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Preface

This second volume incorporates a number of results which were discovered
and/or systematized since the first volume was being written. Again, I limit
myself to the cyclotomic fields proper without introducing modular func-
tions.

As in the first volume, the main concern is with class number formulas,
Gauss sums, and the like. We begin with the Ferrero-~Washington theorems,
proving Iwasawa’s conjecture that the p-primary part of the ideal class
group in the cyclotomic Z -extension of a cyclotomic field grows linearly
rather than exponentially. This is first done for the minus part (the minus
referring, as usual, to the eigenspace for complex conjugation), and then it
follows for the plus part because of results bounding the plus part in terms
of the minus part. Kummer had already proved such results (e.g. if p f A,
then p t h;). These are now formulated in ways applicable to the Iwasawa
invariants, following Iwasawa himself.

After that we do what amounts to *“ Dwork theory,” to derive the Gross-
Koblitz formula expressing Gauss sums in terms of the p-adic gamma
function. This lifts Stickelberger’s theorem p-adically. Half of the proof
relies on a course of Katz, who had first obtained Gauss sums as limits of
certain factorials, and thought of using Washnitzer-Monsky cohomology
to prove the Gross—-Koblitz formula.

Finally, we apply these latter results to the Ferrero—Greenberg theorem,
showing that L(0, x) # 0 under the appropriate conditions. We take this
opportunity to introduce a technique of Washington, who defined the p-adic
analogues of the Hurwitz partial zeta functions, in a way making it possible
to parallel the treatment from the complex case to the p-adic case, but in a
much more efficient way.

All of these topics form a natural continuation of those of Volume I. Thus

\



Preface

chapters are numbered consecutively, and the bibliography (suitably ex-
panded) is similarly updated.

I am much indebted to Larry Washington and Neal Koblitz for a number
of suggestions and corrections; and to Avner Asch for helping with the
proofreading.

Larry Washington also read the first volume carefully, and made the
following corrections with no other changes in the proofs:

Chapter 5, Theorem 1.2(i1), p. 127: read e, = dn + ¢, for some constant
Co -
Chapter 7, Theorem 1.4, p. 174: the term 1/k? should be (—1)*/k - k!
instead.

Chapter 8, Formulas LS 6, p. 207 : one needs to assume that [r](X) 1s a
polynomial. This is satisfied if the formal group is the basic Lubin-Tate
group, and the theorems proved are invariant under an isomorphism of such
groups, so the proofs are valid without further change.

Washington also pointed out the reference to Vandiver [Va 2], where in-
deed Vandiver makes the conjecture:

. . . However, about twenty-five years ago I conjectured that this number was never
divisible by / [referring to h™]. Later on, when I discovered how closely the question
was related to Fermat’s Last Theorem, I began to have my doubts, recalling how
often conjectures concerning the theorem turned out to be incorrect. When I visited
Furtwingler in Vienna in 1928, he mentioned that he had conjectured the same thing
before I had brought up any such topic with him. As he had probably more experi-
ence with algebraic numbers than any mathematician of his generation, I felt a little
more confident . . .

On the other hand, many years ago, Feit was unable to understand a step
in Vandiver’s “proof” that p Y h™ implies the first case of Fermat’s Last

Theorem, and stimulated by this, Iwasawa found a precise gap which is such
that the proof is still incomplete.

New Haven, Connecticut SERGE LANG
1980

1
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Notation

As 1n the first volume, if A4 is an abelian group and N a positive integer, we
let Ay be the kernel of multiplication by N, and

A(N) = A/NA.

If p is a prime, we let A'” be the subgroup of p-primary elements, that is,
those elements annihilated by a power of p.

X1



Measures and
Iwasawa Power Series

This chapter gives a number of complements to Chapter 4. In §1 we extend the
formalism of the associated power series to the change of variables

X e P*

for x € Z, and y equal to a topological generator of 1+ pZ,. A measure on
1+ pZ, then corresponds to a measure on Z,, and we give relations between

their associated power series. This is then applied to express Bernoulli
numbers B, , as values of power series. We write

X = Bw_klll = Bkwa

where first 0 is an even character on Z(dp)* (d prime to p), w is the Teichmuller
character, and ¥ is a character on 1 + pZ,. Let { = y(y). Then

1
"E Bk,x = fo,k(c—' 1),

where f , depends only on 0 and k. This allows a partial asymptotic deter-
mination of ord, B, , when @ is fixed, and the conductor of y tends to infinity,
due to Iwasawa [Iw 14], §7. This gives rise to the corresponding asymptotic
estimate for the minus part of class numbers of cyclotomic extensions.

The Iwasawa expressions for the Bernoulli numbers gives an asymptotic
value for their orders:

ord, By oy = mp" + An + ¢



10. Measures and Iwasawa Power Series

for n sufficiently large, cond = p"*!. In order that m # 0, Iwasawa showed
that a system of congruences had to be satisfied (essentially that the coefhi-

cients of the appropriate power series are =0 (mod p)). We derive these
congruences here in each case successively. The next chapter is devoted to
the proofs by Ferrero-Washington that these congruences cannot all be

satisfied, whence the Iwasawa invariant m is equal to 0.
At the end of their paper, Ferrero-Washington conjecture that the in-

variant 4, for the cyclatomic Z -extension of Q(p,) satisfies a bound

log p
Ap < loglogp

I am much indebted to Washington for communicating to me the exposition
of the steps which lead to this conjecture, and which were omitted from their

paper.

§1. Iwasawa Invariants for Measures

We let p be an odd prime for simplicity. The multiplicative group 1 + pZ,
is then topologically cyclic, and we let y denote a fixed topological generator.
Then y mod p" generates the finite cyclic group 1+ pZ, mod p" for each
positive integer n. For instance, we may take

y = 1+p.

[Note: If p = 2, then one has to consider 1+4Z, instead of 1+2Z,.]
There 1s an isomorphism

Z,- 14+pZ,

given by

X — y*.

Its inverse is denoted by a, so that by definition

o(y*) = x.

Let d > 1 be a positive integer prime to p. We shall consider measures on
the projective system of groups

Z, = Ldp") = Z/dp"Z = Z(d) x Z(p").



§1. Iwasawa Invariants for Measures

The projective limit is simply denoted by
Z=14d) x Z,.

A measure is then determined by a family of functions u, on Z,, as 1n
Chapter 2, §2. We let

Z*=2(d) x L} and Z**=Z(d)* x Z;.
An element z € Z* can be written uniquely in the form

z = (29, 1Y°) = (20, 2,) withzoe Z(d),nep,-, x€ Z,.

We define the homomorphism

a:Z*¥ - Z, by a(zg,ny") = x.

We define as usual

(z2), =<(2z) =z,) =7,

so that a(z) = a({z)). As above, we usually omit the index p on {z),.

A continuous function on Z, gives rise to a continuous functionon 1 +pZ,
by composition with a, and conversely.

As in Chapter 2, §1 we let v be the ring of p-integers in C,, and we let u
be an o-valued distribution, i.e. a measure.

By the basic correspondence between functionals and measures, we obtain
the following theorem.

Theorem 1.1. Let u be a measure on Z with support in Z*. Then there exists

a unique measure o, i on Z, such that for any continuous function ¢ on
14 pZ, we have

f o({ad) dua) = f o7 d(oy 1) ().
Z* y /

P

We now describe the power series associated with a, 4 modulo the poly-
nomial

h(X)=(0+ X)P — 1,



10. Measures and Iwasawa Power Series

Thus we fix a value of n > 0, and for each a € Z* we let (a) be the unique
integer such that

0<ra)<p" and r(a) = a(a) mod p".

Theorem 1.2. Let f be the power series associated with o, u. Let

Zyi1 = L(d) x Z(P"“)*

Then

2.

€Zn+

f(X) = pn+1(@)(1+ X) mod h,(X).

Proof. By the definition of the associated power series, we have

pn—1

f(X) = ;o (o p)(r)(1+ XY

But letting char denote the characteristic function, we have:

(o, w)(r mod p") = L (char of r mod p") d(o,, 1)

|

= J (char of Z(d) x p,—; x Y 7%») du
Ze

(by Theorem 1.1)

= ) Up4,(ny" mod p"*1)
n

where this last sum is taken over n € Z(d) x p,—,. This proves the theorem.

Corollary 1. Let ¥ be a nontrivial character of 1+pZ,, with conductor
p"* 1. Define Yy(a) = ¥({a)). Let

W(y) = { = primitive p"-th root of unity.

Let f be the power series associated with o, . Then

z‘!lf du = f({—1).



§1. Iwasawa Invariants for Measures

Proof. We have

Vdu= | Y@ d@,pn)(x) (by Theorem 1.1)
Z,

- j 0% doy 1) (%)
y A

= f({{—-1). (by Theorem 1.2 of Chapter 4).

This proves the corollary.

We continue with the same notation as in the theorem. We shall use the
notation

B, ) = Lw du= £, — 1)

Suppose that there exists a rational number m such that the power series f
can be written in the form

fX)=p"(co+c; X+ +c;- XL+, X*+--))

where ¢, is a unit in o, and ¢,, ..., c;—; € m, the maximal ideal of 0. We call
m, A the Iwasawa invariants of u, or f. If the measure u has values in the
maximal ideal of the integers in a field where the valuation is discrete (which

1s the case in applications), then f has coefficients in that ring, and such m,
Aexist if f # 0. If m = 0, then A is the Weierstrass degree of f. In any case,
A 1s the Weierstrass degree of p~™f.

As usual, we shall write

X~y
to mean that x, y have the same order at p.

Corollary 2. There exists a positive integer n, (depending only on f) such
that if n > ny and cond Y = p", then

B, u) ~ p"({ —1)*

where ( is a primitive p"-th root of unity.

Proof. As n — oo, the values |{ —1| approach 1, and so the term c,({ —1)*
dominates in the power series f({—1) above.
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Corollary 3. For some constant ¢ = c¢(f), we have

ord, [| BW,w) =mp"+ in+ c(f)

cond ¥ = pt
npsSt<n

Proof. Since

I l (C'—'l) = pn’
(pPh=1
(#1

the formula is immediate, since the product taken for n, < t < n differs by
only a finite number of factors (depending on n,) from the product taken over
all ¢, and we can apply Corollary 2 to get the desired order.

In the hight of Corollary 3, we shall call m the exponential invariant, and
A the linear invariant.

Let f be as above, the power series associated with o, 4, and put

c" = Z pn+1(ny" mod p"* ).
"

Then
p"—1
f(X) = Z c"(1+ X)" mod h,
r=0
pn—1
= am X’ mod h,,,
r=0

where the coefficients g™ are obtained from the change of basis from

L, X,..., X7 !

to
,14+X,...,(1+ X)L

We can rewrite ¢ in terms of the variable u = ", namely

M) = T ptns 1 (nu mod p"* 1),

These coefficients ¢'(u) will be called the Iwasawa coefficients.

6



§1. Iwasawa Invariants for Measures

Theorem 1.3. Let n be an integer = 0 such that ¢ is a p-unit for some integer
r with

O0<r<p' -1

Then the exponential Iwasawa invariant m of u is equal to 0, and we have
AL D"

Proof. Some coefficient a\™ must also be a p-unit with r in the same range,
and we can write

pn—1
fX)= ) a"X"+ g,(X)X"" + pg,(X),

r=0

where g,(X), g,(X) € o[[ X]]. Hence the coefficient a, of f(X) is itself a
p-unit, whence the theorem follows.

We shall sometimes deal with certain measures derived by the following
operation from u. Let s € Z,. We define the s-th twist of u to be the measure

defined on Z* by

u®Na) = <a)*u(a),

and equal to 0 outside Z*. In that case, the coefficients c™ should be indexed
by s, 1.e.

Crs = ¢ Y™

Since y™ is a p-adic unit, it follows that the same power of p divides all c|".

as divides c. Thus Theorem 1.3 also applies to the twisted measure and the
power series f, associated with a, (u'"’) instead of f in the theorem, and we

find:

Theorem 1.4. Let m,, A, be the Iwasawa invariants of u'®. If m, = 0 for some
s, then m, = 0 for all s. Suppose this is the case, and let n be the positive
integer such that

pP"ml <y <P
Then we also have
pn—l < A's < pn

for all s.



10. Measures and Iwasawa Power Series

§2. Application to the Bernoulli Distributions

Let B, be the k-th Bernoulli polynomial (cf. Chapter 2). We had defined the
distribution E, at level N by

EM(x) = N*1 -;(—B,,(<—;—>)

N = dp",

We shall now use

where d is a positive integer prime to the prime number p.
We continue using the notation of the preceding section. An element

of Z = Z(d) x Z, is described by its two components

X = (xo, x,,).

Let ce Z(d)* x Z} = lim Z(dp")*. We define

for x € Z(N). The multiplication ¢~ 'x is defined in Z(N)*.

Note. In Chapter 2, we took ¢ to be a rational number. This is not neces-
sary, and restricts possible applications too much. When ¢ occurs as a coef-
ficient in Chapter 2, we must use ¢, instead of c, i.e. we must use its projection

on Z*. When ¢ occurs inside a diamond bracket, then no change is to be made
for the present case. For instance, we have

E 1. E{ ) (x) = <—;—> — c,<c;x> + %(c,,-— 1).

Similarly, formula E 2 and Theorem 2.2 of Chapter 2 yield the relation

E 2. Ek.c(x) = x';“ lE l,c(x)

symbolically for x € Z. We then obtain the integral representations of the
Bernoulli numbers as follows.

1 |

L k-1
R )




§2. Application to the Bernoulli Distributions

provided only that ¢t # 1. Furthermore, if x is a character of conductor
m = m, dividing dp” for some n, then y defines in the usual way a function on
Z(N) for m| N by composition

Z(N) = Z(m) 5 o*,
and y is defined to be 0 on elements of Z(m) not prime to m. Then we define

1
-’-(-Bk'x:: JXdEk.
Z

Note. This definition made by taking into account the conductor of yx
is more appropriate than that of Chapter 2, §2. There we dealt only with
characters of Z?¥, so it made little difference, only for the trivial character.

More generally, if ¢ is a locally constant function (step function) on Z,
then we can define

1
"'(' Bk,¢ = J(p dEk.
Z

Then

- 1 1
(1) [/ 9co, 5,051 A4 ) = 7 Brg = S 7 Buoe

In particular, if ¢ 1s a character y, then

1
-LX(X)JC:-I dE l,c(x) = (1 — X(C)C:’,) "’; Bk, X

We define the p-adic L-function by the integral

—1 o
L(1-s7x= T~ 20" Lx(a) (aYsa; ! dE, (a).

If the conductor of y is dp" for some n > 0, then the support of the integral 1s
really on the set

Z** = Z(d)* x Z;.
Let w = w, be the Teichmuller character, and put

Xk = Xw_k-
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Theorem 2.1. For every integer k > 1 and character x of conductor dp”
with n > 0, we have

1
L(1-k,x) = —(1-yx,(p)P"* I)EBk,xk'

Proof. We have:

~ (1= OB~k D) = | 1)~ dE;, L)

Write

L=~ 1.

Let N = dp"**. Then

. (N/p)—1 1 . py
f = lim ) (@) 'uO) El,c( N )
pZ y=0

n-®co

| (N/p)—1 B y
=u@pr* lim Y nO) 1E1,c(<_—_>)

n—-*o00 y=0

= x(P)P* ' (1 - xlc)cy) -Il; B, ,,.

The theorem follows at once.

We now let

6 = even character on Z(dp)*, 6 # 1, cond 6 = d or dp.
x = 0y where ¥ is a character on 1+ pZ,.

Then
1 1
(1-x(pp*~ Y X By, = 'l'“:m z"!//(a)Gw""(a)aﬁ‘ ‘' dE 1,a)
1

= m Z“!//(<ap>) du(a)

where u is the measure given by

ua) = (@)™ (a)a;” "E,,(a).
10



§2. Application to the Bernoulli Distributions

Therefore by Corollary 1 of Theorem 1.2 we find that

1

1
(1-x@pr*) 'E B, . = mfo, (Cy — 1)

where f, .(X) is a power series given mod h, by Theorem 1.2.
We may use formula E 1 of Chapter 2, §2 to give the value of u at inter-
mediate levels, namely

~1
P+ 1(a) = 9(a)a)""(a)a';"1[<dpf+ 1> — Cp<;p,,+ci> + %(cp — 1)]

Starting with the general formula of Theorem 1.2, we shall derive a slightly
simpler expression for the coeflicients of f, ;, which can be written in the form

(2) fo. (X)) =) (1 + X)™ mod h,,

where

- genar [(25) -of ) s 0]

The sums are taken for ue 1 + pZ, mod p"*! and ne Z(d)* x p,_,. The
component 7, is just w(n). The character w™" is odd, and in particular is
not trivial. Hence the sum over n times the factor (c,—1)/2 is equal to 0,
and that term can be omitted.

We now select c € Z(d)* x p,_,, so that {c), = 1. Furthermore x(c) =
6(c). We can select ¢ such that y(c) # 1. We change variables in the sum over
n, with respect to the second term involving ¢~ 'n, letting n + cn. Then we
may combine the sums over both terms, with a factor

1 — x(c)

which cancels 1 — x(c)(c)',‘, = 1 —y(c) 1n front. In other words, we find:

We are interested in applying Theorem 1.3. In other words, we are in-
terested in proving the Iwasawa conjecture that some coefficient of f, , i1s a

11



10. Measures and Iwasawa Power Series

p-unit. Clearly the power 4*~! can be disregarded for this purpose. Thus the
expressions (3) for the coefficients of the Iwasawa power series give rise to
the following criterion.

Theorem 2.2 (Iwasawa congruences). Let d be an integer > 1 and prime to p.
Let 0 be an even character # 1 of conductor d or dp. If no coefficient of
fo.x is a p-unit, then we have the congruences (independent of k):

Z”:Bcu‘l(n)<d:ﬁl> = 0 mod p

for all o € Z;, and all integers n > 0.

Proof. We have proved the assertion when « lies in 1+4pZ,. However,
for any fixed n, € p,_, we can make the change of variables

n '—"7’70,

leading to the congruences as stated above.

Theorem 2.3 (Ferrero—Washington). For 0 # 1, not all these congruences
are satisfied, and therefore some coefficient of f, , is a p-unit.

The proof that not all these congruences are satisfied will be given in the
next chapter. Here, we first give formulations for these congruences which are
more easily dealt with. Then in the next section, we indicate how this result
applies to the divisibility of class numbers in the cyclotomic Z ,-extension.

The case d = 1. We shall give an alternative version of Iwasawa’s con-
gruences adapted for the Ferrero-Washington proof. Write any element
z € L3 as a series

z=129+2,p+ z,p* + -+
with integers z; satisfying 0 < z; < p — 1. Let
sf(2)=20+2z,p+ -+ 2,p"

be the n-th partial sum. In the above congruences, we may replace na by
s,(n®), and then omit the brackets giving the representative as a rational
number. Furthermore, let us write

O~ ! = w°,

12



§2. Application to the Bernoulli Distributions

where v is a positive integer, necessarily odd since we assumed that 6 is an

even power of the Teichmuller character. Furthermore,v# —1modp — 1
because § # 1. Multiplying the congruence by p"*! yields

Y su(m)n’ = 0 mod p"*?

NERp-1

where v is a positive odd integer,v # —1 mod p — 1.
Now in the p-adic expansion of z we let

z, = t,(2).

We shall express the above congruence in terms of ¢,,.

Theorem 2.4. Let 0 # 1 be an even character of conductor p. Then
the Iwasawa congruences imply that there exists an odd integer

v —1modp—1

such that, for all « € Z7 and all integers n > 1 we have

2y t(amn’ = (p— 1) ) n° mod p,

neR neR

where R is a system of representatives for p,_, mod *1. In particular
the congruence class on the left-hand side is independent of o and n.

Proof. We have

Sa(an) = Sp41(0n) — t,41(an)p™ .
Furthermore
Sn+1(017) = an mod p"*?
and
Z nv+ 1 0
NERp - 1

because v # —1 mod p— 1. Hence the congruence of the theorem is equiv-
alent to

Y. tps1(am)n® = 0 mod p.
"
Since ty(an) = an mod p, we always have
; to(am)n® = 0 mod p.

13



10. Measures and Iwasawa Power Series

Finally, since ¢, . ;(px) = t,(x), we are led to the congruence
Y t,(an)n” = 0 mod p
n

for all n and all a. But since0 = p + (p—1)p + (p—1)p? + ...

t(—an) =p—1 -t (an) forn > 1.

Therefore

E tamn” =2 Y tamn® — (p=1) Y n",

neR neR

thus proving the theorem.

The case d > 1.

Theorem 2.5. Let 0 # 1 be an even character of conductor d or dp withd > 1

prime to p. Let 8, = Ow™". Then the Iwasawa congruences imply that for
all o€ Z} and all n > 0 we have

Y Z i0.(s,(an) + ip"*!) = 0 mod p.

NneR i=

Proof. In Theorem 2.2 we may rewrite the congruence in the form

1 L, a6() = O mod p

where the sum is taken over a prime to dp, such that

0<a<dp"! and <a),= {a), modp"*'.

We can also replace these elements a by elements of the form
na + ip"*! withi=0,...,d — 1,

and 7 is some (p — 1)th root of unity. The sum is then taken over n and i.
The sum over i with the factor na 1s then equal to 0, and we are left only with

a sum having 1p"+ I as a factor. Combining terms with n and —», and using

the fact that 0, is odd yields the desired formula.

14
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§3. Class Numbers as Products of Bernoulli Numbers

We continue to let p be an odd prime. We write x ~ y to mean that x = yu
where u 1s a p-unit. We let:

6 = even character on Z(dp)*.
W = character on 1 + pZ, of conductor dividing p"*t 1.

The characters on Z(d)* x Z} of the same parity as k of conductor dividing
dp"*! can be written uniquely in the form

Ylw ™" = y6,.

For any integer k with 1 < k£ < p — 1, we define

1
hgk) —_ pn+1 ]—[ l'"[ _IE Bk,wﬂk'
0 even ¥
In particular,
(k) =P I_[ Bk O

6 even

We can simplify these expressions in so far as p-divisibility is concerned. We
need a lemma of von Staudt type.

Lemma 1. Let k be an integer with1 < k < p—1. Then

1 1
-k-B“,-k— —-’-(—Emodl

Proof. The proof is entirely similar to that of the Von Staudt congruence,
Corollary 2 of Theorem 2.3, Chapter 2, combined with the expression for the

Bernoulli number as an integral in Theorem 2.4 of Chapter 2. We leave it to
the reader.

Lemma 2. Let 1| < k < p—1. Then

1
hg‘) ~ ],—[ kBk O~ k-

0+#1

Proof. The case when 0 = 1 combined with Lemma 1 shows that the
factor p in the definition of A{’ cancels the pole of-order 1 at p of the single
term with 8 = 1 in the product. What remains is the desired expression.

15



10. Measures and Iwasawa Power Series

Lemma 3. Let | < k < p —1. Then

h(k) ~ hgc)n l_l ” Bk Voo k-

0#1 y#1
Proof. Write y = O0y. Then
(1= 1@ ) ~ By oo = —— f x(@)<adtas dE, (a).
Xk p k k, yow —k l""X(C)(C): l,c

We distinguish three cases, for the terms in the product defining h%®.

If 6 = 1and y = 1, then we apply Lemma 1. We use one factor of p from
nt+1

p"" " multiplied with

1

k

Bk’m"k

to find a p-unit.

If0 # 1and Y = 1, then we use Lemma 2 to get the A’ on the right-hand
side of the formula to be proved.

The proof of Lemma 3 is concluded by the next lemma.

Lemmad4.If 0 = 1and Y # 1 then

where y = 1+ p and { = Y(y). Furthermore

1
p l—I kBk.‘,w-k"’l

v#1

Proof. We also take ¢ = 1+p. Then

I —y(eKe*~1-{ and [] U-=-D=p"

We note that y(c) = ¥(c), and we obtain

4V S a/r(c)<c>* ~ 1
16



§3. Class Numbers as Products of Bernoulli Numbers

Finally we wish to show that

V(a){a),a, "' dE, (a) ~ 1,

Zp

1.e. the above integral 1s a p-unit. Since
Y(a)=1mod1-¢{ and <{a) =1 mod p,

it suffices to prove that
J. a, ' dE; (a)
4

is a p-unit. This is immediate by writing down the first approximation at level
p, and concludes the proof.

For each 0 # 1 we let A(O, k) be the linear Iwasawa invariant of the power
series fp , In §2, and we let

Ak) = Y A6, k).

0#1

From the Ferrero—-Washington theorem and Lemma 3, we then obtain:

Theorem 3.1. There is a constant ¢, such that for all n sufficiently large,
we have

ord, h® = A(k)n + .

This is merely a special case of Corollary 3 of Theorem 1.2, applied to the
Bernoulli distributions, as discussed in §2.
We can then apply the theorem to the class number.

Theorem 3.2. Let h, be the class number of Q(B,~+1). Then there is a constant
c such that for all n sufficiently large, we have

ord, h, = A(1)n + c.

Proof. The classical class number formula asserts that

h; — 2pn+l l_[ T %Bl,xs

¥ odd

so that we can apply Theorem 3.1 with k = 1 to conclude the proof.

17
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Theorem 3.3. Let K be a cyclotomic extension of the rationals (i.e. a sub-

field of a cyclotomic field). Let K ,, be the cyclotomic Z ,-extension of K, and
let h, be the class number of K,. Then there exists a constant ¢’ such that
for all n sufficiently large, we have

ord, h, = A(1)n + C'.

Proof. It 1s an easy exercise from the class number formula of Chapter 3
to show that the minus part of the class number differs from the product

giving h") only by a finite number of factors. Hence the same estimate holds
as in Theorem 3.2.

In Theorem 2.3 of Chapter 12 we shall prove Iwasawa’s inequality bound-
ing the order of h, in terms of the order of h, . We then obtain:

Theorem 3.4. Notation being as in Theorem 3.3, there exist constants
C1, C2 (depending on K) such that for all n sufficiently large, we have

ord, h, = c;n + c,.

Remark. Iwasawa developed his theory with the point of view that

Z -extensions are analogous to constant field extensions for curves over
finite fields. The formula

h, = ho l;lf(é—l)

1s analogous for the function field case of the class number formula. The fact
that ord, h, 1s linear 1n n follows at once from the existence of the Jacobian
In the function field case. Kubert-Lang theory suggests the possibility of

using the analogous theory in the modular case to analyze the Bernoulli

numbers B, , and obtain a bound for the invariant A in terms of the di-
mensions of abelian subvarieties of the modular curves.

Appendix by L. Washington: Probabilities

We shall give a heuristic argument which estimates the size of 1, = 4,(Q(n.)).
The contribution from A, will be ignored, since Vandiver’s conjecture says
it should be zero. In any case, A; < 4., so we could alternatively double our
final estimate.

Let 1(p) = index of irregularity = number of Bernoulli numbers

B,, B,, ..., B,_3 which are divisible by p. The idea will be to show that
usually

A, = 1(p),
18
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and that one should expect
A, <1(p) +1

for all but a finite number of p.

There are (p — 3)/2 relevant power series. We assume that each coefficient
1s random mod p, and that these coeflicients behave independently of each
other. The first coefficients of these power series correspond to the Bernoulli
numbers in such a way that a first coefficient is divisible by p exactly when
the corresponding Bernoulli number is divisible by p. The numerical evidence
bears out the assumption that the Bernoulli numbers are random mod p.
However, we are also assuming that the higher coefhicients are random and
independent of each other. This is a more dangerous assumption, and I know

of no supporting numerical evidence.
Suppose 4, > i(p) + 2. Then we have two cases.

Case 1. Some power series has its first three coefficients divisible by p. The
probability that at least one of the first three coefficients for a given power

series is not divisible by p is 1 —1/p>. The probability that for all (p —3)/2
power series we have one of the first three coefficients not divisible by p 1s

1 (p—3)/2
] — — :
( P3)

Therefore the probability that at least one power series has its first three
coeflicients divisible by p is

1 (p— 3)/2 (1)
1 —(1-— = 0 |.
( p") p*

The expected number of times this should happen is therefore finite, since
Y 1/p* < 0.

Case 2. At least two different series have their first two coefficients divisible
by p. Reasoning as in Case 1, we see that the probability that none of the power

series has both of the first two coeflicients divisible by p 1s

1 (p—3)/2
] — — :
( P’)

The probability that exactly one has its first two coefficients divisible by p 1s

(p—3)/2 (1 - 1)(@-3)/2)“1(__1_)
( 1 ) p? p?)

19



10. Measures and Iwasawa Power Series

Therefore, the probability that at least two power series have their first two
coefficients divisible by p is

1 \p—3)2) (p_3)/2 1 \((P=3)2)=1/1
[ M e o M ]

So again one expects only finitely many occurrences.
We therefore expect

|
—
T{J“‘
N —

i(p) <4, <i(p) + 1

for all but finitely many p. Therefore estimating 4, is equivalent to estimating
i(p), which we shall do.

However, first we shall show that usually one should expect 4, = 1(p),
as was the case in Wagstafl’s calculations for p < 125,000.

If A, > i(p) + 1, then at least one power series has its first two coefficients
divisible by p. The probability is

1 \((p—3)/2) 1 ( 1 )
1 —-{1—-= —+0
( pz) AV

Therefore the number of expected occurrences of 4, > i(p)+1 for p < x
should be

Y -—-~—loglogx.

pr

Since % log log (125,000) ~ 1.2, it is not very surprising that 4, = i(p) for
p < 125,000. In fact, one might expect to search rather far before finding a

counterexample. A reasonable bound might be 10°4 since 4 log log 10%4 ~ 2.
Also note that the fact that

1 < 4 log log 125,000

is really caused by the first few primes. If one considers, for example,

1
L o

3J0<p<x

20
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then the expected number 1s much less than 1. Starting the sum at p = 31 1s
perhaps justified by the fact that the early Bernoulli numbers, etc., are too

small to be random mod p. In fact, even though 39 9 of primes are irregular,
37 1s the first one.
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