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Preface

Universal algebra has enjoved a particularly explosive growth in the last twenty years, and
a student entering the subject now will find a bewildering amount of material to digest.

This text is not intended to be encyclopedic; rather, a few themes central to universal
algebra have been developed sufficiently to bring the reader to the brink of current research.
The choice of topics most certainly reflects the authors’ interests.

Chapter I contains a brief but substantial introduction to lattices, and to the close con-
nection between complete lattices and closure operators. In particular, everything necessary
for the subsequent study of congruence lattices is included.

Chapter Il develops the most general and fundamental notions of universal algebra—
these include the results that apply to all types of algebras, such as the homomorphism and
isomorphism theorems. Free algebras are discussed in great detail—we use them to derive
the existence of simple algebras, the rules of equational logic, and the important Mal'cev
conditions. We introduce the notion of classifying a variety by properties of (the lattices of)
congruences on members of the variety. Also, the center of an algebra is defined and used to
characterize modules (up to polynomial equivalence).

In Chapter III we show how neatly two famous results—the refutation of Euler’s con-
jecture on orthogonal Latin squares and Kleene’s characterization of languages accepted by
finite automata—can be presented using universal algebra. We predict that such “applied
universal algebra” will become much more prominent.

Chapter IV starts with a careful development of Boolean algebras, including Stone du-
ality, which is subsequently used in our study of Boolean sheaf representations; however,
the cumbersome formulation of general sheat theory has been replaced by the considerably
simpler definition of a Boolean product. First we look at Boolean powers, a beautiful tool
for transterring results about Boolean algebras to other varieties as well as for providing a
structure theory for certain varieties. The highlight of the chapter is the study of discrimi-
nator varieties. These varieties have played a remarkable role in the study of spectra, model
companions, decidability, and Boolean product representations. Probably no other class of
varieties is so well-behaved yet so fascinating.

The final chapter gives the reader a leisurely introduction to some basic concepts, tools,
and results of model theory. In particular, we use the ultraproduct construction to derive the
compactness theorem and to prove fundamental preservation theorems. Principal congruence
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formulas are a favorite model-theoretic tool of universal algebraists, and we use them in the
study of the sizes of subdirectly irreducible algebras. Next we prove three general results on
the existence of a finite basis for an equational theory. The last topic is semantic embeddings,
a popular technique for proving undecidability results. This technique is essentially algebraic
in nature, requiring no familiarity whatsoever with the theory of algorithms. (The study
of decidability has given surprisingly deep insight into the limitations of Boolean product
representations. )

At the end of several sections the reader will find selected references to source material
plus state of the art texts or papers relevant to that section, and at the end of the book one
finds a brief survey of recent developments and several outstanding problems.

The material in this book divides naturally into two parts. One part can be described
as “what every mathematician (or at least every algebraist) should know about universal
algebra.” It would form a short introductory course to universal algebra, and would consist
of Chapter I; Chapter II except for g4, 912, 813, and the last parts of §11, g14; Chapter
IV 81-4; and Chapter V §1 and the part of §2 leading to the compactness theorem. The
remaining material is more specialized and more intimately connected with current research
in universal algebra.

Chapters are numbered in Roman numerals I through V, the sections in a chapter are
given by Arabic numerals, §1, §2, etc. Thus I186.18 refers to item 18, which happens to
be a theorem, in Section 6 of Chapter II. A citation within Chapter II would simply refer
to this item as 6.18. For the exercises we use numbering such as 116 Exercise 4, meaning
the fourth exercise in §5 of Chapter 1I. The bibliography is divided into two parts, the first
containing books and survey articles, and the second research papers. The books and survey
articles are referred to by number, e.g., G. Birkhoff [3], and the research papers by year, e.g.,

R. McKenzie [1978)].
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Preliminaries

We have attempted to keep our notation and conventions in agreement with those of the
closely related subject of model theory, especially as presented in Chang and Keisler’'s Model
Theory |8]. The reader needs only a modest exposure to classical algebra; for example he
should know what groups and rings are.

We will assume a familiarity with the most basic notions of set theory. Actually, we use
classes as well as sets. A class of sets is frequently called a family of sets. The notations,
A;, 1 € I, and (A;);er refer to a family of sets indexed by a set I. A naive theory of sets
and classes is suflicient for our purposes. We assume the reader is familiar with membership
(€), set-builder notation ({ —:—}), subset (C), union (U), intersection (N), difference (—),
ordered n-tuples ((z1,...,%y)), (direct) products of sets (Ax B, | [,.; A:i), and (direct) powers
of sets (A). Also, it is most useful to know that

(a) concerning relations:

(i) an n-ary relation on a set A is a subset of A™;

(ii)) if n = 2 it is called a binary relation on A;

(iii) the inverse v~ of a binary relation r on A is specified by {(a,b) € r™ iff (b,a) € r;
)

(iv) the relational product ros of two binary relations r, s on A is given by: {(a,b) € ros
iff for some ¢, {(a,c) € r,{c,b) € s;

(b) concerning functions:

(i) a function f from a set A to a set B, written f : A — B, is a subset of A X B
such that for each a € A there is exactly one b € B with (a,b) € f; in this case
we write f(a) =bor f:a— b;

(ii) the set of all functions from A to B is denoted by B4;
(iii) the function f € B4 is injective (or one-to-one) if f(a;) = f(az) = a1 = ay;

(iv) the function f € B is surjective (or onto) if for every b € B there is an a € A
with f(a) = b;
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(v) the function f € B# is bijective if it is both injective and surjective;
(vi) for fe BAand X C A, f(X)={be B: f(a) =10 for some a € X};
(vii) for fe BAand Y C B, f71(Y)={a€ A: f(a) e Y};
)

(viii) for f : A - Bandg: B — C,let go f: A — C be the function defined by
(g o f)(a) = g(f(a)). [This does not agree with the relational product defined
above—but the ambiguity causes no problem in practice.];

(c¢) given a family F of sets, the union of F, | J F, is defined by a € | J F iff a € A for some
A € F (define the intersection of F, (| F, dually);

(d) a chawin of sets C is a family of sets such that for each A, B € (' either A C B or
B C A;

(e) Zorn’s lemma says that if F'is a nonempty family of sets such that for each chain C of

members of F' there is a member of F' containing | JC' (i.e., C' has an upper bound in
F') then F has a mazrimal member M (i.e., M € F and M C A € F implies M = A);

(f) concerning ordinals:
(i) the ordinals are generated from the empty set @ using the operations of successor
(27 =2 U {z}) and union;

(ii)) 0 =9, 1 =07, 2 =17, etc.; the finite ordinalsare 0,1,...;and n =4{0,1,...,n—
1}; the natural numbers are 1,2,3 ..., the nonzero finite ordinals;

(iii) the first infinite ordinalis w ={0,1,2,... };

(iv) the ordinals are well-ordered by the relation €, also called <;
(g) concerning cardinality:

(i) two sets A and B have the same cardinality if there is a bijection from A to B;

(ii) the cardinals are those ordinals k such that no earlier ordinal has the same car-
dinality as x. The fintte cardinals are 0,1,2,...; and w is the smallest nfinite
cardinal;

(iii) the cardinality of a set A, written |A|, is that (unique) cardinal x such that A and
x have the same cardinality;

(iv) |A|-|B| = |A x B| |= max(|A|, |B|) if either is infinite and A, B # @]. AN B =
@ = |A|+ |B| =|AU B| |[= max(|A|, |B]) if either is infinite];

(h) one usually recognizes that a class is not a set by noting that it is too big to be put in
one-to-one-correspondence with a cardinal (for example, the class of all groups).



In Chapter IV the reader needs to know the basic definitions from point set topology,
namely what a topological space, a closed (open) set, a subbastis (basis) for a topological space,
a closed (open) neighborhood of a point, a Hausdorff space, a continuous function, etc., are.

The symbol “=" is used to express the fact that both sides name the same object, whereas

~" is used to build equations which may or may not be true of particular elements. (A
careful study of ~ is given in Chapter II.)






Chapter 1

Lattices

In the study of the properties common to all algebraic structures (such as groups, rings, etc.)
and even some of the properties that distinguish one class of algebras from another, lattices
enter in an essential and natural way. In particular, congruence lattices play an important
role. Furthermore, lattices, like groups or rings, are an important class of algebras in their
own right, and in fact one of the most beautitul theorems in universal algebra, Baker’s finite
basis theorem, was inspired by McKenzie’s finite basis theorem for lattices. In view of this
dual role of lattices in relation to universal algebra, it is appropriate that we start with a
brief study of them. In this chapter the reader is acquainted with those concepts and results
from lattice theory which are important in later chapters. Our notation in this chapter is
less formal than that used in subsequent chapters. We would like the reader to have a casual
introduction to the subject of lattice theory.

The origin of the lattice concept can be traced back to Boole’s analysis of thought and
Dedekind’s study of divisibility. Schroeder and Pierce were also pioneers at the end of the
last century. The subject started to gain momentum in the 1930’s and was greatly promoted

by Birkhoft’s book Lattice Theory in the 1940’s.

31. Definitions of Lattices

There are two standard ways of defining lattices—one puts them on the same (algebraic)
footing as groups or rings, and the other, based on the notion of order, offers geometric
insight.

Definition 1.1. A nonempty set L together with two binary operations V and A (read
“70tn” and “meet” respectively) on L is called a lattice if it satisfies the following identities:
Ll: (a) xVy~yVz

(b)) xAy=yAzx (commutative laws)
L2: (a)zV(yVz)=(xVy) V=2
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(b)) zA(yAz) = (xAY) A=z (associative laws)
L3: (a)zVr =z

(b) zx ANx ~x (idempotent laws)
L4: (a) z=xV (xAYy)

(b)z~=xA(zVYy) (absorption laws).

EXAMPLE. Let L be the set of propositions, let V denote the connective “or” and A denote
the connective “and”. Then L1 to L4 are well-known properties from propositional logic.

EXAMPLE. Let L be the set of natural numbers, let V denote the least common multiple
and A denote the greatest common divisor. Then properties L1 to L4 are easily verifiable.

Before introducing the second definition of a lattice we need the notion of a partial order
on a set.

Definition 1.2. A binary relation < defined on a set A is a partial order on the set A if the
following conditions hold identically in A:

i) a <a (reflexivity)
(i) a <band b <aimply a =10 (antisymmetry)
(iii) a <band b < cimply a < c (transitivity).

If, in addition, for every a,b in A
(iv) a <borb<a

then we say < is a total order on A. A nonempty set with a partial order on it is called a
partially ordered set, or more briefly a poset, and if the relation is a total order then we speak
of a totally ordered set, or a linearly ordered set, or simply a chain. In a poset A we use the
expression a < b to mean a < b but a # b.

EXAMPLES. (1) Let Su(A) denote the power set of A, i.e., the set of all subsets of A. Then
C is a partial order on Su(A).

(2) Let A be the set of natural numbers and let < be the relation “divides.” Then < is
a partial order on A.

(3) Let A be the set of real numbers and let < be the usual ordering. Then < is a total
order on A.

Most of the concepts developed for the real numbers which involve only the notion of
order can be easily generalized to partially ordered sets.

Definition 1.3. Let A be a subset of a poset P. An element p in P is an upper bound for
Aif a < p for every a in A. An element p in P is the least upper bound of A (Lu.b. of A),
or supremum of A (sup A) if p is an upper bound of A, and a < b for every a in A implies
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p < b (i.e., p is the smallest among the upper bounds of A). Similarly we can define what it
means for p to be a lower bound of A, and for p to be the greatest lower bound of A (g.l.b.
of A), also called the infimum of A (inf A). For a,b in P we say b covers a, or a is covered
by b, it a < b, and whenever a < ¢ < b it follows that a = ¢ or ¢ = b. We use the notation
a < b to denote a is covered by b. The closed interval |a,b] is defined to be the set of ¢ in P
such that a < ¢ < b, and the open interval (a,b) is the set of ¢ in P such that a < ¢ < b.

Posets have the delighttul characteristic that we can draw pictures of them. Let us
describe in detail the method of associating a diagram, the so-called Hasse diagram, with
a finite poset P. Let us represent each element of P by a small circle “o”. It ¢ < b then
we draw the circle for b above the circle for a, joining the two circles with a line segment.
From this diagram we can recapture the relation < by noting that a < b holds iff for some
finite sequence of elements c;,...,¢c, from P we have a =c¢; < co---¢cp_1 < ¢, = b. We have
drawn some examples in Figure 1. It is not so clear how one would draw an infinite poset.
For example, the real line with the usual ordering has no covering relations, but it is quite
common to visualize it as a vertical line. Unfortunately, the rational line would have the
same picture. However, for those infinite posets for which the ordering is determined by the
covering relation it is often possible to draw diagrams which do completely convey the order
relation to the viewer; for example, consider the diagram in Figure 2 for the integers under

the usual ordering.
(@  (b) (C) (d)
(e)

(1) (2) (h)

Figure 1 Examples of Hasse diagrams

Oﬂ
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Figure 2 Drawing the poset of the integers

Now let us look at the second approach to lattices.
Definition 1.4. A poset L is a lattice iff for every a, b in L both sup{a, b} and inf{a, b} exist
(in L).

The reader should verify that for each of the diagrams in Figure 1 the corresponding
poset is a lattice, with the exception of (e). The poset corresponding to diagram (e) does
have the interesting property that every pair of elements has an upper bound and a lower
bound.

We will now show that the two definitions of a lattice are equivalent in the following
sense: if L is a lattice by one of the two definitions then we can construct in a simple and
uniform fashion on the same set L a lattice by the other definition, and the two constructions
(converting from one definition to the other) are inverses. First we describe the constructions:

(A) If L is a lattice by the first definition, then define < on L by a < b iff a = a A b;

(B) If L is a lattice by the second definition, then define the operations V and A by aVb =
sup{a, b}, and a A b = inf{a, b}.

Suppose that L is a lattice by the first definition and < is defined as in (A). From aAa = a
follows a < a. Ifa < band b<athena=aAband b=>bAa; hence ¢ =b. Also if a < b
and b < cthena=aAbandb=bAc,soa=aAb=aA(bAc)=(aAb)Ac=aAc; hence
a < c¢. This shows < is a partial order on L. Froma =a A (a VvV b) and b =b A (a V b) follow
a<aVband b<aVb, soaVbisan upper bound of both a and 6. Now if ¢ < v and b < u
then a Vu = (a Au)Vu=u, and likewise bV u =u, so (aVu)V (bVu)=uVu=u; hence
(@aVb)Vu=u,giving (aVb) Au=(aVb)Al(aVb)Vul =aVb (by the absorption law),
and this says a Vb < u. Thus a V b = sup{a, b}. Similarly, a A b = inf{a, b}.

If, on the other hand, we are given a lattice L by the second definition, then the
reader should not find it too difficult to verity that the operations V and A as defined
in (B) satisty the requirements L1 to L4, for example the absorption law L4(a) becomes
a = sup{a,inf{a, b}}, which is clearly true as inf{a, b} < a.

The fact that these two constructions (A) and (B) are inverses is now an easy matter to
check. Throughout the text we will be using the word lattice to mean lattice by the first
definition (with the two operations join and meet), but it will often be convenient to freely
make use of the corresponding partial order.
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EXERCISES gl

1.

10.

Verify that Su(X) with the partial order C is a lattice. What are the operations V and
N

. Verify L1-L4 for V, A as defined in (B) below Definition 1.4.

show that the idempotent laws L3 of lattices follow from L1, L2, and L4.

Let C0,1] be the set of continuous functions from [0, 1] to the reals. Define < on
Cl10,1] by f < g iff f(a) < g(a) for all a € [0,1]. Show that < is a partial order which
makes C0, 1] into a lattice.

. If L is a lattice with operations V and A, show that interchanging V and A still gives a.

lattice, called the dual of L. (For constrast, note that interchanging + and - in a ring
usually does not give another ring.) Note that dualization turns the Hasse diagram
upside down.

If G is a group, show that the set of subgroups S(G) of G with the partial ordering
C forms a lattice. Describe all groups G whose lattices of subgroups look like (b) of
Figure 1.

If G is a group, let N(G) be the set of normal subgroups of G. Define V and A on
N(G) by N1 /\N2 — N1 ﬁ]\fgj and N1 \/N2 = N1N2 = {?’Llng C N & Nhng - Ng} Show
that under these operations N(G) is a lattice.

If R is a ring, let I(R) be the set of ideals of R. Define V and A on I(R) by I1 A I, =
LNl I VI, ={i+12:1 € 11,12 € I,}. Show that under these operations I(R) is a
lattice.

It < is a partial order on a set A, show that there is a total order <* on A such that
a < b implies a <* b. (Hint: Use Zorn’s lemma.)

It L is a lattice we say that an element a € L is j0in 1rreducible it a = bV c implies ¢ = b
or a = c¢. If L is a finite lattice show that every element is of the form a; V- -+ V a,,
where each a; is join irreducible.
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32. Isomorphic Lattices, and Sublattices

The word isomorphism is used to signify that two structures are the same except for the
nature of their elements (for example, if the elements of a group are painted blue, one still
has essentially the same group). The following definition is a special case of 11§2.1.

Definition 2.1. Two lattices L; and L, are isomorphic if there is a bijection « from L, to
Ly such that for every a,b in L; the following two equations hold: a(a V b) = a(a) V «a(d)
and a(a Ab) = a(a) A a(b). Such an « is called an isomorphism.

It is useful to note that if « is an isomorphism from L; to Lo then o ! is an isomorphism
from Ly to L;, and if 5 is an isomorphism from L, to L3 then 5 o« is an isomorphism from
L1 to Ls. One can reformulate the definition of isomorphism in terms of the corresponding
order relations.

Definition 2.2. If P, and F; are two posets and « is a map from P; to F;, then we say «
is order-preserving it a(a) < a(b) holds in PP, whenever a < b holds in P;.

Theorem 2.3. Two lattices Ly and Lo are i1somorphic iff there 1s a byection o from Ly to
Lo such that both o and o™ are order-preserving.

PROOF. If « is an isomorphism from L; to Ly and a < b holds in L7 then a = a A b, so

a(a) = ala Ab) = ala) Aa(b), hence a(a) < a(b), and thus « is order-preserving. As o' is

an isomorphism, it is also order-preserving.

Conversely, let « be a bijection from L; to Lo such that both « and o™ are order-
preserving. For a,b in L; we have ¢ < aVband b < aV b, so ala) < ala VD) and
a(b) < alaVb), hence a(a)V a(b) < alaVb). Furthermore, if a(a) V a(b) < u then a(a) < u
and «a(b) < wu, hence a < o '(u) and b < a ' (u), so a Vb < a'(u), and thus ala Vv b) < wu.

This implies that a(a)Va(b) = a(aVb). Similarly, it can be argued that a(a) Aa(b) = a(anbd).

1

d - 4
b *T b
C —— C

d - d
L, L,

Figure 3 An order-preserving bijection
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It is easy to give examples of bijections « between lattices which are order-preserving but
are not isomorphisms; for example, consider the map a(a) = a,...,a(d) = d where L; and
L, are the two lattices in Figure 3.

A sublattice of a lattice L is a subset of L which is a lattice in its own right, using the
same operations.

Definition 2.4. If L is a lattice and L' ¢ @& is a subset of L such that for every pair of
elements a,b in L’ both a Vb and a A b are in L', where V and A are the lattice operations
of L, then we say that L’ with the same operations (restricted to L’) is a sublattice of L.

If I’ is a sublattice of L then for a,b in L’ we will of course have a < bin L’ iff a < b in
L. It is interesting to note that given a lattice L one can often find subsets which as posets
(using the same order relation) are lattices, but which do not qualify as sublattices as the
operations V and A do not agree with those of the original lattice L. The example in Figure
4 illustrates this, for note that P = {a,c,d, e} as a poset is indeed a lattice, but P is not a
sublattice of the lattice {a,b,c,d, e}.

a
b
C d
e
Figure 4

Definition 2.5. A lattice L; can be embedded into a lattice Lo if there is a sublattice of Lo
isomorphic to Ly; in this case we also say Ly contains a copy of L1 as a sublattice.

EXERCISES §2

1. If (X,T) is a topological space, show that the closed subsets, as well as the open
subsets, form a lattice using C as the partial order. Show that the lattice of open
subsets is isomorphic to the dual (see §1, Exercise 5) of the lattice of closed subsets.

2. If P and @ are posets, let Q¥ be the poset of order-preserving maps from P to @,
where for f, g € QF we define f < g iff f(a) < g(a) for all a € P. If () is a lattice show

that QF is also a lattice.

3. If G is a group, is N(G) a sublattice of S(G) (see §1, Exercises 6,7)7
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4. It < is a partial order on P then a lower segment of P is a subset S of P such that if
se S, pe P, and p < s then p € 5. Show that the lower segments of P form a lattice
with the operations U, N. If P has a least element, show that the set L(P) of nonempty
lower segments of P forms a lattice.

b. It L is a lattice, then an ideal I of L is a nonempty lower segment closed under V. Show
that the set of ideals I(L) of L forms a lattice under C .

6. Given a lattice L, an ideal I of L is called a principal ideal if it is of the form {b €
L :b < a}, for some a € L. (Note that such subsets are indeed ideals.) Show that the
principal ideals of L form a sublattice of I(L) isomorphic to L.

§3. Distributive and Modular Lattices

The most thoroughly studied classes of lattices are distributive lattices and modular lattices.

Definition 3.1. A distributive lattice is a lattice which satisfies either (and hence, as we
shall see, both) of the distributive laws,

DI: zA(yVz
D2: zV(yAz

U
0
>
S s
<
0
>
2

Theorem 3.2. A lattice L satisfies D1 iff it satisfies D2.

PROOF. Suppose D1 holds. Then

rV(yNz)=(@V(@eAz)V(yAz) (by L4(a))
~xV({(zA2)V(YyAz)) (by L2(a))
~xV((zAz)V(2AY)) (by L1(b
~zV(zA(zVYy)) (by D1)
~xV((zVy Az (by L1(b)
~(xA(xzVYy))V({(xVy)Az) (by L4(b)
~((zVy ANz)V((zVYy) Az) (by L1(b)
~(xVy AlzVz) (by D1).

Thus D2 also holds. A similar proof shows that if D2 holds then so does D1.

Actually every lattice satisfies both of the inequalities (x Ay)V(x A z) <z A(yV 2) and
rV(yAz) < (xVy)A(zVz). To see this, note for example that z Ay <z and z Ay < yVz;
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hence z Ay <z A (yV z), etc. Thus to verify the distributive laws in a lattice it suffices to
check either of the following inequalities:

A (yVz)
(xVYy)A(zV2)

rAYy)V(xAz)
V(YA z).

VAR VA

Definition 3.3. A modular lattice is any lattice which satisfies the modular law
M:z<y—axVyAz)=yA(zVz).
The modular law is obviously equivalent (for lattices) to the identity
@AY V(yAz)=yA((zAy)Vz)
since ¢ < b holds iff a = a A b. Also it is not difficult to see that every lattice satisfies
r<y—zxzV{yNz)<yA(zV 2),
so to verity the modular law it suffices to check the implication

r<y —yA@xVz)<zV({YA:z2).

Theorem 3.4. Lwvery distributive lattice 1s a modular lattice.

PROOF. Just use D2, noting that a V b = b whenever a < b.

The next two theorems give a fascinating characterization of modular and distributive
lattices in terms of two five-element lattices called My and N5 depicted in Figure 5. In
neither case isa V (b Ac) = (aVb) A (aV c), so neither My nor N5 is a distributive lattice.
For Ny we also see that a < bbut aV (bAc) #bA (aV c), so N5 is not modular. With a
small amount of effort one can verity that Mg does satisty the modular law, however.
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Theorem 3.5 (Dedekind). L is a nonmodular lattice iff N5 can be embedded into L.

PROOF. From the remarks above it is clear that it N5 can be embedded into L, then L does
not satisty the modular law. For the converse, suppose that L does not satisty the modular
law. Then for some a,b,cin L we have a < bbut aV(bAc)<bA(aVc). Letag =aV (bAc)
and by =bA (aV ¢). Then

cVb=cANbA(aVc)l
=lcA(cVa)|Ab (by L1(a), L1(b), L2(b))
=cAD (by L4(b))

and

cVa =cViaV(bAc)l
=[cV(cADb)]Va (by L1(a), L1(b), L2(a))
=cVa (by L4(a)).

NowascAb<a; <bywehavecAb<cAas <cAby=cAb hencecNag =cNb =cAb.
Likewise ¢V by =c¢cVa; = ¢V a.
Now it is straightforward to verity that the diagram in Figure 6 gives the desired copy ot

N5 in L.

cva
b,
C
aq
cAD
Figure 6

Theorem 3.6 (Birkhoft). L is a nondistributive lattice iff M5 or N5 can be embedded into
L.

PROOF. If either My or N5 can be embedded into L, then it is clear from earlier remarks
that L cannot be distributive. For the converse, let us suppose that L is a nondistributive
lattice and that L does not contain a copy of Ny as a sublattice. Thus L is modular by 3.5.
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Since the distributive laws do not hold in L, there must be elements a, b, ¢ from L such that
(aNb)V(aAc)<aA(bVc). Let us define

d=(aNb)V(aNc)V(bAc)
e=(aVb ANaVc)A(DVec
ap=(aNe)Vd
by =(bAe)Vd
c1 = (cANe)Vd.

Then it is eagsily seen that d < a1, 61,1 < e. Now from
aNe=aAl(bVc) (by L4(b))
and (applying the modular law to switch the underlined terms)

aANd=aAN((aNb)V(aAc)V(bAc))
= ((aAb)V(aAc)V(aN(bAc)) (by M)
= (aAb)V (aAc)

1t follows that d < e.

Figure 7

We now wish to show that the diagram in Figure 7 is a copy of My in L. To do this it
suthces to show that a1 /\bl = a1 N\NcCcp = bl/\Cl — d and CLl\/bl = a1 Vg = bl\/Cl = €.
We will verify one case only and the others require similar arguments (in the following we
do not explicitly state several steps involving commutativity and associativity; the terms to
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be interchanged when the modular law is applied have been underlined):

a Ab=((ane)Vd)A((bAe)Vd)

= ((ane)A((bAe)Vd))Vd (by M)

= ((aNe)A((DVd)Ae))Vd (by M)

= ((aANe)ANeN(bVd)Vd

= ((aNe)AN(bVd))Vd (by L3(b))
=(aNbVe)AN(bV(aNc)))Vd (by 14)
=(aNbV(bVec)A(aNc))))Vd (by M)
=(aN(bV(aAc)))Vd (aNe<bVec)
=(aAc)V(bNa)Vd (by M)
= d.

EXERCISES 33

1.

If we are given a set X, a sublattice of Su(X) under C is called a ring of sets (following
the terminology used by lattice theorists). Show that every ring of sets is a distributive
lattice.

. If L is a distributive lattice, show that the set of ideals I(L) of L (see §2 Exercise 5)

forms a distributive lattice.

Let (X,T') be a topological space. A subset of X is reqular open if it is the interior of
its closure. Show that the family of regular open subsets of X with the partial order
C is a distributive lattice.

If L is a finite lattice let J(L) be the poset of join irreducible elements of L (see
61 Exercise 10), where ¢ < b in J(L) means a < b in L. Show that if L is a finite
distributive lattice then L is isomorphic to L(J(L)) (see §2 Exercise 4), the lattice
of nonempty lower segments of J(L). Hence a finite lattice is distributive iff it is
isomorphic to some L(P), for P a finite poset with least element. (This will be used
in V85 to show the theory of distributive lattices is undecidable.)

. If G is a group, show that N(G), the lattice of normal subgroups of G (see §1 Exercise

7), is a modular lattice. Is the same true of S(G)? Describe N(Zs X Z5).

If R is aring, show that I(R), the lattice of ideals of R (see §1 Exercise 8), is a modular
lattice.

It M is a left module over a ring R, show that the submodules of M under the partial
order C form a modular lattice.
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34. Complete Lattices, Equivalence Relations,
and Algebraic Lattices

In the 1930’s Birkhoft introduced the class of complete lattices to study the combinations of
subalgebras.

Definition 4.1. A poset P is complete if for every subset A of P both sup A and inf A
exist (in P). The elements sup A and inf A will be denoted by \/ A and A A, respectively.
All complete posets are lattices, and a lattice L which is complete as a poset is a complete
lattice.

Theorem 4.2. Let P be a poset such that \ A exists for every subset A, or such that \/ A
exists for every subset A. Then P is a complete lattice.

PROOF. Suppose )\ A exists for every A C P. Then letting A% be the set of upper bounds
of A in P, it is routine to verify that A A" is indeed \/ A. The other half of the theorem is

proved similarly.

In the above theorem the existence of A @ guarantees a largest element in P, and likewise
the existence of \/ @ guarantees a smallest element in P. So an equivalent formulation of
Theorem 4.2 would be to say that P is complete if it has a largest element and the inf of
every nonempty subset exists, or if it has a smallest element and the sup of every nonempty
subset exists.

EXAMPLES. (1) The set of extended reals with the usual ordering is a complete lattice.
(2) The open subsets of a topological space with the ordering C form a complete lattice.
(3) Su(/) with the usual ordering C is a complete lattice.

A complete lattice may, of course, have sublattices which are incomplete (for example,
consider the reals as a sublattice of the extended reals). It is also possible for a sublattice
of a complete lattice to be complete, but the sups and infs of the sublattice not to agree
with those of the original lattice (for example look at the sublattice of the extended reals
consisting of those numbers whose absolute value is less than one together with the numbers

—2,42).

Definition 4.3. A sublattice L’ of a complete lattice L is called a complete sublattice of L
if for every subset A of L’ the elements \/ A and A A, as defined in L, are actually in L.

In the 1930°s Birkhofl introduced the lattice of equivalence relations on a set, which is
especially important in the study of quotient structures.

Definition 4.4. Let A be a set. Recall that a binary relation r on A is a subset of A°. If
(a,b) € r we also write arb. If r1 and r, are binary relations on A then the relational product
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r1 o Ty is the binary relation on A defined by (a,b) € r; o 1y iff there is a ¢ € A such that
{a,c) € r and {c,b) € ry. Inductively one defines ryorgo---or, =(rjorgo---o0r,_1)or,.
The inverse of a binary relation r is given by r~ = {{a,b) € A : (b,a) € r}. The diagonal
relation Ay on A is the set {{(a,a) : a € A} and the all relation A® is denoted by V4. (We
write simply A (read: delta) and V (read: nabla) when there is no confusion.) A binary
relation 7 on A is an equivalence relation on A if, for any a, b, c from A, it satisfies:

El: ara (reflexivity)
E2: arb implies bra (symmetry)
E3: arb and bre imply arc (transitivity).

Eq(A) is the set of all equivalence relations on A.

Theorem 4.5. The poset Eq(A), with C as the partial ordering, is a complete lattice.

PROOF. Note that Eq(A) is closed under arbitrary intersections.

For 6, and 6, in Eq(A) it is clear that 6; A 6, = 6; N 6,. Next we look at a (constructive)
description of 6; V 6.

Theorem 4.6. If 61 and 65 are two equivalence relations on A then
91\/92:QIU(QloQQ)U(91092091)U(91092091Oez)u--- :

or equivalently, (a,b) € 01V 0y iff there is a sequence of elements ¢y, ¢, ..., ¢, from A such
that

(C@;, C@;_|_1> - 91 or <C?;, C?;_|_1> - 92
) ) ) )

PROOF. It is not difficult to see that the right-hand side of the above equation is indeed an
equivalence relation, and also that each of the relational products in parentheses is contained

n 91 V 92.

It {6;}icr is a subset of Eq(A) then it is also easy to see that A._;6; is just [)..; 0;. The

following straightforward generalization of the previous theorem descrlbes arbitrary sups in
FEq(A).

Theorem 4.7. If 0, € Eq(A) fori € I, then

\/ 0= J{0i,06i, 000, tio,... 0k €1, k < oo},

el

Definition 4.8. Let # be a member of Eq(A). For a € A, the equivalence class (or coset) of
a modulo 6 is the set a/60 ={be A: (b,a) € 8}. The set {a/0:a € A} is denoted by A/6.
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Theorem 4.9. For 6 € Eq(A) and a,b € A we have

(a) A= UaeA O‘,/@
(b) a/0 # b/6 implies a/0Nb/O = @.

PROOF. (Exercise).
An alternative approach to equivalence relations is given by partitions, in view of 4.9.

Definition 4.10. A partition m of a set A is a family of nonempty pairwise disjoint subsets
of A such that A =) x. The sets in 7 are called the blocks of w. The set of all partitions of
A is denoted by II(A).

For 7 in II(A), let us define an equivalence relation 8(7) by 6(7) = {{a,b) € A*: {a,b} C
B for some B in w}. Note that the mapping # — 6(m) is a bijection between II(A) and
Eq(A). Define a relation < on II(A) by m < my iftf each block of 7 is contained in some

block of 7.

Theorem 4.11. With the above ordering I11(A) is a complete lattice, and it is 1somorphic
to the lattice Eq(A) under the mapping m — 6(m).

The verification of this result is left to the reader.
Definition 4.12. The lattice II(A) is called the lattice of partitions of A.
The last class of lattices which we introduce is that of algebraic lattices.

Definition 4.13. Let L be a lattice. An element ¢ in L is compact iff whenever \/ A exists
and a < \/ A for A C L, then a < \/ B for some finite B C A. L is compactly generated ift
every element in L is a sup of compact elements. A lattice L is algebraic if it is complete
and compactly generated.

The reader will readily see the similarity between the definition of a compact element in
a lattice and that of a compact subset of a topological space. Algebraic lattices originated
with Komatu and Nachbin in the 1940’s and Bichi in the early 1950’s; the original definition

was somewhat different, however.

EXAMPLES. (1) The lattice of subsets of a set is an algebraic lattice (where the compact
elements are finite sets).

(2) The lattice of subgroups of a group is an algebraic lattice (in which “compact” =
“finitely generated”).

(3) Finite lattices are algebraic lattices.

(4) The subset |0, 1] of the real line is a complete lattice, but is not algebraic.
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In the next chapter we will encounter two situations where algebraic lattices arise, namely
as lattices of subuniverses of algebras and as lattices of congruences on algebras.

EXERCISES g4

1.

2.

85.

Show that the binary relations on a set A form a lattice under C .

Show that the right-hand side of the equation in Theorem 4.6 is indeed an equivalence
relation on A.

If I is a closed and bounded interval of the real line with the usual ordering, and P a
nonempty subset of I with the same ordering, show that P is a complete sublattice ift
P is a closed subset of 1.

It L is a complete chain show that L is algebraic ift for every a;,a, € L with a; < as
there are by, by € L with a1 < by < by < as.

. Draw the Hasse diagram of the lattice of partitions of a set with n elements for 1 <

n < 4. For |A| > 4 show that II(A) is not a modular lattice.

It L is an algebraic lattice and D is a subset of L such that for di,dy; € D there is a
d3 € D with d; < d3,dy < ds (i.e., D is upward directed) then, fora € L, a A\ D =

Vaepla A d).

It L is a distributive algebraic lattice then, for any A C L, we have a A\ A =V _4(aA
d).

If a and b are compact elements of a lattice L, show that a V b is also compact. Isa A b
always compact?

If L is a lattice with at least one compact element, let C'(L) be the poset of compact
elements of L with the partial order on C'(L) agreeing with the partial order on L. An
tdeal of C'(L) is a nonempty subset I of C'(L) such that a,b € I implies a Vb € I, and
a €I, be C(L) with b < a implies b € I. Show that the ideals of C'(L) form a lattice
under C if L has a least element and that the lattice of ideals of C'(L) is isomorphic
to L if L is an algebraic lattice.

Closure Operators

One way of producing, and recognizing, complete [algebraic| lattices is through [algebraic]
closure operators. Tarski developed one of the most fascinating applications of closure op-
erators during the 1930’s in his study of “consequences” in logic.
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Definition 5.1. If we are given a set A, a mapping C' : Su(A) — Su(A) is called a closure
operator on A if, for XY C A, it satisfies:

Cl: X CJ(X) (extensive)
C2: C*(X) = C(X) (idempotent)
C3: X CY implies C(X) C C(Y) (isotone).

A subset X of A is called a closed subset if C'(X) = X. The poset of closed subsets of A with
set inclusion as the partial ordering is denoted by L.

The definition of a closure operator is more general than that of a topological closure
operator since we do not require that the union of two closed subsets be closed.

Theorem 5.2. Let C be a closure operator on a set A. Then Lg 1s a complete lattice with
N\ C(A) =[)C(A)
iel iel

and

\V/ C(A)=cC (U Ai) .

el el

PROOF. Let (A;);cr be an indexed family of closed subsets of A. From

for each 7, we have
SO

hence

C (ﬁ Ai) — ﬂ Aj;
el iel

SO [ ),.; Ai 1s in L¢. Then, if one notes that A itself is in L, it follows that L is a complete

lattice. The verification of the formulas for the A’s and \/’s of families of closed sets is
straightforward.

Interestingly enough, the converse of this theorem is also true, which shows that the
lattices Lo arising from closure operators provide typical examples of complete lattices.
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Theorem 5.3. Every complete lattice 1s 1somorphic to the lattice of closed subsets of some
set A with a closure operator C.

PROOF. Let L be a complete lattice. For X C L define
C(X)={{a€eL:a<supX}.

Then C' is a closure operator on L and the mapping a — {b € L : b < a} gives the desired
isomorphism between L and L.

The closure operators which give rise to algebraic lattices of closed subsets are called al-
gebraic closure operators; actually the consequence operator of Tarski is an algebraic closure
operator.

Definition 5.4. A closure operator C' on the set A is an algebraic closure operator if for
every X C A

C4: C(X)={C(Y):Y C X and Y is finite}.
(Note that C1, C2, C4 implies C3.)

Theorem 5.5. If C' is an algebraic closure operator on a set A then Lo s an algebraic
lattice, and the compact elements of Lo are precisely the closed sets C'(X), where X s a

finite subset of A.

PROOF. First we will show that C(X) is compact if X is finite. Then by (C4), and in view
of 5.2, L¢ is indeed an algebraic lattice. So suppose X = {ay,...,a;} and

cx)c\/c)=c (U A@) .

el el

For each a; € X we have by (C4) a finite X; C (J,.; A; with a; € C(X;). Since there are
finitely many A;’s, say A;1,..., Ay, such that

X; CAjU---UA,

then
a; = C(Ajl Joe-- UAJRJ)
But then
XC | ) CAnU---UA),
1<j<k
SO

xco| | 4.

1<5<k
1<1<n;
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and hence
cxyce| |J 4i|l= 'V Cp),
1< <k 1< <k
1<1<n;y 1<1<n;

so C'(X) is compact.
Now suppose C'(Y) is not equal to C'(X) for any finite X. From

C(Y)C | {C(X): X CY and X is finite}

it is easy to see that C'(Y) cannot be contained in any finite union of the C(X)’s; hence
C'(Y) is not compact.

Definition 5.6. If (' is a closure operator on A and Y is a closed subset of A, then we say
a set X is a generating set for Y if C'(X) =Y. The set Y is finitely generated if there is a
finite generating set for Y. The set X is a minimal generating set for Y if X generates Y
and no proper subset of X generates Y.

Corollary 5.7. Let C be an algebraic closure operator on A. Then the finitely generated
subsets of A are precisely the compact elements of L¢.

Theorem 5.8. Fvery algebraic lattice 1s 1somorphic to the lattice of closed subsets of some
set A with an algebraic closure operator C.

PROOF. Let L be an algebraic lattice, and let A be the subset of compact elements. For
X C A define

C(X)={aeA:a<\/X}

(' is a closure operator, and from the definition of compact elements it follows that C' is
algebraic. The map a — {b € A: b < a} gives the desired isomorphism as L is compactly
generated.

REFERENCES
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EXERCISES 85

1. If Gis a group and X C G, let C'(X) be the subgroup of GG generated by X. Show that
(' is an algebraic closure operator on G.

2. It G is a group and X C G, let C'(X) be the normal subgroup generated by X. Show
that (' is an algebraic closure operator on G.
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3. If Ris aring and X C R, let C'(X) be the ideal generated by X. Show that C' is an
algebraic closure operator on R.

4. If L is a lattice and A C L, let u(A) ={b € L :a < b for a € A}, the set of upper
bounds of A, and let I[(A) ={be L:b<afora e A}, the set of lower bounds of A.
Show that C'(A) = [(u(a)) is a closure operator on A, and that the map « : a — C'({a})
gives an embedding of L into the complete lattice Lo (called the Dedekind-MacNetlle
completion). What is the Dedekind-MacNeille completion of the rational numbers?

5. If we are given a set A, a family K of subsets of A is called a closed set system for A
if there is a closure operator on A such that the closed subsets of A are precisely the
members of K. If K C Su(A), show that K is a closed set system for A iff K is closed

under arbitrary intersections.

Given a set A and a family K of subsets of A, K is said to be closed under unions of
chains if whenever C C K and C' is a chain (under C) then | JC € K; and K is said to
be closed under unions of upward directed families of sets it whenever D C K is such that
A1, Ay € D implies A1 U Ay C Aj for some A3 € D, then | JD € K. A result of set theory
says that K is closed under unions of chains iff K is closed under unions of upward directed
families of sets.

6. (Schmidt). A closed set system K for a set A is called an algebraic closed set system
for A if there is an algebraic closure operator on A such that the closed subsets of A
are precisely the members of K. If K C Su(A), show that K is an algebraic closed set
system iff K is closed under (i) arbitrary intersections and (ii) unions of chains.

7. If C is an algebraic closure operator on S and X is a finitely generated closed subset,

then for any Y which generates X show there is a finite Yy C Y such that Y, generates
X.

8. Let C' be a closure operator on 5. A closed subset X # 5 is maximal if for any closed
subset Y with X CY C S either X =Y or Y = 5. Show that it (' is algebraic and
X C 8 with C'(X) # S then X is contained in a maximal closed subset if S is finitely
generated. (In logic one applies this to show every consistent theory is contained in a
complete theory.)



Chapter 11

The Elements of Universal Algebra

One of the aims of universal algebra is to extract, whenever possible, the common elements
of several seemingly different types of algebraic structures. In achieving this one discovers
general concepts, constructions, and results which not only generalize and unity the known
special situations, thus leading to an economy of presentation, but, being at a higher level of
abstraction, can also be applied to entirely new situations, yielding significant information
and giving rise to new directions.

In this chapter we describe some of these concepts and their interrelationships. Of pri-
mary importance is the concept of an algebra; centered around this we discuss the notions
of isomorphism, subalgebra, congruence, quotient algebra, homomorphism, direct product,
subdirect product, term, identity, and free algebra.

31l. Definition and Examples of Algebras

The definition of an algebra given below encompasses most of the well known algebraic struc-
tures, as we shall point out, as well as numerous lesser known algebras which are of current
research interest. Although the need for such a definition was noted by several mathemati-
cians such as Whitehead in 1898, and later by Noether, the credit for realizing this goal goes
to Birkhoff in 1933. Perhaps it should be noted here that recent research in logic, recur-
sive function theory, theory of automata, and computer science has revealed that Birkhoft’s
original notion could be fruitfully extended, for example to partial algebras and heteroge-
neous algebras, topics which lie outside the scope of this text. (Birkhoft’s definition allowed
infinitary operations; however, his main results were concerned with finitary operations.)

Definition 1.1. For A a nonempty set and n a nonnegative integer we define A = {@},
and, for n > 0, A" is the set of n-tuples of elements from A. An n-ary operation (or function)
on A is any function f from A™ to A; n is the arity (or rank) of f. A finitary operation is an
n-ary operation, for some n. The image of (a4, ..., a,) under an n-ary operation f is denoted
by f(aq,...,a,). An operation f on A is called a nullary operation (or constant) if its arity

20
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is zero; it is completely determined by the image f(2) in A of the only element & in A°.
and as such it is convenient to identify it with the element f(&). Thus a nullary operation is
thought of as an element of A. An operation f on A is unary, binary, or ternary if its arity
is 1,2, or 3, respectively.

Definition 1.2. A language (or type) of algebras is a set F of function symbols such that
a nonnegative integer n is assigned to each member f of . This integer is called the arity
(or rank) of f, and f is said to be an n-ary function symbol. The subset of n-ary function
symbols in J is denoted by F,,.

Definition 1.3. If & is a language of algebras then an algebra A of type F is an ordered
pair (A, F') where A is a nonempty set and F is a family of finitary operations on A indexed
by the language F such that corresponding to each n-ary function symbol f in J there is an
n-ary operation f# on A. The set A is called the universe (or underlying set) of A = (A, F),
and the fA’s are called the fundamental operations of A. (In practice we prefer to write just
f for fA—this convention creates an ambiguity which seldom causes a problem. However,
in this chapter we will be unusually careful.) If F is finite, say F = {f1,..., fx}, we often
write (A, f1,..., fr) for (A, F), usually adopting the convention:

arity f; > arity fo > --- > arity f;.

An algebra A is unary if all of its operations are unary, and it is mono-unary it it has just
one unary operation. A is a groupotd it it has just one binary operation; this operation is
usually denoted by + or -, and we write a+ b or a-b (or just ab) for the image of (a, b) under
this operation, and call it the sum or product of a and b, respectively. An algebra A is finite
if |A| is finite, and trivial if |A| = 1.

It is a curious fact that the algebras that have been most extensively studied in conven-
tional (albeit modern!) algebra do not have fundamental operations of arity greater than
two. (However see IVS7 Ex. 8.)

Not all of the following examples of algebras are well-known, but they are of considerable
importance in current research. In particular we would like to point out the role of recent
directions in logic aimed at providing algebraic models for certain logical systems. The reader
will notice that all of the different kinds of algebras listed below are distinguished from each
other by their fundamental operations and the fact that they satisty certain identities. One
of the early achievements of Birkhoff was to clarify the role of identities (see §11).

EXAMPLES. (1) Groups. A group G is an algebra (G,-,~' 1) with a binary, a unary, and
nullary operation in which the following identities are true:

Gl:z-(y-2)=(z-y)- =z
G2 zx-1=~1-z~zx
G -z '~z t-z~1.

A group G is Abelian (or commutative ) if the following identity is true:
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Gd: z-y~y-x.

Groups were one of the earliest concepts studied in algebra (groups of substitutions
appeared about two hundred years ago). The definition given above is not the one which
appears in standard texts on groups, for they use only one binary operation and axioms
involving existential quantifiers. The reason for the above choice, and for the descriptions
given below, will become clear in §2.

Groups are generalized to semigroups and monoids in one direction, and to quasigroups
and loops in another direction.

(2) SEMIGROUPS AND MONOIDS. A semigroup is a groupoid (G, ) in which (G1) is true.
It is commutative (or Abelian) if (G4) holds. A monoid is an algebra (M, - 1) with a binary
and a nullary operation satistying (G1) and (G2).

y 9

(3) QUASIGROUPS AND LOOPS. A quasigroup is an algebra (Q, /,-,\) with three binary
operations satistying the following identities:

Ql: z\(z-y)~y; (z-y)/y~ux

Q2 z-(z\y) = y; (z/y)-y=uz.

A loop is a quasigroup with identity, i.e., an algebra (@, /, -, \, 1) which satisfies (Q1), (Q2)
and (G2). Quasigroups and loops will play a major role in Chapter III.

(4) RINGS. A ring is an algebra (R, +, -, —, 0), where + and - are binary, — is unary and 0
is nullary, satistying the following conditions:

R1: (R,+, —,0) is an Abelian group
R2: (R, -) is a semigroup
R3:2-(y+2)=(@-y)+(z-2)

(@ +y)-z=@-2)+ (Y- 2)

A ring with identity is an algebra (R, +, -, —,0,1) such that (R1)-(R3) and (G2) hold.

(5) MoODULES OVER A (FiXED) RING. Let R be a given ring. A (left) R-module is an
algebra (M, +, —. 0, (f,)rer) Where + is binary, — is unary, 0 is nullary, and each f, is unary,
such that the following hold:

M1: (M, +, —, 0) is an Abelian group
M2: fr(x_I_ y) ~ fr(x) T+ fr(y): for r € R
M3: fris(x) = fr(z) + fs(z), for r,s € R
M4: f.(fs(x)) = f.s(x) for r,s € R.

Let R be a ring with identity. A unitary R-module is an algebra as above satistying (M1)-
(M4) and

Mb: fi(x) = .
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(6) ALGEBRAS OVER A RING. Let R be a ring with identity. An algebra over R is an
algebra (A, +,-,—,0, (f-)rer) such that the following hold:

Al: (A, +,—,0,(f-)rer) is a unitary R-module
A2: (A, +,-,—,0) is a ring
A3: fiz-y) = (f () -y=zx- f.(y) for r € R.

(7) SEMILATTICES. A semilattice is a semigroup (S, -) which satisfies the commutative law
(G4) and the idempotent law

Sl: z -z~ x.
Two definitions of a lattice were given in the last chapter. We reformulate the first

definition given there in order that it be a special case of algebras as defined in this chapter.

(8) LATTICES. A lattice is an algebra (L, V,A) with two binary operations which satisfies
(L1)—(L4) of 151.

(9) BOUNDED LATTICES. An algebra (L,V, A, 0, 1) with two binary and two nullary opera-
tions i1s a bounded lattice if it satisfies:

BL1: (L,V,A) is a lattice
BL2: 2 A0~0; 2V 1r1.

(10) BOOLEAN ALGEBRAS. A Boolean algebra is an algebra (B, V, A,’,0, 1) with two binary,
one unary, and two nullary operations which satisfies:

B1l: (B, V,A) is a distributive lattice
B2: zAN0~=0; xvV1=xl
B3: x N2’ =0, xVa =1.

Boolean algebras were of course discovered as a result of Boole’s investigations into the
underlying laws of correct reasoning. Since then they have become vital to electrical engi-
neering, computer science, axiomatic set theory, model theory, and other areas of science
and mathematics. We will return to them in Chapter IV.

(11) HEYTING ALGEBRAS. An algebra (H,V, A, —,0,1) with three binary and two nullary
operations is a Heyting algebra it it satisfies:

H1: (H,V,A) is a distributive lattice

H2: tAN0O=0; zV1xl

H3: 2z —z~1

Had: (z - y)ANy~=y;, cAN(x —y) =~z AY

Ho:z - (yA2)=(x—y)AN(x—2); (xVy) —mz=(x—2)A(y — 2).

These were introduced by Birkhoft under a different name, Brouwerian algebras, and with
a different notation (v : u for u — v).
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(12) n-VALUED POST ALGEBRAS. An algebra (A,V,A,’,0,1) with two binary, one unary,
and two nullary operations is an n-valued Post algebra if it satisfies every identity satisfied
by the algebra P,, = ({0,1,...,n — 1}, V,A,”,0,1) where ({0,1,...,n— 1}, V,A,0,1) is a
bounded chain with 0 < n—-1<n—-2<.--- <2< 1l,and 1" =22 =3,...,(n —2) =
n—1,(n—1)Y =0, and 0’ = 1. See Figure 8, where the unary operation ’ is depicted by
arrows. In IVg7 we will give a structure theorem for all n-valued Post algebras, and in Vg4
show that they can be defined by a finite set of equations.

Figure 8 The Post algebra P,,

(13) CYLINDRIC ALGEBRAS OF DIMENSION n. If we are given n € w, then an algebra
(A, VN, ey oo yena1, 0,1, doo, dogy - -, dp—1 1) With two binary operations, n + 1 unary
operations, and n® + 2 nullary operations is a cylindric algebra of dimension n if it satisfies
the following, where 0 < 1,7, k < n :

Cl: (A, V, A, 0,1) is a Boolean algebra
C2: ¢;0=~=0

C3: x < ¢x

C4: ci(x A cyy) = (c;x) A ()

Cd: ¢ic;z = cicx

C7: d?,k ~ Cj(d?;j A djk) if ¢ 7&‘7 7£ k

U8: C«&(dw A CE) A C?;(d@'j /\ CE’) ~ () if ¢ 7£ j

Cylindric algebras were introduced by Tarski and Thompson to provide an algebraic
version of the predicate logic.

(14) ORTHOLATTICES. An algebra (L,V,A,’ 0,1) with two binary, one unary and two
nullary operations is an ortholattice if it satisfies:

QL1: (L,V,A,0,1) is a bounded lattice
Q2: z A2 =0, zVz =1
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Q3: (zANy) =2 Vyi(zVvy) =z ANy
Q4: (') = «x.

An orthomodular lattice is an ortholattice which satisfies

Qb: x<y—zxzV( ANy =y.
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EXERCISES gl

1.

D.

An algebra (A, F) is the reduct of an algebra (A, F*) to F if F C F* and F is the
restriction of F™* to &F. Given n > 1, find equations > for semigroups such that > will
hold in a semigroup (S, -) iff {S,-) is a reduct of a group (S, -, 7, 1) of exponent n (i.e.,
every element of S is such that its order divides n).

. Two elements a, b of a bounded lattice (L, V, A, 0, 1) are complementsif avb =1, aNb =

0. In this case each of a, b is the complement of the other. A complemented lattice is a
bounded lattice in which every element has a complement.

(a) Show that in a bounded distributive lattice an element can have at most one
complement.

(b) Show that the class of complemented distributive lattices is precisely the class of
reducts of Boolean algebras (to {V, A, 0,1}).

If (B,V,A,”,0,1) is a Boolean algebra and a,b € B, define a — b to be a’ V b. Show
that (B,V, A, —,0,1) is a Heyting algebra.

Show that every Boolean algebra is an ortholattice, but not conversely.

(a) If (H,V,A\,—,0,1) is a Heyting algebra and a,b € H show that a — b is the
largest element ¢ of H (in the lattice sense) such that a A ¢ < b.
(b) Show that the class of bounded distributive lattices (L, V, A, 0, 1) such that for

each a,b € L there is a largest ¢ € L with a Ac < b is precisely the class of reducts
of Heyting algebras (to {V,A,0,1}).
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(¢c) Show how one can construct a Heyting algebra from the open subsets of a topo-
logical space.

(d) Show that every finite distributive lattice is a reduct of a Heyting algebra.

6. Let (M,- 1) be a monoid and suppose A C M. For a € A define f, : M — M
by fu(s) = a-s. Show that the unary algebra (M, (f.)aca) satisfies fq, - fo,(2) ~
fo, o+ fo (x) iff @y---a, = by---bg. (This observation of Mal’cev [24] allows one to
translate undecidability results about word problems for monoids into undecidability
results about equations of unary algebras. This idea has been refined and developed

by McNulty [1976] and Murskii [1971]).

32. Isomorphic Algebras, and Subalgebras

The concepts of isomorphism in group theory, ring theory, and lattice theory are special
cases of the notion of isomorphism between algebras.

Definition 2.1. Let A and B be two algebras of the same type &. Then a functiona: A — B
is an somorphism from A to B if « is one-to-one and onto, and for every n-ary f € &, for
a,...,a, € A, we have

O{fA(G,l,...,CLn) :fB(O{CLh...,O{CLn). (*)

We say A is isomorphic to B, written A = B, if there is an isomorphism from A to B. If «
is an isomorphism from A to B we may simply say “a: A — B is an isomorphism”.

As is well-known, following Felix Klein’s Erlanger Programm, algebra is often considered
as the study of those properties of algebras which are invariant under isomorphism, and such
properties are called algebraic properties. Thus from an algebraic point of view, isomorphic
algebras can be regarded as equal or the same, as they would have the same algebraic
structure, and would differ only in the nature of the elements; the phrase “they are equal up
to isomorphism” is often used.

There are several important methods of constructing new algebras from given ones. Three
of the most fundamental are the formation of subalgebras, homomorphic images, and direct
products. These will occupy us for the next few sections.

Definition 2.2. Let A and B be two algebras of the same type. Then B is a subalgebra of
A it B C A and every fundamental operation of B is the restriction of the corresponding
operation of A, i.e., for each function symbol f, fB is f# restricted to B; we write simply
B < A. A subumwerse of A is a subset B of A which is closed under the fundamental
operations of A, i.e., if f is a fundamental n-ary operation of A and aq,...,a, € B we
would require f(aq,...,a,) € B.
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Thus if B is a subalgebra of A, then B is a subuniverse of A. Note that the empty set
may be a subuniverse, but it is not the underlying set of any subalgebra. If A has nullary
operations then every subuniverse contains them as well.

It is the above definition of subalgebra which motivated the choice of fundamental op-
erations for the several examples given in §1. For example, we would like a subalgebra of
a group to again be a group. If we were to consider a group as an algebra with only the
usual binary operation then, unfortunately, subalgebra would only mean subsemigroup (for
example the positive integers are a subsemigroup, but not a subgroup, of the group of all
integers). Similar remarks apply to rings, modules, etc. By considering a suitable modifica-
tion (enlargement) of the set of fundamental operations the concept of subalgebra as defined
above coincides with the usual notion for the several examples in §1.

A slight generalization of the notion of isomorphism leads to the following definition.

Definition 2.3. Let A and B be of the same type. A function o : A — B is an embedding ot
A into B if « is one-to-one and satisfies (%) of 2.1 (such an « is also called a monomorphism).
For brevity we simply say “a: A — B is an embedding”. We say A can be embedded in B
if there is an embedding of A into B.

Theorem 2.4. If a: A — B s an embedding, then a(A) s a subuniverse of B.

PROOF. Let o« : A — B be an embedding. Then for an n-ary function symbol f and
al,...,q, € A,
Blaas, ... aa,) = af*(a1,...,a,) € a(A),

hence «(A) is a subuniverse of B.

Definition 2.5. If a : A — B is an embedding, a(A) denotes the subalgebra of B with
universe c(A).

A problem of general interest to algebraists may be formulated as follows. Let K be
a class of algebras and let K; be a proper subclass of K. (In practice, K may have been
obtained from the process of abstraction of certain properties of K, or K7 may be obtained
from K by certain additional, more desirable, properties.) Two basic questions arise in the
quest for structure theorems.

(1) Is every member of K isomorphic to some member of K;7
(2) Is every member of K embeddable in some member of K;7

For example, every Boolean algebra is isomorphic to a field of sets (see IV§1), every group
is isomorphic to a group of permutations, a finite Abelian group is isomorphic to a direct
product of cyclic groups, and a finite distributive lattice can be embedded in a power of the
two-element distributive lattice. Structure theorems are certainly a major theme in Chapter

IV.
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33. Algebraic Lattices and Subuniverses

We shall now describe one of the natural ways that algebraic lattices arise in universal
algebra.

Definition 3.1. Given an algebra A define, for every X C A,

Sg(X) = ﬂ{B : X C B and B is a subuniverse of A}.

We read Sg(X) as “the subuniverse generated by X”.
Theorem 3.2. If we are given an algebra A, then Sg s an algebraic closure operator on A.

PROOF. Observe that an arbitrary intersection of subuniverses of A is again a subuniverse,

hence Sg is a closure operator on A whose closed sets are precisely the subuniverses of A.
Now, for any X C A define

E(X)=XUA{f(a,...,a,): f is a fundamental n-ary operation on A and a,...,a, € X}.
Then define E™(X) for n > 0 by

E°(X)=X
E"(X) = E(E"(X)).

As all the fundamental operations on A are finitary and

XCEX)CE(X)C---

one can show that (Exercise 1)

Sg(X)=XUEX)UE*(X)U---

)

and from this it follows that if @ € Sg(X) then a € E™(X) for some n < w; hence for some
finite Y C X, a € E™(Y). Thus a € Sg(Y'). But this says Sg is an algebraic closure operator.

Corollary 3.3. If A is an algebra then Lgg, the lattice of subuniverses of A, 1s an algebraic
lattice.

The corollary says that the subuniverses of A, with C as the partial order, form an
algebraic lattice.

Definition 3.4. Given an algebra A, Sub(A) denotes the set of subuniverses of A, and
Sub(A) is the corresponding algebraic lattice, the lattice of subuniverses of A. For X C A
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we say X generates A (or A is generated by X, or X s a set of generators of A) it Sg(X) = A.
The algebra A is finitely generated if it has a finite set of generators.

One cannot hope to find any further essentially new lattice properties which hold for the
class of lattices of subuniverses since every algebraic lattice is isomorphic to the lattice of
subuniverses of some algebra.

Theorem 3.5 (Birkhoft and Frink). If L is an algebraic lattice, then L = Sub(A), for some
algebra A.

PROOF. Let C' be an algebraic closure operator on a set A such that L = L (such exists
by 1§5.8). For each finite subset B of A and each b € (/(B) define an n-ary function fgp; on
A, where n = |B|, by

b ifB:{al,...,an}
a1 otherwise,

fB,b(alg Cee CLn) — {

and call the resulting algebra A. Then clearly

fBolar,...,a,) € C{aq,...,an}),

hence for X C A,
Sg(X) C C(X).

On the other hand
C(X)=| J{C(B): B C X and B is finite}

and, for B finite,

C(B) ={feslas,...,a,) : B={as,...,a,},b € C(B)}
C Sg(B)

imply

hence
C'(X) =S5Sg(X).

Thus Lo = Sub(A), so Sub(A) = L.

The following set-theoretic result is used to justity the possibility of certain constructions
in universal algebra—in particular it shows that for a given type there cannot be “too many”
algebras (up to isomorphism) generated by sets no larger than a given cardinality. Recall
that w is the smallest infinite cardinal.
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Corollary 3.6. If A is an algebra and X C A then |Sg(X)| < |X|+ |F| + w.

PROOF. Using induction on n one has |E"(X)| < |X|+ |F| + w, so the result follows from
the proot of 3.2.

REFERENCE
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EXERCISE 33
1. Show Sg(X)=XUE(X)UE*(X)U---

34. The Irredundant Basis Theorem

Recall that finitely generated vector spaces have the property that all minimal generating
sets have the same cardinality. It is a rather rare phenomenon, though, to have a “dimen-
sion.” For example, consider the Abelian group Zg—it has both {1} and {2, 3} as minimal
generating sets.

Definition 4.1. Let C be a closure operator on A. For n < w, let C,, be the function defined
on Su(A) by
Co(X) = HC(Y): Y C X, |Y| <n}.

We say that ' is n-ary if
C(X)=Cp(X)UCIHX)U---,

where

Lemma 4.2. Let A be an algebra all of whose fundamental operations have arity at most
n. Then Sg 1s an n-ary closure operator on A.

PROOF. Note that (using the E of the proof of 3.2)
E(X) C (Sg)n(X) € Sg(X);
hence
Sg(X)=XUE(X)UE*(X)U---
C (Sg)a(X) U (Sg)2(X) U- -
C Sg(X),

>0



30 II The Elements of Universal Algebra

Sg(X) = (Sg)a(X) U (Sg)2(X) U---

Definition 4.3. Suppose C'is a closure operator on S. A minimal generating set of S is called
an 1rredundant basis. Let IrB(C) = {n < w : S has an irredundant basis of n elements}.

The next result shows that the length of the finite gaps in IrB(C') is bounded by n — 2 if
(' is an n-ary closure operator.

Theorem 4.4 (Tarski). If C' is an n-ary closure operator on S withn > 2, and if i < j with
i,7 € IrB(C') such that

fi+1,...,7—-1}NIkB(C) =2, ()

then j—1 < n—1. In particular, if n = 2 then IrB(C') is a convex subset of w, i.e., a sequence
of consecutive numbers.

PROOF. Let B be an irredundant basis with |B| = j. Let K be the set of irredundant bases
A with |A| < 1.

The idea of the proof is simple. We will think of B as the center of S, and measure the
distance from B using the “rings” C**1(B) — C*(B). We want to choose a basis Ag in K
such that Ag is as close as possible to B, and such that the last ring which contains elements
of Ay contains as few elements of Ay as possible. We choose one of the latter elements ay and
replace it by n or fewer closer elements b;,...,b,, to obtain a new generating set A;, with
|Aq| < i4+n. Then A; contains an irredundant basis A;. By the ‘minimal distance’ condition
on Ay we see that As € K, hence |Az| >4, so |As| > 7 by (%). Thus j < i+ n.

Now for the details of this proof, choose Ay € K such that

Ay € CF(B) imples A € C*(B)
for A € K (see Figure 9). Let ¢ be such that

Ag CCL(B), Ao € C(B).
We can assume that

Ao N (C7(B) = C(B))] < [AN(C7(B) = C(B))]

for all A € K with A C C**1(B). Choose

ap € [CIT(B) — CL(B)] N Ay.
Then there must exist by, ..., b, € C?(B), for some m < n, with

g © On({bla Ceey bm}),
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SO
AU g CR(Al)j
where
Al — (AO — {ao}) g {blj Cee bm}a
hence

C(Ag) € C(Ay),

which says A; is a set of generators of 5. Consequently, there is an irredundant basis A, C A;.

Now |A3| < |Ag| + n. If |Ag] +n < j, we see that the existence of As contradicts the choice
of Ag as then we would have

Ay e K, A, CCHY(B)

and

A2 N(CTH(B) = CL(B))| < |4 N (CTH(B) — CL(B))]:

n

Thus |Ag| +n > 5. As |Ag| < i, we have j — i < n.

Figure 9

EXAMPLE. If A is an algebra all of whose fundamental operations have arity not exceeding
2 then IrB(Sg) is a convex set. This applies to all the examples given in §1.
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EXERCISES 94

1. Find IrB(Sg), where Sg is the subuniverse closure operator on the group of integers Z.

2. It C'is a closure operator on a set S and X is a closed subset of S, show that 4.4 applies
to the irredundant bases of X.

3. If A is a unary algebra show that |IrB(Sg)| < 1.

4. Give an example of an algebra A such that IrB(Sg) is not convex.

35. Congruences and Quotient Algebras

The concepts of congruence, quotient algebra, and homomorphism are all closely related.
These will be the subjects of this and the next section.

Normal subgroups, which were introduced by Galois at the beginning of the last century,
play a fundamental role in defining quotient groups and in the so-called homomorphism and
isomorphism theorems which are so basic to the general development of group theory. Ideals,
introduced in the second half of the last century by Dedekind, play an analogous role in
defining quotient rings, and in the corresponding homomorphism and isomorphism theorems
in ring theory. (iven such a parallel situation, it was inevitable that mathematicians should
seek a general common formulation. In these two sections the reader will see that congruences
do indeed form the unifying concept, and furthermore they provide another meeting place
for lattice theory and universal algebra.

Definition 5.1. Let A be an algebra of type F and let 6§ € Eq(A). Then 6 is a congruence
on A if 6 satisties the following compatibility property:

CP: For each n-ary function symbol f € F and elements a;,b; € A, if a;00; holds for
1 <7 < n then

fA(Cllj Cee an)(?fA(bl, Ceey bn)
holds.

The compatibility property is an obvious condition for introducing an algebraic structure
on the set of equivalence classes A/6, an algebraic structure which is inherited from the
algebra A. For if a4, ..., a, are elements of A and f is an n-ary symbol in &, then the easiest
choice of an equivalence class to be the value of f applied to (a1 /0, ..., a,/0) would be simply
f2(ai1,...,a,)/0. This will indeed define a function on A/ iff (CP) holds. We illustrate (CP)
for a binary operation in Figure 10 by subdividing A into the equivalence classes of 6; then
selecting a1, b1 in the same equivalence class and aq, bo In the same equivalence class we want
fA(ay,b1), f2(ag, by) to be in the same equivalence class.
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Figure 10

Definition 5.2. The set of all congruences on an algebra A is denoted by Con A. Let ¢
be a congruence on an algebra A. Then the quotient algebra of A by 6, written A /6, is the
algebra whose universe is A/ and whose fundamental operations satisfy

201/, ..., 0,/0) = fA(as,...,a,)/0
where aq,...,a, € A and f is an n-ary function symbol in F.

Note that quotient algebras of A are of the same type as A.

EXAMPLES. (1) Let GG be a group. Then one can establish the following connection between
congruences on G and normal subgroups of G:

(a) If 8 € Con G then 1/8 is the universe of a normal subgroup of G, and for a,b € G
we have (a,b) € G iff a-b~' € 1/6:

(b) If N is a normal subgroup of G, then the binary relation defined on G by

(a,b) €0 iff a-b' €N

is a congruence on G with 1/6 = N.

Thus the mapping # — 1/6 is an order-preserving bijection between congruences on G
and normal subgroups of G.

(2) Let R be a ring. The following establishes a similar connection between the congru-
ences on R and ideals of R:

(a) If # € Con R then 0/6 is an ideal of R, and for a,b6 € R we have {(a,b) € 0 iff
a—be0/b;

(b) If I is an ideal of R then the binary relation € defined on R by

(a,b)y efif a—bel
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is a congruence on R with 0/6 = I.

Thus the mapping 6 — 0/6 is an order-preserving bijection between congruences on R
and ideals of R.

These two examples are a bit misleading in that they suggest any congruence on an
algebra might be determined by a single equivalence class of the congruence. The next
example shows this need not be the case.

(3) Let L be a lattice which is a chain, and let 6 be an equivalence relation on L such
that the equivalence classes of 8 are convex subsets of L (i.e., if afb and a < ¢ < b then afc).
Then 6 is a congruence on L.

We will delay further discussion of quotient algebras until the next section and instead
concentrate now on the lattice structure of Con A.

Theorem 5.3. (Con A, C) is a complete sublattice of (Eq(A), C), the lattice of equivalence
relations on A.

PROOF. To verity that Con A is closed under arbitrary intersection is straightforward. For
arbitrary joins in Con A suppose 6, € Con A for 7 € I. Then, if f is a fundamental n-ary

operation of A and
<CL1, bl>, c ey (an, bn> - \/9%,

where \/ is the join of Eq(A), then from 1§4.7 it follows that one can find 14y, . .., € I such
that

<a@,b@>€9i009¢10"'09%’k, 0 <1< n.

An easy argument then suffices to show that

{(flay,...,an), f(b1,...,by)) €6;,080; 0---08;;

hence V., 6; is a congruence relation on A.

el

Definition 5.4. The congruence lattice of A, denoted by Con A, is the lattice whose
universe is Con A, and meets and joins are calculated the same as when working with
equivalence relations (see 1§4).

The following theorem suggests the abstract characterization of congruence lattices of
algebras.

Theorem 5.5. For A an algebra, there is an algebraic closure operator © on A X A such
that the closed subsets of A X A are precisely the congruences on A. Hence Con A 1s an
algebraic lattice.
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PROOF. Let us start by setting up an appropriate algebraic structure on A x A. First, for

each n-ary function symbol f in the type of A let us define a corresponding n-ary function
fonAXAby

fllai,bi), ... {an, b)) = (f*(ar,. .. an), f2(b1,...,0,)).

Then we add the nullary operations (a, a) for each a € A, a unary operation s defined by

5({a, b)) = (b, a),

and a binary operation ¢ defined by

{a,d)y ifb=c
(a,b) otherwise.

t({a,b), (c,d)) = {
Now it is an interesting exercise to verity that B is a subuniverse of this new algebra ift B is
a congruence on A. Let © be the Sg closure operator on A x A for the algebra we have just

described. Thus, by 3.3, Con A is an algebraic lattice.

The compact members of Con A are, by 1§5.7, the finitely generated members ©({a;, b;),
ooy {Qn, b)) of Con A.

Definition 5.6. For A an algebraand aq,...,a, € Alet O(ay,...,a,) denote the congruence
generated by {(a;,a;) : 1 < 1,7 < n},ie., the smallest congruence such that a,...,a, are in
the same equivalence class. The congruence O(aq, as) is called a principal congruence. For
arbitrary X C A, let ©(X) be defined to mean the congruence generated by X x X.

Finitely generated congruences will play a key role in 11§12, in Chapter IV, and Chapter
V. In certain cases we already know a good description of principal congruences.

ExaMmpLES. (1) If G is a group and a,b,c,d € G then {a,b) € O(c,d) iff ab™! is a product
of conjugates of cd™' and conjugates of dc™!. This follows from the fact that the smallest
normal subgroup of ( containing a given element e has as its universe the set of all products
of conjugates of e and conjugates of e~ .

(2) If R is a ring with unity and a, b, ¢, d € R then (a,b) € O(c,d) iff a — b is of the form
> 1<icn Tilc — d)s; where 1,5, € R. This follows from the fact that the smallest ideal of R
containing a given element e of R is precisely the set {>, . res; 11,8, € Ryin>1}.

Some useful facts about congruences which depend primarily on the fact that © is an
algebraic closure operator are given in the following.

Theorem 5.7. Let A be an algebra, and suppose ai,bq1,...,a,,b, € A and 6 € Con A.
Then
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<b1j a1> - @(al, bl)

we have

O(b1,a1) € O(a, h);

hence, by symmetry,
@(al, bl) — @(bh Cll).

(b) For 1 <17 < n,
<CL?;, bz> = @((&1, b1>j Cee <0ﬂ,.1j bn>)j
hence

O(a;, b;) C O({ar,b1),. .., {(a,, b)),

SO
O(ar, b))V -+ -V O(an, by) € O({ar, b1, ..., {an,by)).

On the other hand, for 1 <7 <n,

<CL?;, b?,> - @(CL@, bz) C @(&1’ bl) VooV @(CLR, bn),

SO

flai, b1), ..., {(an, b))} € O(ay, b)) V---VO(ay,b,);
hence

O({a,b1),...,{a,,by)) CO(ar,b1)V---V O (a,,b,),
SO

O((a,b1),...,{(a,,by)) =0(a1,b) V---VO(ay,b,).

(c) For 1 << n—1,
{a;,a;11) € Olay,...,ap),
SO
O(a;, a;41) C O(aq, ..., a,);

hence

O(ar,az) V---VO(a,_1,a,) C B(ar,...,a,).

Conversely, for 1 <7 < j < n,

(@, aj) € ©(a;, @jq1) 0 ---0O(a;_1,0a;)
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so, by 184.7
(@i, a;) € O(as, aip1) V---V O(a;-1,0a;);

hence
(a;,a;) € Oay,az) V-V O(ay_1,a,).

In view of (a) this leads to

@(Cll, Ceey an) C @(Gq, Clg) VooV @(an_l, Cln),

SO
@(al, Ce e CLn) — @(al,ag) VeV @(an_l,an).
(d) For (a,b) € 6 clearly
(a,b) € Oa,b) C 6
SO
6 C | J{O(a,b): (a,by € 0} C \/{O(a,b) : {a,b) € 6} C 6;
hence

0= J{©(a,b): (a,b) € 6} = \/{O(a,b) : (a,b) € 6}.
(e) (Similar to (d).)

One cannot hope for a further sharpening of the abstract characterization of congruence
lattices of algebras in 5.5 because in 1963 Gratzer and Schmidt proved that for every algebraic
lattice L there is an algebra A such that L = Con A. Of course, for particular classes of
algebras one might find that some additional properties hold for the corresponding classes of
congruence lattices. For example, the congruence lattices ot lattices satisty the distributive
law, and the congruence lattices of groups (or rings) satisfy the modular law. One of the
major themes of universal algebra has been to study the consequences of special assumptions
about the congruence lattices (or congruences) of algebras (see §12 as well as Chapters IV
and V). For this purpose we introduce the following terminology.

Definition 5.8. An algebra A is congruence-distributive (congruence-modular) it Con A is
a distributive (modular) lattice. If 6;,6, € Con A and

91092:92091

then we say 6, and 6, are permutable, or 6, and 63 permute. A is congruence-permutable it
every pair of congruences on A permutes. A class K of algebras is congruence-distributive,
congruence-modular, respectively congruence-permutable iff every algebra in K has the de-
sired property.

We have already looked at distributivity and modularity, so we will finish this section
with two results on permutable congruences.
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Theorem 5.9. Let A be an algebra and suppose 61,05 € Con A. Then the following are
equivalent:

(a) 91092:92091
(b) 91 \/92:91092
(C) 91092§92091.

PROOF. (a) = (b): For any equivalence relation 6 we have 8 0 § = 6, so from (a) it follows
that the expression for 6, V 6, given in 1§4.6 reduces to 6; U (6; o 6,), and hence to 6; o 5.
(c) = (a): Given (c) we have to show that

ot C 6,00,.

This, however, follows easily from applying the relational inverse operation to (c), namely
we have

(1 065) C (630617,

and hence (as the reader can easily verify)
950 9{Q 9{0 95.

Since the inverse of an equivalence relation is just that equivalence relation, we have estab-
lished (a).
(b) = (c): Since
0y 06, C 6, V0,
from (b) we could deduce
0y 061 C 6 0 s,

and then from the previous paragraph it would follow that

o 0 61 = 01 0 0y;

hence (c) holds.

Theorem 5.10 (Birkhoff). If A is congruence-permutable, then A s congruence-modular.
PROOF. Let 61,605,603 € Con A with ¢#; C 6,. We want to show that
B, N (6, VE3) CH;V(0,N03),
so suppose {a,b) is in 6, N (6; V O3). By 5.9 there is an element ¢ such that
a6 cO3b

holds as
91\/93 :91093.
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By symmetry

(c,a) € O;
hence
<C? CL> - 923
and then by transitivity
<Cj b) = 92.
Thus
<C, b) e 6, N b3,
so from
a916(92 M Qg)b
follows
<CL, b) - 91 O (92 M 93),
hence

<CL, b) c bV (92 o 93)

We would like to note that in 1953 Jonsson improved on Birkhofl’s result above by
showing that one could derive the so-called Arguesian identity for lattices from congruence-
permutability. In 812 we will concern ourselves again with congruence-distributivity and
permutability.
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EXERCISES 85

1. Verify the connection between normal subgroups and congruences on a group stated
in FExample 1 (after 5.2).

2. Verity the connection between ideals and congruences on rings stated in Example 2
(after 5.2).

3. Show that the normal subgroups of a group form an algebraic lattice which is modular.

4. Show that every group and ring is congruence-permutable, but not necessarily congruence-
distributive.
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b. show that every lattice is congruence-distributive, but not necessarily congruence-
permutable.

6. In the proot of 5.5, verify that subuniverses of the new algebra are precisely the con-
gruences on A.

7. Show that © is a 2-ary closure operator. [Hint: replace each n-ary f of A by unary
operations

f(al, ce ey A1, T, A1, - - ,an), A1y Qi—1,Qi41,...,0n € A
and show this gives a unary algebra with the same congruences.)

8. If A is a unary algebra and B is a subuniverse define 6 by (a,b) € 6 iff a = b or
{a,b} C B. Show that 6 is a congruence on A.

9. Let S be a semilattice. Define a < b for a,b € S if a - b = a. Show that < is a partial
order on 5. Next, given a € S define

0, = {(b,c) € S x S: both or neither of a < b,a < ¢ hold}.

Show 6, is a congruence on S.

An algebra A has the congruence extension property (CEP) if for every B < A and
¢ € Con B there is a ¢ € Con A such that § = ¢ N B*. A class K of algebras has the CEP
it every algebra in the class has the CEP.

10. Show that the class of Abelian groups has the CEP. Does the class of lattices have the
CEP?

11. If L is a distributive lattice and a, b, ¢,d € L show that {(a,b) € O(c,d) it cANd N a =
cNdANband cVdVa=cVdVb.

An algebra A has 3-permutable congruences if for all 8, ¢ € Con A we have 6 o ¢ 0 6 C

pobod

12. (J6nsson) Show that if A has 3-permutable congruences then A is congruence-modular.
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36. Homomorphisms and the Homomorphism and
Isomorphism Theorems

Homomorphisms are a natural generalization of the concept of isomorphism, and, as we shall
see, g¢o hand in hand with congruences.

Definition 6.1. Suppose A and B are two algebras of the same type F. A mapping « :
A — B is called a homomorphism from A to B if

O{fA(CLh Ce ey an) — fB(O{CLh Ceey O{Cln)

for each n-ary f in & and each sequence aq,...,a, from A. If in addition, the mapping « is
onto then B is said to be a homomorphic image of A, and « is called an epimorphism. (In
this terminology an isomorphism is a homomorphism which is one-to-one and onto.) In case
A = B a homomorphism is also called an endomorphism and an isomorphism is reterred to
as an automorphism. The phrase “a: A — B is a homomorphism” is often used to express
the fact that « is a homomorphism from A to B.

EXAMPLES. Lattice, group, ring, module, and monoid homomorphisms are all special cases
of homomorphisms as defined above.

Theorem 6.2. Let A be an algebra generated by a set X. Ifa: A — B and 5 : A — B are
two homomorphisms which agree on X (i.e., a(a) = B(a) for a € X), then o = 3.

PROOF. Recall the definition of £ in §3. Note that if o and 3 agree on X then « and 5

agree on F(X), for if f is an n-ary function symbol and aq,...,a, € X then
O{fA(G,l, o ,an) — fB(O{Cll, . o O{Cln)
— fB(ﬁala R aﬁan)
= Bf*(a1,...,an).

Thus by induction, if a and 3 agree on X then they agree on E™(X) for n < w, and hence
they agree on Sg(X).

Theorem 6.3. Let o : A — B be a homomorphism. Then the vmage of a subuniverse of A
under « 15 a subunwverse of B, and the inverse image of a subuniverse of B 1s a subuniverse

of A.

PROOF. Let S be a subuniverse of A, let f be an n-ary member of &, and let a4,...,a, € S.
Then

fBlaa, ... aa,) = af(a,...,a,) € a(S),
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so a(5) is a subuniverse of B. If we now assume that S is a subuniverse of B (instead of

A) and alay),...,ala,) € S then af®(ai,...,a,) € S follows from the above equation, so
fA(aq,...,ay) is in a71(S). Thus a~1(S) is a subuniverse of A.

Definition 6.4. If o : A — B is a homomorphism and C < A, D < B, let a(C) be the

subalgebra of B with universe «(C), and let a~'(D) be the subalgebra of A with universe
a (D), provided a~ (D) # @.

Theorem 6.5. Suppose « : A — B and 8 : B — C are homomorphisms. Then the
composition 5 o« 1s a homomorphism from A to C.

PROOF. For f an n-ary function symbol and aq,...,a,, € A, we have

(Boa)f*(ar,...,an) = Blaf*(a,...,an))
= BfP(aai,. .., aa,)
= fC(B(aa),. .., B(aan))
= fE((Boa)a,...,(Boa)a),

The next result says that homomorphisms commute with subuniverse closure operators.

Theorem 6.6. Ifa: A — B s a homomorphism and X is a subset of A then

a Sg(X) = SglaX).

PROOF. From the definition of E (see §3) and the fact that « is a homomorphism we have
aFE(Y)=FE(aY)
for all Y C A. Thus, by induction on n,
aE"(X) = E"(aX)
for n > 1; hence

aSg(X)=a(XUEX)UE*(X)U...)
= aX UaFE(X)UaFE*(X
= aX UF(aX)U E*(aX
= Sg(aX).

JU...
JU...
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Definition 6.7. Let o : A — B be a homomorphism. Then the kernel of o, written ker(a),
is defined by
ker(a) = {(a,b) € A*: a(a) = a(b)}.

Theorem 6.8. Let a: A — B be a homomorphism. Then ker(a) is a congruence on A.

PROOF. If {a;,b;) € ker(a) for 1 <i <n and f is n-ary in &, then

CI{fA(CLh Ce e an) — fB(O{CLh Ce e CI{CLn)
— B(aby,...,aby,)
= af2(by,...,b):;

hence
<JCA(C7,1j c. ,an)? '](‘A(blj Ce e bn)) - ke]f'((]{).

Clearly ker(«) is an equivalence relation, so it follows that ker(«) is actually a congruence
on A.

When studying groups it is usual to refer to the kernel of a homomorphism as a normal
subgroup, namely the inverse image of the identity element under the homomorphism. This
does not cause any real problems since we have already pointed out in §5 that a congruence
on a group is determined by the equivalence class of the identity element, which is a normal
subgroup. Similarly, in the study of rings one refers to the kernel of a homomorphism as a
certain ideal.

We are now ready to look at the straightforward generalizations to abstract algebras of
the homomorphism and isomorphism theorems usually encountered in a first course on group
theory.

HEN
L

o L

A/0O

Figure 11



o0 II The Elements of Universal Algebra

Definition 6.9. Let A be an algebra and let § € Con A. The natural map vy : A — A/8
is defined by vy(a) = a/6. (When there is no ambiguity we write simply v instead of vy.)
Figure 11 shows how one might visualize the natural map.

Theorem 6.10. The natural map from an algebra to a quotient of the algebra 1s an onto
homomorphism.

PROOF. Let 6 € Con A and let v : A — A/# be the natural map. Then for f an n-ary
function symbol and a4, ..., a, € A we have

vit(an, ... an) = f2(a1,...,a,)/0
— fA/Q(al/Qa R an/g)
— fA/Q(l/Cll, : I/Cln),

so v 18 a homomorphism. Clearly v is onto.

Definition 6.11. The natural homomorphism from an algebra to a quotient of the algebra
is given by the natural map.

Theorem 6.12 (Homomorphism Theorem). Suppose a: A — B is a homomorphism onto
B. Then there 1s an isomorphism 3 from A/ker(a) to B defined by o = 3 o v, where v is
the natural homomorphism from A to A/ker(a). (See Figure 12).

e o o
o
o e e
e o o
A B
v B

HEN
L

L]

A /kera
Figure 12
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PROOF. First note that if @ = 3 o v then we must have 3(a/6) = a(a). The second of these
equalities does indeed define a function , and 3 satisfies « = 3 o v. It is not difficult to
verity that 3 is a bijection. To show that 3 is actually an isomorphism, suppose f is an
n-ary function symbol and a4,...,a, € A. Then

6(fA/9(a1/9:"'aan/9)) B(fA(ala"'aan)/é})

_ afA(a,l, e, )
— fB(anh Cee O{an)
= [2(B(a1/9), ..., B(an/0)).

Combining Theorems 6.5 and 6.12 we see that an algebra is a homomorphic image ot
an algebra A iff it is isomorphic to a quotient of the algebra A. Thus the “external” prob-
lem of finding all homomorphic images of A reduces to the “internal” problem of finding
all congruences on A. The homomorphism theorem is also called “the first isomorphism
theorem”.

Definition 6.13. Suppose A is an algebra and ¢,6 € Con A with 6 C ¢. Then let
$/0 = {(a/0,b/0) € (A/0) : (a,b) € $}.

Lemma 6.14. If ¢,0 € Con A and 6 C ¢, then ¢/0 is a congruence on A/8.

PROOF. Let f be an n-ary function symbol and suppose {(a;/6,b;/0) € ¢/0, 1 < i <n. Then
(a;,b;) € ¢ (why?), so
(f2(ai,...,a,), f2(b1,...,by)) € &,
and thus
(f2(a1,...,an)/0, f2(b1,....b,)/0) € ¢/0.

From this i1s follows that

(2% (a1 /6, ..., a,/0), fA°(b:/0,...,b,/6) € /8.

Theorem 6.15 (Second Isomorphism Theorem). If ¢,0 € Con A and 6 C ¢, then the map

o (A)6)/(6/0) — Al

defined by
a((a/0)/(¢/0)) = a/d
is an isomorphism from (A/0)/(¢/0) to A/¢. (See Figure 13.)
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PROOF. Let a,b € A. Then from

(a/0)/(0/0) = (b/0)/(¢/0) it a/¢=0/¢

it follows that « is a well-defined bijection. Now, for f an n-ary function symbol and
ai,...,a, € A we have

af 010 ((a1/6)/(9/6),- .., (an/0)/(9/0)) = a(f2°(a1/6, ..., a./0)/(4/0))
= a((fHa,...,a,)/0)/(8/9))
= fAay,...,a,)/0
— A%ay/9, ..., an/0)
= fA%(a((a1/0)/(9/0)),- - ., a((an/0)/(9/6))),

SO (¢ 1S an isomorphism.

Definition 6.16. Suppose B is a subset of A and 6 is a congruence on A. Let B? = {a €
A:BnNa/f # @}. Let BY be the subalgebra of A generated by B?. Also define 5 to be

0 N BZ, the restriction of 8 to B. (See Figure 14, where the dashed-line subdivisions of A are
the equivalence classes of 6.)
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Figure 14

Lemma 6.17. If B s a subalgebra of A and 8 € Con A, then

(a) The universe of BY is BY.
(b) 8B is a congruence on B.

PROOF. Suppose f is an n-ary function symbol. For (a) let a4,...,a, € B’. Then one can
find b4,...,b, € B such that
<a¢,b3’>€9, 1 <1< n,
hence
<fA(CL1, C ey an), fA(b1, e ,bn)> - 9,
S0

*(aq,...,a,) € B’

Thus BY is a subuniverse of A. Next, to verify that 8]z is a congruence on B is straightfor-
ward.

Theorem 6.18 (Third Isomorphism Theorem). If B is a subalgebra of A and 6 € Con A,
then (see Figure 15)
B/015=B’/0]p .

O 1 1 O DDDD
1ooon0 ., 0000
0000 0000

O 3 C3J 0O D [I [I D
B/l BY/ 6},
Figure 15
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>0

0/0 =Y.
Finally, we will show that « is an isomorphism. If ¢, € [0, V 4] then it is clear that
¢ C Y

it ¢/0 C /b
ift ad C a.

One can readily translate 6.12, 6.15, 6.18, and 6.20 into the (usual) theorems used in
group theory and in ring theory.

EXERCISES §6

1. Show that, under composition, the endomorphisms of an algebra form a monoid, and
the automorphisms form a group.

2. Translate the isomorphism theorems and the correspondence theorem into results about
groups |rings|, replacing congruences by normal subgroups |ideals].

3. Show that a homomorphism « is an embedding iff ker « = A.

4. If # € Con A and Con A is a modular [distributive] lattice then show Con A /6 is
also a modular |distributive] lattice.

5. Let & : A — B be a homomorphism, and X C A. Show that (a,b) € (X)) =
(aa, ab) € O(aX).

6. Given two homomorphisms av: A — B and 3: A — C, if ker 8 C ker « and 3 is onto,
show that there is a homomorphism v : C — B such that @« =y o (5.

37. Direct Products, Factor Congruences, and
Directly Indecomposable Algebras

The constructions we have looked at so far, namely subalgebras and quotient algebras, do
not give a means of creating algebras of larger cardinality than what we start with, or of
combining several algebras into one.
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Definition 7.1. Let A; and A, be two algebras of the same type F. Define the (direct)
product A1 X Ay to be the algebra whose universe is the set A; X As, and such that for
feF,and a; € Ay, a, € As, 1 <4< n,

fAR2((a, dh), - {an, an)) = (4 (any - an), f22(d), - an)),

In general neither A; nor A, is embeddable in A; X A5, although in special cases like
groups this is possible because there is always a trivial subalgebra. However, both A; and
A5 are homomorphic images of A; X As.

Definition 7.2. The mapping
Tt Ap X Ay — A, i e {1,2},

defined by
ﬂ-?i(<ala az)) — 4,

is called the projection map on the 1th coordinate of A; X As.

Theorem 7.3. Fori =1 or 2 the mapping m; : A1 X Ay — A; 1s a surjective homomorphism
from A = A; X Ay to A;. Furthermore, i1n Con A; X Ay we have

ker m; Nker my = A,

ker m; and ker mwo permute,

and
kerm \/keI"?Tg = V.

PROOF. Clearly 7, is surjective. If f € F,, and a; € A;,a; € Ay, 1 <7 < n, then

Wl(fA(<alaa,1>a trt <am a:@))) — 7T1(<fA1(CL1, trt an)a fAz(afla trt ai@)))
= A (aq,...,a)

_ fAl(’;rl(<a1, a1)), -, mi({an, an))),

so 1 18 a homomorphism; and similarly 7, is a homomorphism.

Now
({a1,a2), (b1, b2)) € kerm,
iff mi({a1, az)) = m;((by, ba))
ift a, = b
Thus

ker m; N ker mo = A.
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Also if {aj, as), (b1, by) are any two elements of A; x A, then
<CL1j CL2> ker (S| <CL1j bg) ker Wg(blj bg)j

SO
V = ker m; o ker 7.

But then ker m; and ker my permute, and their join is V.

The last halt of Theorem 7.3 motivates the following definition.

Definition 7.4. A congruence 6 on A is a factor congruence if there is a congruence 6* on
A such that

A" = A,
oV =V,

and
6 permutes with 6*.

The pair 6, 6" is called a pair of factor congruences on A.
Theorem 7.5. If 0,0" 1s a pair of factor congruences on A, then
A=A/ x A/

under the map

ala) ={(a/8,a/6%).

PROOF. If a,b € A and

a(a) = a(b)
then
a/0 =0b/6 and a/6" =b/0",
SO
(a,b) €0  and (a,b) € 0%;
hence

a = b.

This means that « is injective. Next, given a,b € A there is a ¢ € A with

afcld™b



D3 II The Elements of Universal Algebra

hence

a(c) = (c/8,c/6%)
= (a/8,0/6%),

so « is onto. Finally, for f € &,, and a4,...,a, € A,

af(ar,. .. an) = (*a,...,0.)/6, f*(a1,...,a,)/60%)
= (fA%(a1/0,...,0,/0), f¥% (a1 /0", ..., 0, /0%))
= fA/QXA/Q*((al/Q, a1 /0%, ..., {a,/80,a,/0"))

= fA/QXA/Q*(aal, ey Q)

hence « is indeed an isomorphism.

Thus we see that factor congruences come from and give rise to direct products.

Definition 7.6. An algebra A is (directly) indecomposable if A is not isomorphic to a direct
product of two nontrivial algebras.

EXAMPLE. Any finite algebra A with |A| a prime number must be directly indecomposable.
From Theorems 7.3 and 7.5 we have the following.

Corollary 7.7. A is directly indecomposable iff the only factor congruences on A are A
and V.

We can easily generalize the definition of A; X Ay as follows.

Definition 7.8. Let (A;);cr be an indexed family of algebras of type F. The (direct) product
A =]],.; A; is an algebra with universe | [._; A; and such that for f € F, and a4,...,a, €

Hz'ef A%’?

el

Aar,...,a0,)0) = fA(a1(4),. .., a,(1))

for s € I, i.e., f* is defined coordinate-wise. The empty product [[ @ is the trivial algebra
with universe {@}. As before we have projection maps

T H A; — A;
il
for 7 € I defined by
m;(a) = a(j)
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If I ={1,2,...,n} we also write A; X --- x A,,. If I is arbitrary but A; = A for all ¢ € I,
then we usually write A’ for the direct product, and call it a (direct) power of A. A is a
trivial algebra.

A direct product | [,.; A; of sets is often visualized as a rectangle with base I and vertical
cross sections A;. An element a of |[._; A; is then a curve as indicated in Figure 17. Two
elementary facts about direct products are stated next.

Figure 17

Theorem 7.9. If A;, Ay, and A3 are of type F then

(a) A1 X Ay = Ay x A under a({ay,as)) = {(as, a;).
(b) A; X (A X A3) =2 A} X Ay X Az under a({ay, {as,as))) = {a, as, as).

PROOF. (Exercise.)

In Chapter IV we will see that there is up to isomorphism only one nontrivial directly in-
decomposable Boolean algebra, namely a two-element Boolean algebra, hence by cardinality
considerations it follows that a countably infinite Boolean algebra cannot be isomorphic to
a direct product of directly indecomposable algebras. On the other hand for finite algebras
we have the following.

Theorem 7.10. Every finite algebra 1s 1somorphic to a direct product of directly indecom-
posable algebras.

PROOF. Let A be a finite algebra. If A is trivial then A is indecomposable. We proceed by
induction on the cardinality of A. Suppose A is a nontrivial finite algebra such that for every

B with |B| < |A| we know that B is isomorphic to a product of indecomposable algebras. If
A is indecomposable we are finished. If not, then A = A; x A, with 1 < |44], |A2|. Then,

|A1|, |Az2| < |A], so by the induction hypothesis,

A1§B1X"'XBm?
A, =2C, x---xC,,
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where the B; and C; are indecomposable. Consequently,

A=ZB; x---xB,,xCy x---x(C,,.

Using direct products there are two obvious ways (which occur a number of times in
practice) of combining families of homomorphisms into single homomorphisms.

Definition 7.11. (i) If we are given maps a; : A — A;,7 € I, then the natural map

CI{:A—>HA?;

is defined by
(a)(1) = aya.

(ii) If we are given maps «; : A; — B;, ¢ € I, then the natural map
Q H A — H B;
iel iel

is defined by

Theorem 7.12. (a) If o; : A — A;, 1 € I, s an indexed family of homomorphisms, then
the natural map o ts a homomorphism from A to A* =[]..; As.

(b) If a; : A; — By, © € 1, 1s an indexed family of homomorphisms, then the natural map
o 15 a homomorphism from A* = |[,.; A; to B* =]],.; B;.

PROOF. Suppose «; : A — A, is a homomorphism for ¢ € I. Then for a1,...,a, € A and
f € F,, we have, for ¢ € I,

(oafA(ah o an)) (1) = oaz-fA(al, e, Q)

— fAi(oa%-al, o Q)
— fAi((ofal)(i), Ceay (Ofan) (?’))
— fA* (Cl{al, Cee Ofan)(i);
hence
O{fA(ala ey Q) = fA*(OfCll, s Q)

so « is indeed a homomorphism in (a) above. Case (b) is a consequence of (a) using the
homomorphisms «; o ;.
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Definition 7.13. If ¢;,a» € A and o : A — B is a map we say « separates a; and a» if
aaq # Qas.

The maps «; : A — A;,1 € I, separate points it for each aq,ay, € A with a; # a9 there is an
«; such that

O{?;(Cll) 7£ O{?;(CLQ).

Lemma 7.14. For an indexed family of maps o, : A — A;, © € I, the following are
equivalent:

(a) The maps «; separate points.
(b) « is injective (« is the natural map of 7.11(a)).
(C) mz’GI ker X; — A.

PROOF. (a) = (b): Suppose ai,as € A and ay # ay. Then for some 1,

ai(ar) # a;(az);
hence
(aay) (i) # (aag)(i)
aaq # Qas.

(b) = (c): For a1,as € A with a; # ay, we have

Q # 0Qy;
hence
(aa1)(i) # (aaz)(i)
for some 1, so
; dq 7& ;Ao

for some 7, and this implies

>0

(c) = (a): For a1,a2 € A with a; # ao,

<CL1, CL2> € ﬂker X;

el
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s0, for some ¢,
<CL1, CL2> Q ker X;

hence
;A1 7& ;9.

Theorem 7.15. If we are given an indexed family of homomorphisms o; : A — A, 1 € 1,
then the natural homomorphism o : A — | |..; A; is an embedding iff (), ker a; = A iff the
maps «; separate points.

el

PRrROOF. This is immediate from 7.14.

EXERCISES g7

1. If 6,0* € Con A show that they form a pair of factor congruences on A ifft 6 NG* = A
and o 6" = V.

2. Show that (Con A;) X (Con As) can be embedded in Con A; X As.
3. Give examples of arbitrarily large directly indecomposable finite distributive lattices.

4. It Con A is a distributive lattice show that the factor congruences on A form a com-
plemented sublattice of Con A.

b. Find two algebras A, As such that neither can be embedded in A; X As.

38. Subdirect Products, Subdirectly Irreducible
Algebras, and Simple Algebras

Although every finite algebra is isomorphic to a direct product of directly indecomposable
algebras, the same does not hold for infinite algebras in general. For example, we see that a
denumerable vector space over a finite field cannot be isomorphic to a direct product of one-
dimensional spaces by merely considering cardinalities. The quest for general building blocks
in the study of universal algebra led Birkhoff to consider subdirectly irreducible algebras.

Definition 8.1. An algebra A is a subdirect product of an indexed family (A;);cs of algebras
if

(i) A < H?’EI A;
and
(ii) m;(A) = A, for each 1 € I.
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An embedding o : A — | [,.; A, is subdirect if a(A) is a subdirect product of the A,
Note that if / = & then A is a subdirect product of @ ifft A = ][ @, a trivial algebra.

Lemma 8.2. If6, € Con A fori €l and ()., 0; = A, then the natural homomorphism

iel
v:A — H A /0,
i€l
defined by
v(a)(i) = a/b;
15 a subdirect embedding.
PROOF. Let v; be the natural homomorphism from A to A/f; for ¢ € I. As kerv; = 6,

it follows from 7.15 that v is an embedding. Since each v; is surjective, v is a subdirect
embedding.

Definition 8.3. An algebra A is subdirectly irreducible it for every subdirect embedding
a: A — H Az
i€l

there i1s an ¢ € I such that
mow: A — A,

1s an isomorphism.

The tfollowing characterization of subdirectly irreducible algebras is most useful in prac-
tice.

Theorem 8.4. An algebra A 1s subdirectly irreducible iff A 1s trivial or there 1s a minimum
congruence in Con A — {A}. In the latter case the minimum element s ()(Con A — {A}),
a principal congruence, and the congruence lattice of A looks like the diagram in Fiqure 18.

\%

/ [1(Con A - {A})

A
Figure 18
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PROOF. (=) If A is not trivial and Con A —{A} has no minimum element then ()(Con A —
{A}) =A. Let I = Con A — {A}. Then the natural map a: A — |[,.; A/8 is a subdirect
embedding by Lemma 8.2, and as the natural map A — A/# is not injective for 6 € I, it
follows that A is not subdirectly irreducible.

(<) If A is trivial and o : A — [],.;A; is a subdirect embedding then each A; is
trivial; hence each m; o v is an isomorphism. So suppose A is not trivial, and let § =
(Con A—{A}) # A. Choose (a,b) €0, a #b. Ifa: A — [],.; A is asubdirect embedding
then for some 2, (aa)(i) # (ab)(7); hence (7; o a)(a) # (m; o a)(b). Thus (a,b) & ker(w; o «)
so 0§ € ker(m; o ). But this implies ker(m; o) = A so m; 0 : A — A; is an isomorphism.
Consequently A is subdirectly irreducible.

If Con A — {A} has a minimum element 6 then for a # b and (a,b) € 6 we have
O(a,b) C 0, hence 6§ = O(a, b).

Using 8.4, we can readily list some subdirectly irreducible algebras.

EXAMPLES. (1) A finite Abelian group G is subdirectly irreducible iff it is cyclic and |G| = p™
for some prime p.
(2) The group Z,~ is subdirectly irreducible.
(3) Every simple group is subdirectly irreducible.
(4) A vector space over a field F' is subdirectly irreducible iff it is trivial or one-dimensional.
(5) Any two-element algebra is subdirectly irreducible.

A directly indecomposable algebra need not be subdirectly irreducible. For example
consider a three-element chain as a lattice. But the converse does indeed hold.

Theorem 8.5. A subdirectly 1rreducible algebra 1s directly indecomposable.

PROOF. Clearly the only factor congruences on a subdirectly irreducible algebra are A and
V, so by 7.7 such an algebra is directly indecomposable.

Theorem 8.6 (Birkhoff). Every algebra A is isomorphic to a subdirect product of subdirectly
irreducible algebras (which are homomorphic images of A).

PROOF. As trivial algebras are subdirectly irreducible we only need to consider the case of
nontrivial A. For a,b € A with a # b we can find, using Zorn’s lemma, a congruence 6,
on A which is maximal with respect to the property (a,b) & 6,;. Then clearly &(a,b) V
0.5 is the smallest congruence in |0,,, V] — {04}, so by 6.20 and 8.4 we see that A /6,
is subdirectly irreducible. As ([{f.p : @ # b} = A we can apply 8.2 to show that A
is subdirectly embeddable in the product of the indexed family of subdirectly irreducible
algebras (A /04p)a2b-

An immediate consequence of 8.6 is the following.
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Corollary 8.7. Every finite algebra s isomorphic to a subdirect product of a finite number
of subdirectly 1rreducible finite algebras.

Although subdirectly irreducible algebras do form the building blocks of algebra, the
subdirect product construction is so flexible that one is often unable to draw significant
conclusions for a class of algebras by studying its subdirectly irreducible members. In some
special yet interesting cases we can derive an improved version of Birkhoft’s theorem which
permits a much deeper insight—this will be the theme of Chapter IV.

Next we look at a special kind of subdirectly irreducible algebra. This definition extends
the usual notion of a simple group or a simple ring to arbitrary algebras.

Definition 8.8. An algebra A is simple if Con A = {A, V}. A congruence 8 on an algebra
A is mazimal if the interval (6, V] of Con A has exactly two elements.

Many algebraists prefer to require that a simple algebra be nontrivial. For our devel-
opment, particularly for the material in Chapter IV, we find the discussion smoother by
admitting trivial algebras.

Just as the quotient of a group by a normal subgroup is simple and nontrivial iff the
normal subgroup if maximal, we have a similar result for arbitrary algebras.

Theorem 8.9. Let 6 € Con A. Then A /0 is a simple algebra iff 6 is a mazimal congruence
on A or =V.

PROOF. We know that
Con A/0 = [0,V 4]

by 6.20, so the theorem is an immediate consequence of 8.8.

REFERENCE

1. G. Birkhoff [1944]

EXERCISES g8

1. Represent the three-element chain as a subdirect product of subdirectly irreducible
lattices.

2. Verity that the examples following 8.4 are indeed subdirectly irreducible algebras.

3. (Wenzel). Describe all subdirectly irreducible mono-unary algebras. [In particular
show that they are countable.]
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11.

89.
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(Taylor). Let A be the set of functions from w to {0, 1}. Define the bi-unary algebra
(A, f, g) by letting

fla)(@) = a(i + 1)
g(a)(2) = a(0).

show that A is subdirectly irreducible.

(Taylor). Given an infinite cardinal A show that one can construct a unary algebra A
by size 2* with \ unary operations such that A is subdirectly irreducible.

Describe all subdirectly irreducible Abelian groups.

If S is a subdirectly irreducible semilattice show that |S| < 2. (Use §5 Exercise 9.)
Hence show that every semilattice is isomorphic to a semilattice of the form (A,N),
where A is a family of sets closed under finite intersection.

A congruence 6 on A is completely meet irreducible it whenever 6 = (),_; 6;,6; € Con A,
we have 8 = 6;, for some ¢ € I. Show that A/6 is subdirectly irreducible iff 8 is
completely meet irreducible. (Hence, in particular, A is subdirectly irreducible iff A
is completely meet irreducible.)

If H=(H V,A —,0,1) is a Heyting algebra and a € H define 6, = {(b,c) € H* :
(b — ¢) A (¢ — b) > a}. Show that 6, is a congruence on H. From this show that H is
subdirectly irreducible iff | H| = 1 or there is an element e # 1 such that b £ 1 = b <e
for b € H.

Show that the lattice of partitions (II(A), C) of a set A is a simple lattice.

If A is an algebra and 6; € Con A, 1 € I, let § = ()
subdirectly embedded in |[._.; A/6;.

0;. Show that A /6 can be

el
el

Class Operators and Varieties

A major theme in universal algebra is the study of classes of algebras of the same type closed
under one or more constructions.

Definition 9.1. We introduce the following operators mapping classes of algebras to classes
of algebras (all of the same type):

A € I(K) iff A is isomorphic to some member of K
A € S(K) iff A is a subalgebra of some member of K



9. Class Operators and Varieties 67

A € H(K) iff A is a homomorphic image of some member of K
A € P(K) ift A is a direct product of a nonempty family of algebras in K
A € Pg(K) iff A is a subdirect product of a nonempty family of algebras in K.

If O; and O, are two operators on classes of algebras we write ;05 for the composition of
the two operators, and < denotes the usual partial ordering, i.e., O; < Oy it O1(K) C Oy( K)
for all classes of algebras K. An operator O is idempotent if O* = O. A class K of algebras
is closed under an operator O if O(K) C K.

Our convention that P and Ps apply only to non-empty indexed families of algebras is the
convention followed by model theorists. Thus for any operator O above, O(&) = &. Many
algebraists prefer to include | | @, guaranteeing that P(K') and Pg(K) always contain a trivial

algebra. However this leads to problems formulating certain preservation theorems—see V3g2.
For us || @ is really used only in IV§1, §5 and §7.

Lemma 9.2. The following inequalities hold: SH < HS, PS5 <SP, and PH < HP. Also
the operators, H, S, and 1P are idempotent.

PROOF. Suppose A = SH(K). Then for some B € K and onto homomorphism o : B — C,
we have A < C. Thus a™'(A) < B, and as a(a™'(A)) = A, we have A € HS(K).

ItAe PS(K)then A =][,.;A;forsuitable A; <B; € K, 1€ . As|[,.; A: <|],c; By,
we have A € SP(K).

Next it A € PH(K), then there are algebras B; € K and epimorphisms «; : B; — A,
such that A =]]..; A;. It is easy to check that the mapping o : |[,.; B; — [],.; A; defined
by a(b)(7) = a;(b(7)) is an epimorphism; hence A € HP(K).

Finally it is a routine exercise to verify that H* = H, etc.

el el

Definition 9.3. A nonempty class K of algebras of type & is called a wvariety if it is closed
under subalgebras, homomorphic images, and direct products.

As the intersection of a class of varieties of type JF is again a variety, and as all algebras
of type JF form a variety, we can conclude that for every class K of algebras of the same type
there is a smallest variety containing K.

Definition 9.4. If K is a class of algebras of the same type let V(K) denote the smallest
variety containing K. We say that V(K) is the variety generated by K. If K has a single
member A we write simply V(A). A variety V is finitely generated if V' = V(K) for some
finite set K of finite algebras.

Theorem 9.5 (Tarski). V = HSP.

PROOF. Since HV =SV =PV =V and I <V it follows that HSP < HSPV = V. From
Lemma 9.2 we see that H(HSP) = HSP,S(HSP) < HSSP = HSP, and P(HSP) <

)

HPSP < HSPP < HSIPIP = HSIP < HSHP < HHSP = HGSP; hence for any
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K, HSP(K) is closed under H, S, and P. As V(K) is the smallest class containing K and
closed under H, S, and P, we must have V = HSP.

Another description of the operator V' will be given at the end of §11. The following
version of Birkhoft’s Theorem 8.6 is usetful in studying varieties.

Theorem 9.6. If K s a variety, then every member of K 1s isomorphic to a subdirect
product of subdirectly irreducible members of K.

Corollary 9.7. A variety is determined by its subdirectly vrreducible members.

REFERENCES

1. E. Nelson [1967]
2. D. Pigozzi [1972]
3. A. Tarski [1946]

EXERCISES 39
1. Show that ISP(K) is the smallest class containing K and closed under I, S, and P.
2. Show HS # SH, HP # IPH, ISP # IP5S.

3. Show ISPHS #ISHPS # ITHSP.

4. (Pigozzi). Show that there are 18 distinct class operators of the form 10 - - - O,, where
O; € {H,S,P} for 1 <i <n.

5. Show that if V' has the CEP (see §5 Exercise 10) then for K CV, HS(K) = SH(K).

310. Terms, Term Algebras, and Free Algebras

Given an algebra A there are usually many functions besides the fundamental operations
which are compatible with the congruences on A and which “preserve” subalgebras of A. The
most obvious functions of this type are those obtained by compositions of the fundamental
operations. This leads us to the study of terms.

Definition 10.1. Let X be a set of (distinct) objects called variables. Let F be a type of
algebras. The set T(X) of terms of type F over X is the smallest set such that

1) X UF, C T(X).
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(i) Epy,...,pn € T(X) and f € F,, then the “string” f(p1,...,pn) € T(X).

For a binary function symbol - we usually prefer p; - ps to -(p1,p2). For p € T'(X) we often
write p as p(x1,...,2,) to indicate that the variables occurring in p are among z1, ..., z,. A
term p is n-ary if the number of variables appearing explicitly in p is < n.

ExAMPLES. (1) Let F consist of a single binary function symbol -, and let X = {z,y, z}.
Then

CC,y,Z,CC'y,y'Z,QE'(y'Z), and (ZC’Q)Z

are some of the terms over X.
(2) Let F consist of two binary operation symbols 4+ and -, and let X be as before. Then

z,Y,2,2- (y+2), and (z-y) + (- 2)

are some of the terms over X.

(3) The classical polynomials over the field of real numbers R are really the terms as
defined above of type 3 consisting of +, -, and — together with a nullary function symbol r
for each r € R.

In elementary algebra one often thinks of an n-ary polynomial over R as a function from
R™ to R for some n. This can be applied to terms as well.

Definition 10.2. Given a term p(x4,...,z,) of type F over some set X and given an algebra
A of type F we define a mapping p® : A — A as follows:
(1) if p is a variable z;, then

pA(ala oy Q) = A
for ai,...,a, € A, ie., p® is the i¢th projection map:;
(2) if p is of the form f(p1(21,...,2n),...,pr(21,...,2,)), Where f € Fi, then
p*ar,...,a,) = fA(pMar, ..., 0n), ..., pe(a1, ..., a4,)).

In particular if p = f € F then p® = fA. p? is the term function on A corresponding to the
term p. (Often we will drop the superscript A).

The next theorem gives some useful properties of term functions, namely they behave
like fundamental operations insofar as congruences and homomorphisms are concerned, and
they can be used to describe the closure operator Sg of 83 in a most efficient manner.

Theorem 10.3. For any type F and algebras A, B of type F we have the following.
(a) Let p be an n-ary term of type F, let € Con A, and suppose {(a;,b;) € 0 for1 <1 < n.
Then
p™(aq,. .., a,)0p™(be,...,0,).
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(b) If p is an n-ary term of type F and o : A — B s a homomorphism, then

ap™(as, ..., a,) = pP(aa, ..., aa,)

foray,...,a, € A.
(c) Let S be a subset of A. Then

Sg(S) = {p™(a1,...,an) : p is an n-ary term of type F, n < w, and ay,...,a, € S}.

PROOF. Given a term p define the length [(p) of p to be the number of occurences of n-ary
operation symbols in p for n > 1. Note that I(p) =0 iff p € X U F,.
(a) We proceed by induction on [(p). If {(p) = 0, then either p = z; for some 7, whence

(pA(al, Cee an),pA(bh c ey bn)> = <Cl?j,b?;> c

or p = a for some a € F,, whence

<pA(CL13. : .jan),pA(bl, .. -;bn)> — <CLA?CLA> c f.

Now suppose {(p) > 0 and the assertion holds for every term g with [(q) < {(p). Then we
know p is ot the form

flpi(zy, ..., 20), .., 0k, ..., 2,)),
and as {(p;) < I(p) we must have, for 1 <3 <k,

<pf(ala IR an)apf(bla SR abn)> ~ 9?

hence

(FA(pMar, ..., an),...,p2(a1,...,a,)), FAP(01, ..., by), ..., pe(br, ..., by))) €6,

and consequently
<pA(ala SR aﬂ)apA(bla e abn)> e 0.
(

(b) The proof of this is an induction argument on I(p).
(c) Referring to §3 one can give an induction proof, for £ > 1, of

E*(S) = {p™(ai,...,an) : p is an n-ary term, I(p) <k, n < w, ai,...,an € S},
and thus

Sg(S) = U E*(S) = {p*(a1,...,a,) : p is an n-ary term, n < w,as,...,a, € S}.

k<< oo




§10. Terms, Term Algebras, and Free Algebras 71

One can, in a natural way, transform the set 7'(.X) into an algebra.

Definition 10.4. Given ¥F and X, if T(X) # & then the term algebra of type F over X,
written T(X), has as its universe the set T'(X), and the fundamental operations satisty

fT(X) : <p1:' ' 'Jpn> — f(pla' . :pn)

for f € F, and p; € T(X), 1 <i<n. (T(9) exists ift Fy # .)

Note that T(X) is indeed generated by X. Term algebras provide us with the simplest
examples of algebras with the universal mapping property.

Definition 10.5. Let K be a class of algebras of type ¥ and let U(X) be an algebra of type
F which is generated by X. If for every A € K and for every map

a: X — A

there is a homomorphism
B:UX)— A

which extends « (i.e., 3(2) = a(z) for x € X), then we say U(X) has the universal mapping
property for K over X, X is called a set of free generators of U(X), and U(X) is said to be
freely generated by X.

Lemma 10.6. Suppose U(X) has the universal mapping property for K over X. Then if
we are quuen A € K and o : X — A, there is a unique extension 3 of a such that 3 is a
homomorphism from U(X) to A.

PROOF. This follows simply from noting that a homomorphism is completely determined
by how it maps a set of generators (see 6.2) from the domain.

The next result says that for a given cardinal m there is, up to isomorphism, at most
one algebra in a class K which has the universal mapping property for K over a set of free
generators ot size m.

Theorem 10.7. Suppose U1(X1) and Ua(X2) are two algebras in a class K with the univer-
sal mapping property for K over the indicated sets. If | X1| = | Xa|, then Uy(X71) =2 Us(X3).

PROOF. First note that the identity map

i X, — X, =12
has as its unique extension to a homomorphism from U,(X,) to U,;(X,) the identity map.
Now let

O{:Xl—>X2
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be a bijection. Then we have a homomorphism

G Ui(Xq) — Ua(Xy)
extending «, and a homomorphism

7 Us(Xo) — Us(Xy)

extending o~ '. As 3o is an endomorphism of U,(X,) extending 1,, it follows by 10.6 that
3 o 7y is the identity map on U(X3). Likewise v o 3 is the identity map on U;(X;). Thus 3
is a bijection, so Uj(X7) = Uy(X>s).

Theorem 10.8. For any type F and set X of varitables, where X # @ if Fy = O, the term
algebra T(X) has the unwersal mapping property for the class of all algebras of type F over

X.

PROOF. Let o : X — A where A is of type F. Define
B:T(X)— A
recursively by
O = ax

for x € X, and

/6(f(p1? v ap“n)) — fA(lgpla' . aﬁpn)

for p1,...,p, € T(X) and f € F,,. Then 3(p(z1,...,z,)) = p?(az1,...,ax,), and 3 is the
desired homomorphism extending «.

Thus given any class K of algebras the term algebras provide algebras which have the
universal mapping property for K. To study properties of classes of algebras we often try to
find special kinds of algebras in these classes which yield the desired information. Directly
indecomposable and subdirectly irreducible algebras are two examples which we have already
encountered. In order to find algebras with the universal mapping property for K which
give more insight into K’ we will introduce K-free algebras. Unfortunately not every class K
contains algebras with the universal mapping property for K. Nonetheless we will be able to
show that any class closed under I, S, and P contains its K-free algebras. There is reasonable
difficulty in providing transparent descriptions of K-free algebras for most K. However, most
of the applications of K-free algebras come directly from the universal mapping property,
the fact that they exist in varieties, and their relation to identities holding in K (which
we will examine in the next section). A proper understanding of free algebras is essential
in our development of universal algebra—we use them to show varieties are the same as
classes defined by equations (Birkhoft), to give useful characterizations (Mal’cev conditions)
of important properties of varieties, and to show every nontrivial variety contains a nontrivial
simple algebra (Magari).
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Definition 10.9. Let K be a family of algebras of type &F. Given a set X of variables define
the congruence 0 (X) on T(X) by

QK(X) — m(I)K(X):
where
Dc(X) = {¢ € Con T(X) : T(X)/¢ € IS(K)}:
and then define F (X), the K-free algebra over X, by

Fr(X)=T(X)/0k(X),

where B

X = X/0r(X).
For z € X we write T for z/0x(X), and for p = p(z1,...,2,) € T(X) we write p for
pFK(X)(El,...,fn). It X is finite, say )_( = {xl,...,mn}, we often write Fg (x1,...,%,) for

Fr(X). Fg(X) is the universe of Fg (X).

Remarks.
(1) Fr(X) exists iff T(X) exists iff X # @ or Fy # @. (2) If F(X) exists, then X is a set of

generators of Fx(X) as X generates T(X). (3) If Fy # &, then the algebra F () is often
referred to as an wnitial object by category theorists and computer scientists. (4) If K = @ or

K consists solely of trivial algebras, then F (X)) is a trivial algebra as 6 (X) =V. (5) f K
has a nontrivial algebra A and T(X) exists, then X N(z/0x(X)) = {z} as distinct members
z,y of X can be separated by some homomorphism « : T(X) — A. In this case | X| = | X]|.

(6) If | X| = |Y| and T(X) exists, then clearly Fx(X) = Fg(Y) under an isomorphism which

maps X to Y as T(X) =2 T(Y) under an isomorphism mapping X to Y. Thus Fg(X) is
determined, up to isomorphism, by K and |X|.

Theorem 10.10 (Birkhoft). Suppose T(X) exists. Then Fg (X) has the universal mapping
property for K over X.

PROOF. Given A € K let @ be a map from X to A. Let v : T(X) — Fg(X) be the
natural homomorphism. Then « o v maps X into A, so by the universal mapping property
of T(X) there is a homomorphism u : T(X) — A extending ao v [x . From the definition
of O (X) it is clear that Ox(X) C ker i (as ker u € ®g(X)). Thus there is a homomorphism

B Fg(X) — A such that y = o v (see §6 Exercise 6) as kerv = 0g(X). But then, for
T € X,

B(z) = Bov(z)
= ()
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so 3 extends «. Thus Fg(X) has the universal mapping property for K over X.

If Fx(X) € K then it is, up to isomorphism, the unique algebra in K with the universal
mapping property freely generated by a set of generators of size | X|. Actually every algebra
in K with the universal mapping property for K is isomorphic to a K-free algebra (see
Exercise 6).

EXAMPLES. (1) It is clear that T(X) is isomorphic to the free algebra with respect to the
class K of all algebras of type & over X since 0x(X) = A. The corresponding free algebra
is sometimes called the absolutely free algebra F(X) of type F.

(2) Given X let X* be the set of finite strings of elements of X, including the empty
string. We can construct a monoid (X*, - 1) by defining - to be concatenation, and 1 is the
empty string. By checking the universal mapping property one sees that (X*, - 1) is, up to
isomorphism, the free monoid freely generated by X.

Corollary 10.11. If K 1s a class of algebras of type F and A € K, then for sufficiently

large X, A € H(Fg(X)).

PROOF. Choose | X| > |A| and let
a: X — A

be a surjection. Then let

BFK(X)%A

be a homomorphism extending «.

In general F(X) is not isomorphic to a member of K (for example, let K = {L} where
L is a two-element lattice; then Fg(Z,7) € I(K)). However Fg(X) can be embedded in a
product of members of K.

Theorem 10.12 (Birkhoft). Suppose T(X) exists. Then for K # &, Fg(X) € ISP(K).
Thus if K is closed under I, S, and P, in particular +f K is a variety, then Fr(X) € K.

PROOF. As
Ok (X) = ) ®x(X)

it follows (see §8 Exercise 11) that
Fr(X)=T(X)/0x(X) € IPs{T(X)/0:60 € ®x(X)}),

>0

Fi(X) € IPsIS(K),
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and thus by 9.2 and the fact that Py < SP,

Fr(X) e ISP(K).

From an earlier theorem of Birkhofl we know that if a variety has a nontrivial algebra in
it then it must have a nontrivial subdirectly irreducible algebra in it. The next result shows
that such a variety must also contain a nontrivial simple algebra.

Theorem 10.13 (Magari). If we are given a variety V with a nontrivial member, then V
contains a nontrivial stmple algebra.

PROOF. Let X = {z,y}, and let

S={p@):peT{z}},

a subset of Fy/(X). First suppose that ©(S5) # V in Con Fy(X). Then by Zorn’s lemma
there is a maximal element in [©(S), V] —{V}. (The key observation for this step is that for
0 € [0(5), V],

0=V ifft (z,y) €.

To see this note that if (z,7) € 6 and ©(S5) C 6, then for any term p(z,y), with F = Fy(X)
we have
P (z,9)0p" (z,7)0(5)7;
hence § = V.) Let 0, be a maximal element in [©(S), V] — {V}. Then Fy(X)/#, is a simple
algebra by 8.9, and it is in V.
If, however, ©&(S) = V, then since © is an algebraic closure operator by 5.5, it follows
that for some finite subset Sy of S we must have (Z,7) € ©(Sy). Let S be the subalgebra

of Fy(X) with universe S (note that S = Sg({7}) by 10.3(c)). As V is nontrivial we must
have T # 7 in Fy(X), and as (z,7) € ©(5) it follows that S is nontrivial. Now we claim
that Vg = ©(S5y), where © in this case is understood to be the appropriate closure operator

on S. To see this let p(z) € S and let

X . FV (Y) — S
be the homomorphism defined by
a(x) =7
a(y) = p(T).

As

(Z,Y) € O(Sp) in Fy(X),
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it follows from 6.6 (see §6 Exercise 5) that
(Z,p(T)) € O(Sy) inS

tohs!
O{(So) — So.

This establishes our claim; hence using Zorn’s lemma we can find a maximal congruence ¢
on S as Vg is finitely generated. Hence S/6 is a simple algebra in V.

Let us turn to another application of free algebras.

Definition 10.14. An algebra A is locally finite if every finitely generated subalgebra (see
63.4) is finite. A class K of algebras is locally finite it every member of K is locally finite.

Theorem 10.15. A variety V 1s locally finite iff

X| <w=|Fy(X)| <w.

PROOF. The direction (=) is clear as X generates Fy(X). For (<) let A be a finitely
generated member of V| and let B C A be a finite set of generators. Choose X such that we

have a bijection B
a: X — B.

Extend this to a homomorphism o

As 3(Fy (X)) is a subalgebra of A containing B, it must equal A. Thus 3 is surjective, and

as F'y (X)) is finite so is A.

Theorem 10.16. Let K be a finite set of finite algebras. Then V(K) is a locally finite
variety.

PROOF. First verify that P(K) is locally finite. To do this define an equivalence relation
~ on T({x1,...,2,}) by p ~ ¢ if the term functions corresponding to p and ¢ are the
same for each member of K. Use the finiteness conditions to show that ~ has finitely many
equivalence classes. This, combined with 10.3(c), suffices. Then it easily follows that V' is
locally finite since every finitely generated member of HSP(K ) is a homomorphic image of
a finitely generated member of SP(K).

REFERENCES

1. G. Birkhoff [1935]
2. R. Magari [1969]
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EXERCISES ¢10

1.

Let L be the four-element lattice ({0, a,b, 1}, VvV, A) where 0 is the least element, 1 is
the largest element, and a Ab =0, aVVb =1 (the Hasse diagram is Figure 1(c)). Show
that L has the universal mapping property for the class of lattices over the set {a, b}.

. Let A = (w, f) be the mono-unary algebra with f(n) = n+1. Show A has the universal

mapping property for the class of mono-unary algebras over the set {0}.

Let p be a prime number, and let Z, be the set of integers modulo p. Let Z, be
the mono-unary algebra (Z,, f) defined by f(n) = n + 1. Show Z, has the universal
mapping property for K over {1}, where K is the class of mono-unary algebras (A, f)
satisfying fP(x) =~ x.

Show that the group Z = (Z,+, —, 0) of integers has the universal mapping property
for the class of groups over {1}.

If V is a variety and | X| < |Y| show Fy(X) can be embedded in Fy(Y) in a natural
way.

If U(X) € K and U(X) has the universal mapping property for K over X show that

U(X) = Fg(X) under a mapping « such that a(z) = 7.

Show that for any algebra A and a,b € A, ©({a,b)) = t*(s({{p(a,c),p(b,¢)) : p(x, Y1,

., Yn)isaterm, ¢, ..., ¢, € A}))UA,4, where t*( ) is the transitive closure operator,
i.e., for Y C A x A, t*(Y) is the smallest subset of A X A containing ¥ and closed
under £. (See the proof of 5.5.)

311. Identities, Free Algebras, and Birkhoft’s Theorem

One of the most celebrated theorems of Birkhofl says that the classes of algebras defined
by identities are precisely those which are closed under H, S, and P. In this section we
study identities, their relation to free algebras, and then give several applications, including
Birkhofl’s theorem. We have already seen particular examples of identities, among which are
the commutative law, the associative law, and the distributive laws. Now let us formalize
the general notion of an identity, and the notion of an identity holding in an algebra A, or
in a class of algebras K.

Definition 11.1 An identity of type & over X is an expression of the form

p~=q
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where p,q € T(X). Let Id(X) be the set of identities of type I over X. An algebra A of type
F satisfies an identity

p(21,...,%n) = q(x1,...,Tn)

(or the identity s true in A, or holds in A), abbreviated by

A :p(xh...,ﬂin)%Q(xlg--wxn)a

or more briefly

A=pryg,
if for every choice of a4,...,a, € A we have
p™(ag,...,a,) = q™(aq,. .., a,).

A class K of algebras satisfies p = ¢, written

K =p=q,
if each member of K satishies p ~ ¢. If 2. is a set of identities, we say K satisfies 2., written

KEYX

if K =p~qforeach p~xge . Given K and X let

I[d(X)={p~qgeldX): K =Ep=q}.

We use the symbol = for “does not satisty.”

We can reformulate the above definition of satistaction using the notion of homomor-
phism.

Lemma 11.2. If K s a class of algebras of type F and p =~ q 1s an 1dentity of type F over
X, then

KEp=q

iff for every A € K and for every homomorphism « : T(X) — A we have

ap = aq.

PROOF. (=) Let p = p(x1,...,2y), ¢ = q(z1,...,2,). Suppose K
a: T(X) — A is a homomorphism. Then

p~gq, A€ K, and

A( Alazy,. .., az,)

T(X)(

AL, ..., QL) = ¢
T(X)(

p

= ap T1, ..., %n) = QQ L1, ..., Tp)

= ap = Qq.
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(<) For the converse choose A € K and aq,...,a, € A. By the universal mapping

property of T(X) there is a homomorphism « : T(X) — A such that

AT; = Q;, 1 <9 <n.
But then
pA(ala aan) :pA(O{ZL‘h ':CKIR)
— g™z, ..., oL,
:qA(al, Q)
so K =p~aq.

Next we see that the basic class operators preserve identities.

Lemma 11.3. For any class K of type F all of the classes K, I1(K), S(K), H(K), P(K)

and V(K) satisfy the same identities over any set of variables X.
PROOF. Clearly K and I(K) satisfy the same identities. As

I <IS

= )

I<H, and I<IP

we must have

IdK(X) 2 IdS(K)(X), IdH(K)(X), and Idp(K)(X)

For the remainder of the proof suppose

K =p(zy,...,2,) = q(z1,...,%,).

Then it B< A € K and b,...,b, € B, then as b;,...,b, € A we have

hence
po(by, ... bn) = q°(by,y ..., bn),
SO
B=p~qg
Thus
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Next suppose « : A — B is a surjective homomorphism with A € K. If b,,...,b, € B,

choose a1, ...,a, € A such that

a(ay) = by, . (@) = by,.
Then

par, ... an) = ¢*ay, ..., an)

implies

C‘pr(ala a a’n) — O{QA(G’M ) aﬂ)?
hence

Thus

S0
I (X) = Ida) (X).

Lastly, suppose A; € K for ¢ € I. Then for a4,...,a, € A =]],.; A; we have

P (ai(i), ..., an(i)) = ¢™

hence

for 1 € I, so

Thus
Idg(X) = Idp(K)(X).

As V = HSP by 9.5, the proof is complete.

Now we will formulate the crucial connection between K-free algebras and identities.

Theorem 11.4. Given a class K of algebras of type F and terms p,q € T'(X) of type F we
have
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PROOF. Let F = Fr(X), p=p(21,...,2,), ¢ = q(z1,...,7,), and let

v:T(X)—F

be the natural homomorphism. Certainly K = p ~ ¢ implies F =p~qgas F € ISP(K).
Suppose next that F = p = ¢g. Then

pF(fla R :fﬂ) — qF(gjl: R 333?1):

S0
{p,q) € kerv = O (X).

Finally suppose (p,q) € 0x(X). Given A € K and ay,...,a, € A choose a : T(X) — A
such that az; = a;, 1 <1< n. Askera € g (X) we have

ker o O kerv = 0 (X),

so it follows that there is a homomorphism (3 : F — A such that a = 8o v (see §6 Exercise
6). Then

a(p) = Bov(p) = Bov(q) = alq).
Consequently

KEp=rg

by 11.2.

Corollary 11.5. Let K be a class of algebras of type F, and suppose p,q € T(X). Then for
any set of vartables Y with Y| > | X| we have

KEp~=q iff Fg(Y)Ep=q.

PROOF. The direction (=) is obvious as F(Y) € ISP (K). For the converse choose Xy 2 X
such that | Xy| = |Y|. Then

and as

by 11.4 it follows that
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Corollary 11.6. Suppose K 1s a class of algebras of type F and X 1s a set of variables.
Then for any infinite set of variables Y,

PROOF. For p = q € Idg(X), say p = p(z1,...,2n), ¢ = q(z1,...,%,), We have p, g €
T({z1,...,2n}). As {z1,..., 2} < |Y]|, by 11.5

KEprq it Fr(Y)Epryq,

so the corollary is proved.

As we have seen in §1, many of the most popular classes of algebras are defined by
identities.

Definition 11.7. Let > be a set of identities of type F, and define M(32) to be the class
of algebras A satistying .. A class K of algebras is an equational class it there is a set of
identities 3 such that K = M(X). In this case we say that K is defined, or axiomatized, by
3.

Lemma 11.8. IfV s a variety and X s an infinite set of variables, then V = M (Idy(X)).

PROOF. Let
V' = M (Idy(X)).

Clearly V' is a variety by 11.3, V' D V| and

S50 by 11.4,

Fy. (X)) =Fy(X).
Now given any infinite set of variables Y, we have by 11.6
Idy/(Y) = Idg ,x) (Y) =Idg, (X) (Y) =Idy(Y).
Thus again by 11.4,
Oy (Y) = Oy (Y);

hence

va (Y) — FV (Y)
Now for A € V’ we have (by 10.11), for suitable infinite Y,

A € H(Fy/(Y));
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hence

A € H(FV(Y))a
so A € V; hence V' CV, and thus V' = V.

Now we have all the background needed to prove the famous theorem of Birkhof.

Theorem 11.9 (Birkhoff). K s an equational class iff K is a variety.

PROOF. (=) Suppose

K = M(X)
Then
V(K) =X
by 11.3; hence
V(K) € M(%),
SO
V(K) = K,

l.e., K Is a variety.
(<) This follows from 11.8.

We can also use 11.4 to obtain a significant strengthening of 10.12.

Corollary 11.10. Let K be a class of algebras of type F. If T(X) exists and K’ is any class
of algebras such that K C K’ C V(K), then

Fr(X) = Fre(X).

In particular 1t follows that
Fi:/(X) e ISP(K).

PROOF. Since IdK(X) :_IdV(K)(X)_by 11.3, it follows that IdK(X) — IdKf(X) Thus
O (X) = Ok (X), so Fg/(X) = Fg(X). The last statement of the corollary then follows
from 10.12.

So far we know that K-free algebras belong to IS P(K). The next result partially sharpens
this by showing that large K-free algebras are in I Pg(K).

Theorem 11.11. Let K be a nonempty class of algebras of type F. Then for some cardinal
m, if | X| > m we have

Fx(X) € IPs(K).



84 IT The Elements of Universal Algebra

PROOF. First choose a subset K* of K such that for any X, Idg«(X) = Idg(X). (One can
find such a K™ by choosing an infinite set of variables Y and then selecting, for each identity
p~qin Id(Y) — Idg(Y), an algebra A € K such that A = p = ¢.) Let m be any infinite
upper bound of {|A|: A € K*}. (Since K* is a set such a cardinal m must exist.)

Next let Wg+(X), for any X, be {¢ € Con T(X) : T(X)/¢p € I(K*)}. Then Ug+(X) C
e+ (X), hence ((Wg+(X) D Ox+(X). To prove equality of these two congruences for | X| > m
suppose (p,q) € Og+(X). Then K* = p =~ ¢ by 11.4; hence for some A € K*, A £ p =~ q.

If p=opa,...,2,), ¢ = q(z1,...,73,), choose ay,...,a, € A such that p®(a4,...,a,) #
g*(a1,...,a,). As | X| > |A| we can find a mapping o : X — A which is onto and az; =
a;, 1 < i < n. Then « can be extended to a surjective homomorphism 3 : Fg+(X) — A,
and 3(p) # B(q). Thus (p,q) € ker3 € Ug«(X), so (p,q) & [ Vk+(X). Consequently
(Y Wr(X) =0x+(X). AsFg(X) = Fg(X) by 11.4, it follows that Fg(X) = T(X)/ (Y g+ (X).

Then (see §8 Exercise 11) we see that Fg(X) € IPg(K*) C IPs(K).

Theorem 11.12. V = HPF..
PROOF. As
Py <SP

we have
HPs < HSP =V,

Given a class K of algebras and sufliciently large X, we have

FV(K)(X) - IPS(K)
by 11.11; hence
V(K) C HPg(K)

by 10.11. Thus
V = HPs.

REFERENCE

1. G. Birkhoft [1935]

EXERCISES gl1

1. Given a type J and a set of variables X and p,q € T'(X) show that T(X) =p~q ift
p = q (thus T(X) does not satisfy any interesting identities).

2. It V is a variety and X is infinite, show V' = HSP(Fy(X)).
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3. If X is finite and Idy (X) defines V does it follow that V = HSP(Fy(X))?

4. Describe free semilattices.

| X]

5. Show that if V = V(A) then, given X # @&, Fy(X) can be embedded in A4 In

particular if A has no proper subalgebras the embedding is also subdirect.

312. Mal’cev Conditions

One of the most fruitful directions of research was initiated by Mal'cev in the 1950’s when
he showed the connection between permutability of congruences for all algebras in a variety
V' and the existence of a ternary term p such that V satisfies certain identities involving p.
The characterization of properties in varieties by the existence of certain terms involved in
certain identities we will refer to as Mal’cev conditions. This topic has been significantly

advanced in recent vears by Taylor.

Lemma 12.1. Let V' be a variety of type F, and let

p(CEla"'aCEmayla"'ayn)a

Q(ajl:"':xmayla"'ayn)

be terms such that in F = Fy(X), where

X:{;};‘lj...,l’m,yla---ayn}a

we have

<pF(fla' . afmagla' < ayn)aqF(fla' . af’ma gla s a@n» & @(gla s ayn)'

Then

V :p(zla"':xmaya"'ay)WQ(xlﬂ"'?a’;m?y"”’y)'

PROOF. The homomorphism

& . FV(fla"'af’magla"'?yn) %Fv(fl?"'?:tm’y)

defined by

and
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1s such that
@(gla *e a@n) g kera;

>0

Ofp(fla' ' 'afmagla' . ayn) — O{Q(fla' . ':f’magla' . ayn)?

thus
p(fla' . 'afmaga' .. a@) — Q(fla' .. afmaga' ' a@)
in Fyv(z1,...,Zm,7), so by 11.4

ViEpxy,. .  Zom, Y, y) =gy, T, Yy e e, YY)

Theorem 12.2 (Mal'cev). Let V be a variety of type F. The variety V is congruence-
permutable ioff there is a term p(x,y, z) such that

V =plz,z,y) =y

and

V Ep(z,y,y) = z.

PROOF. (=) If V is congruence-permutable, then in ¥y (Z, ¥, Z) we have
7,7 € 0(7,7) < O[5, 7

(Z,Z) € O(y,Z) 0o O(Z, 7).

Hence there is a p(z,%,%Z) € Fy (7,7, Z) such that

By 12.1

V =plz,y,y) =2

and

VEpz,zz2) =~ 2
(<) Let A € V and suppose ¢,9 € Con A. If

(a,b) € o1,

say agcyb, then
b — p(c? c? b)qﬁp(a? c? b)wp(a? b? b) — a’?
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SO

(b,a) € po .
Thus by 5.9

poP =1oa.

EXAMPLES. (1) Groups (A, -, ~1, 1) are congruence-permutable, for let p(x,y,z) be z-y~*- 2.
(2) Rings (R,+, -, —,0) are congruence-permutable, for let p(x,y, z) be x — y + z.
(3) Quasigroups (Q, /,-,\) are congruence-permutable, for let p(z,y, z) be (z/(y\y)) -

(y\2).

Theorem 12.3. Suppose V' is a variety for which there is a ternary term M(x,y, z) such
that

ViEM(z,z,y) = M(x,y,2) ~ M(y,z,7) = .

Then V' 1s congruence-distributive.

PROOF. Let ¢, v,y € Con A, where A € V. It

(a,b) € N (¥ VX)

then (a,b) € ¢ and there exist ¢y, ..., ¢, such that

CWC1X62 T ¢CnXb-

But then as
]\4(&j Cs, b)@M(CL, Cs, CL) — a,

for each 7, we have
a = M(a,a,b)(¢ Np)M(a,c1,0)(¢ A x)M(a, cz,b)--- M(a,cn,b)(¢ A x)M(a,b,b) = b,

SO
(a,b) € (P AY)V (¢ N X)
This suffices to show

PNV X)=(dNY)V(PAX),

so V' is congruence-distributive.

EXAMPLE. Lattices are congruence-distributive, for let

M(z,y,z)=(xVy) AN(zVz)A(yVz).
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Definition 12.4. A variety V is arithmetical if it is both congruence-distributive and
congruence-permutable.

Theorem 12.5 (Pixley). A variety V is arithmetical iff it satisfies either of the equivalent

conditions
(a) There are terms p and M as in 12.2 and 12.3.

(b) There is a term m(x,y, z) such that

ViEm(z,y,z) = m(z,y,y) = m(y,y,r) = z.

PROOF. If V is arithmetical then there is a term p as V is congruence-permutable. Let
Fy(Z,%,%Z) be the free algebra in V freely generated by {Z,%,Z}. Then as

(z,z) € ©(7,72) NO(Z,7) V Oy, 2)]
it follows that
(z,z) € [B(z,2) NO(Z,7)] V [0(Z,2) NO(Y,2)];

hence
(Z,Z) € [O(Z,Z2) NO(Z,7)] o |O(Z,Z) NO(7,Z2)].

Choose M(z,%,%) € Fy(Z,y,Z) such that

rO(z,z) NO(x,y)M(Z,y,2)0(7,2) NOY,2))z.
Then by 12.1,
VEM@zy) ~Mayz)~ My,z,z) = x.

If (a) holds then let m(z,y,2) be p(z, M(x,y, 2),2). Finally if (b) holds let p(z,y,2) be
m(x,y,z) and let M(z,y, z) be m(x,m(z,y, 2), 2), and use 12.2 and 12.3.

EXAMPLES. (1) Boolean algebras are arithmetical, for let
m(xz,y,z) =@ A2) V(@AY NZ)V(Z ANy A2).
(2) Heyting algebras are arithmetical, for let
m(z,y,z) =[x = y) = 2] ANz = y) = 2] Az V]
Note that 12.3 is not a Mal'cev condition as it is an implication rather than a character-

ization. Jonsson discovered a Mal'cev condition for congruence-distributive varieties which
we will make considerable use of in the last chapter.
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Theorem 12.6 (Jonsson). A variety V 1is congruence-distributive iff there is a finite n and
terms polx,y, 2),...,pn(x,y, 2) such that V satisfies

pi(z,y,x) = x 0<i<n
po(z,y,2) = z, Pn(T,Y,2) = 2

pi(x, x,Y) = pip1(x, z,Y) for 1 even
pi(Z, Y, Y) = piq (T, 9, 9) for 1 odd.

PROOF. (=) Since

O(z,2) N O(7,7) VO(Y,2)] = [0(7,2) AO(Z,9)] V [0(7,%) A O(Y,Z)

in Fy(z,y,7z) we must have

(Z,Z) € Oz, 2) ANO(Z,7)] V [O(Z,Z2) A O(¥,2)].

Thus for some p(Z,%,2),...,pn-1(Z,¥,2) € Fy(Z,y,Z) we have

and from these the desired equations fall out.
(<) For ¢, 9,y € Con A, where A € V, we need to show

PNV X) C(OAY)V (0N X),

so let
(a,0) € 9N (Y V x).

Then {a,b) € ¢, and for some ¢y, ..., ¢; we have

aycrx . .. cexb.
From this follows, for 0 <1 <n,
pi(a’a a, b)wpz(aa C1, b)X voeoe pi(aa Ct, b)sz(aa ba b)?

hence
pi(a,a,b)(¢ N Y)pila,c1,0)(@ Ax) . ..pila,c, 0)(@ A X)pi(a, b, D),
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pi(a,a,b)[(¢ AP) V (¢ A x)lpi(a, b,b),

0 < ¢ < n. Then in view of the given equations, al[(¢ A ¥) V (¢ A x)]b, so V is congruence-
distributive.

By looking at the proofs of 12.2 and 12.6 one easily has the following result.

Theorem 12.7. A variety V s congruence-permutable (respectively, congruence-distributive)
iff Fv(x,y, %) has permutable (respectively, distributive) congruences.

For convenience in future discussions we introduce the following definitions.

Definition 12.8. A ternary term p satistying the conditions in 12.2 for a variety V is called
a Mal'cev term for V, a ternary term M as described in 12.3 is a majority term tor V, and a
ternary term m as described in 12.5 is called a £-minority term for V.

The reader will find Mal’cev conditions for congruence-modular varieties in Day [1] below.
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EXERCISES §12
1. Verify the claim that Boolean algebras [Heyting algebras| are arithmetical.

2. Let V be a variety of rings generated by finitely many finite fields. Show that V is
arithmetical.

3. Show that the variety of n-valued Post algebras is arithmetical.

4. Show that the variety generated by the six-element ortholattice in Figure 19 is arith-
metical.
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0
Figure 19

313. The Center of an Algebra

Smith [6] introduced a generalization to any algebra in a congruence-permutable variety of
the commutator for groups. Hagemann and Herrmann [3] then showed that such commuta-
tors exist for any algebra in a congruence-modular variety. Using the commutator one can
define the center of such algebras. Another very simple definition of the center, valid for any
algebra, was given by Freese and McKenzie 1], and we will use it here.

Definition 13.1. Let A be an algebra of type F. The center of A is the binary relation
Z(A) defined by:

{a,b) € Z(A)

iff for every p(z,y1,...,9yn) € T'(x,91,...,Yyn) and for every cy,...,¢cp,dy, ..., dy € A,

pla,ci,...,c,) =pla,dy,....d,) iff p(b,cq,...,c,) =plbdi,...,d,).

Theorem 13.2. For every algebra A, the center Z(A) is a congruence on A.

PROOF. Certainly Z(A) is reflexive, symmetric, and transitive, hence Z(A) is an equivalence
relation on A. Next let f be an n-ary function symbol, and suppose (a;, b;) € Z(A), 1 < <
n. Given a term p(x,y1,...,¥n) and elements ¢y, ..., ¢y, d1, ..., d, of A, from the definition
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of Z(A) we have

hence

<f(CL1, Ce e an),f(bl, Ce e bn)> ~ Z(A)

Thus Z(A) is indeed a congruence.

Let us actually calculate the above defined center of a group and of a ring.

EXAMPLE. Let G = (G,-,7',1) be a group. If {(a,b) € Z(G) then, with the term
plz,y1,Y2) =11 - x- Y2 and ¢ € G, we have

hence
?c) :p(b? c? a_l)?
that is,

at-b-c=c-b-a .

With ¢ =1 it follows that
ol -b=b-a;

hence for ¢ € G,

at-b-c=c-al-b,

consequently (a, b) is in the congruence associated with the normal subgroup N of G which

is the usual group-theoretic center of G, i.e., N={ge G:h-g=g-hfor h e G}.
Conversely, suppose N is the usual group-theoretic center of G. Then for any term

p(z,y1,...,yn) and elements a,b,cy,...,cn,dy,...,d, € G ifa-b~' € N, and if

then
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SO )
p(b,¢) = p(b,d)

as a - b~ ! is central. So, by symmetry, if a-b~! € N then

p(a, &) =pla,d) iff p(b,&)=p(b,d),

so (a,b) € Z(QG).
Thus
Z(G)={{a,b) e G*:(a-b)-c=c-(a-b"") for c € G}.

EXAMPLE. Let R = (R, +,-,—,0) be a ring. If {(r, s) € Z(R) then, for t € R,
(r=r)-t=(r—-r)-0
hence replacing the underlined r by s we have
(r—s)-t=0.

Likewise
t-(r—s) =0,

so r — s € Ann(R), the annihilator of R. Conversely, if r — s € Ann(R)) and p(z, 1, ..., Yn)
is a term and ¢q,...,¢,,dq,...,d, € R then from

1t follows that
and thus

By symmetry, we have
Z(R)=A{(r,s) :r—s € Ann(R)}.

Now we return to the fundamental theorem of centrality, namely the characterization of
modules up to polynomial equivalence.

Definition 13.3. Let A be an algebra of type F. To Fy add symbols a for each a € A,
and call the new type JF4, and let A4 be the algebra of type F4 which is just A with a
nullary operation corresponding to each element of A. The terms of type F4 are called the
polynomials of A. We write p® for p»4. Two algebras A; = (A, F}) and A, = (A, F),
possibly of different types, on the same universe are said to be polynomially equivalent it
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they have the same set of polynomial functions, i.e., for each polynomial p(zq,...,z,) of A;
there is a polynomial g(z1,...,z,) of Ay such that pAt = ¢*2, and conversely.

The following proof incorporates elegant arguments due to Mckenzie and Taylor.

Theorem 13.4 (Gumm, Hagemann, Herrmann). Let A be an algebra such that V(A) s
congruence-permutable. Then the follourng are equivalent:
(a) A s polynomually equivalent to a left R-module, for some R.

(b) Z(A) = V4.
(¢) {{a,a) :a € A} is a coset of a congruence on A x A.

PROOF. (a) = (b): If A is polynomially equivalent to a module M = (M, +, —, 0, (f,)rer),
then for every term p(z, 41, ...,%,) of A there is a polynomial

q(:[:, Y1, - .- ayn) — fr(gj) +fr1(yl) T +frn(yn) T—m
of M such that

p* =q".

Thus for a,b,cl,...,cn,dl,...,dn - A, if

pla,ci,...,cn) =pla,dy, ..., dy)
then

Q(aa Cly-- -, cn) — Q(aa dla Tt dn)a
hence if we subtract f.(a) from both sides,

frl (cl) T frn(cn) = fm (dl) S frn (dn) T,
so if we add f,.(b) to both sides,

consequently
By symmetry,

hence Z(A) = V 4.

(b) & (c): First note that X = {(a,a) : a € A} is a coset of some congruence on A x A
iff it is a coset of @(X), the smallest congruence on A X A obtained by identifying X. Now,
from 810 Exercise 7,

O({(a,a) : a € A}) = t*(s({(p***((@, @), (c1,d1), . . ., (cn, dn)),
pA A b, D), (cr,dh), ... {cn, d))) @, bycr,. .. Cp,de, ..., dy €A
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and p is a term })) U A 45 4. )
Hence X is a coset of O(X) iff for every @,b,c1,...,¢p,d1,...,d, € A and every term

p(CE;yl;---;yn); A A
p (@, a), (c1,dy), ..., {cn,dp)) € X

ift
pAXA(<b? b>? <cl) dl)? ) <Cn? dn>) E X?

that is, 3 B -
p*(@c) =p*@d) iff p*(,c)=p*0b,d).
Thus X is a coset of ©(X) iff Z(A) = V4.

(b) = (a): Given that Z(A) = Vg4, let p(x,y, 2) be a Mal’cev term for V(A). Choose
any element 0 of A and define, for a,b € A,

a+b=pla,0,0b)
—a = p(0,a,0).

Then

a+ 0= p(a,0,0)

= a.
Next observe that for a,b,c,d, e € A,

p(pla,a,a),d,p(b,e,e)) = p(pla,d, b), e,p(c, ¢, e));
hence, as (e, c) € Z(A), we can replace the underlined e by ¢ to obtain

p(p(a,a,a),d,p(b,e,c)) = p(pla,d,b),e pcc,c)),

SO
p(a,d,p(b,e,c)) = p(p(a,d,b), e, c).

Setting d = e = 0, we have the associative law
a+ (b+c¢)=(a+0b) +ec.

Next,
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By
p(aa b, b) — p(ba b, CL)
and the fact that (0,b) € Z(A), we can replace the underlined b by 0 to obtain

p(a,0,b) = p(b,0,a);

hence
a+b=0+a,
so (A,+,—,0) is an Abelian group.
Next we show that each n-ary term function p® (z1,...,z,) of A is affine for (A, +, — 0),
i.e., it is a homomorphism from (A, 4+, —, 0)" to (A, +, —, 0) plus a constant. Let aq,..., an,

bi,...,b, € A. Then
pla; +0,...,a,+0)+p(0,...,0) =p(0+0,...,04+0)+p(a,...,a,).
As (0,b1) € Z(A) we can replace the underlined 0’s by b; to obtain
play +b1,a2 +0,...,a,+0)+p(0,...,0) =p(0+0;,0+0,...,04+0)+pla,...,a,).
Continuing in this fashion, we obtain

plar +b1,...,a, +by) +p(0,...,0) =p(b1,...,b,) +pla,...,an)
:p(alj...,an)—I—p(bl,...jbn).

Thus p® (21, ..., z,) —p™(0,...,0)is a group homomorphism from (A, +, —, 0)" to (A, +, —, 0).
To construct the desired module, let R be the set of unary functions p®(z,ci,...,c,) on
A obtained by choosing terms p(x, 91, . ..,¥y,) and elements ¢;, ..., ¢, € A such that

p(0,¢q,...,¢,) =0.

For such unary functions we have

pla+b,c1,...,cn) =pla,cr,...,cp) +p(b,0,...,0) —p(0,...,0)

and

p(b,c1,...,cn) =p(b,0,...,0) +p(0,¢c1,...,¢,) —p(0,...,0)

hence

p(a b,Cl...,Cn) :p(a,cl,...,cn) p(b,cl,...,cn). (*)

Thus each member of R is an endomorphism of (A, +, —, 0).
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Clearly R is closed under composition o, and for r, s € R define r + s and —r by

(r+s)(a) = r(a) + s(a) = p(r(a),0, s(a))
(—r)(a) = —r(a) = p(0,7(a),0).
Then r + s, —r € R. Let 0 be the constant function on A with value 0, and let j be the
identity function on A. Then 0,1 € R as well. We claim that R = (R, +,-,—,0,1) is a
ring. Certainly (R, +, —, 0) is an Abelian group as the operations are defined pointwise in

the Abelian group (A, +, —,0), and (R, -, 1) is a monoid. Thus we only need to look at the
distributive laws. If we are given r, s,t € R, then

(r+5) ot)(a) = (r+5)(t(a))
t

= (rot+sot
hence
(r4+s)ot=rot+sot
Also
ro(s+1)(a) =r((s+1)(a))
= r(s(a) +t(a))
= r(s(a)) + r(t(a)) (by (x) above)
= (ros)(a)+ (rot)(a)
= (ros+rot)(a);
hence

ro(s+t)=(ros)+(rot).

This shows R is a ring.
Now to show that M = (A, +, —, 0, (r),cr) is a left R-module, we only need to check the
laws concerning scalar multiplication. So let r, s € R, a,b € A. Then

(r+s)(a) =r(a)+ s(a) (by definition)
r(a+b) =r(a)+ r(b) by (%))
(ros)(a) =r(s(a)).

Thus M is a left R-module (indeed a unitary left R-module).
The tundamental operations of M are certainly expressible by polynomial functions of A.
Conversely any n-ary fundamental operation f4(xzy,...,z,) of A satisfies, for a,,...,a, € A,

flay,...,an) — f(0,...,0) = (f(a1,0,...,0) — f(0,...,0))
+ -4+ (f(0,...,a,) — f(O,...,0)).
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As

it follows that
fA(CUIa-"a:En) :7"1(331)‘|‘"'—|‘7"n(33n)'|‘f(0,---,0);

hence each tfundamental operation of A is a polynomial of M. This suffices to show that A
and M are polynomially equivalent.

Actually one only needs to assume V(A) is a congruence-modular in Theorem 13.4 (see
(4) or (7) below).
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EXERCISES §13

1. If A belongs to an arithmetical variety, show that Z(A) = A4. [Hint: if (a,b) € Z(A)
use m(a, b, a) = m(b, b, a).

2. Show that (a,b) € Z(][,-; As) iff (a(?),0(2)) € Z(A;) for ¢ € I.
3. If A < B and Z(B) = Vg, show Z(A) = V..

4. If B € H(A) and A is in a congruence-permutable variety, show that Z(A) = V4
implies Z(B) = Vp. Conclude that in a congruence-permutable variety all members
A with Z(A) = V4 constitute a subvariety.

5. Suppose A is polynomially equivalent to a module. If p(z,y,2),q(x,y,2) are two
Mal’cev terms for A, show p*(z,v, z) = ¢*(z,9, 2).
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6. (Freese and McKenzie). Let V' be a congruence permutable variety such that Z(A) =
V4 for every A € V. Let p(x,y, z) be a Mal’cev term for V. Define R by

R=Ar(z,y) € Fyv(x,7y) : r(Z,T) =T}

(Note that if r(z,y) = s(x,¥y), then r(x,z) = 7 iff s(z,7) = T.) Define the operations
+,-,—,0,10on R by

r(Z,7) + s(,y) = p(r(T,%),7, s(T,7))
r(z,7) - s(x,y) = r(s(Z,9),79)
—r(T,y) = p(¥,7(Z,7),7)
U=y
1=7.

Verify that R = (R, +,-,—,0,1) is a ring with unity. Next, given an algebra A € V
and n € A, define the operations +, —, 0, (f,)rer on A by

a+b=pla,n,b)
—a :p(n:a:n)
0=mn

frla) =r(a,n).

Now verify that (A,+, —,0,(f,),cr) is a unitary R-module, and it is polynomially
equivalent to A.

314. Equational Logic and Fully Invariant Congruences

In this section we explore the connections between the identities satisfied by classes of alge-
bras and fully invariant congruences on the term algebra. Using this, we can give a complete
set of rules for making deductions of identities from identities. Finally, we show that the
possible finite sizes of minimal defining sets of identities of a variety form a convex set.

Definition 14.1. A congruence ¢ on an algebra A is fully invariant it for every endomor-
phism « on A,
(a,b) € 8 = (aa,ab) € 0.

Let Conp1(A) denote the set of fully invariant congruences on A.

Lemma 14.2. Congr(A) s closed under arbitrary intersection.
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PROOF. (Exercise.)

Definition 14.3. Given an algebra A and S C A x A let Op(S) denote the least fully
invariant congruence on A containing S. The congruence Op1(S5) is called the fully invariant
congruence generated by S.

Lemma 14.4. If we are qven an algebra A of type F then Opr s an algebraic closure
operator on A X A. Indeed, Op1 1s 2-ary.

PROOF. First construct A X A, and then to the fundamental operations of A X A add the
following:

(a, a) for a € A
5({a, b)) = (b, a)
{a, d) if b=rc
t({a,b d)) =
({0, ), (¢, d) (a, b) otherwise
es({a,b)) = (ca,ob) for ¢ an endomorphism of A.

Then it is not difficult to verity that € is a tully invariant congruence on A iff f is a subuniverse
of the new algebra we have just constructed. Thus Op; is an algebraic closure operator.

To see that Oy is 2-ary let us define a new algebra A* by replacing each n-ary funda-
mental operation f of A by the set of all unary operations of the form

f(ala ey i1, Ly Qg 1,y - - - an)
where aq,...,a;_1,0;41,-..,0, are elements of A.

Claim. Con A = Con A*.

Clearly § € Con A = 6 € Con A*. For the converse suppose that § € Con A* and
f e &,,. Then for

(a;,b;) €60, 1<i<n,
we have
<f(a’1? ) a”n—lﬁ a”n)a f(a’la Tt an—la bn)> = 9
<f(a1? B aﬂ_l?bﬂ):f(a’la * bn—la bn)> = 9
<f(a1, bg, Ce e bg), f(bla Cee bn)> - 9,,
hence

(fla1, .- an), f(b1,...,bn)) € 0.
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Thus
0 € Con A.

If now we go back to the beginning of the proot and use A* instead of A, but keep the e¢,’s
the same, it follows that Op; is the closure operator Sg of an algebra all of whose operations
are of arity at most 2. Then by 4.2, O is a 2-ary closure operator.

Definition 14.5. Given a set of variables X and a type J, let
7:1d(X) = T(X) x T(X)

be the bijection defined by
T(p =~ q) = (p,9)-

Lemma 14.6. For K a class of algebras of type F and X a set of variables, 7(Idg (X)) 1s
a fully invariant congruence on T(X).

PROOF. As

prpé€ldg(z) forpeT(X)
prq€ldg(X) = g=p e ldg(X)
prqg,q=r€ldg(X) = prreldg(X)

it follows that 7(Idx (X)) is an equivalence relation on 7'(X). Now if
p%%q@EIdK(X) for1 <1 <n
and if f € F,, then it is easily seen that

fo,-. o) = fl@1, -, qn) € Idr(X),

so 7(Idg (X)) is a congruence relation on T(X). Next, if « is an endomorphism of T(X) and

p(x1,. ., ) = q(x1,...,2,) € Idg(X)
then it is again direct to verify that

plax, ..., ax,) = qlax, ..., ar,) € Idg(X);

hence 7(Idg (X)) is fully invariant.

Lemma 14.7. Given a set of variables X and a fully invariant congruence 8 on T(X) we
have, for p = q € 1d(X),
T(X)/0=Ep=q = (pq) €.
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Thus T(X)/0 is free in V(T(X)/8).

PROOF. (=) If

p=p(x1,...,2Tpn),

qg=q(x1,...,T,)

then

T(X)/0 = p(z1,...,25) = q(z1,...,Ty)
= p(x1/0,...,2,/0) = q(x1/0,...,12,/0)
= p(x1,...,2.)/0 = q(x1,...,2,)/0
= (p(x1,...,%n),q(x1,...,2,)) €0
= (p,q) € 6.

(<) Given rq,...,7r, € T(X) we can find an endomorphism ¢ of T(X) with

e(x;) = 1, 1 <17 <mn
hence
(p(x1,...,2n),q(x1,...,2,)) € O
= (ep(x1,...,2%n),6q9(x1,...,2,)) €0
= (p(r1,..., 1), q(r1,..., 1)) € 6
= p(r1/0,...,r,/0) =q(r/0,...,7,/0).
Thus

T(X)/0 =p=~q.
For the last claim, given p =~ q € Id(X),

(p,g) e = T(X)/0Ep=q
< V(T(X)/0) Ep~q (by 11.3),

so T(X)/6 is free in V(T(X)/0) by 11.4.

Theorem 14.8. Given a subset 3 of Id(X), one can find a K such that
> = Idg(X)
iff T(22) is a fully invariant congruence on T(X).

PROOF. (=) This was proved in 14.6.
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(<) Suppose 7(X) is a fully invariant congruence 6. Let K = {T(X)/6}. Then by 14.7

KEprq& (pq) b
&S prRqgE .

Thus & = Idg(X).

Definition 14.9. A subset X of Id(X) is called an equational theory over X if there is a

class of algebras K such that
> = Idg(X).

Corollary 14.10. The equational theories (of type F) over X form an algebrazic lattice which
is tsomorphic to the lattice of fully invariant congruences on T(X).

PROOF. This follows from 14.4 and 14.5.

Definition 14.11. Let X be a set of variables and . a set of identities of type F with
variables from X. For p,q € T(X) we say

Y EpRQ

(read: “3 yields p = ¢”) if, given