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Preface to the Third Edition

It 1s gratifying that this textbook is still sufficiently popular to warrant a third
edition. I have used the opportunity to improve and enlarge the book.

When the second edition was prepared, only two pages on algebraic geometry
codes were added. These have now been removed and replaced by a relatively

long chapter on this subject. Although it 1s still only an introduction, the chapter
requires more mathematical background of the reader than the remainder of this

book.
One of the very interesting recent developments concerns binary codes defined
by using codes over the alphabet Z,. There is so much interest in this area that

a chapter on the essentials was added. Knowledge of this chapter will allow the
reader to study recent literature on Z4-codes.

Furthermore, some material has been added that appeared in my Springer Lec-
ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized

Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section
on “Coding Gain” ( the engineer’s justification for using error-correcting codes)
was added.

For the author, preparing this third edition was a most welcome return to
mathematics after seven years of administration. For valuable discussions on
the new material, I thank C.P.J. M. Baggen, I. M. Duursma, H. D. L. Hollmann,
H. C. A.van Tilborg, and R. M. Wilson. A special word of thanks toR. A. Pellikaan
for his assistance with Chapter 10.

Eindhoven J.H. vAN LINT
November 1998



Preftace to the Second Edition

The first edition of this book was conceived in 1981 as an alternative to
outdated, oversized, or overly specialized textbooks in this area of discrete
mathematics—a field that 1s still growing in importance as the need for
mathematicians and computer scientists 1n industry continues to grow.

The body of the book consists of two parts: a rigorous, mathematically
oriented first course in coding theory followed by introductions to special

topics. The second edition has been largely expanded and revised. The main
editions 1n the second edition are:

(1) a long section on the binary Golay code;
(2) a section on Kerdock codes;

(3) a treatment of the Van Lint-Wilson bound for the minimum distance of
cyclic codes;

(4) a section on binary cyclic codes of even length;
(5) anintroduction to algebraic geometry codes.

Eindhoven J.H. vAN LINT
November 1991



Preface to the First Edition

Coding theory 1s still a young subject. One can safely say that it was born 1n
1948. It 1s not surprising that it has not yet become a fixed topic 1n the
curriculum of most universities. On the other hand, 1t 1s obvious that discrete
mathematics 1s rapidly growing in importance. The growing need for mathe-

maticians and computer scientists in industry will lead to an increase 1n
courses offered 1n the area of discrete mathematics. One of the most suitable

and fascinating 1s, indeed, coding theory. So, 1t 1s not surprising that one more
book on this subject now appears. However, a little more justification and a
little more history of the book are necessary. At a meeting on coding theory
in 1979 1t was remarked that there was no book available that could be used
for an introductory course on coding theory (mainly for mathematicians but
also for students 1n engineering or computer science). The best known text-
books were either too old, too big, too technical, too much for specialists, etc.
The final remark was that my Springer Lecture Notes (# 201) were shightly
obsolete and out of print. Without realizing what I was getting into I
announced that the statement was not true and proved this by showing

several participants the book Inleiding in de Coderingstheorie, a little book
based on the syllabus of a course given at the Mathematical Centre 1n
Amsterdam in 1975 (M.C. Syllabus 31). The course, which was a great success,

was given by M.R. Best, A.E. Brouwer, P. van Emde Boas, T.M.V. Janssen,
H.W. Lenstra Jr., A. Schrijver, H.C.A. van Tilborg and myself. Since then the

book has been used for a number of years at the Technological Universities
of Delft and Eindhoven.

The comments above explain why 1t seemed reasonable (to me) to translate
the Dutch book into English. In the name of Springer-Verlag I thank the

Mathematical Centre in Amsterdam for permission to do so. Of course it
turned out to be more than a translation. Much was rewritten or expanded,




X Preface to the First Edition

problems were changed and solutions were added, and a new chapter and
several new proofs were included. Nevertheless the M.C. Syllabus (and the
Springer Lecture Notes 201) are the basis of this book.

The book consists of three parts. Chapter 1 contains the prerequisite
mathematical knowledge. It 1s written in the style of a memory-refresher. The
reader who discovers topics that he does not know will get some 1dea about
them but i1t 1s recommended that he also looks at standard textbooks on those
topics. Chapters 2 to 6 provide an introductory course in coding theory.
Finally, Chapters 7 to 11 are introductions to special topics and can be used
as supplementary reading or as a preparation for studying the literature.

Despite the youth of the subject, which is demonstrated by the fact that the
papers mentioned in the references have 1974 as the average publication year,
I have not considered it necessary to give credit to every author of the
theorems, lemmas, etc. Some have simply become standard knowledge.

It seems appropriate to mention a number of textbooks that I use regularly
and that I would like to recommend to the student who would like to learn
more than this introduction can offer. First of all F.J. MacWilllams and
N.J.A. Sloane, The Theory of Error-Correcting Codes (reference [46}), which
contains a much more extensive treatment of most of what i1s in this book
and has 1500 references! For the more technically oriented student with an
interest 1n decoding, complexity questions, etc. E.R. Berlekamp’s Algebraic
Coding Theory (reference [2]) 1s a must. For a very well-written mixture of
information theory and coding theory I recommend: R.J. McEliece, The

Theory of Information and Coding (reference [51]). In the present book very
hittle attention 1s paid to the relation between coding theory and combina-

torial mathematics. For this the reader should consult P.J. Cameron and
J.H. van Lint, Designs, Graphs, Codes and their Links (reference [11]).

I sincerely hope that the time spent writing this book (instead of doing
research) will be considered well invested.

Eindhoven J.H. vAN LINT
July 1981

Second edition comments: Apparently the hope expressed in the final line of
the preface of the first edition came true: a second edition has become neces-

sary. Several misprints have been corrected and also some errors. In a few
places some extra material has been added.
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CHAPTER 1

Mathematical Background

In order to be able to read this book a fairly thorough mathematical back-
ground is necessary. In different chapters many different areas of mathematics
play a role. The most important one is certainly algebra but the reader must
also know some facts from elementary number theory, probability theory and
a number of concepts from combinatorial theory such as designs and geo-
metries. In the following sections we shall give a brief survey of the prerequi-
site knowledge. Usually proofs will be omitted. For these we refer to standard
textbooks. In some of the chapters we need a large number of facts concerning
a not too well-known class of orthogonal polynomials, called Krawtchouk
polynomials. These properties are treated in Section 1.2. The notations that
we use are fairly standard. We mention a few that may not be generally

known. If C 1s a finite set we denote the number of elements of C by |C|. If the
expression B is the definition of concept A then we write A := B. We use “iff”
for “if and only if”. An identity matrix is denoted by [ and the matrix with
all entries equal to one is J. Similarly we abbreviate the vector with all
coordinates O (resp. 1) by 0 (resp. 1). Instead of using [x] we write [ X] :=
max{n € Z|n < x} and we use the symbol [x] for rounding upwards.

§1.1. Algebra

We need only very little from elementary number theory. We assume known
that in N every number can be written in exactly one way as a product of
prime numbers (if we ignore the order of the factors). If a divides b, then we
write a|b. If p is a prime number and p”"|a but p"** | a, then we write p"| a. If



2 1. Mathematical Background

ke N, k > 1, then a representation of n 1n the base k i1s a representation

l
n=>Y nk’

i=0

0 <n;<kfor0<i<l The largest integer n such that n|a and n|b 1s called

the greatest common divisor of a and b and denoted by g.c.d.(a, b) or simply
(a, b). If m{(a — b) we write a = b (mod m).

(1.1.1) Theorem. If
@(n):=|{meN|l <m < n,(m, n)= 1}

then

i) @) =n]],.(1 —1/p),
(ll) Zdln (p(d) = n.

The function ¢ 1s called the Euler indicator.

(1.1.2) Theorem. If (a, m) = | then a®™ = 1 (mod m).
Theorem 1.1.2 1s called the Euler—Fermat theorem.

(1.1.3) Definition. The Mébius function u is defined by

1, ifn=1,
u(n) := < (—1)% ifnis the product of k distinct prime factors,
0, otherwise.

(1.1.4) Theorem. If f and g are functions defined on N such that
g(n) = ). f(d),

din

then

fin) =) u(d)g (g)

din

Theorem 1.1.4 1s known as the Mobius inversion formula.

Algebraic Structures

We assume that the reader is familiar with the basic ideas and theorems of
linear algebra although we do refresh his memory below. We shall first give
a sequence of definitions of algebraic structures with which the reader must
be famihar in order to appreciate algebraic coding theory.



§1.1. Algebra 3

(1.1.5) Definition. A group (G, )is a set G on which a product operation has
been defined satisfying

(l) VaerbeG[ab € G]a
(ll) VaeGVbe GvceG[(ab)C = a(bc)],
(lll) 3eeGVaeG[ae = €a = a],
(the element e is unique),
(V) YaegIpeglab = ba = €],
(b 1s called the inverse of a and also denoted by a™!).

If furthermore

then the group is called abelian or commutative.

If (G, )1sagroup and H < G such that (H, )is also a group, then (H, )
1s called a subgroup of (G, ). Usually we write G instead of (G, ). The number
of elements of a finite group is called the order of the group. If (G, )isa group
and a € G, then the smallest positive integer n such that a” = e (if such an n
exists) 1s called the order of a. In this case the elements e, a, a2, ...,a" ! form
a so-called cyclic subgroup with a as generator. If (G, ) is abelian and (H, )
1s a subgroup then the sets aH := {ah|h € H} are called cosets of H. Since two
cosets are obviously disjoint or identical, the cosets form a partition of G. An
element chosen from a coset is called a representative of the coset. It is not
difficult to show that the cosets again form a group if we define multiplication
of cosets by (aH)(bH):= abH. This group is called the factor group and

indicated by G/H. As a consequence note that if a € G, then the order of a
divides the order of G (also if G is not abelian).

A fundamental theorem of group theory states that a finite abelian group is a
direct sum of cyclic groups.

(1.1.6) Definition. A set R with two operations, usually called addition and
multiplication, denoted by (R, +, ), is called a ring if

(1) (R, +)is an abelian group,
(ll) vaevaeRVceR[(ab)c = a(bc)],
(11) YoerVoerVeerla(b + c) = ab + ac A (a + b)c = ac + bc].

The 1dentity element of (R, +) is usually denoted by O.
If the additional property

(lV) Vae vaeR[ab = ba]
holds, then the ring is called commutative.

The integers Z are the best known example of a ring.

It (R, +, ) 1s acommutative ring, a nonzero element a € R is called a zero
divisor 1f there exists a nonzero element » € R such that ab = 0. If a nontrivial
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ring has no zero divisors, it is called an integral domain. In the same way that VA
is extended to @, an integral domain can be embedded in its field of fractions or

quotient field.

(1.1.7) Definition. If (R, +, )isaringand @ # S < R, then S is called an ideal
if

(i) VpesVpesla — b e S],

(M) V,.sVocr[abe S A baeS].

It 1s clear that if S 1s an 1deal in R, then (S, +, ) is a subring, but require-
ment (11) says more than that.

(1.1.8) Definition. A field 1s a ring (R, +, ) for which (R\ {0}, )is an abelian
group.

(1.1.9) Theorem. Every finite ring R with at least two elements such that

VaerVberla0 =0=(a=0v b =0)]
is a field.

(1.1.10) Definition. Let (V, +) be an abelian group, F a field and let a multipli-
cation F x V — V be defined satisfying

(l) VaeV[la = a]a
vae Fvﬂe FvaeV[a(ﬁa) = (aB)a},

(ll) Vae Fvae VVbeV[a(a + b) = aa + ab]’
Vae Fvﬂe FvaeV[(a + B)a = a + Ba]

Then the tniple (V, +, F) is called a vector space over the field F. The identity
element of (V, +) 1s denoted by 0.

We assume the reader to be familiar with the vector space R” consisting of
all n-tuples (a,, a,, ..., a,) with the obvious rules for addition and multiplica-
tion. We remind him of the fact that a k-dimensional subspace C of this

vector space 1s a vector space with a basis consisting of vectors a, :=
(11,812, ---5,84,), 25 = (A3, Q29y---5 Agp), -+, A :=(ayy, Axys - - ., Ay, ), Where
the word basis means that every a € C can be written in a unique way as
a,a; + a,a, + - + a,a,. I'he reader should also be familiar with the process
of going from one basis of C to another by taking combinations of basis
vectors, etc. We shall usually write vectors as row vectors as we did above. The
inner product {a, b) of two vectors a and b 1s defined by

<a, b> L= al bl + a2b2 + -+ a,,b,,.

The elements of a basis are called linearly independent. In other words this
means that a linear combination of these vectors 1s 0 iff all the coefficients are

0.1fa,,...,a, are k linearly independent vectors, 1.e. a basis of a k-dimensional



§1.1. Algebra 5

subspace C, then the system of equations {a;,y) =0(i= 1, 2, ..., k) has as

its solution all the vectors in a subspace of dimension n — k which we denote
by C*. So,

C* = {y € Rn|vxeC[<x’ y) = 0]}

These ideas play a fundamental role later on, where R is replaced by a fimite
field F. The theory reviewed above goes through in that case.

(1.1.11) Definition. Let (V, +) be a vector space over F and let a multiplica-
tion ¥V x V — V be defined that satishies

() (V, +, )i1sarng,
(") Vae Fvae vae V[(aa)b - a(ab)]

Then we say that the system is an algebra over F.

Suppose we have a finite group (G, ‘) and we consider the elements of G as
basis vectors for a vector space (V, +) over a field F. Then the elements of V
are represented by linear combinations «, 9, + 2,9, + - + a,g,, where

a; € [F, g; € G, (1 <i<n=|G|)

We can define a multiplication * for these vectors in the obvious way, namely

(Z aig.-) * (g ﬁfgf) = 2 ; (@:5;)(9: " 9;),

which can be written as ) , %, g,, where y, is the sum of the elements «;; over
all pairs (i, j) such that g;-g; = g,. This yields an algebra which is called the
group algebra of G over F and denoted by FG.

EXAMPLES. Let us consider a number of examples of the concepts defined
above.

If A:={a,,a,,...,a,} is a finite set, we can consider all one-to-one map-
pings of S onto S. These are called permutations. If ¢, and o, are permutations
we define o, 0, by (0, 0,)(a) := g,(0,(a)) for all a € A. It is easy to see that the
set S, of all permutations of 4 with this multiplication i1s a group, known as
the symmetric group of degree n. In this book we shall often be interested in
special permutation groups. These are subgroups of S,. We give one example.
Let C be a k-dimensional subspace of R". Consider all permutations o of the
integers 1, 2, ..., nsuch that for every vector ¢ = (¢y, ¢,, ..., ¢,) € C the vector
(Coc1)s Co(2)s - - -5 Com) 18 alsO 1n C. These clearly form a subgroup of §,. Of
course C will often be such that this subgroup of S consists of the identity only
but there are more interesting examples! Another example of a permutation
group which will turn up later 1s the affine permutation group defined as
follows. Let F be a (finite) field. The mapping f, ,, whenu e F,ve F,u # 0, 1s
defined on F by f, ,(x) := ux + v for all x € F. These mappings are permuta-
tions of F and clearly they form a group under composition of functions.
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A permutation matrix P is a (0, 1)-matrix that has exactly one 1 1n each row
and column. We say that P corresponds to the permutation g of {1, 2, ..., n}
if p;=11iff i=0a(j)(i=1,2,...,n). With this convention the product of
permutations corresponds to the product of their matrices. In this way one
obtains the so-called matrix representation of a group of permutations.

A group G of permutations acting on a set Q is called k-transitive on € 1f

for every ordered k-tuple (a,, ..., a,) of distinct elements of Q and for every

k-tuple (b,, ..., b) of distinct elements of €, there is an element ¢ € G such
that b, = g(a;)for 1 < i < k. If k =1 we call the group transitive.

Let S be an 1deal 1n the ring (R, +, ). Since (S, +) 1s a subgroup of the
abelian group (R, +), we can form the factor group. The cosets are now called
residue classes mod S. For these classes we introduce a multiplication in the
obvious way: (a + S)(b + S) := ab + §. The reader who 1s not familiar with
this concept should check that this definition makes sense (i.e. it does not
depend on the choice of representatives a resp. b). In this way we have
constructed a ring, called the residue class ring R mod S and denoted by R/S.
The following example will surely be familiar. Let R := Z and let p be a prime.
Let § be pZ, the set of all multiples of p, which 1s sometimes also denoted by

(p). Then R/S 1s the ring of integers mod p. The elements of R/S can be
represented by O, 1, ..., p — 1 and then addition and multiplication are the
usual operations in Z followed by a reduction mod p. For example, if we take
p=7,then4 + 5 = 2 because in Z we have 4 + 5 = 2 (mod 7). In the same
way4-5=61nZ/7Z = Z/(7).If S1s anideal in Z and S # {0}, then there is a
smallest positive integer k in S. Let s € S. We can write s as ak + b, where
0 < b < k. By the definition of ideal we have ak € S and hence b = s —ak e S
and then the definition of k implies that b = 0. Therefore § = (k). An ideal
consisting of all multiples of a fixed element is called a principal ideal. If a ring
R has no other ideals than principal ideals, it is called a principal ideal ring.
Therefore Z is such a ring.

An ideal S is called a prime ideal if ab € S 1mpliesa € S or b € S. An ideal
S in a ring R is called maximal if for every ideal / with S C I C R, I = S or
I = R (S # R). If a ring has a unique maximal ideal, it 1s called a local ring.

(1.1.12) Theorem. If p is a prime then Z/pZ is a field.

This is an immediate consequence of Theorem 1.1.9 but also obvious
directly. A finite field with n elements is denoted by F, or GF(n) (Galois field).

Rings and Finite Fields

More about finite fields will follow below. First some more about rings and
ideals. Let F be a finite field. Consider the set F[x] consisting of all polyno-
mials a, + a, x + - + a,x", where n can be any integer in N and a; € F for
0 < i < n. With the usual definition of addition and multiplication of polyno-
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mials this yields a ring (F[x], +, ), which is usually just denoted by F[x].
The set of all polynomials that are multiples of a fixed polynomial g(x), 1.e. all
polynomials of the form a(x)g(x) where a(x) € F[x], 1s an 1deal in F[x].

As before, we denote this 1deal by (g(x)). The following theorem states that
there are no other types.

(1.1.13) Theorem. F[x] is a principal ideal ring.

The residue class ring F[x]/(g(x)) can be represented by the polynomials
whose degree is less than the degree of g(x). In the same way as our example

Z/7Z given above, we now multiply and add these representatives in the usual
way and then reduce mod g(x). For example, we take F = F, = {0, 1} and
g(x) = x>+ x+ 1. Then (x + )(x* + 1) = x> + x* + x + 1 = x%. This ex-
ample is a useful one to study carefully if one 1s not familiar with finite fields.
First observe that g(x) 1s irreducible, 1.e., there do not exist polynomials a(x)

and b(x) € F[x], both of degree less than 3, such that g(x) = a(x)b(x). Next,
realize that this means that in F, [x]/(g(x)) the product of two elements a(x)
and b(x) 1s O iff a(x) =0 or b(x) = 0. By Theorem 1.1.9 this means that
F,[x]/(g(x)) 1s a field. Since the representatives of this residue class ring all
have degrees less than 3, there are exactly eight of them. So we have found a

field with eight elements, 1.e. F,s. This is an example of the way in which finite
fields are constructed.

(1.1.14) Theorem. Let p be a prime and let g(x) be an irreducible polynomial of

degreer in the ring F [ x]. Then the residue class ring F,[ x]/(g(x)) is a field with
p" elements.

ProOF. The proof i1s the same as the one given for the example p = 2, r = 3,
g(x) = x> + x + 1. O

(1.1.15) Theorem. Let [ be a field with n elements. Then n is a power of a prime.

ProOF. By definition there 1s an 1identity element for multiplication in F. We
denote this by 1. Of course 1 + 1 € F and we denote this element by 2. We
continue in this way, 1.e. 2 + 1 = 3, etc. After a finite number of steps we
encounter a field element that already has a name. Suppose, e.g. that the sum
of k terms 1 1s equal to the sum of [ terms 1 (k > [). Then the sum of (k — )
terms 1 1s O, 1.e. the first time we encounter an element that already has a
name, this element 1s 0. Say 0 is the sum of k terms 1. If k 1s composite, k = ab,
then the product of the elements which we have called a resp. b 1s 0, a
contradiction. So k 1s a prime and we have shown that [F, 1s a subfield of F.
We define linear independence of a set of elements of F with respect to
(coefficients from) F, in the obvious way. Among all linearly independent

subsets of F let {x,, x,, ..., x,} be one with the maximal number of elements.
If x 1s any element of F then the elements x, x,, x,, ..., x, are not linearly
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independent, 1.e. there are coefficients 0 # «, «,, ..., a, such that ax + o, x, +
-+ 4+ . x, = 0 and hence x is a linear combination of x, to x,. Since there are
obviously p” distinct linear combinations of x, to x, the proof is complete. [

From the previous theorems we now know that a field with n elements
exists Iff n 1s a prime power, providing we can show that for every r > 1 there
is an irreducible polynomial of degree r in F,[x]. We shall prove this by

calculating the number of such polynomials. Fix p and let I, denote the

number of irreducible polynomials of degree r that are monic, i.e. the coeffi-
cient of x"1s 1. We claim that

a0

(1.1.16) l—pz) =[] -2)"

r=1
In order to see this, first observe that the coefficient of z" on the left-hand side
1s p", which 1s the number of monic polynomials of degree n with coefficients
in F,. We know that each such polynomial can be factored uniquely into
irreducible factors and we must therefore convince ourselves that these prod-
ucts are counted on the right-hand side of (1.1.16). To show this we just

consider two irreducible polynomials a,(x) of degree r and a,(x) of degree s.
There is a 1-1 correspondence between products (a,(x))*(a,(x))' and terms
z3"z3 in the product of (1 + z] + z3" +---) and (1 + z5 + z3°* + ---). If we
identify z, and z, with z, then the exponent of z is the degree of (a,(x))*(a,(x))".
Instead of two polynomials a,(x) and a,(x), we now consider all irreducible

polynomials and (1.1.16) follows.

In (1.1.16) we take logarithms on both sides, then differentiate, and finally
multiply by z to obtain

(1.1.17) Al i

Comparing coeflicients of z" on both sides of (1.1.17) we find

(1.1.18) p" =) rl,.

rin

Now apply Theorem 1.1.4 to (1.1.18). We find

(1.1.19) I, = - Z u(d)p™ > - {p —pt—p -}

r dir
1 12 1
\PT= 2 P> opt(l - p) > 0.

Now that we know for which values of n a field with n elements exists, we wish
to know more about these fields. The structure of F,, will play a very impor-
tant role in many chapters of this book. As a preparation consider a finite field

F and a polynomial f(x) e F[x] such that f(a) =0, where a € F. Then by
dividing we find that there 1s a g(x) e F{x] such that f(x) = (x — a)g(x).
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Continuing in this way we establish the trivial fact that a polynomial f(x) of
degree r in F[x] has at most r zeros 1n F.

If 2 1s an element of order e in the multiplicative group (F,.\ {0}, ), then a
1s a zero of the polynomial x® — 1. In fact, we have

x¢—1=(x—1(x—a)(x —a*) - (x —a® )

It follows that the only elements of order e in the group are the powers o
where 1 <i < e and (i, e) = 1. There are @(e) such elements. Hence, for every
e which divides p” — 1 there are either O or ¢(e) elements of order e in the field.
By (1.1.1) the possibility O never occurs. As a consequence there are elements

of order p" — 1, 1n fact exactly ¢(p" — 1) such elements. We have proved the
following theorem.

(1.1.20) Theorem. In F, the multiplicative group (F,\{0}, ) is a cyclic group.
This group 1s often denoted by F*.

(1.1.21) Definition. A generator of the multiplicative group of F, 1s called a
primitive element of the field.

Note that Theorem 1.1.20 states that the elements of F, are exactly the g
distinct zeros of the polynomial x? — x. An element B such that g* =1 but
B' # 1 for 0 < | < kis called a primitive kth root of unity. Clearly a primitive
element « of F_ 1s a primitive (¢ — 1)th root of unity. If e divides g — 1 then «°
1s a primitive ((q — 1)/e)th root of unity. Furthermore a consequence of
Theorem 1.1.20 1s that [, i1s a subfield of F, iff r divides s. Actually this
statement could be shightly confusing to the reader. We have been suggesting
by our notation that for a given g the field [, 1s umique. This 1s indeed true. In
fact this follows from (1.1.18). We have shown that for g = p" every element
of [, is a zero of some irreducible factor of x? — x and from the remark above
and Theorem 1.1.14 we see that this factor must have a degree r such that r|n.
By (1.1.18) this means we have used all irreducible polynomials of degree r
where r|n. In other words, the product of these polynomials 1s x? — x. This
establishes the fact that two fields F and F’ of order g are 1somorphic, 1.e. there

1s a mapping ¢: F — ' which is one-to-one and such that ¢ preserves addition
and multiplication.

The following theorem is used very often in this book.

(1.1.22) Theorem. Let q = p" and 0 # f(x) € F [x].

(1) If a € Fx and f(a) = O, then f(a?) = 0.
(1) Conversely: Let g(x) be a polynomial with coefficients in an extension field
of F,. If g(a?) = O for every a for which g(a) = 0, then g(x) € F [x].
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PROOF.
(1) By the binomial theorem we have (a + b)? = a? + b? because p divides

(Z) for 1 <k <p— 1.1t follows that (a + b)* = a® + b%. If f(x) = ¥ a;x’

then (f(x))? = )_af(x9).
Because a; € F, we have af = g;. Substituting x = a« we find f(x?) =
(f(@)' = 0.
(i) We already know that in a suitable extension field of F, the polynomial
g(x) 1s a product of factors x — «; (all of degree 1, that is) and if x — «; is

one of these factors, then x — af is also one of them. If g(x) = ) }_, a;, x*

then g, 1s a symmetric function of the zeros «; and hence a, = af, 1.e.
a,€F,

If « € F,, where g = p", then the minimal polynomial of a over F, is the
irreducible polynomial f(x)e F,[x] such that f(«¢) =0. If « has order e
then from Theorem 1.1.22 we know that this minimal polynomal is

m—1

m-1(x — aP'), where m is the smallest integer such that p™ =1 (mod e).

Sometimes we shall consider a field [, with a fixed primitive element ¢. In
that case we use m;(x) to denote the minimal polynomial of &'. An irreducible
polynomial which is the minimal polynomial of a primitive element in the corre-
sponding field is called a primitive polynomial. Such polynomials are the most
convenient ones to use in the construction of Theorem 1.1.14. We give an example
in detail.

(1.1.23) ExAMPLE. The polynomial x* + x + 1 is primitive over F,. The field
F,« 1s represented by polynomials of degree <4. The polynomial x 1s a
primitive element. Since we prefer to use the symbol x for other purposes, we
call this primitive element a. Note that a* + a« + 1 = 0. Every element in F,.

is a linear combination of the elements 1, a, a?, and a>. We get the following
table for F,.. The reader should observe that this 1s the equivalent of a table
of logarithms for the case of the field R.

The representation on the right demonstrates again that F,. can be inter-
preted as the vector space (F,)*, where {1, a, a®, >} is the basis. The left-hand
column 1s easiest for multiplication (add exponents, mod 15) and the right-
hand column for addition (add vectors). It is now easy to check that

m,(x) = (x — a)(x — a?)(x — a*)(x — «®) =x*+x+1,

m;(x) = (x — o) (x — a®)(x — 2'?)(x — &°) =x*+ x> +x*+x+1,
ms(x) = (x — o®)(x — 219) =x% + x + 1,

m,(x) = (x —a’)(x — a!?)(x — a'3)(x —al!) =x*+x*+1,

and the decomposition of x'® — x into irreducible factors is
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x1® — x=x(x — D(x%2+x+ D(*+x+1)
x (x*+ x>+ D(x*+ x>+ x*+x+ 1)

Note that x* — x = x(x — 1)(x* + x + 1) corresponding to the elements 0, 1,
o>, a'® which form the subfield F, = F,[x]/(x* + x + 1). The polynomial
m,(x) is irreducible but not primitive.

TablCOf[an
0 = =0 0 0 0)
1 =1 =(100 0)
Q= X =010 0
a’? = o’ =(0 01 0)
a? = a> =(0 0 0 1)
=14+« =(1 10 0)
a0 = x + o =0110)
1 = at+a>=0011)
2! =1+« +2°=(1101)
a® =1 + a? =(1 01 0)
a’? = A +a=(0101)
' = 1 +a + o? =(1110)
al! = a+al+a>=0111)
at?=1+a+al+a’=(1111)
al? = 1 +ot+a’=(1011)
al® =1 +a>=(1001)

The reader who 1s not familiar with finite fields should study (1.1.14) to
(1.1.23) thoroughly and construct several examples such as Fy, F,-, F;, with

the corresponding minimal polynomials, subfields, etc. For tables of finite
fields see references [9] and [10].

Polynomials

We need a few more facts about polynomials. If f(x) € F,[x] we can define the
derivative f'(x) in a purely formal way by

( i akx*) = kil ka, x*!.

k=0

The usual rules for differentiation of sums and products go through and
one finds for instance that the derivative of (x — «)*f(x) is 2(x — @) f(x) +
(x — a)*f'(x). Therefore the following theorem is obvious.

(1.1.24) Theorem. If f(x)e F,[x] and a is a multiple zero of f(x) in some
extension field of F_, then a is also a zero of the derivative f'(x).

Note however, that if g = 2", then the second derivative of any polynomial
in F [x] 1s identically 0. This tells us nothing about the multiplicity of zeros



12 1. Mathematical Background

of the polynomial. In order to get complete analogy with the theory of

polynomials over R, we introduce the so-called Hasse derivative of a polyno-
mial f(x) € F,[x] by

fH¥(x) == -kl—!-f ®)(x);

(so the k-th Hasse derivative of x" i1s (:)x""").

The reader should have no difficulty proving that « 1s a zero of f(x) with
multiplicity k iff it is a zero of fl(x) for 0 < i < k and not a zero of f*I(x).

Another result to be used later is the fact that if f(x) = []7., (x — «;) then

f1(x) = 3 =1 S(x)/(x — o).

The following theorem 1s well known.

(1.1.25) Theorem. If the polynomials a(x) and b(x) in F[x] have greatest
common divisor 1, then there are polynomials p(x) and g(x) in F[x] such that

a(x)p(x) + b(x)gq(x) = 1.
PRrROOF. This is an immediate consequence of Theorem 1.1.13. O]

Although we know from (1.1.19) that irreducible polynomials of any degree
r exist, it sometimes takes a lot of work to find one. The proof of (1.1.19) shows

one way to do it. One starts with all possible polynomials of degree 1 and
forms all reducible polynomials of degree 2. Any polynomial of degree 2 not

in the hist 1s irreducible. Then one proceeds in the obvious way to produce
irreducible polynomials of degree 3, etc. In Section 9.2 we shall need irreduc-
ible polynomials over [, of arbitrarily high degree. The procedure sketched
above 1s not satisfactory for that purpose. Instead, we proceed as follows.

(1.1.26) Lemma.
38+ 123 +1).

PROOF.

(1) For § = 0 and B = 1 the assertion is true.
(i) Suppose 3'|[|(23° + 1). Then from

Q¥+ ) =¥ + D{R¥ + NQ¥ -2) + 3},
it follows that if t > 2, then 3t ||(23""" + 1). ]

(1.1.27) Lemma. If m is the order of 2 (mod 3'), then
m=@(3)=2-3""
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PRrROOF. If 2 = 1 (mod 3) then « is even. Therefore m = 2s. Hence 2° + 1 =
0 (mod 3'). The result follows from Theorem 1.1.2 and Lemma 1.1.26. CJ

(1.1.28) Theorem. Let m = 2-3'"'. Then
x™ + x™* + 1

is irreducible over [F,.

ProoF. Consider F,.. In this field let & be a primitive (3')th root of unity.
The minimal polynomial of ¢ then 1s, by Lemma 1.1.27

f(x)=(x = &)(x — E¥)(x — &¥)---(x — E2™7),

a polynomial of degree m. Note that

1

X Hl=(0+x)0 +x+x)1 + x>+ x5 (1 + x3" + x237Y,

a factonization which contains only one polynomial of degree m, so the last
factor must be f(x), 1.e. 1t 1s irreducible. ]

Quadratic Residues

A consequence of the existence of a primitive element in any field F, 1s that it
Is easy to determine the squares in the field. If g 1s even then every element 1s
a square. If g is odd then F, consists of 0, (g — 1) nonzero squares and
>(g — 1) nonsquares. The integers k with 1 < k < p — 1 which are squares in
F, are usually called quadratic residues (mod p). By considering ke [, as a
power of a primitive element of this field, we see that k 1s a quadratic residue
(mod p) iff k'?~1"2 = 1 (mod p). For theelementp — 1 = —1 wefind: —lisa
square in F, iff p = 1 (mod 4). In Section 6.9 we need to know whether 2 1s a
square in F,. To decide this question we consider the elements 1, 2, ...,
(p — 1)/2 and let a be their product. Multiply each of the elements by 2 to
obtain 2, 4, ..., p — 1. This sequence contains |_( p — 1)/4_| factors which are
factors of a and for any other factor k of a we see that —k 1s one of the
even integers > (p — 1)/2. It follows that in F, we have 27" g =
(= 1)~ 12=Up=141l g and since a # 0 we see that 2 is a square iff

p—1 p—1
2 4

Is even, 1.e. p = +1 (mod 8).

The Trace

Let g = p". We define a mapping Tr: F, = F,, which 1s called the trace, as
follows.
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(1.1.29) Definition. If { € F, then

Tr(E)=C+ &P+ &P + - 4 &7

(1.1.30) Theorem. The trace function has the following properties:

(1) For every € F, the trace Tr(§) is in F;
(1) There are elements ¢ € F, such that Tr(&) # 0;
(m) Tr is a linear mapping.

PROOF.
(1) By definition (Tr(&))? = Tr(&).
(i) The equation x + x? + - + xP = 0 cannot have q roots in F,
(1) Since (§ + 1)’ = % + n®? and for every ae F, we have a”? = g, this is
obvious. ]

Of course the theorem 1implies that the trace takes every value p~' g times
and we see that the polynomial x + x? + --- + x? ' is a product of minimal
polynomials (check this for Example 1.1.23).

Characters

Let (G, +) be a group and let (T, ) be the group of complex numbers with
absolute value 1 with multiplication as operation. A character is a homo-

morphism y: G - T, 1.e.

(1.1.31) Vg,eGngeG[X(gl + ¢g,) = x(g1)x(g92)]

From the definition it follows that y(0) = 1 for every character y. If x(g) = 1
for all g € G then y 1s called the principal character.

(1.1.32) Lemma. If y is a character for (G, +) then

> x(g) =

ge G

|G|, if yisthe principal character,
0, otherwise.

PRrROOF. Let h e G. Then

x(h) 3, 2@ =) xh+g) =) xk)

ge G ge G ke G

If x 1s not the principal character we can choose h such that y(h) # 1. (]

91.2. Krawtchouk Polynomials

In this section we Introduce a sequence of polynomials which play an impor-
tant role in several parts of coding theory, the so-called Krawtchouk polyno-
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mials. These polynomials are an example of orthogonal polynomials and
most of the theorems that we mention are special cases of general theorems

that are valid for any sequence of orthogonal polynomials. The reader who
does not know this very elegant part of analysis i1s recommended to consult
one of the many textbooks about orthogonal polynomials (e.g. G. Szego [67],

D. Jackson [36], F. G. Tricomi [70]). In fact, for some of the proofs of
theorems that we mention below, we refer the reader to the literature. Because

of the great importance of these polynomials in the sequel, we treat them
more extensively than most other subjects 1n this introduction.

Usually the Krawtchouk polynomials will appear 1n situations where two

parameters n and q have already been fixed. These are usually omitted in the
notation for the polynomuials.

(1.2.1) Definition. For k =0, 1, 2, ..., we define the Krawtchouk polynomial
K(x) by

Kk(x; n, Q) .= Kk(x): Z (_ 1)1( )(’;{ :)C) (q . l)k-J

J=

where

Observe that for the special case g = 2 we have

(1.2.2) K,(x) = j;() (— 1)’(;) (Z :j) =(— 1)*K,(n — x).

By multiplying the Taylor series for (1 + (g — 1)z)""* and (1 — z)* we find
(1.2.3) Y Ki(x)z"=(1+(q - 1)2)"*(1 - 2)~
k=0

It 1s clear from (1.2.1) that K,(x) 1s a polynomial of degree k in x with leading

coeflicient (— q)“/k! The name orthogonal polynomial is connected with the
following “orthogonality relation”:

(124 ) ( ) (@ — K, (K, () = (Z)(q — 1fq’

The reader can easily prove this relation by multiplying both sides by x*y'

and summing over k and [ (0 to c0), using (1.2.3). Since the two sums are equal,
the assertion 1s true. From (1.2.1) we find

(1.2.5) (g — ”(i) ) = (g — 1)"( )K (K),

which we substitute in (1.2.4) to find a second kind of orthogonality relation:



16 1. Mathematical Background

(1.2.6) _io K,(i)K;(k) = onq".

We list a few of the Krawtchouk polynomials (k < 2)
(1.2.7) Kgy(n, x) =1,

Ki(n,x)=n(g—-1)—-qx, (=n-2xifq=2),

1

K,(n x)=3{g*x* —q2qgn —q — 2n + 2)x + (g — 1)’n(n — 1)},

(= 2x% — 2nx + (;)ifq = 2).

In Chapter 7 we shall need the coefficients of x* x*7! x*72 and x° in the
expression of K, (x). If K,(x) = ) {-oc;x’, then for ¢ = 2 we have:

(1.2.8) C, = (-—2)"/k!,
Cr—1 = (—-2)""1n/(k — 1)',
Cr-2 = e(—2)"%{3n* — 3n + 2k — 4} /(k - 2)..

For several purposes we need certain recurrence relations for the Krawt-
chouk polynomials. The most important one 1s

(k + DK, (x)
(1.2.9) = {k +(q — 1)(n — k) — qx} Ki(x)—(q—1)(n—-k+ 1)K,_,(x).

This 1s easily proved by differentiating both sides of (1.2.3) with respect to z

and multiplying the result by (1 + (g — 1)z)(1 — z). Comparison of coeffi-

cients yields the result. An even easier exercise 1s replacing x by x — 11n(1.2.3)
to obtain

(1.2.10) Ky = Ke(i = 1) =g — DK (i) — Ky (i = 1),

which 1s an easy way to calculate the numbers K, (i) recursively.
If P(x)1s any polynomial of degree | then there 1s a unique expansion

(1.2.11) P(x) = i o, K, (x),
k=0

which i1s called the Krawtchouk expansion of P(x).

We mention without proof a few properties that we need later. They are

special cases of general theorems on orthogonal polynomials. The first 1s the
Christoffel-Darboux formula

12.12) RenIK) = K Rpn(y) 2 ( ) 2": Ki(x)Ki(y)

y — X k+ 1 (n)
]

The recurrence relation (1.2.9) and an induction argument show the very
important interlacing property of the zeros of K, (x):
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(1.2.13)  K,(x) has k distinct real zeros on (0, n); if these are
vl < vz < vk and lful < uz < 00 < uk_l dar€ the
zeros of K, _,, then

0<01<u1<vz<”'<vk_1<uk_1<vk<n.

The following property once again follows from (1.2.3) (where we now take
q = 2) by multiplying two power series: If x =0, 1, 2, ..., n, then

(6 ) omn)
T\ i—k2)\G -+ k)2)

In Chapter 7 we shall need the relation

(1.2.14) K(x)K(x

where

(1.2.15) i K,(x) = K,(x — I;n — 1, q).
k=0

This is easily proved by substituting (1.2.1) on the left-hand side, changing the

— 1 — 1
order of summation and then using (j) = (j 1) + (x ; )( j=1). We
shall denote K,(x — 1; n — 1, g) by ¥,(x).

§1.3. Combinatorial Theory

In several chapters we shall make use of notions and results from combina-

torial theory. In this section we shall only recall a number of definitions and

one theorem. The reader who i1s not familiar with this area of mathematics is
referred to the book [93].

(1.3.1) Definition. Let S be a set with v elements and let & be a collection of
subsets of S (which we call blocks) such that:

(1) |B| = k for every B € &,

(1) for every T < § with |T| =t there are exactly 4 blocks B such that
T < B.

Then the pair (S, #) 1s called a t-design (notation t — (v, k, A)). The elements
of S are called the points of the design. If A = 1 the design is called a Steiner
system.

A t-design 1s often represented by its incidence matrix A which has |#| rows

and |S| columns and which has the characteristic functions of the blocks as
1tS rOws.



18 1. Mathematical Background

(1.3.2) Definition. A block design with parameters (v, k; b, r, A)1s a 2 — (v, k,
+) with |2| = b. For every point there are r blocks containing that point. If
b = v then the block design i1s called symmetric.

(1.3.3) Definition. A projective plane of ordernisa2 — (n* + n+ 1,n + 1, 1).

In this case the blocks are called the lines of the plane. A projective plane of
order n 1s denoted by PG(2, n).

(1.3.4) Defimtion. The affine geometry of dimension m over the field F_ is the
vector space (F,)™ (we use the notation AG(m, q) for the geometry). A k-
dimensional affine subspace or a k-flat 1s a coset of a k-dimensional linear
subspace (considered as a subgroup). If k = m — 1 we call the flat a hyper-
plane. The group generated by the linear transformations of (F,)" and the
translations of the vector space 1s called the group of affine transformations
and denoted by AGL(m, g). The affine permutation group defined in Section
1.1 1s the example with m = 1. The projective geometry of dimension m over
F, (notation PG(m, g)) consists of the linear subspaces of AG(m + 1, q). The

subspaces of dimension 1 are called points, subspaces of dimension 2 are lines,
etc.

We give one example. Consider AG(3, 3). There are 27 points, (27 — 1) =
13 lines through (0, 0, 0) and also 13 planes through (0, 0, 0). These 13 lines
are the “points” of PG(2, 3) and the 13 planes in AG(3, 3) are the “lines” of
the projective geometry. It is clear that thisis a 2 — (13, 4, 1). When speaking
of the coordinates of a point in PG(m, q) we mean the coordinates of any of
the corresponding points different from (0, 0, ..., 0) in AG(m + 1, g). So, in
the example of PG(2, 3) the triples (1, 2, 1) and (2, 1, 2) are coordinates for
the same point in PG(2, 3).

In Chapter 10 we shall consider n-dimensional projective space P” over a
field k. A pomnt will be denoted by (a; : a, : ... : a,), not all ¢ = 0, and

(@ :a,:...:a,) =(by:b,:...:b,)ifthereisac € k, ¢ # 0, such that
,-=Ca,-f0r05_i_<_n.

(1.3.5) Definition. A square matrix H of order n with elements +1 and —1,
such that HH' = nl, is called a Hadamard matrix.

(1.3.6) Definition. A square matrix C of order n with elements 0 on the

diagonal and +1 or —1 off the diagonal, such that CCT = (n — 1)1, is called
a conference matrix.

There are several well known ways of constructing Hadamard matrices.

One of these 1s based on the so-called Kronecker product of matrices which is
defined as follows.
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(1.3.7) Definition. If A 1s an m x m matrix with entries g; and Bis an n x n
matrix then the Kronecker product A ® B 1s the mn x mn matrix given by

a B a,,B ... a,,B
a.B a,,B ... a, B

It 1s not difficult to show that the Kronecker product of Hadamard matri-

] ]
1 1) we can find

the sequence HP", where HY?* = H, ® H,, etc. These matrices appear in
several places in the book (sometimes in disguised form).

One of the best known construction methods is due to R.E. A. C. Paley (see
[93]). Let g be an odd prime power. We define the function x on [, by x(0) :=
0, x(x) := 11f x 1s anonzero square, x (x) = —1 otherwise. Note that y restricted

to the multiplicative group of [, is a character. Number the elements of F, in any
way as ay, a; - .., d,-;, where gy = 0.

ces 1s again a Hadamard matrix. Starting from H, := (

(1.3.8) Theorem. The Paley matrix S of order q defined by S;; := y(a; — a;) has
the properties:

(1) SJ =JS§ =0,
(i) SST =ql — J,
(iii) ST = (—1)4~ V2§,
If we take such a matrix S and form the matrix C of order g + 1 as follows:

0O 1 1 ... 1
— 1
C:=| —1 S :

—1

then C is a conference matrix of order g + 1. If ¢ = 3 (mod 4) we can then

consider H := I + C. Since CT = —C because —1 1s not a square in [, we
see that H 1s a Hadamard matrix of order g + 1.

§1.4. Probability Theory

Let x be a random variable which can take a finite number of values x,, x,,
.... As usual, we denote the probability that x equals x;, 1.e. P(x = Xx;), by p;.
The mean or expected value of x is p = &(x) := ) ; p; x;.

If g is a function defined on the set of values of x then &(g(x)) = ) ; p:g(x;).
We shall use a number of well known facts such as
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&(ax + by) = ad(x) + b&(y).

The standard deviation ¢ and the variance o* are defined by: u = &(x),

o2 =) px} —u =8x—p?, (o>0)

We also need a few facts about two-dimensional distributions. We use the
notation p; := P(x = x; A y = y;), p;. '= P(x = x;) = ) ; p;; and for the condi-
tional probability P(x = x;|y = y;) = p;;/p.;- We say that x and y are indepen-
dent if p;; = p; p ; for all i and j. In that case we have

&(xy) = z piix;y; = 6(x)éE(y).

All these facts can be found in standard textbooks on probability theory (e.g.

W. Feller [21]). The same 1s true for the following results that we shall use in
Chapter 2.

(1.4.1) Theorem (Chebyshev’s Inequality). Let x be a random variable with
mean u and variance o*. Then for any k > 0

P(|x — u| > ko) < k™2,

The probability distribution which will play the most important role in the
next chapter is the binomial distribution. Here, x takes the values 0, 1, ..., n

and P(x = i) = (?)p‘q""‘, where0 < p<1,g:=1 — p. For this distribution
1

we have u = np and o* = np(1 — p). An important tool used when estimating
binomial coefficients 1s given in the following theorem

(1.4.2) Theorem (Stirling’s Formula).
log n! = (n — 3)log n — n + 3log(2n) + o(1), (n = o)
= nlogn — n + O(log n), (n = o0).

Another useful lemma concerning binomial coefficients is Lemma 1.4.3.

<—
m m"(n —m)"™ ™

n"={m+(n-m)}"> (:1) m™(n — m)" . (]

(1.4.3) Lemma. We have

PROOF.

We shall now introduce a function that is very important in information

theory. It 1s known as the binary entropy function and usually denoted by H.

In (5.1.5) we generalize this to other g than 2. In the following the logarithms
are to the base 2.
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(1.4.4) Definition. The binary entropy function H is defined by

H(0) := 0,
H(x):= —xlog x — (1 — x) log(l — x), 0 < x < 3).

(1.4.5) Theorem. Let 0 < A < L. Then we have

) Yosisan (") < 2,
l
(i) lim,_,n7'log Y ocicin (") = H(4).
l

PROOF.

(1) n\ . .
l=(A+(1-A)> ¥ (_),1'(1 _ A

O<i<in \ !

n n A " __ ~=nH(A) (n)
= Os;;’).n (1)(1 - A) (1 — /1) =2 OS;SAH ] |

(1) Write m := | An]|. Then m = An + O(1) for n = co. Therefore we find from
Theorem 1.4.2:

n"'log ) (n) >n"" log(n)
0<i<in \/ 1 m

=n"'{nlogn—mlog m—(n—m)log(n —m)+o(n)}
= log n — Alog(in) — (1 — A) log((1 — A)n) + o(1)
= H(A) + o(1) for n » oo.

The result then follows from part (1). ]

A probability distribution that plays an important role in information theory
is the normal or Gaussian distribution. It 1s used to describe one of the common

kinds of “noise” on communication channels. We say that a continuous random
variable has Gaussian distribution with mean y and variance o if it has density

function




CHAPTER 2

Shannon’s Theorem

§2.1. Introduction

This book will present an introduction to the mathematical aspects of the
theory of error-correcting codes. This theory 1s applied in many situations
which have as a common feature that information coming from some source
1s transmitted over a noisy communication channel to a receiver. Examples
are telephone conversations, storage devices like magnetic tape units which
feed some stored information to the computer, telegraph, etc. The following
1s a typical recent example. Many readers will have seen the excellent pictures
which were taken of Mars, Saturn and other planets by satellites such as the
Mariners, Voyagers, etc. In order to transmit these pictures to Earth a fine
grid 1s placed on the picture and for each square of the grid the degree of
blackness 1s measured, say 1n a scale of 0 to 63. These numbers are expressed
In the binary system, i.e. each square produces a string of six Os and 1s. The
Os and 1s are transmitted as two different signals to the receiver station on
Earth (the Jet Propulsion Laboratory of the California Institute of Tech-
nology in Pasadena). On arrival the signal i1s very weak and it must be
amplified. Due to the effect of thermal noise 1t happens occasionally that a
signal which was transmitted as a O 1s interpreted by the receiver as a 1, and
vice versa. If the 6-tuples of Os and 1s that we mentioned above were transmat-
ted as such, then the errors made by the receiver would have great effect on
the pictures. In order to prevent this, so-called redundancy is built into the
signal, 1.e. the transmitted sequence consists of more than the necessary
Information. We are all familiar with the principle of redundancy from every-

day language. The words of our language form a small part of all possible

strings of letters (symbols). Consequently a misprint in a long(!) word 1s
recognized because the word i1s changed into something that resembles the
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correct word more than 1t resembles any other word we know. This 1s the
essence of the theory to be treated in this book. In the previous example the
reader corrects the misprint. A more modest example of coding for noisy channels
is the system used for the serial interface between a terminal and a computer or
between a PC and the keyboard. In order to represent 128 distinct symbols, strings
of seven Os and 1s (i.e. the integers O to 127 in binary) are used. In practice one
redundant bit (= binary digit) is added to the 7-tuple 1n such a way that the resulting
8-tuple (called a byte) has an even number of 1s. This 1s done for example 1n the
ASCII character code. A failure in these interfaces occurs very rarely but it 1s
possible that an occasional incorrect bit occurs. This results in incorrect parity
of the 8-tuple (it will have an odd number of 1s). In this case, the 8-tuple 1s not
accepted. This is an example of what is called a single-error-detecting code.

We mentioned above that the 6-tuples of Os and 1s 1n picture transmission
(e.g. Mariner 1969) are replaced by lon<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>