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Geometric topology may roughly be described as the branch of the
topology of manifolds which deals with questions of the existence of
homeomorphisms. Only in fairly recent years has this sort of topology
achieved a sufficiently high development to be given a name, but its
beginnings are easy to identify. The first classic result was the Schonflies
theorem (1910), which asserts that every l-sphere in the plane is the
boundary of a 2-cell.

In the next few decades, the most notable affirmative results were the
“Schonflies theorem” for polyhedral 2-spheres in space, proved by J. W.
Alexander [A,], and the triangulation theorem for 2-manifolds, proved by
T. Radoé [R,]. But the most striking results of the 1920s were negative. In
1921 Louis Antoine [A,] published an extraordinary paper in which he
showed that a variety of plausible conjectures in the topology of 3-space
were false. Thus, a (topological) Cantor set in 3-space need not have a
simply connected complement; therefore a Cantor set can be imbedded in
3-space in at least two essentially different ways; a topological 2-sphere in
3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres
in 3-space, there 1s not necessarily any third 2-sphere which separates them
from- one another in 3-space; and so on and on. The well-known “horned
sphere” of Alexander [A,] appeared soon thereafter. Much later, in 1948,
these results were extended and refined (and in some cases redone) by
Ralph H. Fox and Emil Artin [FA].

The affirmative theory was resumed with the author’s proof [M,-[M.]
that every 3-manifold can be triangulated, and that every two triangula-
tions of the same 3-manmifold are combinatonally equivalent. The second of
these statements 1s the Hauptvermutung of Steinitz. Then, in 1957, C. D.
Papakyriakopoulos revolutionized the ficld by proving the Loop theorem.



Preface

A loop 1s a mapping of a l-sphere into a space. The Loop theorem is as
follows. Let M be a polyhedral 3-manifold with boundary, and let B be its
boundary. Let L be a loop in B, and suppose that L 1s contractible in M
but not in B. Then there is a polyhedral 2-cell D in M, with its boundary in
B, such that the boundary of D is not contractible in B.

In 1971 Peter B. Shalen [S,] found a new proof of the triangulation
theorem and Hauptvermutung. His proof is “almost PL,” in the sense that
the set-theoretic part of the argument is elementary, almost to the point of
triviality, and the main substance of the proof belongs to piecewise linear
topology, with heavy use of the Loop theorem. Following Shalen’s exam-
ple, and using some of his methods, especially at the beginning, the author
developed the proofs presented below, in Sections 30-36.

The historical account just given will also serve as a summary of the
contents of this book. The treatment of plane topology is rudimentary.
Here traditional material has been reformulated, in “almost PL” terms, in
the hope that this will help, as an introduction to the methods to be used in
three dimensions, and that it will bring three-dimensional ideas into
sharper focus. The proofs of the triangulation theorem and Haupvermutung
are largely new, as explained above. So also is our proof of the Schonflies
theorem. But most of the time, we have followed the historical order. This
Is not because we were trying to write a history; far from it. The point,
rather, 1s that the historical order was the natural order of intellectual
motivation.

Recently, A. J. S. Hamilton [H,] has published yet another proof of the
triangulation theorem, based on methods which had been developed by
Kirby and Siebenmann for use in higher dimensions. His proof and
presentation are shorter and more learned than ours, by a very wide
margin in each respect.

This 1s a textbook and not a treatise, and the difference is important. A
presentation which looks elegant to a professional expert may not seem
elegant, or even intelligible, to a student who is encountering certain ideas
for the first time. We have furnished a very large number of problems. One
way to teach a course based on this book 1s to spend most of the classroom
time on discussion of problems, treating much of the text as outside
rcading. A warning 1s needed about the style in which the problems are
written. This warning is given at the end of the preface, in the*thope of
minimizing the chance that it will be overlooked.

References to the literature, in this book, are meager by normal stan-
dards. Whenever I was indebted to a particular author, and knew it, I have
given a reference. But 1 have made no systematic effort to search the
literature thoroughly enough to find out who dcserves credit for what.
Many of the proofs below are new, and many others must be adaptations
(conscious or not) of folklore. Here again I have made no attempt to find
oul which 1s which. I believe, however, that all papers published since 1945
have been cited when they should have been.



Preface

In 1975-76 at the University of Texas, and earlier at the University of
Wisconsin, the manuscript of this book was used 1in seminars conducted by
Prof. R. H. Bing. The faculty members participating included Profs. Bing,
Bruce Palka, Carl Pixley, Michael Starbird, and Gerard Venema. The
students included Ms. Mary Parker, Ms. Fay Shaparenko, and Messrs.
William E. Bell, Joseph M. Carter, Lee Leonard, Wayne Lewis, Gary
Richter, and Frank Shirley. I received long critical reports prepared by
Messrs. Bell, Henderson, and Richter. If I had not had the benefit of these
reports, then the text below would include more errors and obscurities than
it does now. Finally, thanks are due to Mr. Michael Weinstein, who edited
the manuscript for Springer-Verlag. In the course of dealing with matters
of form, Mr. Weinstein detected a dismaying number of minor lapses
which the rest of us had missed. The responsibility for the remaining
defects 1s of course my own.

Finally, a word of warning about the problems in this book. These are
composed in a way which may not be familhiar. Most of them state true
theorems, extending or elucidating the preceding section of the text. But in
a very large number of them, false propositions are stated as if they were
true. Here it is the student’s job to discover that they are false, and find
counter-examples. Problems cannot be relied on to appear in the ap-
proximate order of their difficulty. Some of them turn out, on examination,
to be trivial, but some are very difficult. Thus the problems are intended to
furnish the student with an opportunity to work on mathematics under
conditions which are not hopelessly remote from real life.

Edwin E. Moise

New York City
January, 1977
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Introduction

We shall use the following definitions, notations, and conventions, most of

them standard, but a few not.
R is the set of all real numbers. R™ is the set of all nonnegative real

numbers. Z is the set of all integers. Z™ is the set of all nonnegative
integers. R” 1s Cartesian n-space, with the usual linear structure, the usual
distance function, and the usual topology. (We shall always be dealing
with cases in which n < 3.) The empty set is denoted by .

A metric space 1s a pair [X, d], where X 1s a nonempty set and d 1s a
function X X X - R, subject to the usual conditions:

(D.1) d(P, Q) > 0 always.

(D.2) d(P, Q)=01f and only if P = Q.

(D.3) d(P, O)=d (0, P) always.

(D.4) (the triangular property) d(P, Q)+ d(Q, R) > d(P, R) always.

Under these conditions, d is called a distance function for X. By abuse of
language, we may refer to the set X as a metric space, if it i1s clear what

distance function 1s meant.
In a metric space [X, d], for each P in X and each £ > 0, we define the

(open) e-neighborhood of P as the set
N(P,e)={Q|Q EXandd(P, Q) <e}.

More generally, for each M C X, and each ¢ > 0, the e-neighborhood of M
1S

N(M,e)={Q|Q€X and d(P,Q)<e forsomeP €M }.

We define
N =N(d)={N(P,e)lPEX and &>0}.



N(d) is called the neighborhood system induced by d. A set U C X 1s open if
it is the union of a collection of elements of 9. The set of all open sets is
O =0(9)=0(I(d)). O is called the topology induced by 9 (or by d).
Under these conditions, the pair [X, O] is a topological space, in the usual
sense; that is:

(0.1 ge0.

(0.2) X €0.

(0.3) O contains every union of elements of ©.

(0.4) O contains every finite intersection of elements of ©.

Closed sets, limit points, and the closure M of a set M C X are defined
as usual. The closure may also be denoted by Cl M.

In a topological space, let M and N be sets such that N contains an
open set which contains M. Then N is a neighborhood of M. (Note that this
1s not a new definition of the term neighborhood; rather, 1t 1s a definition of
the relation is a neighborhood of.)

Let [X, O] be a topological space. For each nonempty set M C X, let

O|M={M N U|UEO).

Then O|M is called the subspace topology for M, and the pair [M, O |M] is
called a subspace of [X, O]. In this book, when subsets of topological
spaces are regarded as spaces in themselves, the subspace topology will

always be intended.
Let V be a subset of R”, such that V forms a vector space relative to the

operations already defined in R™. Let v, € R™, and let
H=V + vy={w|lw =10+ v, for some v EV}.

Then H 1s a hyperplane. If dim V = k, then H 1s a k-dimensional hyper-
plane. If V' C R™, and no k-dimensional hyperplane, with kX < m, contains
more than k£ + 1 of the points of V, then V is in general position in R”.

A set W C R™ is convex if for each v, w € W, W contains the segment

vw={av+Bw|a,B>0,a+B=1}.

The convex hull of a set X C R™ 1s the smallest convex subset of R™ that
contains X (that is, the intersection of all convex subsets of R™ that
contain X).

Let V= {0, v,,...,0,} be a set of n + | points, in general pesition In |
R”, with n < m. Then the n-dimensional simplex (or n-simplex)

6" =1040,...0,

1S the convex hull of V. The points of V are vertices of 6”. The convex hull
7 of a nonempty subset W of V i1s called a face of a”. If 7 1s a k-simplex,
then 7 1s called a k-face of o”. (A l-simplex 1s called an ¢dge.) Under these
conditions, we write 7 << o”. (This allows the case 7= a".) A (Luclidean)

2



O Introduction

complex 1s a collection K of simplexes in a space R™, such that

(K.1) K contains all faces of all elements of XK.

(K.2) If o,7€ K, and o N 7+ g, then o6 N 7 1s a face both of ¢ and of .

(K.3) Every ¢ in X lies in an open set U which intersects only a finite
number of elements of XK.

The vertices of the elements of K will be called vertices of K. For each
i >0, K' is the i-skeleton of K, that is, the set of all simplexes of K that
have dimension < i.

These definitions will of course be generalized later, but for quite a
while we shall be concerned only with finite complexes in R>.

If K is a complex, then | K| denotes the union of the elements of K, with
the subspace topology induced by the topology of R™. (Thus we shall think
of |K| ambiguously, as either a set or a space.) Such a set is called a
polyhedron. If K 1s a finite complex, then | K| is a finite polyhedron.

The word function will be used in its most general sense. Thus a function

f: A—> B

s a triplet [ f, A, B], where A and B are nonempty sets, and fis a collection
of ordered pairs (a, b), with a € 4, such that (1) each a € 4 is the first
term of exactly one pair in f, and (2) the second term of a pair in f is

always an element of B. We define f(a) (a€ A) and f(A') (4’ C A) as
usual; and we define

f7'(b)={a|f(a)=b} (bEB),
f~'(B)={a|f(a)EB’} (B'CB).

If f(a) =f(a’)=a = a’, then [ is injective. If f(A) = B, then f is surjective,
and we write
f: A > B.

If both these conditions hold, then f 1s bijective, and we write
f: A< B.

A is called the domain, and B the codomain. (Note that the term surjective
would have no meaning if the codomain were not regarded as part of the
definition of the function.)

Barycentric coordinates, for a (Euclidean) simplex ¢”, are defined as
usual. (See Problems 0.10-0.15.) The barycentric coordinates of the points
P of o" are linear functions of the Cartesian coordinates, and vice versa. A
function f: 6> 7 1s linear if the coordinates of a point f(P) are hnear
functions of those of P (1n either sense of the word coordinate). If also
vertices are mapped onto vertices, then f is simplicial.

[.et G and H be collections of sets. If every element of G 1s a subset of
some element of H, then G 1s a refinement of H, and we write G < H.

Let K and L be complexes, in the same space R". If L < K, and
|L| = |K|, then L is a subdivision of K, and we write L < K.



Cicometric topology in dimensions 2 and 3

Theorem 1. Every two subdivisions of the same complex have a common
subdivision.

Let [X, O) and [Y, O’] be topological spaces, and let f: X— Y be a
function. If for each open set U in Y, f~'(U) is open in X, then f is a
continuous function, or a mapping. If such an f 1s biective, and both f and
f~! are mappings, then f is a homeomorphism. If there is a homeomorphism
f: XY, then the spaces are homeomorphic.

Let K and L be complexes, and let f be a mapping |K|—|L|. If each
mapping floe (6 € K) 1s simplicial, then f is simplicial. If there is a
subdivision K’ of K such that each mapping f|o (¢ € K’) maps o linearly
into a simplex of L, then f 1s piecewise linear. Hereafter, PL stands for
piecewise linear, and a PLH 1s a piecewise linear homeomorphism.

Let K and L be complexes, let ¢ be a bijection K°« L° and for each
v € K9 let v" = ¢(v). Suppose that if vyo, ... v, € K, then vpv} ... v, € L,
and conversely. Then ¢ 1s an isomorphism between K and L. If there is
such a ¢, then K and L are isomorphic. If K and L are complexes, and have
subdivisions K’, L’ which are isomorphic, then K and L are combinatorially

equivalent, and we write
K~ _ L.

C

Theorem 2. K~ _ L if and only if |K| is the image of |L| under a PLH.

Theorem 3. Combinatorial equivalence is an equivalence relation.

PROOF (SKETCH). By Theorem 1, the composition of two piecewise linear
homeomorphisms is a PLH. Now use Theorem 2. []

An n-cell 1s a space homeomorphic to an n-simplex. A 1-cell 1s ordin-
arily called an arc, and a 2-cell is often called a disk. A combinatorial n-cell
is a complex which is combinatorially equivalent to an n-simplex (or, more
precisely, to a complex consisting of an n-simplex and its faces). B

In a topological space, a set A is dense in a set Bif ACBCA. A
topological space [X, O] (or a metric space [X, d]) is separable if some
countable set 1s dense in X.

An n-manifold 1s a separable metric space M" in which every point has a
neighborhood homeomorphic to R”. If every point lies in an open set
whose closure 1s an n-cell, then M” 1s an n-manifold with boundary. The
interior Int M” of M" 1s the set of all points of M” that have open
Euclidean neighborhoods in M " (that 1s, neighborhoods home®dmorphic to
R”); and the boundary Bd M" is the set of all points of M" that do not.
Thus an »n-manifold with boundary i1s an n-manifold if and only if
Bd M" = .

The manifold-theoretic boundary, as just defined, is in general different
from the topological frontier of a set U in a space X. This 1s

FrU=Fr,U=UnX-U.




Only in very special cases are these the same. For example, if M2 is closed
in R? then it turns out that Bd M2 = Fr M?; but if we regard M? as a
subspace of R’, then Bd M? is the same as before, while Fr M? becomes
all of M 2. (The proofs are far from trivial.) Similarly, except in very special
cases, Int M" 1s different from the topological interior of a set M in a

space X; the latter 1s the union of all open sets that lie in M.
Let K be a complex, such that the space M = |K| is an n-manifold (or

an n-manifold with boundary). Then K 1s a triangulated n-manifold (or a
triangulated n-manifold with boundary). Sometimes, by abuse of language,
we may apply the latter terms to the space M = |K|, if it is clear what
triangulation 1s intended.

In addition to Bd and Fr, we now have yet a third kind of “boundary.”
Let K be a triangulated n-manifold with boundary. Then the combinatorial
boundary 0K of K is the set of all (n — 1)-simplexes of K that lie in only
one n-simplex of K (together with all faces of such (n — 1)-simplexes). Note
that 0 1s an operation on complexes to complexes, and not on spaces to
spaces. It is easy to show that |dK| is invariant under subdivision of K, and
hence that f(|dK|) = 0f(|K|) whenever f is a PLH. Thus 9 is adequate for
the purposes of strictly PL topology, in which combinatorial structures are
the sole objects of investigation. But 0 i1s not adequate for our present
purposes, because we propose to investigate the relation between combina-
torial structures and purely topological structures. We shall show (Theo-
rem 4.9) that if K 1s a triangulated 2-manifold with boundary, then
Bd |K| = [dK]|. The proof uses the Jordan curve theorem (Theorem 4.3).
The corresponding theorem for 3-manifolds with boundary is of a higher
order of difficulty. In Section 23, we shall deduce it from the following
classical result of L. E. J. Brouwer.

Theorem 4 (Invariance of domain). Let U be a subset of R", such that U is
homeomorphic to R". Then U is open.

See W. Hurewicz and H. Wallman [HW], p. 95.

It may be possible to avoid the use of Brouwer’s theorem (or some
equally deep result in a continuous homology theory) by a long series of ad
hoc devices; but this hardly seems worth the trouble, even if it can be
done, and the author does not propose to find out whether it can be done.

In a complex K, for each vertex v, St v is the complex consisting of all
simplexes of K that contain v, together with all their faces. This is the star
of v in K. The link L(v) of v in K is the set of all simplexes of St v that do
not contain v. If |K| is an n-manifold, and each complex Stov is a
combinatorial n-cell, then K is a combinatorial n-manifold. Similarly for
manifolds with boundary.

The above definitions are based, at this stage, on the definition of a
(Euclidean) complex. A later generalization of the idea of a complex will
give a more general definition of a combinatorial manifold.
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We shall assume that the reader knows the bare rudiments of the
homology theory of complexes. We shall always use integers as
coefficients; thus the n-dimensional homology group H (K) will always be
the group H, (K, Z). We shall never use relative homology, singular homol-
ogy, or cohomology.

PROBLEM SET 0

See the remarks on problems, at the end of the preface. Prove or disprove
the following propositions.

1. Let {X, d] be a metric space, let 9N = N (d), and let © = O(9). Then O
satisfies Conditions O.1-0.4 of the definition of a topological space.

Definition. Let 4 and d’ be two distance functions for the same nonempty
set X. If O (9U(d)) = O(9U(d")), then d and d’ are equivalent.

2. Let [X, d] be a metric space. Then there 1s a bounded distance function d’ for
X such that d and d’ are equivalent.

Definition. A Hausdorff space i1s a topological space in which every two
points lie in disjoint open sets.

3. Let [X, O] be a topological space in which every point has an open neighbor-
hood homeomorphic to R* Then [X, O] is Hausdorff.

4. Let [X, O] be a topological space; and suppose that for every topological space
[Y, O], every function f: X — Y is continuous. What can we conclude about
0? In particular, does it follow that [X, O] is metrizable, in the sense that
O = 0(9U(d)) for some distance function d?

Let C be a circle in R% Then C is in general position in RZ.
Let C be a circle in R3. Then C is in general position in R3.

R? contains an infinite set which is in general position in R

A A

Let K and L be collections of simplexes in R”, satisfying K.l and K.2 in the
definition of a complex, but not necessarily K.3. The relation of isomorphism
between K and L is defined in exactly the same way as for complexes. If there
1s an isomorphism between K and L, then there is a homeomorphism between
|K| and |L|. (Here, as for complexes, |K| is the union of the elements of K;
similarly for L. |K| and |L| are being regarded as spaces, with the subspace

topology.) )
9. For each W C R”™, the convex hull of W 1s convex.
10. Let V = {vy, vy, ..., v,} be In general position in R”, with n < m. Let

n
T" = {v|v = > qu, a; 20, Dy, = I}.

j om ()

Then 77 18 convex.

6



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

O Introduction

Let 7”7 be as in Problem 10, and let v € 0", with v 5= v,. Let

1= [w|w= i B,-v;,ﬁ,-?O,EB;---l}.

i=1

Then there is point w of 77~ ! such that v € vyw.

Let V and 7" be as in Problem 10. Then every convex set that contains V
contains 7°”.

o” = 7", That is,
ooV ...V, = {v]lo=3a;v;, ¢; >0, Za;=1}.
Given V= {vy, v),...,0,} CR” (n < m). For 1 < i< n,let v =1v, — vy; and

let V' = {v/}. If V 1s 1n general position in R™, then V"’ is linearly independent,
and conversely.

Given 6" = vgv; .. . v, CR™. Let
V=200, w=2 Bv € o”,

as 1n the definition of 7" = ¢” in Problems 10-13. If v = w, then a; = 8; for
each i. (Thus it makes sense to define the barycentric coordinates of v as

(ag, ayy . . .5 Q,).)

For 1 < j < m let E; be the point of R™ with 1 as its jth coordinate, and with
all other coordinates = (. Thus

m
(xl, X%y s o oy xm) = 2 ij}.
jm

Given o”" = vy, ...v,, there are numbers q; (0<i<n, 1< ;< m) and
numbers b; (1 < j < m) such that if v € ¢”, and

v=2av,=2xE,
then

-x‘:j = Eiaﬁai + b}

for each j. (It is in this sense that the Cartesian coordinates of v are linear
functions of the barycentric coordinates of v.)

Let v € 0", v=2a;v; = Xx;E;, as in Problem 16. Then the numbers «; are
linear functions of the numbers x;.

Let K be a finite complex in R?, and let {L,} be a finite collection of lines.
Then K has a subdivision K, in which each set L, N |K| forms a subcomplex.

Every two subdivisions K, K, of a 2-simplex ¢* C R* have a common subdivi-
S101.

Let K be a 2-dimensional complex (that is, a complex in which every simplex
has dimension < 2). Then every two subdivisions of K have a common

subdivision.

Let K and L be complexes. If K and L are isomorphic, then there 1s a
simplicial homeomorphism between |K| and [L]|.
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22,

23.

24.

25.

27.
28.

29.

30.

31.

32.

33.

For 2-dimensional complexes, the composition of two piecewise linear homeo-
morphisms is a PLH.

Let 0 and 7 be (Euclidean) simplexes, and let f be a piecewise linear homeo-
morphism o — 7. Then f(o6) is a simplex.

Let K and L be complexes. If there is a PLH between |K| and |L|, then
K~ _ L; and conversely.

For 2-dimensional complexes, combinatorial equivalence 1s an equivalence
relation.

. Let K be a finite complex in R”, and let { E;} be a finite collection of planes.

Then K has a subdivision in which each intersection E; N | K| forms a subcom-
plex.

Every two subdivisions of a 3-simplex have a common subdivision.

L.et K be a 3-dimensional complex. Then every two subdivisions of K have a
common subdivision.

In a topological space, if U is open, then Fr U= U — U.

Let [X, O] be a Hausdorff space in which every point has an open neighbor-
hood which 1s homeomorphic to R. Then [X, O] is separable and metrizable,
and thus is a 1-manifold.

Let[X, O]and [Y, O] be topological spaces, and let f be a function X > Y. If f
1s bijective and continuous, then f is a homeomorphism.

Every two combinatorial 2-cells are combinatorially equivalent. Similarly for
combinatorial 3-cells.

Let vyv,...v, be an n-simplex in R”. Then every point v of R” can be
represented in the form

v = Xauv;,

where a; € R for each i.

Let K be a complex. If | K| is compact, then K is finite. (Of course the converse
is trivial.)



Connectivity

A path, in a space [X, O] (or {X, d]) is a mapping
p: [a, b] — X,

where [a, b] is a closed interval in R. If p(a) = P and p(b) = Q, then p 1s a
path from P to Q. A set M C X 1s pathwise connected if for each two points
P, O of M there 1s a path p: [a, b]> M from P to Q (or from Q to P). If
M C X, and |p| = p([a, b]) C M, then p is a path in M.

Theorem 1. In a topological space [X, O), let G be a collection of pathwise
connected sets, with a point P in common. Then the union G* of the
elements of G is pathwise connected.

PrOOF. Given Q € g, € G, R € g € G, let p be a path in g, from Q to P,
and let g be a path in g, from P to R. Then p and g fit together to give a
path r,1n g, U gz C G*, from Q to R. B

Let M and N be sets, in topological spaces [X, O] and [Y, O']. A

function f: M — N 1s a mapping if f 1s a mapping relative to the subspaces
[M, O|M] and [N, O'|N].

Theorem 2. Pathwise connectivity is preserved by surjective mappings. That

is, if [: M — N is a mapping, and M is pathwise connected, then so also is
N.

PROOF. Given P, Q € N, take P’, Q' € M such that f(P')= P and f(Q’)

= (); and let p be a path in M from P’ to Q’. Then f(p) is a path in N
from P to Q. L]

A complex K 1s connected if it 1s not the union of two disjoint nonempty
complexes.




Theorem 3. Every simplex is pathwise connected.

PROOF. Because it 1s convex. ]

Theorem 4. Let K be a complex. If K is connected, then |K| is pathwise
connected.

PrOOF. Let v, € K°. We shall show that for each v € K there is a path in
|K'| from v, to v. Let V be the set of all vertices v of K that have this
property, and let K, be the set of all simplexes of K all of whose vertices lie
in V. Then K, is a subcomplex of K, and no edge of X intersects | K| and
K® — V. Therefore no simplex of K intersects |K,| and K°— V. Let
K,= K — K,. Then K, is a subcomplex of K, and K; N K, = ¢J. Since K is
connected, K, = . Therefore K; = K, and V 1s all of K 0 which was to be
proved.

Now take v €0 € K, w € 7 € K. Take a path in o from v to a vertex v,
of 0, then a path in |K'| from v, to a vertex v, of 7, and finally a path in 7
from v, to w. These fit together to give a path from v to w. u

For the reasons suggested by Theorems 3 and 4, the idea of pathwise
connectivity is adequate in the study of polyhedra. The following idea,
however, is more broadly applicable, and in some ways it is conceptually
more natural.

A topological space [X, O] 1s connected if X is not the union of two
disjoint nonempty open sets. A set M C X 1s connected if the subspace
[M, O|M] is connected.

Two sets H, K are separated if

HNnK=HnK=g¢.

(Thus neither of the sets H and K contains a point or a limit point of the
other.)

Theorem 5. Given M C X, M = H U K. Then (1) H and K are separated if
and only if Q) H, K € O|M and H N K = (.

PrOOF. Suppose that (1) holds. Let U be the union of all open sets that
intersect Hbutnot K. Then HcUand UnNnK=g,sothat H=M N U
e 0 |M. Similarly, K € O |{M. Therefore (2) holds.

Suppose, conversely, that (2) holds. Take U € 0, such that H=M N U.
Then H contains no point or limit point of K. By logical symmetry, K
contains no point or limit point of H. Thus (1) holds. ]

Theorem 6. A set M C X is connected if and only if M is not the union of two
nonempty separated sets.

PrOOF. By Theorem 5. ]
10



Theorem 7. For spaces, connectivity is preserved by surjective mappings. That
is, if [X, O] is connected, and [: X —»Y is a mapping, then |Y, Q'] is
connected.

PrROOF. Suppose not. Then Y = U U V, where U and V are disjoint, open,
and nonempty. Therefore X = f~Y(U)uU f~'(V), and the latter sets are
disjoint, open, and nonempty, which 1s impossible. []

Theorem 8. For sets, connectivity is preserved by surjective mappings.

ProoF. By the preceding two theorems. []

Theorem 9. Every closed interval in R is connected.

PrROOF. This turns out to be the nth formulation of the continuity of R.
Suppose that [a, b] = H U K (separated), with a € H. Let

M= {x|x=aor|[a,x]CH]}.

Then M is bounded above. Let ¢ be the least upper bound of M. Then
c €la, b), cis a limit point of H, c & K, andsoc € H.If c < b, then c is a
limit point of K, which contradicts the hypothesis for H and K. Therefore
c=b, H=|a, b}, and K= g. Thus [a, b] is not the union of any two
nonempty separated sets. []

Theorem 10. If H and K are separated, then every connected subset M of
H U K lies either in H or in K.

PrOOF. If not, M = (M N H) U (M N K), where the two sets on the right
are separated and nonempty. (Evidently, if H and K are separated, and

H’' c H and K’ C K, then H’ and K’ are separated.) []

Theorem 11. Fvery pathwise connected set is connected.

ProoOF. Suppose that M is pathwise connected but not connected, so that
M = H U K (separated and nonempty). Take P € H, Q € K; and let p be
a path from P to Q in M. By Theorems 8 and 9, the image |p| = p([a, b))
C M is connected. By Theorem 10, |p| lies either in H or in K, which 1s

false. L]

Theorem 12. Let K be a complex. Then the following conditions are equiv-
alent:

(1) K is connected.
2) |K| is pathwise connected.
(3) |K| is connected.

Proor. (1)=(2), by Theorem 4. (2)=(3), by Theorem 11. Suppose, finally,
that (1) is false, so that K= K, U K,, where K, and K, are disjoint
nonempty complexes. From Condition K.3 of the definition of a complex,

11



it follows that no point o of |[K| s a limit point of the union of the
simplexes of K that do not contain o. Therefore |K,| and |K,| are sep-
arated, and | K| is not connected. Thus (3)=(1). ]

An arc 1s a 1-cell, that is, a set homeomorphic to a closed linear interval.
A broken line 1s a polyhedral arc.

Theorem 13. In R”, every connected open set U is broken-line-wise con-
nected.

PROOF. Let P € U, and let V the union of { P} and the set of all points of
U that can be joined to P by broken lines lying in U. It is then easy to

show that both U and U — V are open. If U — V # @, then U i1s the union
of two disjoint nonempty open sets, which is false. []

We now resume the discussion of connectivity in topological spaces.

Theorem 14. Let G be a collection of connected sets, with a point P in
common. Then the union G* of the elements of G is connected.

PROOF. Suppose that G* = H U K (separated and nonempty), with P € H.
Since each g € G 1s connected, each g lies in H or in K. Therefore g C H,
G* C H, and K = @, which contradicts the hypothesis for X. []

Theorem 15. If M is connected, and M C L C M, , then L is connected.

PROOF. Suppose that L = H U K (separated and nonempty). Let H' = M
N H and K'=M N K, so that M= H'J K’. Then H’ and K’ are sep-
arated. Now H contains a point P of L, and P is a point or a limit point of
M. Therefore P is a point or a limit point either of H' or of K’. But P is
neither a point nor a limit point of K’ C K. Therefore P is a point or a
limit point of H'. Therefore H’ # @&. Similarly, K’ #* @. Therefore M is not
connected, which 1s false. []

Let M be a set, and let P € M. The component C(M, P) of M that
contains P is the union of all connected subsets of M that contain P. (By

Theorem 14, every set C (M, P) is connected.)

Theorem 16. Every two (different) components of the same set are disjoint.
Theorem 17. If M C N, then every component of M lies in a component of N.

There 1s a gross difference between connectivity and pathwise connec-
tivity. We have shown (Theorem 11) that the latter implies the former, but
the converse is false. For example, let M be the graph of f(x) = sin (1/x)
(0 < x < 1/7), in R?, together with the points (0, 1) and (0, — 1). It can be

12



shown, with the aid of Theorems 9, 14, 8, and 15, that M 1s conncecled. But
it can also be shown that there ts no path in M from (0, 1) (or (0, — 1)) to
any other point of M. There are worse examples. E.g., there 1s a compact
connected set in R in which all paths are constant. See B. Knaster [K] or
the author [M]. From the viewpoint of pathwise connectivity, such a set is
indistinguishable from a Cantor set.

PROBLEM SET 1

Prove or disprove:

1.

N e » oA

10.

11.

12.
13.

14.

A closed set 1s connected if and only if it is not the union of any two disjoint
nonempty closed sets.

. An open set 1s connected if and only if it 1s not the union of any two disjoint

nonempty open sets.

. Every open interval (a, b)) = {x|a < x < b} in R is connected. Similarly for

half-open intervals (a, b] = {x|a < x < b}.

. Let f be a continuous function (a, b] > R. Then the graph of f 1s connected.

. The set M described at the end of Section 1 1s connected.

No nonconstant path in M contains the point (Q, 1).

Let M be a pathwise connected set in R?, let P € M, and suppose that M — P
i1s connected. Then M — P 1s pathwise connected.

Let U be a connected open set in R%. Then U is pathwise connected.

Let U be as 1n Problem 8. Then there is at least one point P of Fr U such that

U U { P} is pathwise connected. In fact, the set of all such points P 1s dense in
Fr U.

Let {P,, P,,...) be a countable set which is dense in the unit circle C in R
For each i, let the polar coordinates of P; be (1, #.); and let I, be the linear
interval from P; to (1/1, 8,). Let

M={0©0}u U I

i=1
Then the components of M are {(0, 0)} and the sets I,.

In a metric space [ X, d], for every two separated sets H, K there 1s an ¢ >
such that if P € H and O € K, then d(P, Q) > &.

Reconsider Problem 11, for the case in which H 1s compact.

In a metric space, every two separated sets lie in disjoint open sets. (Note that
this 1s not a corollary of Theorem 35.)

In a metric space, let M, M,, ... be a sequence of nonempty connected sets;
and suppose that the sequence is nested, in the sense that M, , C M, for each i.

Then M. M, is connected.

13
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15. Let M be a compact set, in a metric space. Let P and Q be points of M.
Suppose that M is not the union of any two disjoint closed sets H and K,
containing P and Q respectively. Then M contains a compact connected set

which contains P and Q.

16. In a metric space, let P and Q be points, and let M, M,, ... be a nested
sequence of compact sets, such that (1) P, Q € M, for each i, and (2) no set M,
is the union of two disjoint closed sets H and K, containing P and Q

respectively. Then (1) M, has Properties (1) and (2).

17. Let K be a complex, such that |[K| is an n-manifold. Then K 1s called a
triangulation of | K|, and is called a triangulated n-manifold. Show that if K 1s a
triangulated #-manifold, and v € K°, then L(v) is connected.

18. Let K be a connected 2-dimensional complex in which each vertex lies 1n
exactly three edges and exactly three 2-simplexes. What can you conclude?

19. If Condition K.3 is omitted from the definition of a complex, then Theorem 12
becomes false.

20. In any topological space, every two separated sets lie in disjoint open sets.

A linear ordering of a set R is a relation <, defined on R, such that

(0.1) a < a never holds.

(02) a<b<c = a<ec.
(0.3) For each a, b € R, one and only one of the following conditions

holds:
a <b, a=0b, b < a.

The pair [R, <] is then called a linearly ordered set. Open intervals in R are
defined as in the real number system:

(a, b) = {x|x €ER and a < x < b},
(a, ) = {x]a < x},
(—o00,a)={x|x <a}.

A subset U of R is open if it is the union of a collection of open intervals;
and O(<) is the set of all open sets. [R, <] is complete (in the sense of
Dedekind) if every nonempty subset of R which has an upper bound has a

least upper bound.

21. (a) O(<) 1s a topology for R.
(b) If [R, O(<)] 18 connected, then [R, <] is complete.

22. If [R, <] is complete, then [R, O(<)]is connected.

23. If [R, <] is complete, ther every nonempty subset of R whichihas a lower
bound has a greatest lower bound.

24. Given [R, <], and M C R, there are two natural ways to define a topology for

M.
(a) Use O(<)|M.



(b) Let < |M be the restriction of < 1o M, so that </ |M is a linear ordering of
M. Then use O(< |M).
Is it true in general that O (<)M = 0(< |M)?

25. Let [X, 0] and [Y, O] be topological spaces, and suppose that [X, O] is
compact. If f is a bijective mapping X < Y, then f is a homeomorphism.

26. Let A be a connected set, and let G be a collection of connected sets each of
which intersects 4. Then the union G* of the elements of G is connected.



Separation properties
of polygons in R?

We recall that a set N is a neighborhood of a set M if N contains an open
set which contains M. The standard n-ball 1s

B"={P|P €R"and d(Fy, P) < 1},
where P, 1s the origin in R". The standard n-sphere 1s
S"={P|P €R"and d(Py, P)=1}.

A space (or set) S” 1s an n-sphere if §” is homeomorphic to S". A polygon
1s a polyhedral 1-sphere. For each complex K, K is called a triangulation of

K.

Theorem 1. Let J be a polygon in R%: Then R*—J has exactly two
components.

PrOOF. Let N be a “strip neighborhood” of J, formed by small convex
polyhedral neighborhoods of the edges and vertices of J. (More precisely,
we mean the edges and vertices of a triangulation of J.) Below and
hereafter, pictures of polyhedra will not necessarily look like polyhedra.
Only a sample of N is indicated in Figure 2.1.

N LA

I 11 t v

110 | VA
Figure 2.1
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Lemma 1. R? — J has at most two components.

PROOF. Starting at any point P of N — J, we can work our way around the
polygon, along a path in N — J, until we get to either P, or P,. (See Figure
2.2.) From this the lemma follows, because every point Q of R* — J can be

joined to some point P of N — J by a linear segment in R* — J. (]
P
7 R
(@) (D)
Figure 2.2

It i1s possible a prior1 that N —J has only one component. If so, N
would be a Mobius band. (See Section 21 below.) But this is ruled out by
the next lemma.

Lemma 2. R?> — J has at least two components.

PrROOF. We choose the axes in general position, in the sense that no
horizontal line contains more than one of the vertices of J. (This can be
done, because there are only a finite number of directions that we need to
avoid. Hereafter, the phrase “in general position” will be defined in a
variety of ways, in a variety of cases. In each case, the intuitive meaning
will be the same: general position is a situation which occurs with probabil-
ity 1 when certain choices are made at random.)

For each point P of R? let L, be the horizontal line through P. The
index Ind P of a point P of R® — J is defined as follows. (1) If L, contains
no vertex of J, then Ind P is the number of points of L, N J that lie to the
left of P, reduced modulo 2. Thus Ind P is 0 or 1. (2) If L, contains a
vertex of J, then Ind P 1s the number of points of L' N J, lying to the left
of P, reduced modulo 2, where L’ 1s a horizontal line lying “slightly above”
or “shightly below” L,. Here the phrases in quotation marks mean that no
vertex of J lies on L', or between L, and L’. It makes no difference
whether L’ lies above or below. The three possibilities for J, relative to L,
are shown in Figure 2.3. In each case, the two possible positions for L’ give
the same index for P.

Evidently the function

f: R®—J {0, 1},
f: P> Ind P

17
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@) (b)
Figure 2.3

is a mapping; if Ind P = i, then Ind P’ =i when P’ 1s sufficiently close to
P. The set f ~!(0) is nonempty; every point above all of J belongs to f ~'(0).
To show that f~'(1) @, let Q be a point of J, such that L, contains no
vertex of J. Let P, be the leftmost point of J on L,. Let P be a point of
L,, slightly to the right of P, in the sense that P & J, and no point
between P, and P belongs to J. Then Ind P = 1.

Therefore R*> —J is not connected; it is the union of the disjoint
nonempty open sets f ~'(0) and £~ (). ]

The bounded component I of R* — J is called the interior of J, and the
unbounded component E is called the exterior.

Theorem 2. Let I be the interior of the polygon J in R% Then I is a finite
polyhedron. That is, there is a finite complex K in R* such that |K|=1I.

ProoFf. Let L, L,, ..., L, be the lines that contain edges of J. These lines
are finite in number, and each intersects the union of the others in a finite
number of points. Note that some sets L, N I may not be connected; this
does not matter. Each line L, decomposes R* into two closed half-planes
H., H/; and any finite intersection of closed half-planes 1s closed and
convex. Therefore U ;_,L; decomposes R* into a finite collection of closed
convex regions R, R,, ..., R, such that for each j we have Fr R; C
U ;- ,Li. Now R,n J C Fr R, for each . It follows that for each j we have
either R, N I CJ or R; C I. Thus I is the union of the sets R; that lie in J,
and so it 1s merely a matter of notation to suppose that

k
I=J R,
j=1
For each j < k, Fr R; is the union of a finite number of 1-simplexes. We
choose the triangulations of the sets Fr R; to be minimal, in the sense that
if two edges of R, have an end-point in common, then they are not

collinear. For each j, we choose a point w; of R, — Fr R;, and for each

1 Q



i H'F“I“UIUII 'ﬂ'l“'ﬂ'.l YEWW /B FV!JEUIIF‘ S48 B

Figure 2.4

[-simplex vv” of Fr R; we form the 2-simplex w,vv’. (See Figure 2.4.) This
gives a triangulation of R;. The union of these 1s a triangulation of 1. []

We recall that an arc 4 1s a 1-cell, that is, the image of a 1-simplex, say,
[0, 1] C R, under a homeomorphism f. Obviously [0, 1] 1s a 1-manifold with
boundary; the entire space [0, 1] 1s a 1-cell neighborhood of each of its
points. And Int [0, 1] and Bd [0, 1] are identifiable. Evidently the open
interval (0, 1) lies in Int [0, 1]; it 1s a Euclidean neighborhood of each of its
points. And {0, 1} ¢ Bd [0, 1]. The reason is that for each x ER, R — {x}
i1s not connected, while if U is a connected open set in [0, 1], containing O,
then U — {0} 1s connected. Similarly for 1. Therefore Int [0, 1] = (0, 1) and
Bd [0, 1] = {0, 1}. It follows immediately that if 4 = f([0, 1]) is an arc, with
P=f(0) and Q= f(1), then BdA={P,Q} and IntA=A4A—-{P,Q}. P
and Q are called the end-points of A, and A is called an arc between P and

O

We recall that a broken line B 1s a polyhedral arc.

Theorem 3. No broken line separates R*. That is, if B is a broken line in R,
then R* — B is connected.

PROOF. Form a strip-neighborhood N of B. As in the proof of Lemma 1 in
the proof of Theorem 1, each point P of N — B can be joined to either P,
or P, by a path in N — B. (See Figure 2.5.) But if P, and P, are near an

Figure 2.5
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end-point, as in the figure, then P, can be joined to P, by a path in N — B.
Therefore N — B 1s connected. Therefore, as in the proof of Theorem 1,
R’ — B is connected. ]

Theorem 4. Let X be a topological space and let U be an open set. Then
FrU=U-U.

PrOOF. By definition, Fr U=U n X — U. Therefore Fr U c U. Since U is
open, we have U N X — U=@. Since Fr U CX — U, it follows that Fr U

C U — U. Next observe thai if PeU- U, then P € U and
PeX—-UcX— U. Therefore U— U C Fr U. The theorem follows. []

Theorem 5. Let J be a polygon in R>, with interior I and exterior E. Then
every point of J is a limit point both of I and of E.

PrROOF. Let F=FrI=1—1I. Then F separates R?:

RZ— F=ITU(R*-1),
and the sets on the right are disjoint, open, and nonempty; R? — I contains
E; FcCJ, and F 1s closed. If F# J, then F lies in a broken line B c J.

Now
R*-B=1U|R*—(1U B)].

The sets on the right are disjoint, open, and nonempty; the second set
contains E. Therefore R* — B is not connected, which is impossible. []

Theorem 6. Let J, I, and E be as in Theorem 5. Then

i J=FrI=FrE. i
ProorF.J CI,and J NI=@. Therefore J CI—I=FrI. AndI—-1CJ,
because FE is open. Therefore J = Fr I. Similarly, J = Fr E. []

Let M be a set which is the union of three arcs B,, B,, B;, with the same
end-points P and Q, but with disjoint interiors. Then M is called a 8-graph.
It is not hard to see that if M is known, then {B,, B,, B;} and {P, Q} are

determined.

Theorem 7. Let M = B, U B,U B, be a polyhedral 0-graph in R®, with
Bd B,={P, Q}. Then

(1) Every component of R> — M has a polygon B, U B; as its frontier, and
(2) Exactly one of the sets B, lies, except for its end-points, in the interior
of the polygon formed by the other two.

PROOF.

(1) Let U be a component of R> — M. It is easy to see geometrically that
if Fr U contains a point of a set Int B,, then Fr U contains all of Int B,
and therefore all of B. Consider a small circular neighborhood of P (or

Q). Suppose that Fr U D B; U B,, as in Figure 2.6. Then Fr U C\ Int B; =
20
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Figure 2.6

@, because U and Int B, lie in different components of R*— (B; U B,).
Since Fr U c M= U B, it follows that Fr U= B, U B,.
(2) Since M 1s bounded, its complement has only one unbounded

component E. Suppose that Fr £ = B, U B,. Again consider a small circu-
lar neighborhood N of P (or Q). (See Figure 2.7.) Here EN N and

B>
I

Figure 2.7

Int B, N N are in different components of R* — (B, U B,). Since Int B, is
connected, it follows that Int B, lies in the interior of B, U B;.

Finally, if also Int B, lies in the interior of B, U B;, then Int B, 1s
“accessible from infinity” by broken lines disjoint from B, U B,, which 1s
impossible, because Int B, lies in the bounded component of R*— (B, U
B;). Thus B, is unique. ]

Theorem 8. Let B,, B,, B, be as in Theorem 1, with Int B, in the interior 1,
of B, U B,;. Then

(1) The components of I, — Int B, are the interiors I, and I,, of B, U B,
and B, U B,.
(2) 1)3=1,,U Iy,

are connected and separated.
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Proor. Let £, be the exterior of B, U B;. Then the bounded components
of RR—M=R"- U B, lie in I,;, and each of them has a polygon 1n
U B, as its frontier. Again consider a small circular neighborhood of P.
(See Figure 2.8.) The circular sectors A, and A4, lie in different components

Figure 2.8

of R* — U B,, because they lie in different components of the larger set
R’ — (B, U B ) Therefore no bounded component U of R*— U B, has
B, U B, as its frontier. Thus the remaining possibilities are Fr U= B, U B,
and Fr U= B, U B,. These give the bounded components 7,, and I 13, 8O

that (1) holds. We now have I,,=I,UInt B,u I,; and I,, = I,, U 1,3, SO
that (2) holds. From this we easily get (3). (See Theorem 1.15.) []

The following definitions will be needed in Problem set 2, and also later.

Let C be a connected set, let D be a subset of C, and let P and Q be
points of C. If C — D is the union of two separated sets containing P and
Q respectively, then we say that D separates P from Q in C. If H,, H, are
disjoint sets in C — D, and C — D is the union of two separated sets
containing H, and H, respectively, then D separates H, from H, in C.

Let K be a 1-dimensional complex (connected or not, finite or not).
Then both K and | K| are called linear graphs. A set homeomorphic to such
a |K| is called a topological linear graph.

Let A be an arc, with end-points P and Q, and let M be a set. If
ANM=P(or ={P, Q}), then we say that A touches M at P (or at P and
Q). Let A and B be arcs in R?, and suppose that (1) 4 N B is a point P
belonging to Int A N Int B and (2) there is a neighborhood N of P such
that N — A4 1s the union of two separated sets H and K, such that P is a
limit point of each of the sets B " H and B N K. Then B crosses A at P in
N. If such an N exists, then B crosses A at P. (For the present, we shall be
concerned only with the case in which 4 and B are polyhedral.) Similarly,
if each of the sets 4 and B i1s either an arc or a 1-sphere, then B crosses A
at P 1f there are arcs A, C 4 and B, C B such that B, crosses A, at P.

>
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PROBLEM SET 2

Prove or disprove:

1.

Every open interval (a, b) C R is homeomorphic to R. (This was stated but not
verified, in the proof that Int [a, b] = (a, b).)

2. More generally, for each € > 0, let N (P,, €) be the e-neighborhood of the origin

3.

4.

P, in R”. Then N (P,, €) and R” are homeomorphic.

Let A and B be broken lines in R?. If B crosses A at P, then B crosses A at P in
every sufficiently small neighborhood N’ of P.

Let A and B be broken lines in R?. If 4 crosses B at P, then B crosses A at P.

5. Let J, and J, be polygons in R*. If J, crosses J, at P, then J, crosses J, at P.

6. Let J, and J, be as in Problem 5. If J, crosses J, at P, then J, crosses J, at

7.

some other point Q.

Let 4 and B be broken lines in R* with AN B=Int4NInt B={P).
Suppose that there is a connected neighborhood N of P such that N " 4
separates two points of N N B from one another in N. Then B crosses A at P.

8. The condition “D separates P from Q in C” 1s preserved by homeomorphisms.

9. LetJ be a 1-sphere, and let P, O, R, S be four (different) points of J. If { P, R}

separates Q from S 1n J, then {Q, §'} separates P from R in J.

A topological space [X, O] is linearly ordered if there is a linear ordering <
of X such that @ = 0 (<). (See the definitions preceding Problem 1.21.)

10. Every arc 1s a linearly ordered space.

11.

No 1-sphere 1s a linearly ordered space.

12. Let J be a polygon in R? and let P, O, R, and S be four points of J, appearing

13.
14.

16.

in the stated cyclic order on J (by which we mean that { P, R} separates
from S in J). Let B, and B, be disjoint broken lines in R?, such that B, touches
J at P and R, and B, touches J at Q and S. Then Int B, and Int B, lie in

different components of R — J.
Let J be a 1-sphere, and let P € J. Then J — P 1s homeomorphic to R.

Let J, and J, be polygons in R?, such that (1) J, crosses J, at a point P and (2)
J, N J, is finite. Then J, crosses J, at some other point Q.

. Let M, be a space formed as follows. For i = 1, 2, 3, P, and Q, are points of

M,; these are six (different) points. M, is the union of a collection { B;;} of arcs
(i,j =1, 2, 3) such that for each i, j, B; is an arc between P; and ();, and such
that the sets Int B;; are disjoint. Any set homeomorphic to such an M, 1s called

a skew graph of type 1. Show that R* contains no polyhedral skew graph of type
.

Let M, be a space formed as follows. Let P, P,, ..., Ps be five points. For

cach i # j, let B; be an arc between P; and P;. (Here B; = B;;; we are using
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unordered pairs of integers.) We choose the sets B, so that their interiors are
disjoint. Let M, be their union. Any set homeomorphic to such an M, is called
a skew graph of type 2. R? contains no polyhedral skew graph of type 2.

17. Let M = |K| be a connected linear graph. If M contains no polygon, then M is
a tree. A set homeomorphic to such a |M| is called a topological tree. If
M = | K| is a finite tree (that is, if M is compact and X is finite), then there is a
polyhedron N in R? such that M and N are homeomorphic.

18. Let K be a 1-dimensional complex, and let v be a vertex of K. If v lies in
exactly n edges of K, then v is a vertex of order n in K. If |[K’| =|K}|,and v is a
vertex of order n in K, then v is a vertex of K’, and is of order n in K’.

19. Let M = |K,| = |K,| be a finite linear graph. Then K, and K, are combinatori-
ally equivalent.

20. Let M = |K| be a finite tree. (See Problem 17.) Then at least two vertices of K
are of order 1 in K.

21. Let M =|K| be a connected finite linear graph, let P and Q be vertices of K,
and suppose that no point of M separates P from Q in M. Then M contains a

polygon which contains P and Q. (The converse is trivial.)

. Let M, =|K,| and M, = |K,| be connected finite linear graphs in R If M, and
M, are homeomorphic, then there is a homeomorphism f: RZ<R? such that
J(M,)=M,.

23. The proposition stated in Problem 20 is true for all infinite trees.

24. The proposition stated in Problem 22 holds for infinite connected linear
graphs.

25. The proposition stated in Problem 19 holds for infinite connected linear
graphs.

26. Let 02 be a 2-simplex in R% Then U = 6% — Fr o2 is a polyhedron. (Obviously
any triangulation of U must be infinite, since U 1s not compact.)

27. Every open set U in R? is a polyhedron.

28. Let M =|K| be a connected finite linear graph in R? and let P €R*— M.

Then every neighborhood N of M contains a polygon J which separates M
from P in R2.

. Let M = | K| be a finite linear graph in R?, and let C; and C, be components of
M. Then every neighborhood of C; contains a polygon J such that (1)
J N M =@ and (2) J separates C, from C, in R?.

30. Let M be a finite linear graph in R? let P and Q be points of R*> — M, and
suppose that M separates P from Q in R%. Then some component of M has the
same property.

31. Let M, P, and Q be as in Problem 30. Then M contains a polygon J which
separates P from Q in R2.
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A2, l.ct M be a compact set in R? and let U be an open set containing M. Then
there 1s a finite polyhedral 2-manifold N with boundary such that (1) N is a
neighborhood of M and 2) N C U.

WV, For cach M and U as in Problem 32, N can be chosen so that also (3) every
iwo different components of R? — N lie in different components of R* — M.
(Thus N *has no more holes in it than M.”)



The Schonflies theorem
for polygons in R*

We now want to show that all polygons are situated in the plane in exactly
the same way, topologically. That is, if J and J’ are polygons in R? then
there is a homeomorphism f: R*<R? such that f(J)=J’. For this, we
need some preliminary results.

Theorem 1. Let 6" =vyv, ... v, and 7" = wyw, .. . w, be simplexes in R™.
Then there is a simplicial homeomorphism
10" 1",
o> w

PrROOF. For each v = 2 a;v; (a; > 0, 2o, = 1), define f(v) = 2 a;w;. Then f is
bijective, and f and f~! are continuous. (For details, see Problems
0.10-0.17. Since f and f~ ' are linear relative to barycentric coordinates,
they are linear relative to Cartesian coordinates, and so both are continu-

ous relative to the subspace topology, which we are using, as always.) [

Theorem 2. In Theorem 1, if m=n, then there is a homeomorphism
g: R"&R” such that gle” is a simplicial homeomorphism 6" < 1",

ProoOF. The mapping v > v — v, is a homeomorphism R"«R", and maps
every simplex simplicially onto a simplex. The composition of two such
mappings has the same properties. Therefore we may assume, with no loss
of generality, that v, is the origin 1n R”. Similarly for w,. It follows that
{vy,0p,...,0,} and {w,, w,, ..., w } are linearly independent. Now for
every

n
v= D av,ER",
i=1 »
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we define

n
g(v) = 2 “iwl"

jmm ]

Now gla” is the f of Theorem 1. ]

|.ct / be the interior of the polygon J in R*. By Theorem 2.2, I is a finite
polyhedron |K|. If 6% € K, and 6* N J consists of one or two edges of o,
then o is free (in K). Thus, in Figure 3.1, 1, 3, 4, and 7 are free, but 2, 5,

nnd O are not.

Figure 3.1

Theorem 3. Let J be a polygon in R?, let I be the interior of J, and let K be a
riangulation of 1. If K has more than one 2-simplex, then K has a free
2-simplex.

I'ROOF. The theorem in this weak form is hard to prove. But we can prove,
by induction, the stronger assertion that K has at least two free 2-sim-
plexcs. If K has exactly two 2-simplexes, then this is clear. We may assume,
then, that K has more than two 2-simplexes; and we may assume, as an
induction hypothesis, that our conclusion holds for every complex L which
18 o triangulation of a region of the type I and has fewer 2-simplexes than
A. 'here are at least two 2-simplexes o, 7 of K which have an edge in
I'r |K|. If both of them are free, then there is nothing to prove. Suppose,
then, that
0=0,0,0,EK, vy4,CFr|K],

und o is not free. Then neither v,v, nor v,v, lies in Fr | K|, and the picture
must look like Figure 3.2. The points v, and v, decompose the polygon

Figure 3.2
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Geometric topology in dimensions 2 and 3

J = Fr |K| into two broken lines C, and C,; and |K|=1,U I,, where I,
and 1, are the interiors of C, U vyv, and C, U v,v, respectively. Let L, be
the complex consisting of the simplexes of K that lie in I, together with
v,0,0, and its faces. Let L, be the set of all simplexes of K that lie in 7,. By
the induction hypothesis, each of the complexes L. has two free 2-sim-
plexes. Therefore each of them has a free 2-simplex o, different from
voL,0,. It follows that each g; 1s free not only in L, but alsoin K, which was
to be proved. []

Theorem 4. Let J be a polygon in R*. Then there is a homeomorphism
h: R2<R?, such that h(J) is the frontier of a 2-simplex.

ProOF. Let I be the interior of J, and let K be a triangulation of 7. Any
free 2-simplex of K can be removed by a homeomorphism /4: R’ R2

CASE 1. Suppose that v,v,0, 1s free, with vyv,0, N Fr |K| = vyv,. We take
04, U4, and v, as 1n the figure, so that they and v, are collinear, with v, and
v, “very close” to v, and o, respectively, so that the entire figure intersects
Fr |K| only in vyv,. We then define 4 as the identity in the complement of
Figure 3.3, so that v,, v,, v;, and v, are left fixed. Now define h(vs) = v,

Figure 3.3

and extend £ simplicially (Theorem 1) to each of the simplexes v,v,vs,
0,0,40s, DyLsV3, and v,vsv,. The effect of 4 is to reduce by 1 the number of
2-simplexes of XK.

CASE 2. Suppose that v,v,v, 1s free in K, with vyv,v, N Fr |K| = vy0, U
v,0,. Use the inverse of the mapping ~ that we defined in Case 1.
By induction, the theorem follows. ]

Theorem 5. Let J and J’ be polygons in R*. Then there is a homeomorphism
h: RPo R Jo J . »



3 1Ne NCNONIIes tNeOrem 1OF POIYRONS 1N K™

'roor. By Theorem 4 there are homeomorphtsms
fi: R R, J & Fr o,
f,: R°& R4, J' < Fr 72,
By Theorem 2 there 1s a homeomorphism
fi: RZoR? ol Tl

Leth= £, f. []

Theorem 6. Every polygon in R? is the frontier of a 2-cell in R>.
'rROOY. By Theorem 4. ]

Theorem 7. Let J be a polygon in R?, with interior I, and let U be an open set
containing I. Then there is a homeomorphism h: R* < R?, such that (1)

h(J) is the frontier of a 2-simplex and (2) h|(R* — U) is the identity.

I’'roOr. In the proof of Theorem 4, we choose our homeomorphisms so
that cach of them satisfies (2). ]

PROBILEM SET 3
I'rove or disprove:

1. l.et % be a 2-simplex in R?, and let J = Fr ¢%. Let f be a homeomorphism

J —J. Then f can be extended to give a homeomorphism f’: 0% < a°.

2. l.ct 6® and J be as in Problem 1. Then there is a homeomorphism g: B%«s a2

(IFor the definition of B2, see the beginning of Section 2.)
3. In Problem 1, f can be extended to give a homeomorphism f”: R*«< R2.

4. l.ct a2 be a 2-simplex in R?, let J = Fr o2, let f be a homeomorphism of ¢2 onto
a1 2-cell C%, and let J' = f(J). Let g be a homeomorphism J’<>J’. Then g can
be extended to give a homeomorphism g’: C*< C2,

§. l.et J be a polygon in R? Then every homeomorphism f: J<J can be
cxtended to give a homeomorphism f: R2<R2.

. Let J be a 1-sphere (not necessarily a polygon) in R?, let U be a component of
R?—J, and let F=Fr U. (It is a fact that F must be all of J, but we have not
yet proved this.)) Let v € F. Suppose that there is a 1-simplex vw such that
ow — {v} C U. Then we say that v is linearly accessible from U. Some point of F
Is linearly accessible from U.

7. L.et U and F be as in Problem 6. Then the set of all points of F that are linearly
accessible from U is dense in F. (For the definition of is dense in, see Section 0,
just after Theorem 0.3.)

8. l.et U and F be as in Problem 6. Then every point of F is linearly accessible
from U.
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9. Let J be a polygon in R’ let 1 be its interior, and let U be an open set
containing /. Then there is a homeomorphism f: R2oR?, 02, such that

fI(R* = U) is the identity.

10. Let J, and J, be disjoint polygons in R%. Then R* — (J, U J,) has exactly three
components.

11. Let J, and J, be polygons in R?, with interiors I, and I,; and s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>