = m a for some m € A. We write a + b
if a does not divide b. If a|b and b|a, then a and b are associates. If b is non-
zero and b is not a unit, and if the only elements which divide b are units
and associates of b, then b is irreducible. We say that A is a unique factorization
domain if A is an integral domain and for each nonzero nonunit element b of
A, b = | I b; where the by, ..., b, are irreducible and are unique in the
sense that if b = [ [T ¢; where the ¢4, .. ., ¢, are irreducible, then m = » and
b; 1s an associate of c;, for 1 < i < m for a suitable permutation ¢, , ..., ¢;_
of thecy, . .., c,. Show that for an integral domain A4 to be a unique factoriza-
tion domain, the following two conditions are necessary and sufficient:

1. each nonzero nonunit element b of 4 has a factorization b = [ [} b,

where the b4, ..., b, are irreducible;
2. if b is irreducible and b|xy, the b|x or b| y.

Show that 1n a unique factorization domain, ¢ and b are associates if and only
only if a = bc where c is a unit.

E.0.40 (Unique Factorization Domains). Show that every principal ideal
domain 1s a unique factorization domain. (Compare with 0.1.4).

E.0.41 (Unique Factorization Domains). Let 4 be a unique factorization
domain. Then the greatest common divisor and least common multiple of
cb,’r... b, and by'1... b,/mn(e; =0, f; = 0 for all i; b,,...,b, irredu-
cible and pairwise nonassociates, ¢ a unit) are b,% ... b,%» and b" ...
b,"m respectively, where g; is the lesser of ¢; and f; and A, is the greater of e
and f; for all i. Elements a,, ..., a, of 4 are relatively prime if the greatest
common divisor of a,, . . ., a, 1s e (identity of 4). Show that if 4 is a principle
ideal domain, then ay, ..., a, are relatively prime if and only if there exist
My, ...,m, In A such that e = ma;, + --- + m,a,. (Note here that the
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greatest common divisor and least common multiple are only unique up to
associates).

E.0.42 (Direct Product). Let 4,,..., 4, be rings. Then 4 = A; X - -+ X A4,
together with the addition and multiplication defined by (ay, ..., a,) +

(byy ..., b)) = (a1 + by,..., G0 + b)) and (@i, ..., an)(by,..., b,) = (a;b:
..., a,b,) is a ring (called the direct product ring of 4,,..., A,).

E.0.43 (Direct Limit). Let 4 be a totally ordered set. Let {R,|a € A4} be a
collection of rings and let {8, | @, b € A and @ S b} be a collection of functions

such that
1. Bys: Ry, — R, is a homomorphism for a = b;
2. BCb OBba fOI‘ — Bca fOI‘ a é b é C.

Iet R be the set of all functions f from A to | Js 4 R, such that f(a) € R, for

all a € A. Define f + g and fg for f, g € R by (f + g)(a), = f(a) + g(a) and
(fg)(a) = f(a)g(a) (a € A). Show that

(a) Ris a ring, called the direct product of the R,. (Compare with E.0.42).

An element f of R is almost coherentif there exists ¢ € 4 such that By.(f(a)) =
f(b) for ¢ < a £ b. Show that

(b) the set R, of almost coherent elements of R is a subring of R.

A null element of R is an element f of R such that for some c € 4, f(a) =0
for ¢ < a. Show that

(c) the set R° of null elements of R is an ideal of Rp.

Let R be the ring Rgz/R°. Define 8,: R, — R by letting B,(x) = f + R® where
fis the element of R, such that f(c) = 0 for ¢ < a, f(a) = x and f(b) =
B,o(x) for a £ b. Show that

(d) B, is a homomorphism of rings and the diagram

is commutative for a £ b (a, b € 4);
(€) R = |Jzea Ba(R,) (ascending union);
(f) it the R,(a € A) are fields, then the B,(a € A) are injective and a field.

The ring R together with the functions B,(a € A) is called the direct limit of the
functions B,, on the rings R, and 1s denoted Lim B.

E.0.44 (Chinese Remainder Theorem). Let 4 be a principal ideal domain
with identity e, let a be a nonzero nonunit element of A and let a = | |7 X;

where x, and x, are relatively prime for i # J. Let a; = a/x;, and note that
a,, . . ., a, are relatively prime, so that there exist m; € A such thate = mya; +
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oo+ mpa, (see E.0.41). Let e; = ma;, so that e = es +---+ e, Let
A= A/daand b = b + Aafor be A. Show that

@) eé=¢é +---+¢é,6¢,=0fori#jandé?=¢ forl <i < n:

(b) 4 = 4é + - -- + A4é, (sum of ideals) and this sum is direct as a sum

~ of additive groups:

(c) Ae, is a ring with identity &, and is 1somorphic to 4/A4x;;

(d) A/Aa is isomorphic to the direct product ring (A/Ax;) x --- x
(A/Ax,).

E.0.45 (Rings of Integers Modulo a). Show that if ¢ = p.°1- - p.f» where
P1, - . ., pn are distinct prime numbers and ey, ..., e, are positive integers,
then the ring Z, of integers modulo a is isomorphic to Lper X =+ X Ly ey
(direct product ring). (Use the Chinese Remainder Theorem).

E.0.46 (Simultaneous Congruences). Using the notation u=,v(u 1s con-
gruent to v modulo a) for v — u € Za (a, u, v € 7), show that if g = X1 X,
where x; and x; are positive and relatively prime for i s jand if u,, ...,
u, € Z, then

(a) there exists v € Z such that u; =, vforl <i < n;
(b) for v’ € Z to also satisfy =,V for 1 <i < n, it is necessary and
sufficient that v =, v'.
(Use the Chinese Remainder Theorem).

E.0.47 (Euler Phi Function). For any integer a > 1, let @(a) be the number
of integers b such that b is relatively prime to aand 1 < » < 4. Show that

(a) @(a) is the number of units in Z,:
(b) ¢(aa’) = p(a)e(a’) if a and a’ are relatively prime;
() ¢(p?) = p*~*(p — 1) for p a prime.

(Use the Chinese Remainder Theorem for (b)).

E.0.48 (Ideal Structure of Z,). Determine the maximal ideals of Z, for
a = p;,°1--- py®» (the p; being distinct primes and the e; positive integers).

E.0.49 (Unique Factorization in A[X]). Let 4 be a unique factorization
domain and let K be the field of quotients of 4. Show that the polynomial
ring A[X] = {f(X) € K[X] | the coefficients of f(X) are in A4} is a unique
factorization domain. (Compare with 0.1.11).

E.0.50 (Eisenstein’s Criteria). Let f(X) = S%a, X! be an element of
Q(X) and suppose that p is a prime number such that plai,...,pla,;, but
pta, and p*ta, (a+b means that a does not divide 4). Show that f(X)1isirredu-
cible. (Consider a potential factorization f(X) = (28 b, XN(2? ¢, X°) where
p| b, and p+tc,, and consider a,. , where r is minimal such that p+b,.)

E.0.51. Which of theﬁfollowing polynomials in Q[X] are irreducible ?
(a) X* — X2 4+ 1;
(b) X° + X2 + X + 1;
(c) X% + 1;
(d) X" —p (n > 1, p prime).
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E.0.52. Give necessary and sufficient conditions that X*" — X divide
X — Xin Z,[X], p being a prime.

E.0.53. Let k be a field and consider the polynomial X® + X + 1 € k[X].
Let I be the ideal k[X] (X® + X + 1). Show that for every f(X) e k[X],
f(X)+I=(@X?®+ bX+c)+ 1 for suitable a, b, c e k uniquely deter-
mined by f(X). Express (X2 + 2X)'? + I n this form.

E.0.54. Let k be a field and let f(X) be a polynomial of degree n > 1. Show
that

(a) k[X]together with the obvious scalar multiplication is a vector space
over k containing k[X]f(X) as subspace;
(b) the quotient vector space kK[ X]/k[X]f(X) has basisl + L X + 1,...,
X1 + I where I = k[X]f(X).
E.0.55 (Free Abelian Monoids). Let S be a set. Show that there 1s an
Abelian monoid S containing S as subset such that

1. each element x of S can be written as x = 5,% - - - s,°» where the e,
are nonnegative integers and sy, . . ., S, are distinct elements of S;

2. if 54,..., s, are distinct elements of S and 5,°1 - - - $p°m = §f1e 5, m
where the ¢, and f; are nonnegative integers, thene, = fiforl < i < m.

This monoid S is called the free Abelian monoid on S. (Consider the set T
of functions from S to the set of nonnegative integers, make T into a monoid
and imbed S 1n T).

E.0.56 (Polynomial Rings). Let K be a field. Define K[X,], K [X1,X3] =
(K[X.DIXz), ..., K[Xq, ..., X,] = (K[X;, .. X,_:D[X,] successively ac-
cording to 0.1 and E.0.49. Then K[X;,..., X,] is a ring consisting of the
polynomials in the indeterminants Xy, ..., X, and 1s called the polynomial
ring in n-variables over K. Show that

(a) K[Xy,..., X,]is a unique factorization domain;

(b) the set S of monomials X,°1 - - - X,,°» (the e; being nonnegative integers)
is closed under multiplication and is a free Abelian monoid on the
set S = {X1,..., Xu};

(c) $is a basis for K[Xy, ..., Xu]. a

E.0.57 (Polynomial Rings). Let K be a field. The polynomial rings K[Xj,
..., X,] are algebras over K. (See Appendix A). Show that the algebras
K[Xi,..., X,] and K[X;] ® - - - @ K[X,] are isomorphic. (See Appendices

E.0.58 (Group Rings). Let G be a group or monoid and let K be a field.
Show that there exists a vector space K[G] over K with basis G. Define
(ZQEG agg)(ZheG bhh) — Zg,heG agbh(gh) for dg, bh € K(gs he G) Show that
K[G] with vector space addition and this multiplication is a ring (called the
group ring or monoid ring of G over K). Show that K [G] is an algebra over K
in the sense of Appendix A.

E.0.59 (Polynomial Rings). Let K be a field. Show that the polynomial ring
K[X,, ..., X,] is isomorphic to the monoid ring K [S] of the free Abelian
monoid on S = {X;, ..., X,}.
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E.0.60 (Group Rings). Let G and H be groups and K a field. Let K[G],
K[H], K[G x H] be the group rings of G, H, G x H (outer direct product).
Show that K[G x H] is isomorphic to K[G] ® K[H] (tensor product of
K-algebras). (See Appendix A.)

E.0.61. Let G be a group whose order is a prime number p. Show that
G=(g)forgeG - 1. ~

E.0.62. Show that if G is a finite p-group, then the set G* = {g? | g€ G}
coincides with G only when G = 1.

E.0.63. Describe the noncyclic subgroups of Z, x Z, x Z,, p being a
prime number.

E.0.64. Describe the decomposition G = G,, - - - G, of 0.1 in each of the
cases

(a) G = Z5, (as additive group);

(b) G = Zys x Z;5, (as additive group);

(¢) G =12y x Zy, x Z, (as additive group).
E.0.65. Let G be a commutative group, g, & elements of G of finite orders
m, n. Show that

(a) {g)> = <g* if d and m are relatively prime;
(b) if m and n are relatively prime, then {g, h> = {(gh)> = {g>{h
(internal direct product).

E.0.66. Let G be an Abelian group whose order is mn and n are relatively
prime. Show that G = G,G, (internal direct product) when G,, and G, are
subgroups of G of orders m and » respectively.

E.0.67. LetG = G,G, (internal direct product) where G, G, are subgroups
of G of orders m, n respectively. Show that if m and » are relatively prime,
then every subgroup H of G has the form H = H,H, where H, < G,, and
H, < G,.

E.0.68. Let G be a group with subgroup H, and let x, y € G. Show that

(a) xH = yH if and only if x~1 y € H;

(b) xH and yH are disjoint if x~' y ¢ H;

(c) the function L,: G — G defined by L,(y) = xy for y € G is a bijective
function which maps H to xH.

E.0.69. Let G be a group, H a normal subgroup of G. Show thatif xH = x'H
and yH = y'H, then (xy)H = (x’y’)H. Show that G/H together with the
product (xH)(yH) = (xy)H is a group with identity H and inverses (xH)~ =
x~H(xeG).

E.0.70. Let G be a group and let H and I be normal subgroups of G such
that H N I = 1. Show that the elements of H commute with the elements of 1.
Show, in particular, that if p and g are two different prime numbers such that
G, and G, are subgroups of G, then the elements of G, commute with the
elements of G,.

E.0.71 (Second Homomorphism Theorem). Let G be a group and let N be
a normal subgroup of G. Show that for any subgroup H of G, the mapping
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f+ HIN N H— NH|N mapping x(N N H) to xN(x € H) is well defined and
is an isomorphism from H/N N H to NH/N.

E.0.72 (Semidirect Products). Let H be a group and let «: H— Aut N be a
homomorphism from H to the group Aut N of automorphisms of a group V.
Show that N x H together with the product (u, x)(v, y) = (uo(x)(v), xy) 1s
a group (called the semidirect product of N and H with respect to «). Show that
if G is a group, H is a subgroup of G and N 1s normal subgroup of G such that
N N H = 1, then the mapping f: N x H— NH defined by f(u, X) = ux 18
an isomorphism from N x H (semidirect product) to NH where a«: H —
Aut N is defined by «(x) = Int x|y for x € H. If G = NH where H is a sub-
group of G and N is a subgroup of G such that NN H = 1, we therefore
write G = NH (internal semidirect product).

E073. lLet N=27, x Z, x ---.x Z, (n times). Let H = S(n). For ce H
and (ay,...,a,) €N, let a(o)(@y, ..., a) = (@ - - - Aym)- Show that « 18
a homomorphism from H to Aut N. Describe the center of the group N x H
(semidirect product).

E.0.74 (Solvable Groups). Let G be a group. An Abelian tower in G 1S a
tower 1 € G, < --- © G, = G such that G; is normal in Gy, and G;../G;
is Abelian for 1 < i < n — 1. Show that G is solvable if and only if G has
an Abelian tower.

E.0.75 (Commutator Subgroups). Let G be a group. The commutator
subgroup of G is the subgroup GV of G generated by the commutators
xoy = x~ly~1xy (x, y € G). Show that G*" 1s a normal subgroup of G such
that G/GV is Abelian, since (yx)x o y = xy (x, y € G). Define GE+D = GOD
fori=1,2,.... The series G2 GV 2> G¥> --- 1s called the commutator
series. Show that G® is a normal subgroup of G for all i.

E.0.76 (Solvable Groups). Show that

(a) G is solvable if and only if G = 1 for some 7;

(b) for any normal subgroup N of G, (G/N )Y» = NGP/N for all i3

(c) for any normal subgroup N of G, G 1s solvable if and only if N and
G/N are solvable.

E.0.77. Show that S(3) is not nilpotent.
E.0.78 (Nilpotent Groups). Show that a finite group G such that G/C(G)

is nilpotent is itself nilpotent. Show that if G 1s a finite nilpotent group and
G # 1, then C(G) # 1.

E.0.79 (Nilpotent Groups). Show that every finite p-group is solvable. Use
this to show that every finite nilpotent group is solvable.

E.0.80 (p-Groups). Let G be a group of order p™ where p is a prime and
n > 1. Show that G has precisely one subgroup of order p"~".

E0.81. Let G be a finite Abelian p-group and K the field Z, of p elements.
Show that K[G] has only one maximal ideal.

F0.82. Let X be a set and let F(X, X) be the set of functions from X to X.
Show that F(X, X) together with the product g o f (composition of functions)
is 2 monoid and that the group F(X, X)* of units of F(X, X) is the set of
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bijective functions from X to X. Show that if G is a group and X is a G-space,
then the mapping p: G— F(X, X) defined by p(g)(X) =gX for geG
x € X 1s a homomorphism from G into F(X, X)*.

E.0.83. Show that S(4) is solvable by showing that S(4) has a cyclic tower
S(@) > A(4) > N> 1 where N is an Abelian subgroup of A4(4) having
4 elements.

E.0.84. Show that A(5) and 1 are the only normal subgroups of A(5).
(Letting N # 1 be a normal subgroup of A(5), whow that N is transitive on
{1, 2, 3, 4, 5}. Then show that the order of N is divisible by 5 and that N
contains a S-cycle. Use this to show that N = A(5)).

E.0.85 (Topologies). Let X be a set. A topology for X is a collection U of
subsets of X such that

. XeUand g €U (2 being the empty set);
2. 1if U, (¢ € A4) are elements of U, then (), U, is an element of U;
3.if U, VeU,then UNn VeU.

A base for X is a collection U, of subsets of X such that if U, V € U,, then
UnNn VeU, Show that

(a) the set U of all subsets of X is a topology for X (called the discrete
topology for X);

(b) for any base U, for X, the set U consisting of X, & and all sets of the
form | J,c4 U, where the U, (« € A) are elements of U, is a topology
for X(U, 1s called a base of open sets for the topology U);

(¢) for U a topology for the set X and V a topology for the set Y, the
collection Wo = {U x V| UeU, VeV}is a base for X x Y (and
the topology W for X x Y having W, as base of open sets is called
the product topology for X x Y).

E.0.86 (Topological Spaces). A topological space is a set X together with a
topology U. A subset U of a topological space X is open if U € U. A subset
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