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PREFACE TO THE SECOND EDITION

With the first edition out of print, we decided to arrange for republi-
cation of Denumerable Markov Chains with additional bibliographic
material. The new edition contains a section Additional Notes that
indicates some of the developments in Markov chain theory over the
last ten years. Asin the first edition and for the same reasons, we have
resisted the temptation to follow the theory in directions that deal with
uncountable state spaces or continuous time. A section entitled
Additional References complements the Additional Notes.

J. W. Pitman pointed out an error in Theorem 9-53 of the first
edition, which we have corrected. More detail about the correction
appears in the Additional Notes. Aside from this change, we have left
intact the text of the first eleven chapters.

The second edition contains a tweltth chapter, written by David
Griffeath, on Markov random fields. We are grateful to Ted Cox for
his help in preparing this material. Notes for the chapter appear in the

section Additional Notes.

J.G.K., J.L.S., AW.K.
March, 1976



PREFACE TO THE FIRST EDITION

Our purpose in writing this monograph has been to provide a syste-
matic treatment of denumerable Markov chains, covering both the
foundations of the subject and some topics in potential theory and
boundary theory. Much of the material included is now available only
in recent research papers. The book’s theme is a discussion of relations
among what might be called the descriptive quantities associated with
Markov chains—probabilities of events and means of random variables
that give insight into the behavior of the chains.

We make no pretense of being complete. Indeed, we have omitted
many results which we feel are not directly related to the main theme,
especially when they are available in easily accessible sources. Thus,
for example, we have only touched on independent trials processes,
sums of independent random variables, and limit theorems. On the other
hand, we have made an attempt to see that the book is self-contained,
in order that a mathematician can read it without continually referring
to outside sources. It may theretore prove useful in graduate seminars.

Denumerable Markov chains are in a peculiar position in that the
methods ot functional analysis which are used in handling more general
chains apply only to a relatively small class of denumerable chains. In-
stead, another approach has been necessary, and we have chosen to use
infinite matrices. They simplify the notation, shorten statements and
proofs of theorems, and often suggest new results. They also enable one
to exploit the duality between measures and tunctions to the tullest.

The monograph divides naturally into four parts, the first three con-
sisting of three chapters each and the tourth containing the last two
chapters.

Part I provides background material for the theory of Markov chains.
It is included to help make the book self-contained and should tacilitate
the use of the book in advanced seminars. Part II contains basic results
on denumerable Markov chains, and Part III deals with discrete poten-
tial theory. Part IV treats boundary theory for both transient and re-
current chains. The analytical prerequisites for the two chapters in this
last part exceed those tor the earlier parts of the book and are not all
included in Part I. Primarily, Part IV presumes that the reader is
tamiliar with the topology and measure theory of compact metric
spaces, in addition to the contents ot Part I.

V1



VI Preface

Two chapters—Chapters 1 and 7—require special comments. Chap-
ter 1 contains prerequisites from the theory ot infinite matrices and
some other topics in analysis. In it Sections 1 and 5 are the most impor-
tant for an understanding of the later chapters. Chapter 7, entitled
“Introduction to Potential Theory,” is a chapter of motivation and should
be read as such. Its intent is to point out why classical potential theory
and Markov chains should be at all related.

The book contains 239 problems, some at the end of each chapter
except Chapters 1 and 7.

For the most part, historical reterences do not appear in the text
but are collected in one segment at the end of the book.

Some remarks about notation may be helptul. We use sparingly
the word “Theorem” to indicate the most significant results of the
monograph; other results are labeled “Lemma,” “Proposition,” and
“Corollary” in accordance with common usage. The end of each proot
is indicated by a blank line. Several examples of Markov chains are
worked out in detail and recur at intervals; although there is normally
little interdependence between distinct examples, different instances ot
the same example may be expected to build on one another.

A complete list of symbols used in the book appears in a list separate
from the index.

We wish to thank Susan Knapp for typing and proof-reading the
manuscript.

We are doubly indebted to the National Science Foundation: First,
a number of original results and simplified proofs of known results were
developed as part of a research project supported by the Foundation.
And second, we are gratetul for the support provided toward the
preparation of this manuscript.

]. G. K.
J. L. S.
A. W. K.
Dartmouth College
Massachusetts Institute of Technology
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CHAPTER 1

PREREQUISITES FROM ANALYSIS

1. Denumerable matrices

The word denumerable in the sequel means finite or countably
infinite. Let M and N be two non-empty denumerable sets. A
matrix is a function with domain the set of ordered pairs (m, n), where
me M and n € N, and with range a subset ot the extended real number
system—the reals with +00 and —oo adjoined. We call the sets M
and N index sets. 'The matrix is called a finite matrix if both M and N
are finite sets.

To say that the m-nth entry of the matrix i1s x or 1s equal to x, we
mean that the value of the function on the pair (m, n) 1s x. A matrix
is said to be non-negative if all of its entries are non-negative, and it 1s
sald to be positive if all of its entries are positive. We agree to use
upper-case italic letters to stand for matrices. If A 1s a matrix, we
denote the m-nth entry ot 4 by 4,,,. Some examples of matrices are

as follows:

(1) If all entries of a matrix are equal to zero, we say that the matrix
is the zero matrix, denoted by O.

(2) A matrix for which M and N are the same set 1s called a square
matrix. The entries corresponding to m = n are diagonal entries; other
entries are off-diagonal entries.

(3) A square matrix whose off-diagonal entries all equal zero is a
diagonal matrix. The diagonal matrix obtained from a square matrix
A by setting all of its oftf-diagonal entries equal to zero 1s denoted A4,,.

(4) A diagonal matrix whose diagonal entries are all equal to one is
called the identity matrix, denoted by /.

(5) A matrix whose second index set contains only one element is
called a column vector. If we wish to distinguish a column vector from
an arbitrary matrix, we shall denote the former by a lower-case 1talic

letter.
]



2 Prerequisites from analysis

(6) A matrix whose first index set contains only one element is called
a row vector. If we wish to distinguish a row vector from an arbitrary
matrix, we shall denote the former by a lower-case Greek letter.

(7) It A 1s a matriX defined on index sets M and N, define a matrix
A", called the transpose of A, to have index sets NV and M and to have
entries given by (4"),,, = A,,. The transpose of the transpose of A4 is
simply A.

(8) The column vector all of whose entries are equal to one is denoted
1: the row vector with all entries one 1s 17. A matrix other than a row
or column vector which has all entries equal to one is denoted by £.

(9) If A 1s an arbitrary matrix and c¢ 1s a real number, c4 is the

matrix whose entries are given by (c4),,, = cA4,,,.
(10) The matrix — A4 1s defined to be the matrix (—1)A4.
(11) A constant (column) vector 1s a vector of the form ¢1 for some

extended real number c.
(12) A bounded vector 1s a vector all of whose entries are less than or

equal 1n absolute value to some finite real number c.

T'wo matrices A and B are equal, written A = B, if they have the
same index sets and it A,, = B,,, for every m and n. Inequalities are
defined similarly. For example, 4 > B it 4 and B have the same

index sets and it 4,, > B,,, for every m and n. In particular, non-
negative matrices are those for which A > 0, and positive matrices are

those for which A > 0.
Addition of matrices is defined for matrices A and B having the same

index sets M and N. Their sum(C = A + B has the same index sets,
and addition is defined entry-by-entry:

C’mn — Amn T an'

Thesum ' = 4 4+ B 1s well defined if no entry of (' is given by co — o0
or by —o0 + oc. We leave the verification of the following properties

of matrices with index sets M and N to the reader:

(1) A + 0 = A for every A.
(2) For every 4 having all entries finite, 4 + (—4) = 0.
(3) For any matrices 4, B, and C,

A+ (B+C)=(A4A+ B) +C

1f the indicated sums on at least one side of the equality are

well defined.

Up to now, we have imposed no orderings on our index sets, and in
fact nothing we have done so far necessitates doing so. We shall define
even matrix multiplication shortly 1n a way that requires no ordering.
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There 1s, however, a standard way of representing matrices as rec-
tangular arrays, and for this purpose one normally orders the index
sets with the usual ordering on the non-negative integers. The
elements of the index sets are thus numbered 0, 1, 2, ... either up to
some integer r if the index set i1s finite or indefinitely if the index set is
infinite. Under such orderings of its index sets, a matrix A is repre-
sented as

Aoy Aor Ao
A A A
A — 10 11 12

Ay Agp Ay

We note that other representations are possible if at least one of the
Index sets 1s infinite; such representations come from ordering the
index sets with an order type other than that of the non-negative
integers. We shall meet another order type with its corresponding
representation at the end of this section. We point out, however, that
orderings are completely irrelevant as far as the fundamental properties
of matrices are concerned, and we shall have little occasion to refer to
them again.
For any real number a,, define a,,* and a,,~ by

a,” = max (a,, 0)

a,” = —min (a,, 0).

m?

The sum of denumerably many non-negative terms >,_, a@," or
> mem Am ~ always exists independently of any ordering on M. There-
fore, we say that >, ., a, = > .y a," — >, . a,” 1s well defined 1f

not bothot >, ., a," and >, .,/ @,  are infinite.

Definition 1-1: Let 4 be a matrix with index sets K and M, and let
b5 be a matrix with index sets M and N. Suppose the sums

Z Akman

meM

are well defined for every £ and every n. Then the matrix product
(' = AB i1s said to be well defined; its index sets are K and N, and its
entries are given by C,, = >, ., A, B,,. Matrix multiplication is not
defined unless all of these properties hold.

Most of the propositions and theorems about matrices that we shall
deal with are statements of equality of matrices A = B. Such state-
ments are really just assertions about the equality of corresponding
entries of 4 and B, and a proot that A equals B need only contain an
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argument that an arbitrary entry of A equals the corresponding entry
of B. With this understanding, we see that the proof of the additive
properties of matrices 1s reduced to a trivial repetition of the properties
of real numbers. Propositions about multiplication, however, when
looked at entry-by-entry involve a new idea.

Let A be a matrix with index sets M and N and let m and »n be fixed
elements of M and N, respectively. The mth row of A4 is defined to be
the restriction of the function 4 to the domain of pairs (m, s), where s
runs through the set N. Similarly the nth column of 4 is defined to
be the restriction of the function A to the domain of pairs (£, n), where
t runs through the elements of the set . We note that the mth row of
a matrix is a row vector and that the nth column is a column vector.
With these conventions matrices can be thought of as sets of rows or as
sets of columns, and addition of matrices is simply addition of corre-
sponding rows or columns of the matrices involved. Furthermore, the
k-nth entry in the matrix product of A and B is the product of the kth
row of 4 by the nth column of B and is of the form >, ., 7. f,., where =
1s a row vector and f is a column vector. That is, propositions about
matrix multiplication, when proved entry-by-entry, may sometimes be
proved by considering only the product of a row vector and a column
vector.

Because of the correspondence of row vectors to rows and column
vectors to columns, we shall agree to call the domain of a row vector or
a column vector the elements of a single index set.

Connected with any definition of multiplication are five properties
which may or may not be valid for the structure being considered. All
five of the properties do hold for the real numbers, and we state them

1In this context:

(1) Existence and uniqueness of a multiplicative identity. 'The real
number 1 satisfies c1 = l¢ = ¢ for every c.

(2) Commutativity: ab = ba

(3) Distributivity: ab + ¢) = ab + ac
(@ + b)c = ac + bc

(4) Associativity: a(bc) = (ab)c

(5) Existence and uniqueness of multiplicative inverses of all
non-zero elements.

We can easily settle whether the first two properties hold for matrix
multiplication. First, the identity matrix [/ plays the role of the
multiplicative i1dentity, and the identity is clearly unique. Second,
commutativity can be expected to fail except in special cases because it
1s not even necessary for the index sets of two matrices to agree properly
after the order of multiplication has been reversed.
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T'he validity of the third property, that of distributivity, is the
content of the next proposition.

Proposition 1-2: If 4, B, and C are matrices and if 4B, AC, and

Ab + AC are well defined, then A(B + () = AB + AC. Similarly
(D + Y = DF + EF if DF, FF, and DF + EF are all well

defined.

Proor: We prove only the first assertion. We may assume that A is
a row vector = and that B and C are column vectors f and g. Then

Wf+7Tg= Z 7Tmfm T Z TmIm

— Z (Tmfm + TmGm)
— z Wm(fm + Gm)
= 7(/ + 9).

The fourth and fifth properties are related and nontrivial. Associa-
tivity does not always hold, but useful sufficient criteria for its validity
are known. For an example of how associativity may fail, let 4 be a
matrix whose index sets are the non-negative integers and whose entries

are given by

1 =1 0 0 0
0 1 =1 0 0
0 0 1 —1 0
4 =
0 0 0 1 =1
0 0 0 0 1
Then
17(41) = 0,
whereas
(174)1 = 1.

All the products involved are well defined, but the multiplications do

not associate.

We shall not consider the problem of existence of inverses, but
uniqueness rests upon associativity. For suppose AB = BA = AC =
(A = 1. Since AC = I, we have B(AC) = B, and since BA = I, we
have (BA)C' = (. Therefore, B = C if and only if B(AC) = (BA)C.
With this note we proceed with some sufficient conditions for
assoclativity.
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Lemma 1-3: Let b,, be a sequence of real numbers nondecreasing
with ¢+ and with ). Then lim; lim; b;; = lim, lim; b;;,, both possibly
infinite.

ProoF: In the extended sense lim,;b,; = L; exists and so does
lim; b;; = L;*. Now {L,}1s nondecreasing, forif L, > L, ,, then for s
sufficiently large b,; > L; ., > b, ;,,, which is impossible. Similarly
{L;*}1s nondecreasing, so that lim, L, = Land lim,; L,;* = L* exist in the
extended sense. If L # L* we may assume L* > L and hence L is

finite. Then there exists an ¢ such that L,* > L. Hence

L* > L
> L,; forall )

> b;; tor all 3.

T'hus b;; 1s bounded away from its limit on 4, a contradiction.

Following the example of Lemma 1-3, we agree that all limits referred
to in the future are on the extended real line.

Proposition 1-4: Non-negative matrices associate under multi-
plication.

Proor: Since we are interested in each entry separately of a triple
product, we may assume that we are to show that #(Af) = (7#4)f,
where 7 > 0, A > 0,f > 0, 7 is a row vector, f is a column vector, and

A

the index sets are subsets of the non-negative integers. Then

77'(‘é‘lf) — Z z WmAmnfn
and

(A = D > TnApnfa

Set bi}' — :'n =0 Zgw, =0 WmAmnfn — {1= 0 Z:n =0 WmAmnfn and &pply L.emma
1-3 to complete the proof.

It 4 1s an arbitrary matrix we define 4" and A~ by the equations
(A" )mn, = max {Amna O}
(A7 )y = —min {4,,,, 0}.

Then 4 = A — A, At > 0, and A~ > 0. For row and column
vectors, the matrices =+, #—, f*, and f~ are defined analogously.
We note that if Af is well defined, then so are Af* and Af~. Powers
of matrices are defined inductively by A° = I, A™ = A(A"~1'). The
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absolute value of a matrix 4is |[4| = A* + A~. Proposition 1-4 now
gives us five corollaries.

Corollary 1-5: Matrices associate it the product of their absolute
values has all finite entries.

Proor: We are again to prove that n(Af) = (7#A4)f, and we do so by
setting m =7 —a77, A =A% — A~, and f=f* — f~, applyving
distributivity, and using Proposition 1-4 on the resulting non-negative
matrices.

Corollary 1-6: Finite matrices with finite entries associate.

Proo¥F: The result follows from Corollary 1-5.

Corollary 1-7: It A and B are non-negative matrices and f is a column
vector such that A(Bf) and (A B)f are both well defined, then A(Bf) =
(AB)f. In particular, if C 1s a non-negative matrix, if n > 0, and 1if

C"f and C(C"~1f) are well defined, then C*f = C(C"~1f).

Proor: Consider f* and f~ separately and apply Proposition 1-4.
For the second assertion, set A = C and B = C" 1

Similarly one proves two final corollaries.

Corollary 1-8: If 4, B, (', and D are non-negative matrices such that
either

(1) ABD, AB, and BD, or
(2) ACD, AC, and C'D

are finite-valued, then (A(B — C)D = A(B — C)D).

Corollary 1-9: If A, B, and (' are matrices such that either

(1) A has only finitely many non-zero entries in each row,
(2) C' has only finitely many non-zero entries in each column, or
(3) B has only finitely many non-zero entries,

and 1t (AB)C and A(BC) are well defined, then
(AB)C = A(BC).

Some of these conditions are cumbersome to check, but there is a

simple sufficient condition. Suppose that we write a general product
as [ [’.; (4, — B,), with A, > Oand B, > 0. Ifall the 2" products

A A,...A, BA,...A,, ..., B,B,...B

n» * ¢ n
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are finite, then we see from Proposition 1-2 and Corollary 1-5 that we
may freely use distributivity and associativity.

The eftect of matrix multiplication on matrix inequalities is sum-
marized by the next proposition, whose proot is left to the reader.

Proposition 1-10: Matrix inequalities of the form A > Bor B < A
are preserved when both sides of the inequality are multiplied by a non-
negative matrix. Inequalities of the form A4 > B or B < A are
preserved when both sides are multiplied by a positive matrix, provided
the products have all entries finite.

Next we consider the problem of ““block multiplication” of matrices.
The picture we have in mind is the following decomposition of the
matrices Involved 1n a product:

4, 4J)\B; B) \Cy 0O,
More specifically, let K, M, and N be index sets and let K', M, and N’,

respectively, be non-empty subsets of the index sets. Impose orderings
on K, M, and N so that the elements of K', M’, and N’ precede the

other elements, which comprise the complementary sets K’, M’, and
N’. Let A, B, and C be matrices such that

(1) A 1s defined on K and M,
(2) B 1s defined on M and N, and
(3) AB = C 1s well defined.

Let matrices 4,, 4,, A5, and A, be defined as the restriction of the
function A to the sets

(1) K" and M’ for A4,

(2) K’ and M’ for A,
(3) K’ and M’ for A4,
(4) K’ and M’ for A4,.

Pictorially what we are doing 1s writing 4 as four submatrices with

4, 4,
= [ )

We perform the same kind of decomposition for B and C and obtain

(Al AZ) /Bl BQ) (Ol 02)
4, A, (Bs B, \c, C,

The proposition to follow asserts that the submatrices of 4, B, and C
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multiply as if they were entries themselves. 1ts proot depends on the

fact that matrix multiplication is defined independently of any ordering
on the index sets.

Proposition 1-11: A, B, + AB; = (4
A,B, + A, B, = (,
AzB; + AyB3 = Uy
AsBy, + Ay B, = C4.

Proor: We prove only the first identity since the others are similar.

(Ol)ij — ij — z Aimij' = Z AimBmJ' + Z AimBmJ'

meM meM’ meM’

— (AlBl)ij + (AzBs)ij‘-

Notice that if the submatrix 4, has at least one infinite index set,
then the representation of A by

4 (Al Az)
A, A,

AOO AOl
Ay

1S not the standard one

A = A,

The ordering on the index sets of 4 is not of the same type as that of
the non-negative integers. We recall once more, however, that the
fundamental properties of matrices are independent of any orderings on
the index sets. It is only the representation of a matrix as an array
which requires these orderings.

Limits of matrices play an important part in the study of denumer-

able Markov chains. We shall touch only briefly at this time on the
problems involved.

Definition 1-12: Let {4} be a sequence of matrices. We say that

A = lim,, , A" existsif A, = lim,_ , (4%) . exists for every m and
n.

Notice that limits of matrices are defined entry-by-entry. No
uniformity of convergence to the limiting matrix is assumed.

The type of problem that arises i1s as follows. Let 7 be a row vector
and let {f*} be a sequence of column vectors converging to a column
vector f. Is it true that {#zf"} necessarily converges to =nf? The
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answer to this question is in the negative unless some additional
hypothesis is added. What is being attempted is an interchange of the
order of two limit operations—one from the series which defines
{mf"} and the other from the limit as k£ tends to co. Such an inter-
change can be justified only under special circumstances, and we shall
obtain later in this chapter some sufficient conditions as special cases of
theorems of measure theory.

2. Measure theory

Llet X be an arbitrary non-empty set of points and let # be a family
of subsets of X. We say that & is a field of sets if

(1) the empty set @ is in %,

(2) whenever 4 is a set of %, the complement of 4, denoted A, is in
Z . and

(3) whenever A and B are sets of &%, so is their union, denoted

A U B.

A field of sets # is called a Borel field if it has the additional property
that whenever 4, € % forn =1,2,3,...,s0is | J>_; 4,,.

T'he intersection of sets 4 and B is indicated by 4 N B, and the
difference 4 N B is denoted 4 — B. From the above definitions the
reader can easily establish the following result.

Proposition 1-13: If . is a field of sets, then &# contains @ and X
and 1s closed under complementation, finite unions, finite intersections,

and differences. If % is a Borel field, then % is closed under de-
numerable 1ntersections.

Proposition 1-14: For any class of sets € of the points of a set X,
there exists a unique smallest Borel field containing €.

Proor: The family of all subsets of X forms a Borel field containing
%. Form the intersection of all Borel fields which contain ¢ and call
the resulting family of sets .%#. Let 4 be in & ; then 4 is in all Borel
fields containing € and sois A. Hence A isin.%#. A similar argument
applies to intersections and denumerable unions. Thus % 1s the
smallest Borel field containing €.

Definition 1-15: A function p from a field of sets % to the extended
real number system is called a set funection. If p(4) > 0 for every A4
In &, pis said to be non-negative. If p(4 U B) = p(4) + p(B) when-
ever 4 and B are in % and A N B = &, p is said to be additive.
Supposc 4, is in & for n = 1,2, 3,..., and suppose A, N 4, = @
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whenevers # 5. Ifp(lJr., 4,) =>2; p(4,) holds whenever |_J>-, 4
s a set of #, then p 1s said to be completely additive. In discussing
set functions, we shall assume that there are no two sets A and b 1n
% such that p(4) = +00 and p(B) = — o0, and we shall assume that p
1s not identically infinite.

An additive set function p has the properties that

(1) p(2) = 0
(2) p(\JN_; A,) = DN_, p(4,) for disjoint sets {4,}, and

(3) p(A U B (AN B) = o(d) + plB).

If p is non-negative and additive and if 4 i1s contained In B, then
o(4) < p(B). To see this, set C = B N A so that 4 and C are disjoint

and A UC = B. Then p(A4) + p(C) = p(B) by additivity, and the
result follows at once. We shall now establish two facts about
completely additive set functions.

Proposition 1-16: Let p be an additive set function defined on a field
of sets #. Let {A,} be a sequence of setsin # suchthat 4, C 4, C .-,
and suppose 4 = [ J*_, A,1sin ¥ . If pis completely additive, then
lim,_ . p(A4,) = p(4). Conversely, if lim,_, p(4,) = p(4) for all
such sequences, p 1s completely additive.

Proor: Set B, = A; and B = A NA, _ 1 Then A =\ )i_, b
disjointly, and by add1t1v1ty o(A4 Zk cp(B). Butd =), B
and by complete additivity p = >2_, p(By). The proof of the
converse 1s lett to the reader.

A consequence of this proposition is the following:

Corollary 1-17: Let p be an additive set function defined on a field
of sets # in such a way that p(4) < oo for every A. Let {4,} be a
sequence of setsin .# suchthat 4, O 4, O A; D ---and( ;- 4,= J.
If p is completely additive, then lim,_, o(4,) = 0. Conversely, if
lim,_, , p(4,) = 0 for all such sequences, then p is completely additive.

A non-negative completely additive set function on a field of sets #
1s called a measure. The set of points X with a measure defined on 1ts
field # is called a measure space. We shall usually denote measures by
w or v. If there is no ambiguity about what measure 1s involved, we
shall frequently refer to X by itself as the measure space.

If X is a measure space with field of sets # and measure u, then X
1s a set In #, and we define u(X) to be the total measure of the space.
A probability space 1s a measure space of total measure one.
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We give four examples of measure spaces.

(1) Let X be any set, let # = {g, X}, and define u(@) = 0 and
w(X) = a = 0. Then X 1s the trivial measure space.

(2) Let X be Kuclidean n-space, let # be the Lebesgue measurable
sets, and let u be lLebesgue measure (the natural generalization of
length, area, or volume).

(3) Let X be the set of six possible outcomes for tossing a die.
Assign weight & to each of the six points in the space, and for any subset
of X assign as a measure the sum of the weights of the points in the
set. Then # 1s the family of all subsets of X, and X is a probability
space.

(4) Let X be a denumerable index set, and let = be a non-negative
row vector with X as its index set. Assign as a weight to each point
of X the value of the corresponding entry of . For any subset of X
assign as a measure the sum of the weights of the points in the set.
Then & 1s the family of all subsets of X, and X is a measure space

with total measure =1.

The sets of a field on which a measure u i1s defined are called the
w-measurable or simply the measurable subsets of X. In the construc-
tion of a measure on a field, it is possible for a non-empty set A to be
assigned measure zero. In example (2) above, for instance, every
denumerable set and even certain uncountable sets are sets of measure
zero. Suppose B is a subset of such a set 4. If B is measurable, then

w(B) = 0 since w 1s a measure. But
u(B) < p(d) =0

since B C A and A 1s of measure zero. Thus, a measurable subset of a
set of measure zero 1s of measure zero. But there is no reason why such
a set B has to be measurable. However, one can agree to add all
subsets of sets of measure zero to a field and extend the resulting family
of sets to the smallest field containing the family. Such an extended
field is called an augmented field. It consists precisely of all sets of the
form (C' — D) U E, where (' is a set in the original field and D and &
are subsets of a set of measure zero. Therefore the augmented field of
a Borel field i1s again a Borel field. Note that in any augmented field
every subset of a set of measure zero is measurable and has measure
zero. In later chapters of this book all fieids will be augmented.

It a statement about the points of a measure space X fails to be true
only for a set of points which is a subset of a set of measure zero, we
say that the statement holds for almost all points of X or that it is true
almost everywhere (abbreviated a.e.).



1-20 Measure theory 13

Proposition 1-18: Let u be a measure defined on a field of sets 7.
If {4,}is a sequence of setsin #,if Aisin #,andif 4 C |, 4,, then

w(d) < 2, pl(d,).

ProoFr: Write B, = A, — (\JiZ1 A,). The sets B, are disjoint 1n
pairs, and consequently the sets 4 N B, are also disjoint. Further-
more, | J, B, = |, 4, so that

AzAm(UAn)
:Am(UBn)
= U (4 n B,).

n

By hypothesis u is a measure. It is therefore completely additive and
w(d) = > u(d N By)

< > wu(B,) since AN B, C B,

< Z u(A,) since B, C A4,.

n

To conclude this section we shall establish a result known as the
Extension Theorem. The proof follows the proot of Rudin [1953].

Theorem 1-19: Let % be a field of sets in a space X and let v be a
measure defined on #. Suppose X can be written as the denumerable
union of sets in # of finite measure. If % is the smallest Borel field
containing &, then v can be extended in one and only one way to a
measure defined on all of % which agrees with v on sets of .#.

Before proving the theorem, we need some preliminary lemmas and
definitions. The property in the statement of the theorem that X 1s
the denumerable union of sets of finite measure is summarized by saying
that v 1s sigma-finite.

Let v be a measure defined on a field of sets % in a space X, and
suppose X = | J°.; A, with A, € # and v(4,) < c©0. FKor each subset

B ot X, define u(B) = inf {> v(B,)}, where the infimum is taken over all
denumerable coverings of B by sets {B,} of #.

Lemma 1-20: The set function w 1s non-negative. It A and B are
subsets of X such that A C B, then u(4) < w(B). 1t C i1s a set in &,
then u(C) = v(C).
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Proor: We see that u 1s non-negative because u is the limit of non-
negative quantities. It A C B, then wu(A) < u(B) because every
covering of B is a covering of 4. Let ('bein #. Then {(} is a cover-

ing of C and u(C) < v(C'). And for any covering {C,},
v(C) < > v(C,)

n

by Proposition 1-18. Therefore,
p(() < infz v(C,) = u(C).

Lemma 1-21: If {4,} is an arbitrary sequence of subsets of X and if
4 = Un 4,, then #(A) = Zn lu'(An)

Proor: Let € > 0 be given. Let {B,'} with £ =1,2,3,... be a
denumerable covering of A4, such that B, is in &% and >, v(B,™) <
u(A4,) + €/2". This choice is possible by the definition of u. Then
since all the B’s form a covering of A, we have

u(d) < > Z v( B, ™)
< > u(d,) + e

and the assertion follows.

We define a set theoretic operation & for subsets of X by
AP B = (AN B)uU (Bn 4).

The set A & B is ealled the symmetric difference of A and B. A point
isin A @ Bifitisin 4 or B but not both. We leave the details of the

proot of the next lemma to the reader.

Lemma 1-22: The subsets of a space X form a ring under the opera-
tions & and N with additive identity @ and multiplicative identity X.
Every set 1s its own additive inverse.

Define a distance d between subsets of X by d(4, B) = u(4A & B).
We note that d has the properties

d(d, 4) = p() = 0

and

d(A, B) = u(d @ B) = d(B, A).
Since

AuB=(A% B)U B,
we have

ACA® B)u b
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and by Lemmas 1-20 and 1-21
w(d) < d(4, B) + p(B).

Replacing 4 by A ® B and B by C @ B, we obtain the triangle
inequality
d(A4, B) < d(4,(C) + d(C, B).

Lemma 1-23: For any subsets 4,, 4,, B,, B,, A, and B, of X,
a((4, Y 4,), (B, VU By)) < d(4,, By) + d(4,, By)
d((Al a2 Az)a (Bl a B.‘Z)) S d(Ala Bl) + d(AZa BZ)

d(B, A) = d(B, 4).

Proor: We prove only the first and third assertions. First we
observe that (4, U 4,) ® (B, B,) C (4, ® B,) VU (4, P B,). For
suppose x € (4, U A,) D (B, U By,). We may assume without loss
of generality that xe A, U A, but x¢ B, U B,. If xe€4,, then
r¢ B, so that xe A; @ B,. Similarly if x < 4,, then x € A, @ B,
and the containment is established. The first assertion of the lemma
now follows by applying Lemmas 1-20 and 1-21. For the third part,
we have

BPA=AnNBuU(dn B
and

B A

(A N B)u (4 N B)
so that
B@®A=B® A.

Defimition 1-24: Convergence of sets in measure is defined by saying

that A, — A if lim,_, d(A4,, A) = 0. Let .#* be the collection of all
subsets 4 of X for which there exists a sequence {A4,} of sets in .#

having the property that 4, — A. Let @* be the family of denumer-
able unions of sets in # *.

Lemma 1-25: 1f {4,} and {B,} are sequences of sets in .# such that
A, — A and B,— B, then A, U B, - AuUB, A, "nB,— AN B,
and A, — A. Therefore, #* is a field of sets. For any C,— C,

hmn /’L(Cn) — /"'(O)

Proor: Since by LLemma 1-23
d((4, Y B,), (AU B)) <d
d((4, N B,), (AN B)) < d(4,, 4) + d(B,, B)
A4y, 4) = d(4,, 4),

N IA
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we have 4, UB, >~ AUB, A,NB,—->ANB, and A4, - 4. The
limit of u(C,) is established by the inequalities

w(C,) < d(C,, 0) + p(C)
and

u(C) < d(C,, C) + p(Cy)
Lemma 1-26: y 1s additive on & *.

Proor: Let 4 and B be disjoint sets in .%* and pick {4,} and {B,}
in % such that 4, —~ A and B, — B. Then since v is additive on #
and since u agrees with v on sets of &%, we have

u(d, U By + p(d, 0 B,) = pn(d,) + p(bB,).
By Lemma 1-25,

wd v B) + p(Ad N B) = p(d) + p(b)
or
wAd v B) = u(d) + u(B).

Lemma 1-27: If 4 = | J, A, with 4 in ¥* and {4,} a sequence of
disjoint sets in # *, then w(A4) = >, u(4,).

ProoOF: Since 4 O (4, U A, U A;U---U 4,), we have, by Lemma
1-20, w(Ad) = u(d, U d,U---U A,), and by Lemma 1-26 the right
side equals >¥_, u(4,) for each k. Hence

u(d) = Z,; u(Ay),
and equality holds by Lemma 1-21.
Lemma 1-28: If 4 isin ¥* and it u(A4) 1s finite, then 4 1s 1n 7 *.
REMARK: If 4 is in #*, then u(A4) 1s not necessarily finite.

Proor or LEMMA: Write A = ), 4, with {4,} in #*, 4, disjoint
sets, and set B, = | Jt.; 4,. Then

d(Aa Bn) — lu'([A a En] U [‘I a Bn])

— lu’( U Ak):
k=n+1
which by Lemma 1-27
= > (4
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Since the last expression on the right is the tail of a convergent series,
we have B, —> A. Since B, e #*, we can find L, in # such that

d(L,, B,) < 1/n. Thend(L,, A) < 1/n + d(B,, 4), and hence L, — A.
Thus 4 1s iIn F *.

REMARK: If 4 € ¥* with u(A4) finite, then 4 is in &# *; hence for every
e > Othereisa Bin % such that u(4 @ B) < e. Conversely, if there
exists such a B, for any ¢, then B;,— 4 so that 4 e #* and, a
fortiori, A € ¥*. 'These observations give a characterization of the sets

A 1In %* for which u(A) is finite.

Lemma 1-29: u is completely additive on ¥*, and ¥* is a Borel field.

PRrOOF: Suppose
A=\{J)A,

is the union of disjoint sets {A4,} in ¥*. Then u(4) > u(4,) for every n
by Lemma 1-20, so that we may assume u(4,) < oo for every n. The
complete additivity of u now follows from Lemmas 1-28 and 1-27. For
the proof that * is a Borel field, we see clearly that Z* is closed under
denumerable unions. It remains to be proved that ¥* is closed under

complementation. Since v is sigma-finite, let
X =14,
with 4, in # and u(4,) = v(4,) < c©. Let B in ¥* be given and
suppose B = | J, B, with B, in #*. Since
A4, N B = U(Antk)
K

and since A, N B,isin #*, A, N Bisin ¥* But by Lemma 1-20,
u(d, N B) < p(4,)

and we have assumed that u(4,) < co. Thus by Lemma 1-28,
A, N Be&**, and since & * is a field,

A N(X—-((A4,N"nB)=4,Nn B
is in & *. 'Therefore
B=XnB=\J4,n B
1s in 9*, and the proot is complete. n

We are now in a position to prove the Extension Theorem.

Proor or THEOREM 1-19: Existence of the extension of v to a measure
u defined on %* is proved by Lemmas 1-20 and 1-29. Since, by
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Lemma 1-29, ¥* 1s a Borel field containing &#, * contains 4. 'The
extended measure restricted to sets of 4 has the desired properties.
For uniqueness, suppose u’ i1s another measure on % that agrees with v
on % . Since, by sigma-finiteness, X is the union of sets 4, in .# of
finite v-measure, we may assume that X is a disjoint union of sets of
finite measure by letting B, = A, — | J,<, 4,.. Let (' be any set in
%; we want to show u'(C') = u(C). By definition,

u(C) = inf {3 v(Cy)}

n

with the infimum taken over covers {C,}, where C, is in %#. FKor any
fixed cover {C,}, we have

K(O) < p(U 0Oy < > p(C) = > v(C,).

n

Theretore
w'(C) < inf [ > v(C)L = n(C).

Writing
w'(C) = > p'(C N By,

we see that 1t 1s suthecient to show that

w(C N By = u(l@ N By,
But

H”(O a Bn) T P’I(C” M Bn) — V(Bn) — PL(O M Bn) T H(Oﬂv M Bn)
Now we know that u’ is dominated by u:

w'(C N B, < wln B,) < (B, < .
If
w'(C N By < p(l N By,

we obtain the contradiction

w'(C N B, + ¢/ (CN By < uCn B, + w(C 0N By,

3. Measurable functions and Lebesgue integration

Let # be a Borel field of sets in a set X. The measurable sets of X
are the sets of #.

Definition 1-30: Let f be a function with domain X and with range
the extended real number system. The function f is said to be a
measurable function if for each real number ¢ the set {z | f(z) < ¢} is

measurable.
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The content of the next proposition is that the property f(x) < ¢ may
be replaced by any of the conditions f(x) < ¢, f(x) > ¢, or f(x) > c.
Theretfore, it f 1s a measurable function, then the set

{x|c < f(x) < d}

1s measurable; either or both of the signs < may be replaced by <,
and the set 1s still measurable.

Proposition 1-31: The following four conditions are equivalent:

(| f
w | f
@ | f
| f

Proor: From

X
X
X
X

c} 1s measurable for every c.
c} 1s measurable for every c.
c} is measurable for every c.
c} 1s measurable for every c.

<
<
>
>

= Qo0 DO =
st gt v e

{x | flx) < C}=nél{x|f(x) <c+%},
@] flx) >c} =X - {z]| f(x) < ¢},
{xlf(x)20}=n(51{x|f(x) >c-—%},

and

x| flx) <c} =X — {z]| flx) = ¢},

we see that (1) implies (2), that (2) implies (3), that (3) implies (4), and
that (4) implies (1).

Proposition 1-32: Kvery constant function is measurable.

Proor: If f(xr) = a identically, then {r e X | f(x) < ¢} is either &
or X.

In analogy with our procedure for matrices in Section 1, we define
f* and f~ by
f(x) = max {f(x), 0}

f~(@) = —min {f(), 0}
Proposition 1-33: If f is measurable, then so are f*, f~, and |f|.

PROOF: {x | f+

IV

G=@|fz U0z
c} ={x|f<—-ctU{x|0 > c}

~=
=
&.,,}
I
vV
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The set {x | 0 > c} is either @ or X and is therefore measurable. For
f| we have

x| |f| < ¢} ={x| —c =< flx) <c.

Proposition 1-34: Let f and g be measurable functions whose values
are finite at all points. Then f + g and f-g are measurable.

Proor: We prove only the assertion about f + ¢g. Order the
rational numbers and call the nth one r,. Then

@I+ 9@ > = U (@] /@) >c+rinfe]|gw > -r).
so that f 4+ ¢ 1s measurable.

Corollary 1-35: If f 1s measurable, then so 1s ¢f for every constant c.

Proposition 1-36: Let {f,} be a sequence of measurable functions.
Then the functions

(1)
(2) mnt f, ()
(3)
(4)

are all measurable.

Proor: The assertions follow from the observations that

{x | sup f,(x) > ¢} = ngl {x | fo(x) > c},

] inffu@) < ¢} = U {o| fuf) < ch

lim sup f,(x) = inf sup f,,(x)

n m>n

and
lim inf f (x) = sup int [, (x).
n n m->n
The supremum of finitely many functions is their pointwise maxi-
mum. Therefore the maximum and minimum of finitely many

measurable functions are both measurable.

Corollary 1-37: If {f,} is a sequence of measurable functions and if
f = lim, f, exists at all points, then f 1s measurable.
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We shall give three examples of measurable functions.

(1) Let # be the family of sets on the real line which are either finite
unions of open and closed intervals or complements of such sets.
Then # 1s a field of sets. Let ¥ be the smallest Borel field containing
% . All continuous real-valued functions are measurable with respect

to the Borel field 4.

(2) Let X be a space for which 4 is the family of all subsets of X.
Then every function f defined on X is measurable.

(3) Let X be the union of a sequence of disjoint sets {A4,}, and let #
be the family of all sets which are unions of sets in the sequence.
Then a function f is measurable if and only if its restriction to the
domain A, is a constant function for each n. In particular, if Z =
{X, @}, then the measurable functions are the constant functions.

Let A be any subset of X. The characteristic function of 4, denoted

x4(x), 1s defined by
1 if xeAd
Xal®) =

0 otherwise.

A function that takes on only a finite number of values is called a
simple function. 1t may be represented, uniquely, in the form

N
(*) S = z chAn
n=1

where the c, are the distinct values the function takes on and the sets
A, are disjoint. The simple function is measurable if and only if all
of the sets 4,, 4,,..., A, are measurable.

Proposition 1-38: For any non-negative function f defined on X,
there exists a sequence of non-negative simple functions {s,} with the
property that for each x e X, {s,(x)} is a monotonically increasing
sequence converging to f(x). If fis measurable, the {s,} may be taken
to be measurable.

ProoF: For every n and for 1 < j < n2" set

Anj':{xij;nl Sf(x) < 2'25}

and

Then
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increases monotonically with n to f. If f is measurable, then so are
{4,;} and B,; thus s, is measurable.

It 1 1s a measure defined on a Borel field 4 of subsets of X, we denote
the measure space by the ordered triple (X, #, u). In (X, %, u) let £
be a set of the family #, and suppose s is a non-negative, measurable
simple function, represented as in (*) above. Since s is measurable,
A, is measurable and u(A, N E) is defined for every n. Set

N
Z w(d, N E).

For any non-negative measurable function f, define the Lebesgue
integral of f on the set £ with respect to the measure u by

fE fdp = sup Lg(s),

where the supremum is taken over all simple functions s satistying
0 < s</f We note that the value of the integral is non-negative

and possibly infinite. It can be verified that if s is a non-negative
measurable simple function, then

fE sdu = 1.(s).

It f is an arbitrary measurable function, then by Proposition 1-33,

f zJ Tdp and f . J “dup are both defined. If the integrals of f* and f~
are not both infinite, we define the integral of f by f L Jdu = f o T —
fE f~du. The function f is said to be integrable on the set £ if
fE fTdu and f}_«: f ~du are both finite.

Following our examples of measure spaces and measurable functions,
we give three examples of integration. A fourth example will arise in

Chapter 2.

(1) Let 4 = {@, X} and suppose w(X) = 1. Only the constant
functions are measurable and

jcd,u:O; dep.=C.
% X

(2) Let X be the real line, let ¥ be the Borel field of sets constructed
in the first example of measurable functions, and let u be Lebesgue
measure. Continuous functions are measurable, and it can be shown
that the value of the Lebesgue integral of a continuous function on a
closed interval agrees with the value of the Riemann integral. More
generally one finds that every Riemann integrable tunction is Lebesgue
integrable, but not conversely.
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(3) Let X be the denumerable set of points described in Example 4
of measure spaces, and let = be a non-negative row vector defined on X.
Then 7 defines a measure on X. If fis an arbitrary column vector
defined on X, then f is a function on the points of X. Furthermore, f
is measurable since all subsets of X are measurable sets. The reader
should verify that the integral of f over the whole space X with respect
to the measure 7 1s the matrix product #f and that the condition for the
integral to be defined is precisely the condition for the matrix product
to be well defined. Because of this application of Lebesgue integra-
tion, we often speak of column vectors as functions and non-negative
row vectors as measures. We shall return to this example in Section 5
of this chapter. The proof of the next proposition is lett to the reader.

Proposition 1-39: The Lebesgue integral satisfies these seven
properties:

(1) If ¢ 1s a constant function,

fE cdu = cu(l).

(2) If f and g are measurable functions whose integrals are defined
on I and if f(x) < g(x) for all x € £, then

f fdu < L gdp.

(3) If fisintegrable on £ and if ¢ is a real number, then cf 1s integrable
and fE cfdu = cfE fdu.

(4) If f1s measurable and u(#) = 0, then fE fdu = 0.

(5) It £" and K are measurable sets with £' C £ and if f 1s a function
for which f . Jdu is defined, then f - Jdu 1s defined. In particular,

| fau < f fdp.

6) If |f(x)| < ¢ for all x € E, if u(E) < oo, and if f is measurable,

then f is integrable on &.
) If fis measurable on ¥ and if |f| < ¢ for a function g integrable

on E then fis integrable on X.

and

Corollary 1-40: If f is a non-negative measurable function with
| fdu = 0, then f = 0 a.e. on E.
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since otherwise f would have positive integral by (1) and (2) of Prop-
osition 1-39. The set where f # 0 on K is the countable union on n of
these sets.

Proor: The subset of £ where f(r) = 1/n must have measure zero

4. Integration theorems

We shall make frequent use of four important facts about the
Lebesgue integral. We develop these results as the four theorems of
this section.

Theorem 1-41: Let f be a fixed measurable function and suppose that
f . Jdu 1s defined. Then the set function p(£) = f - Jdu 1s completely

additive.

Proor: If we can prove the theorem for non-negative functions, we
can write f = f* — f~ and apply our result separately to f* and f~.
We therefore assume that f is non-negative. We must show that if
E = )X, E, disjointly, then po(¥) = >>°_; p(£,). If fisa character-
istic function y,, then p(&) = f - Xadp = p(4A N E) and the complete

additivity of p is a consequence of the complete additivity of u. If
f 1s a simple function, the complete additivity of p is a consequence of
the result for characteristic functions and of the fact that the limit of a

sum is the sum of the limits. Thus, for general f we have for every
simple function s satisfying 0 < s < f,

L sdp = i L sdp < 721 p(E,)

by property (2) of Proposition 1-39. Hence

plE) = sup | sdu = > p(Ey)

S n=1
We now prove the inequality in the other direction. By property (5)
of Proposition 1-39, p(E£) = p(&,) for every n since f = f*. Thus if
o(£/,) = +o00 for any n, the desired result is proved. We therefore

assume p(£,) < oo for every n. Let € > 0 be given and choose a
measurable simple function s satisfying 0 < s < f,

E, E,

f sdy.zf fdy.—g-
E, Eo

and
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This choice 1s possible by the definition of the integral as a limit. Then

p(li, UK, = f fdu > f de.zf Sdp+f sdu
E, E,

E1UE2 E]_UEZ

= p(&;) + p(y) — €
Hence

p(ly U Ey) = p(E,) + p(&,).
By induction, we obtain

P(El UEZUUEn) = P(El) + 0+ P(En)
and
p(&) = p(ky) +---+ p(E,) Hforevery n.

= nZI P(E

The proots of two corollaries of Theorem 1-41 are left as exercises.
These results use only the additivity of the integral and not the
complete additivity.

Hence

Corollary 1-42: If f is measurable, if f . Jdu is defined, and if
wle @ 1) =0,
then f - Jdu 1s defined and f o Jdu = f - Jdu.

Corollary 1-43: If f . Jdu 1s defined, then

fE fdu| < L fldp.

If f is integrable on E, then so is |f].

Let f and g be two functions whose integrals on £ are defined.
Suppose the set 4 = {xre E | f(x) # ¢g(x)} is of measure zero; that is,
suppose f and g are equal almost everywhere on £. Writing £ =

A U (E n A), we find by applying Corollary 1-42 twice,

| fau - ffd# = | odu = | gd

ENA ENA
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Functions which differ on a set of measure zero thus have equal

integrals. Theretore, when we are thinking of a function f defined on X
In terms of integration, it is sufficient that f be defined at almost all

points of X. And, if we agree to augment Borel fields of sets by adjoin-
Ing subsets of sets of measure zero, we see that if f and g differ on a
set of measure zero and if f is measurable, then g is measurable. With
the convention of augmenting the field, we obtain from Corollary 1-37,

for example, the result that if {f,} is a sequence of measurable functions
such that

f(x) = nlilﬁ fa(x)
almost everywhere, then f is measurable. Similarly the theorems to
follow would be valid with convergence almost everywhere if the
underlying Borel field were augmented; the necessary modifications in
the prootfs are easy.
We now state and prove the Monotone Convergence Theorem, which

1s due to B. Levi.

Theorem 1-44: Let E be a measurable set, and suppose {f,} is a
sequence of measurable tfunctions such that

and
Then

Proor: Since the {f,} increase with n, so do the { f . fndp,}. Theretore

k= lim | f,du
B

n-— oo

exists. Since f1s non-negative and is the limit of measurable functions,
we know that f - Jdu exists, and since f, < f, we have

| fdw s | fau

for every n. Therefore, £k < f - Jdu. Let ¢ be a real number satisfying

0 <c¢c< 1, and let s be a measurable simple function such that
0 <s</f Det

E,={xel| f(x) = cs(x)}



1-45 Integration theorems 27
so that #;, C K, C K; C.... Then £ =1\ )7, K,. For any n we

have
kz.ffndp.zf fndy.Z.cf sdu.
E E, E,

Since the integral 1s a completely additive set function (Theorem 1-41),
we have by Proposition 1-16

lim cf sdu = cf sdu.
n-o JEg, E

k > CJ sdu.
E

Thus, as n — 00,

Letting ¢ — 1, we have k£ > fE sdu, and taking the supremum over all
s, we find k£ > fE fdu.

Proposition 1-45: Suppose » = f + g with f and ¢ integrable on &.
Then 4 1s integrable on £ and

f hdy = ffdy. + f gdu.
E E E

Proor: We first prove the assertion for f and g non-negative. For
simple functions the assertion is trivial. If fand g are not both simple,
apply Proposition 1-38 to find monotone sequences of non-negative
measurable simple functions {{,} and {u,} converging to f and g. Then
{s, = t, + u,} converges to h, and since

f S du = f tdu + f u,du,
E E E

the result follows from Theorem 1-44. Next, it f > 0, ¢ < 0, and
h=f+¢g >0, we have f =h + (—¢g) with A > 0 and (—g) = 0O, so

that
L fdp = L hdp + L (—9)du

f hdu = f fdu +f gdu.
E E E

Since the right side is finite and since 2 > 0, & is integrable. For an
arbitrary A > 0, decompose £ into the disjoint union of three sets, one
where f > 0 and g > 0, one where f > 0 and g < 0, and one where

or
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f < 0Oandg > 0. Theorem 1-41 then gives the desired result. Finally,
for general h, write A = h™ — h~ and consider 2™ and &~ separately.

Corollary 1-46: Let £ be a measurable set, and suppose {f,} is a
sequence of non-negative measurable functions with

f(x) — Zl fn(x)

J e = 3, ], s

Proor: The result follows from Proposition 1-45 and Theorem 1-44.

Then

Proposition 1-47: If f is a non-negative integrable function, then for
every € > 0 there is a 0 > 0 such that, it u(#£) < o, then

fE fdu < e

Proor: Set f, = min (f, n). By Theorem 1-44,

lim f £ dy = f fdy.
n X X
Since f is integrable, we may find an N such that

€

fx (f = fv)dp < 5

by Proposition 1-45.  Let 6 = ¢/(2). If u(£) < o, then
| f Jap = f (f = fa)dp + f fydu by Proposition 1-45
b E -

< f (f — fx)du + Nu(E) by Proposition 1-39
X
< €.

Our third theorem for this section 1s known as Fatou’s Theorem.

Theorem 1-48: Let £ be a measurable set, and let {f,} be a sequence
of non-negative measurable functions. Then

f lim int f,du < lim inf f f.du.
E n n E



1-49 Integration theorems 29

In particular, if f(x) = lim, f,(x),
f fdu < lim inf f fadu.
E n E

ProoF: Set g, (x) = inf,.. f.(x). Then 0 < g,(x) < gy(x) <---, and
g, 1s measurable on /. We have ¢, (x) < f,(x) and

lim g, (x) = lim int f, ().

n n

By Theorem 1-44,

f lim inf f du = f lim g, du = limf g,du.
E n E n n E
The result now follows from the inequality f o Il < f = Jndp.

The fourth basic integration theorem is the Lebesgue Dominated
Convergence Theorem.

Theorem 1-49: Let £ be a measurable set, and suppose {f,} is a
sequence of measurable functions such that for some wntegrable g,

f.| < g for all n. If f(x) = lim, f,(x), then lim, fE f,du exists and

L fdu = li;n L fodu.

Proor: By property (7) of Proposition 1-39, f is integrable and so 1is
f, for every n. Apply Fatou’s Theorem first to f, + ¢ = 0 to obtain

[E (f + g)dp < lim inf fE (f, + g)du or

f fdu < Iim inf f fndu.
E n B

Apply the theorem once more to ¢ — f, = 0 to obtain

L (9 — fldu < limninf L (9 — fa)du

or

— | fdu < lim inf L (—f.)du

or

fdu > lim Supf f.du.
n E

Theretore lim,, f . Jndp exists and has the value asserted.
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Corollary 1-50: Let £ be a set of finite measure and suppose {f,} 1s a
sequence of measurable functions such that |f,| < ¢ for all n. If

f() = lim, f,(z), then [, fdp = lim, [, fud.

Much of the discussion of this section has dealt with the following
problem: A sequence of integrable functions f, converges a.e. to a func-

tion f; we want to be able to conclude that f f,du tends to f fdu. First

we should note that at almost all points f,* — f* and f,” — f~, and
hence 1t 1s sufficient to check the convergence of the integral separately
for these two sequences. Thus we may consider the case f, > 0 alone.
For non-negative functions Fatou’s inequality 1s the only general
result; one cannot conclude equality without a further hypothesis.
Two sufficient conditions are given by monotone and dominated
convergence.

But if we restrict our attention to a space of finite total measure, then

we can give a necessary and sufficient condition.

Definition 1-51: A sequence {f,} of non-negative integrable functions
is sald to be uniformly integrable if for each ¢ > 0 there is a number £

such that
f fndy, < €
(x| n(X)> K}

holds for every n.

Equivalently we may require that the inequality holds for all sufh-
ciently large n. For suppose it holds for » > N and for the number c.
Then since each f, 1s integrable, there 1s a &k, depending on n (and, of
course, €) such that

f frdu < €
{(Z|fn(x)> Ky}

and we may choose k = sup {k, ks, . . ., ky, C}.

Proposition 1-52: If {f } is a sequence of non-negative integrable
functions tending to f and if u(£) < oo, then f = Jadp — f - Jdu 1t and
only if the {f,} are uniformly integrable.

REMARK: The sequence {f,} need converge to f only almost every-
where for the proposition to be valid, provided f is assumed measurable.
This measurability condition 1s always satisfied if the underlying Borel
field is augmented.
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Proor: We shall use the notation £ tor the function truncated at k;
that is, f®(x) = inf (f(x), k). Let

f Jdp — f fadp

B* = f fdp — f [ dp
E E

Ok = f o dy — [ f.090d
E

w/

= L fudp — JE fuOdp = f (fo = K)dp.

{Xlfn >k}

We have
A, = B+ Cf — Dk,

Clearly f* increases monotonically to f, so that B* tends to 0 by
monotone convergence. Since f, — f, [,/ — f®.  But f, is bounded
by k. Thus, on the totally finite measure space £, lim, C * = 0 by
Corollary 1-50. Hence by choosing a large £ and then a sufficiently
large n (depending on k), we can make the first two terms on the right
side as small as desired. If the functions are uniformly integrable,
then we can find a large k£ (perhaps larger than the one already chosen)
for which D,* will be small for all n. Hence, for all sufficiently large n,
the left side i1s small. Thus the integrals converge.

Conversely, suppose that A, — 0. Then there 1s a £ such that for
all sufficiently large n, D, < €/2. Thus for all n sufficiently large,
we have

2> | (b

{X|fn >k}

> f (fo — k)du

{x|fn > 2k}

1
"2' f fndy‘:

{(x|fn > 2k}

IV

since f, — k > 1f, on the set in the last two integrals. Taking 2k as
the number in the equivalent definition, we see that we have uniform

integrability.
5. Limit theorems for matrices

We have already said that if 7 is a row vector and if { f*} is a sequence
of column vectors converging to f, then it i1s not necessarily true that



32 Prerequasites from analysis

nf® converges to nf. Our object in this section is to obtain sufficient
criteria to justify saying that #f = lim,_, , #f.

In the examples of Lebesgue integration, we noted that non-negative
row vectors are measures and column vectors are functions. Functions
are integrated by forming the matrix product of the measure and the
function. Thus, the theorems of Section 4 immediately give us the

following four results. In each of them it should be borne in mind
that:

(1) There is a corresponding result if row vectors are thought of as
functions and column vectors are thought of as measures.

(2) These results imply corresponding results about matrices which
are not just row or column vectors. (Recall the discussion in
Section 1 about proving matrix equalities entry-by-entry.)

Proposition 1-53: Let 7 > 0 be a row vector and suppose {f¥} is a
sequence of column vectors converging entry-by-entry to f and
satisfying

0 < fYV<fP<....

Then =f = lim, »f®.

Proor: This result is a restatement of the Monotone Convergence
Theorem as it applies to matrices.

Corollary 1-54: Let = > 0 be a row vector and suppose {f®} is a
sequence of non-negative column vectors such that

— (k).
/ k; /
Then

i $ e

Proor: This corollary is immediate from Corollary 1-46.

Proposition 1-55: Let 7 > 0 be a row vector and suppose {f®} is a

sequence of non-negative column vectors. Then

7(lim inf f®) < lim inf (zf®).
K K

If f = lim, f%® exists, then #f < lim inf, (7f).

Proor: This i1s Fatou’s Theorem.
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Proposition 1-56: L.et # > 0 be a row vector such that =1 is finite.
If {f*} is a sequence of column vectors such that |f®| < ¢1 and
f = lim, f* exists, then

nf = lm #f%®.
K

Proo¥: The result follows from Corollary 1-50.

A harder problem arises with a sequence of non-negative row vectors
7 converging to a row vector . It is not sufficient for »'**1 < M
and |f| < ¢1 in order for nf = lim, #®f. For set

A =(1 0 0 0 ...)
72 =0 1 0 0 ...)
7 =0 0 1 0 ...)

and take f = 1. Then = = 0 so that nf = 0, while lim, #®f = 1.
We give two sufficient conditions for

nf = lim #®f;
k
our integration theorems do not provide us with quick proots, however.
The second proposition is closely related to the Silverman-—Toeplitz
Theorem on summability methods.

Proposition 1-57: If {#*} is a sequence of non-negative row vectors
converging to =, if f is a column vector such that 0 < f < ¢1 for some
¢, and if 71 = lim, 1 with =1 finite, then

nf = likm m 0f.

Proor: Take f as a measure and {#'¥} as a sequence of non-negative
functions and apply Fatou’s Theorem. We have

nf < lim inf 7»*f,

With ¢1 — f as a measure and {#*'} as a sequence of functions, Fatou’s

Theorem gives
m(c1 — f) < lim inf #%®(c1 — f).

Since 71 is finite and lim »%*1 = #1, we find

_af < lim inf (— 7%f)
or
7Tf > lim sup 7T(k)f :
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Proposition 1-58: Let {#'*’} be a sequence of row vectors converging
to = and satisfying |71 < M. Suppose f is a column vector with
the property that for any ¢ > 0 only finitely many entries of f have
absolute value greater than 6. Then

7'rf — ‘lim 'rr(k)f.
k

Proor: The entries of f are clearly bounded, say by ¢. Numbering
the entries, we have for every NV

N

of — a®fl < 2w = 2Pl + 2 (m] + [=RDI

j=1 i>N

Let € > 0 be given. Choose N sufficiently large that |f;| < ¢/4M for
j > N. Choose k sufficiently large that |7, — 7{®| < €/2¢N for
J < N. Then |nf — 7#%f| < ¢, and the result is established.

As we noted in Section 1, results about general denumerable matrices
can be reduced to results about row and column vectors. In particular,

the propositions of the present section apply equally well to sequences
of the forms {A*f} and {7 A®}.

6. Some general theorems from analysis

In this section we collect a variety of results from analysis which we
shall need in later chapters. We prove only some of them. At first
reading the reader may find it wise to skip this section, returning to it

later as the material is required.

a. Stirling’s formula. Stirling’s formula gives an asymptotic
expression for m! The approximation is

where the symbol ~ indicates that the ratio of the two quantities tends
to one as m increases. For a proof, see Courant and Hilbert [1953],
pp. 522-524. Stirling’s formula immediately gives an approximation

rn) for large n. The coeflicient (Z) 1S

for the binomial coefficient (n

a!

deﬁned asS m'

Lemma 1-59: For r > 1,

(0) ~ ez (=)

where ¢ 1s a constant depending on 7 but not on n.
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a!

a :
ble! - - - d!

boo ... d) 1s defined to be

The multinomial coefficient (

b. Difference equations. An nth order linear difference equation
with constant coefficients 1s an expression of the form

Yi+n T Cn1Yksn-1 T T C1Yps1 + ColYp = Ty,

s

where vy, and r, are functions defined on the integers and where the
Ch-1,- .-, Co are complex numbers. The equation 1s homogeneous if
r. = 0 and nonhomogeneous otherwise. For a nonhomogeneous
solution, we refer to any single function y, satisfying the equation as a
particular solution, and we call the set of functions satisfying the same
equation with 7, = 0 the homogeneous solution. The totality of solu-
tions to any difference equation i1s known as the general solution.

Proposition 1-60: Every solution of the difference equation

Yi+n T Cn1Yr4n-1 + ot ColYy = 0

1S a linear combination of n fixed functions, obtained as follows: If a
1s a root of multiplicity q of the characteristic equation

" + c,_ X" + -+ ¢ + ¢y = O,
then ¢ of the functions are
a®, ka®, k%a*, ..., k9 1ak.

Conversely, each of these functions is a solution of the difference
equation. Furthermore, each solution of the equation

Ye+n T Cpn1Yx+n-1 T T CoYy = Ty

is the sum of a fixed particular solution and some solution of

Yi+n T Cno1Ykan—1 + -+ Gy = 0.

Conversely, every such sum is a solution of the nonhomogeneous
equation.

For a proot of this proposition, see Hildebrand [1956], pp. 202—-203.

c. Cesaro summability and Abel summability. Let {a,} be a sequence
of real numbers. Define b, to be the arithmetic mean of the first »
terms of the sequence {a,}. The sequence {b,} is called the sequence of
Cesaro averages of the sequence {a,}. The sequence {a,} is said to be
Cesaro summable if its sequence, {b,}, of Cesaro averages has a limit.
If A™ is a sequence of matrices, the sequence of Cesaro averages B™
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is defined entry-by-entry: B{?® is the Cesaro average of A{}’, A{?, ...,
A®M. The basic fact about Cesaro summability is the following

proposition.

Proposition 1-61: If a sequence {a,} converges to a limit L, then the
sequence of Cesaro averages {b,} converges and its limit is L.

Proor: Let f be the column vector whose nth entry is a, — L, and
let 7™ be the row vector defined by

) _ lln for 1 <)< n
J .
0 for n > .
Then
b, = #™f + L.
Now |7™|1 = 1, lim, =" = 0, and f is a column vector with entries

tending to 0. Hence by Proposition 1-58, lim, »'™f = 0. Therefore
lim, b, = L.

The converse of Proposition 1-61 is false. The sequence {a,} defined
by a,, = 0, a,,.; = 1 does not converge, but it 1s Cesaro summable.

Let {c,} be a sequence of real numbers. (In most applications the
partial sums ¢, + - - - + ¢, are assumed bounded.) If the limit

lim i C "

tt1 n=4y_

exists, the limit 1s called the Abel sum of the series > ¢, and the series
is said to be Abel summable. Abel’s Theorem is the following result.

Proposition 1-62: If the series > ¢, converges to a finite limit L, then
it 1s Abel summable and its Abel sum 1s L.

Proor: Since the partial sums converge to a finite limit, the c, are
bounded and > c,t" converges absolutely for ¢ < 1. Let {{,} be any
sequence of positive reals less than one and increasing to one. Let f
be the column vector whose nth entry is (¢, + -+ ¢,) — L, and let
7% be the row vector defined by

W;k) — (]. — tk)tkj.

7T(k)'f — Z Cntkn — .L.

Now |#®|1 = 1, lim, #*® = 0, and f is a column vector with entries
tending to 0. Hence by Proposition 1-58, lim »*f = 0. That is,

lim Z c,t;," = L.

k— o0

Then
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This equality for every such sequence {¢,} implies that

hcht"-—

d. Convergent subsequences of matrices. A bounded sequence of
real numbers has a subsequence which converges to a finite limit. We

shall obtain a generalization of this result to matrices.

Proposition 1-63: Let {4} be a sequence of matrices with the
property that for some pair of real numbers ¢ and d, cK < A™ < dE
for all n. Then there exists a subsequence of matrices {4’} which
converges 1n every entry.

Proor: Since there are only denumerably many entries in each
matrix, they can be numbered by a subset of the positive integers.
Select a subsequence {4{”} which converges in the first entry. Let

AP, AP, AP, ... be a subsequence of 4%, 4{*,... which converges
in the second entry. In general, let 4™ A("‘“’ .. be a subsequence
of A™ Am+ D" . which converges in the mth entry. Finally set

A = AP,

Then {4'™’} converges in every entry.

Corollary 1-64: Let { 4™} be a sequence of matrices with the property
that c£ < A™ < dF for all n. Then lim, A™ = A4 exists if and only

if lim, A(" ) = A for every convergent subsequence {A™)},

Proor: The necessity of the condition is trivial. For the sufficiency
suppose lim A{® does not exist. Then lim inf 4{P < lim sup 4;}.
Pick a subsequence of {L™} that converges in the ¢-jth entry to
lim sup 4{%, and do the same for lim inf 4{. Apply Proposition 1-63
to extract subsequences convergent in all entrles from these sequences,

and the result follows at once.

e. Sets of positive integers closed under addition. The greatest
common divisor of a non-empty set of positive integers 1s the largest
integer which divides all of them. If the set consists of {n,, ny, ...},
its greatest common divisor 1s denoted (n, ng, .. .).

Lemma 1-65: If T is a set of positive integers with greatest common
divisor d, then there exists a finite subset of 7' for which d 1s the

ereatest common divisor.
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Proor: Let n, = k,d be an element of 7. If k; = 1, {n,} is the
required set. If not, choose n, such that n,{n,. Then (n,, n,) =
kod with ky, < k. If ky = 1, {n,, ny} is the required set. Otherwise,
find ng; such that k,d{ngz, and set (n,, ng, n3) = kyd with ky < k..
Continuing in this way, we obtain a decreasing sequence of integers
ki, ko, ... bounded below by 1. It must terminate, and then we have

constructed the finite set.

Lemma 1-66: Let 7' be a non-empty set of positive integers which is
closed under addition and which has the greatest common divisor d.
Then all sufficiently large multiples of d are in the set 7.

Proor: If d # 1, divide all the elements in 7' by d and reduce the
problem to the case d = 1. By Lemma 1-65 there is a finite subset
{ny,...,ng of T with greatest common divisor 1. Then there exist
integers c,, . . ., ¢, with the property

ciny + o+ e = 1.

It we collect the positive terms and the negative terms and note that T
1s closed under addition, we find that 7' contains non-negative integers
m and n withm — n = 1. Supposeq > n(n — 1). Thenqg = an + b
witha >n — 1and 0 < b < n — 1. Thus

g=(a —bn + bm
and g is in 7',

f. Renewal theorem. The Renewal Theorem, one of the important
results 1n the elementary theory of probability, can be stated purely
In terms of analysis.

Theorem 1-67: Let {f,} be a sequence of non-negative real numbers
such that > f, = 1 and f, = 0, and suppose the greatest common
divisor of those indices k for which f,, > 0is 1. Set u = > nf,, uy = 1,
and u, = DFCg WS-k If w is infinite, then lim, %, = 0, and if u is
finite, then lim, u, = 1/u.

For a proof, see Feller [1957], pp. 306-307.

g. Central Limit Theorem. Identically distributed independent

random variables are defined in Sections 3-2 and 6-4. The mean of a
random variable is its integral over its domain, and its variance is the
integral of its square minus the square of its integral, a quantity which

18 always non-negative.
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Theorem 1-68: Let {y,} be a sequence of identically distributed
independent random variables with common mean p and with common

finite variance o2 > 0. Set s, = y; +---+ vy,,. Then for all real «
and B8 with o < f,

. S,, — M
lim Pr[(x < °m — T
o

— = D(B) — D(«
lim = < B| = 9(B) - (o),

where

- QO

1 (= :
D(x) J e~ ¥ 2du.

For a proof, see Doob [1953], p. 140.



CHAPTER 2

STOCHASTIC PROCESSES

1. Sequence spaces

We shall introduce the concept of a stochastic process in this chapter
and develop the basic tools needed to treat the processes. Betfore the
formal development, we shall indicate the intuitive ideas underlying
the formal definitions.

We imagine that a sequence of experiments is performed. The
outcomes may be arbitrary elements of a specified set, such as the set
{“ves,” “no,” ‘“no opinion’’}, the set {heads, tails}, the set {fair,
cloudy, rainy, snowy}, or a set of numbers. The experiments may be
quite general in nature, but we impose some natural restrictions:

(1) The set of possible outcomes is denumerable. (T'his restriction
i1s natural for the present book. It would be removed in a more
general treatment of stochastic processes.)

(2) The probability of an outcome for the nth experiment 1s com-
pletely determined by a knowledge of the outcomes of earlier experi-
ments. Here ‘“‘probability’ is used heuristically, to motivate the
later precise definition.

(3) The experimenter is, at each stage, aware of the outcomes of
earlier experiments.

We shall first consider a sequence of n experiments, where n 1s
specified at the beginning. Later we shall consider a denumerably
infinite sequence of experiments. In each case we assume that the
experiments do not stop earlier. However, this 1s an unimportant
restriction; a process that terminates may be represented In our
framework by allowing the outcome ‘‘stopped.” The following are
examples of such sequences of experiments:

(1) A sociologist wishes to find out whether people feel that television
is turning us into a nation of illiterates. He asks a carefully selected

2 (¢ > ¢ ¢

sample of subjects and receives the answer " yes, no,” or ‘‘no

opinion’’ 1n each case.
40
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(2) A gambler flips a coin repeatedly, recording “heads’ or *‘tails.”

(3) A meteorologist records the daily weather for 23 years, classifying
each day as ““fair,” ‘““cloudy,” “rainy,” or ““snowy.”

(4) A physicist tries to determine the speed of light by making a
series of measurements. (Since each measurement is recorded only to
a certain number of decimal places, the possible outcomes are rational
numbers, and hence the set is denumerable.)

(5) A physicist makes a count of the number of radioactive particles
given offt by an ounce of uranium. A measurement i1s made every
second, and the outcome of the nth measurement is the total number of

particles given off until then.

The exact way in which probabilities are determined from an experi-
ment 1s a deep problem in the philosophy of science, and i1t will not
concern us here. We will assume that the nature of the experiment
ylelds us certain probabilities, namely the probability that the nth
experiment results in an outcome ¢, given that the previous experiments
resulted in outcomes cy, ¢q,...,c,_;. We then design a probability
space In which one can compute the probability of a wide variety of
statements concerning the experiments and in which the specified
(conditional) probabilities turn out as given.

The elements of our probability space {2 are sequences of possible
outcomes for the experiments (either sequences of length =», for a finite
series of experiments, or infinite sequences). The elements of the Borel
field # of measurable sets will be the truth sets of statements to which
probabilities are to be assigned. (The truth set of a statement about
the experiments is the set of all those sequences in {2 for which the
statement 1s true.) A measure u is constructed, and the probability
of a statement is the measure of its truth set. In particular, u(£2) = 1
in a probability space, and hence the probability of a logically true
statement 1s 1.

Let us first consider the case where n experiments are performed.
The possible outcomes are conveniently represented by a tree, with
each path through the tree representing a sequence of possible out-
comes. In the diagram n equals 3, {2 has 8 elements, and # consists
of all subsets of (2.

The numbers on the branches, known as branch weights, represent
the conditional probabilities mentioned above. For example, p, is the
probability of heads, given that the first toss came up heads, while
1 — p; 1s the probability that tails is the outcome that follows two
heads. The weight assigned to the path HHT is taken to be the
product of the branch weights, p,p,(1 — p3). The measure u(A4) of a
set of paths 4 1s the sum of the weights of the pathsin A. In the usual
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START

EXPERIMENT NO. O 1 2 3

setup for coin tossing, each p is 1, and the weights of the paths are
each .

The branch weights may be arbitrary non-negative numbers, but the
sum of the weights of branches starting from a given branch-point must
be one.

After we define conditional probabilities, it will be easy to verily
that the numbers written on the branches do indeed turn out to be the
desired conditional probabilities (see Kemeny, Mirkil, et al. [1959],
Chapter 3).

Let us suppose that we have constructed a tree {2 for a series of n
experiments. We consider £ additional experiments, obtaining a tree
... We wish our probabilities to be consistent in the sense that a
statement p about {2, has the same probability when computed 1in
either measure space. Our method of computing measures has this
consistency property. This assertion is easily verified for £ = 1, and
the result follows by induction.

In constructing an infinite tree {2 for a sequence of experiments, our
measure 1s required to have the property that a statement about the
first » outcomes has the same probability as if computed with respect
to the finite tree 2, . (Of course, the same probability may be com-
puted with respect to £, ., ., but the result is the same by consistency.)
T'his convention assigns probabilities to many simple statements. We
can then show that the probability of a much larger class of statements
1s uniquely determined. We will now consider the problem abstractly.

Let S be a denumerable set; S is called the state space. Let £ be the
set of all infinite sequences of elements of §. A typical element w of
{2 1s represented as

w = (Cy, Cy, Coy ... ),

where c,, ¢4, C5, ... are elements of §. The points w of £ are called
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paths, the whole space {2 i1s called a sequence space, and the value c,
on a path w 1s called the nth outcome on w. The function x,(w),

defined from £ to § by

X, (Cos C15 CoyevvyCpyun.) = Cp

is called the nth outcome function, and the nth outcome 1s said to occur
at time n.
Let & ., be the family of all unions of sets in {2 of the form

w | 2o(w) €8y A y(w) €Sy A+ A ap(w) €8,

where §,, 84, ..., 8, are subsets of the state space §. (Notice that the
sets of & arise from the class of all subsets of the tree (2, described
above.) It is clear that for each n, % is a Borel field. Let &# be the
family of sets defined by

F =) F
n=>0

Each set in # is a set of paths for which a finite number of outcomes
are restricted to lie in certain subsets of §. All other outcomes are
unrestricted. The reader should verify that &# is a field of sets. In
Section 3 we shall see that # 1s not a Borel field; in the meantime, we
let % be the smallest Borel field containing # (Proposition 1-14).
After we have defined a measure on 4, the Borel field 4 which we are
seeking will be the augmented field obtained from % by adding subsets
of sets of measure zero.

The sets of # are known as cylinder sets. If a cylinder set (' is a
set In # ,, we note that C may be written as the denumerable union

( = U Bi(n)

of (disjoint) basic cylinder sets
B™ = {w | zg(w) = cg A 21(w) = ¢; A A Xy(w) = cp}.

A basic cylinder set in &, 1s the set of all possible continuations of a
single path in £2,. We let v(B,'V) equal the product of the branch
weights on this path in Q.

Recalling that the probability measures we assigned to (2, were
defined consistently, we can show that v is uniquely defined on the sets
of #. It has the properties that v({2) = 1 and that the restriction of
v to &, 1s a measure for every n.

We will next show that v can be extended to a measure w on the
smallest Borel field containing &#. This result will be a consequence of
Theorem 2-4. First we prove a series of lemmas. In each case #,
# ., and v are as defined above.
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Lemma 2-1: Let v be a set function defined on # = | J #, in such a
way that the restriction of v to &, 1s a measure for every n. Then

v 18 non-negative and additive.

Proor: Non-negativity is trivial. For additivity, let 4 and B be
disjoint sets in &#. Then A € #, and B e #,, say. Since the & ; are
nested, A and B are both in %, where r = sup (m, n). Since v 1s a
measure when restricted to & ,

v(A U B) = v(A) + v(B).

We shall in fact establish that v is completely additive, a result due
to Kolmogorov.

Lemma 2-2: Suppose C, 0 ('; O C, O --- 1s a sequence of sets in &
such that ', € #, and lim,v(C')) > 0. Then for every m there is a
basic cylinder set B,'™ in &, such that

(1) lim v(C, " B/™) > 0
(2) B'™ C C,.
PROOF By complete additivity of v on &# ., where r = sup (m, n), we

have v(C,) = >, v(C, N B™) with v(C, N B/™) monotonically de-
crea,smg In n. Then

0 < limy(C,) = lim D> »(C, N B™) = > lim »(C, N B,™).
n 7 7 n

n

The interchange of limit and sum is justified by dominated convergence
as follows: The functions of j, namely v(C, N B™), satisty

v(C, N Bj(m)) < (U, N Bj(m)),

and we know that > . v(C'y N B ™) = v(C,) is finite since v({2) = 1.
Thus, since a denumerable sum cannot be positive unless one ot the
terms 1s positive, we have for some ) =

lim v(C, N B'™) > 0.

n

Hence (1) is satisfied. But the terms in the sequence v(C, N B.'™)
monotonically decrease to a positive limit, so that

v(C,, N B,™) > 0.

Now C, e %, and i1s thus the union of basic cylinder sets. Since
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