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Pretface

The subject of this book is Complex Analysis in Several Variables. This
text begins at an elementary level with standard local results, followed by
a thorough discussion of the various fundamental concepts of “complex
convexity” related to the remarkable extension properties of holomorphic
functions in more than one variable. It then continues with a comprehensive
introduction to integral representations, and concludes with complete proofs
of substantial global results on domains of holomorphy and on strictly
pseudoconvex domains in C”", including, for example, C. Feflerman’s famous
Mapping Theorem.

The most important new feature of this book 1s the systematic inclusion of
many of the developments of the last 20 years which centered around integral
representations and estimates for the Cauchy—Riemann equations. In particu-
lar, integral representations are the principal tool used to develop the global
theory, in contrast to many earlier books on the subject which involved
methods from commutative algebra and sheaf theory, and/or partial differ-
ential equations. I believe that this approach offers several advantages: (1) 1t
uses the several variable version of tools familiar to the analyst in one complex
variable, and therefore helps to bridge the often perceived gap between com-
plex analysis in one and in several variables; (2) it leads quite directly to deep
global results without introducing a lot of new machinery; and (3) concrete
integral representations lend themselves to estimations, therefore opening the
door to applications not accessible by the earlier methods.

The Contents and the opening paragraphs of each chapter will give the
reader more detailed information about the material in this book.

A few historical comments might help to put matters in perspective. Already
by the middle of the 19th century, B. Riemann had recognized that the
description of all complex structures on a given compact surface involved
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complex multidimensional “moduli spaces.” Before the end of the century,
K. Weierstrass, H. Poincare, and P. Cousin had laid the foundation of the local
theory and generalized important global results about holomorphic functions
from regions in the complex plane to product domains in C* or in C". In 1906,
F. Hartogs discovered domains in C* with the property that all functions
holomorphic on it necessarily extend holomorphically to a strictly larger
domain, and 1t rapidly became clear that an understanding of this new
phenomenon—which does not appear in one complex variable—would be a
central problem in multidimensional function theory. But in spite of major
contributions by Hartogs, E.E. Levi, K. Reinhardt, S. Bergman, H. Behnke,
H. Cartan, P. Thullen, A. Welil, and others, the principal global problems were
still unsolved by the mid 1930s. Then K. Oka introduced some brilliant new
1deas, and from 1936 to 1942 he systematically solved these problems one after
the other. However, Oka’s work had much more far-reaching implications. In
1940, H. Cartan began to investigate certain algebraic notions implicit in
Oka’s work, and in the years thereafter, he and Oka, independently, began to
widen and deepen the algebraic foundations of the theory, building upon
K. Weierstrass’ Preparation Theorem. By the time the ideas of Cartan and
Oka became widely known in the early 1950s, they had been reformulated by
Cartan and J.P. Serre 1n the language of sheaves. During the 1950s and early
1960s, these new methods and tools were used with great success by Cartan,
Serre, H. Grauert, R. Remmert, and many others 1n building the foundation
for the general theory of “complex spaces,” 1.e., the appropriate higher dimen-
sional analogues of Riemann surfaces. The phenomenal progress made in
those years simply overshadowed the more constructive methods present in
Oka’s work up to 1942, and to the outsider, Several Complex Variables
seemed to have become a new abstract theory which had little in common
with classical complex analysis.

The solution of the 0-Neumann problem by J.J. Kohn 1n 1963 and the
publication in 1966 of L. Hormander’s book in which Several Complex
Variables was presented from the point of view of the theory of partial
differential equations, signaled the beginning of a reapproachment between
Several Complex Variables and Analysis. Around 1968-69, G.M. Henkin
and E. Ramirez—1in his dissertation written under H. Grauert—introduced
Cauchy-type integral formulas on strictly pseudoconvex domains. These
formulas, and their application shortly thereafter by Grauert/Lieb and
Henkin to solving the Cauchy—Riemann equations with supremum norm
estimates, set the stage for the solution of “hard analysis” problems during the
1970s. At the same time, these developments led to a renewed and rapidly
increasing interest 1mn Several Complex Variables by analysts with widely

differing backgrounds.
First plans to write a book on Several Complex Variables reflecting these

latest developments originated 1n the late 1970s, but they took concrete form
only in 1982 after it was discovered how to carry out relevant global construc-
tions directly by means of integral representations, thus avoiding the need to
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introduce other tools at an early stage in the development of the theory. This
emphasis on integral representations, however, does not at all mean that
coherent analytic sheaves and methods from partial difterential equations are
no longer needed in Several Complex Variables. On the contrary, these
methods are and will remain indispensable. Therefore, this book contains a
long motivational discussion of the theory of coherent analytic sheaves as
well as numerous references to other topics, including the theory of the
0-Neumann problem, in order to encourage the reader to deepen his or her
knowledge of Several Complex Variables. On the other hand, the methods
presented here allow a rather direct approach to substantial global results in
C" and to applications and problems at the present frontier of knowledge,
which should be made accessible to the interested reader without requiring
much additional technical baggage. Furthermore, the fact that integral repre-
sentations have led to the solution of major problems which were previously
inaccessible would suggest that these methods, too, have earned a lasting place
in complex analysis in several variables.

In order to limit the size of this book, many important topics—for which
fortunately excellent references are available—had to be omitted. In particu-
lar, the systematic development of global results 1s limited to regions in C”.
Of course, Stein manifolds are introduced and mentioned in several places,
but even though it is possible to extend the approach via integral representa-
tions to that level of generality, not much would be gained to compensate for
the additional technical complications this would entail. Moreover, 1t 1s my
view that the reader who has reached a level at which Stein manifolds (or Stein
spaces) become important should 1in any case systematically learn the relevant
methods from partial differential equations and coherent analytic sheaves by
studying the appropriate references.

I have tried to trace the original sources of the major ideas and results
presented in this book in extensive Notes at the end of each chapter and,
occasionally, in comments within the text. But 1t is almost impossible to do
the same for many Lemmas and Theorems of more special type and for the
numerous variants of classical arguments which have evolved over the years
thanks to the contributions of many mathematicians. Under no circumstances
does the lack of a specific attribution of a result imply that the result is due
to the author. Still, the expert in the field will perhaps notice here and there
some simplifications in known proofs, and novelties in the organization of the
material. The Bibliography reflects a similar philosophy: it is not intended to
provide a complete encyclopedic listing of all articles and books written on
topics related to this ‘book. I believe, however, that it does adequately docu-
ment the material discussed here, and I offer my sincerest apologies for any
omissions or errors of judgment in this regard. In addition, I have included a
perhaps somewhat random selection of quite recent articles for the sole
purpose of guiding the reader to places in the literature from where he or she
may begin to explore specific topics in more detail, and also find the way back
to other (earlier) contributions on such topics. Altogether, the references in
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the Bibliography, along with all the references quoted in them, should give a
fairly complete picture of the literature on the topics in Several Complex
Variables which are discussed in this book.

We all know that one learns best by doing. Consequently, I have included
numerous exercises. Rather than writing “another book™ hidden 1n the exer-
cises, I have mainly included problems which test and reinforce the under-
standing of the material discussed in the text. Occasionally the reader is asked
to provide missing steps of proofs; these are always of a routine nature. A few
of the exercises are quite a bit more challenging. I have not identified them in
any special way, since part of the learning process involves being able to
distinguish the easy problems from the more difficult ones.

The prerequisites for reading this book are: (1) A solid knowledge of calculus
in several (real) variables, including Taylor’s Theorem, Implicit Function
Theorem, substitution formula for integrals, etc. The calculus of differential
forms, which should really be part of such a preparation, but too often is
missing, 1s discussed systematically, though somewhat compactly, in Chapter
II1. (2) Basic complex analysis in one variable. (3) Lebesgue measure in R”,
and the elementary theory of Hilbert and Banach spaces as it 1s needed for an
understanding of L? spaces and of the orthogonal projection onto a closed
subspace of L*. (4) The elements of point set topology and algebra. Beyond
this, we also make crucial use of the Fredholm alternative for perturbations
of the identity by compact operators in Banach spaces. This result is usually
covered in a first course in Functional Analysis, and precise references are
given.

Before beginning the study of this book, the reader should consult the
Suggestions for the Reader and the chart showing the interdependence of the
chapters, on pp. xvil—xix.

It gives me great pleasure to express my gratitude to the three persons who
have had the most significant and lasting impact on my training as a mathe-
matician. First, I want to mention H. Grauert. His lectures on Several Complex
Variables, which I was privileged to hear while a student at the University of
Gottingen, introduced me to the subject and provided the stimulus to study
it further. His early support and his continued interest in my mathematical
development, even after I left Gottingen in 1968, is deeply appreciated. I
discussed my plans for this book with him in 1982, and his encouragement
contributed to getting the project started. Once I came to the United States,
I was fortunate to study under T.W. Gamelin at UCLA. He introduced me to
the Theory of Function Algebras, a fertile ground for applying the new tools
of integral representations which were becoming known around that time,
and he took interest in my work and supervised my dissertation. Finally, I
want to mention Y.T. Siu. It was a great experience for me—while a “green”
Gibbs Instructor at Yale University—to have been able to continue learning
from him and to collaborate with him.

Regarding this book, I am greatly indebted to my friend and collaborator
on recent research projects, Ingo Lieb. He read drafts of virtually the whole
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book, discussed many aspects of it with me, and made numerous helpful
suggestions. W. Rudin expressed early interest and support, and he carefully
read drafts of some chapters, making useful suggestions and catching a number
of typos. S. Bell, J. Ryczaj, and J. Wermer also read portions of the manuscript
and provided valuable feedback. Students at SUNY at Albany patiently
listened to preliminary versions of parts of this book; their interest and
reactions have been a positive stimulus. My colleague R. O’Neil showed me
how to prove the real analysis result in Appendix C.

[ thank JoAnna Aveyard, Marilyn Bisgrove, and Ellen Harrington for
typing portions of the manuscript. Special thanks are due to Mary Blanchard,
who typed the remaining parts and completed the difficult job of incorporating

all the final revisions and corrections. B. Tomaszewski helped with the proof-
reading. The Department of Mathematics and Statistics of the State Univer-

sity of New York at Albany partially supported the preparation of the
manuscript.

I would also like to acknowledge the National Science Foundation for
supporting my research over many years. Several of the results incorporated
in this book are by-products of projects supported by the N.S.F.

Finally, I want to express my deepest appreciation to my family, who, for
the past few years, had to share me with this project. Without the constant
encouragement and understanding of my wife Sandrina, it would have been
difficult to bring this work to completion. My children’s repeated questioning
if I would ever finish this book, and the fact that early this past summer my
6-year-old son Roberto started his own “book” and proudly finished it in one
month, gave me the necessary final push.

R. Michael Range
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Suggestions for the Reader

This book may be used in many ways as a text for courses and seminars, or
for independent study, depending on interest, background, and time limita-
tions. The following are just intended as a few suggestions. The reader should
refer to the chart on page xix showing the interdependence of chapters in order
to visualize matters more clearly.

(1) The obvious suggestion is to cover the entire book. Typically this will
require more than two semesters. If time is a factor, certain sections may be
omitted: natural candidates are §3 in Chapter I, §4, §5in I1, §2 in IV, §2, §3, §6
in VI, and, if necessary, parts of VII.

(2) Another possibility is a first course in Several Complex Variables, to be
followed by a course which will emphasize the general theory, i.e., complex
spaces, sheaves, etc. Such an introductory course could include I, §2.1, §2.7—
§2.10, and §3 1n I, III as needed, §1,83 1n 1V, 4§1,§21n V, and VI

(3) A first course in Several Complex Variables which emphasizes recent
developments on analytic questions, in preparation for studying the relevant
research literature on weakly (or strictly) pseudoconvex domains, could be
based on the following selection: §1, §2 in I, §1-3 in II, III as needed, §1, §3, §4
in IV, V, and VII. This could be done comfortably in a year course.

(4) The more advanced reader who is familiar with the elements of Several
Complex Variables, and who primarily wants to learn about integral repre-
sentations and some of their applications, may concentrate on Chapters IV
(I advise reading §3 in III beforehand!), V, and VII.

(5) Finally, I have found the following selection of topics quite effective for
a one-semester introduction to Several Complex Variables for students with
limited technical background in several (real) variables: §1 and §2.1-§2.5in I,
§1-§3 in II, §1 (without 1.8), §4, §5, and §6 (if time) in VI. In order to handle
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Chapter VI, one simply states without proof the vanishing theorem H% (K) =0,
i.e., the solvability of the Cauchy—Riemann equations in neighborhoods of K,
for a compact pseudoconvex compactum K in C”. In case n = 1, this result 1s
easily proved by reducing it to the case where the given (0, 1)-form fdz has
compact support. This procedure, of course, does not work 1n general because
multiplication by a cutoff function destroys the necessary integrability condi-
tion 1n case n > 1. Assuming H% (K) = 0, it 1s easy to solve the Levi problem
(cf. §1.4 1n V), and one can then proceed directly with Chapter VI. Notice that
only the vanishing of H % is required in Chapter VI, so all discussions involving
(0, g) forms for g > 1 can be omitted! In such a course it is also natural to
present a proof of the Hartogs Extension Theorem based on the (elementary)
solution of @ with compact supports (see Exercise E.2.4 and E.2.5 in IV for an
outline, or consult Hormander’s book [ Hor 21).

Within each chapter Theorems, Lemmas, Remarks, etc., are numbered in
one sequence by double numbers; for example, Lemma 2.1 refers to the first
such statement in §2 in that same chapter. A parallel sequence identifies
formulas which are referred to sometime later on; e.g., (4.3) refers to the third
numbered formula in §4. References to Theorems, formulas, etc., in a different
chapter are augmented by the Roman numeral identifying that chapter.
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CHAPTER 1

Elementary Local Properties of
Holomorphic Functions

In §1 and §2 of this chapter we present the standard local properties of
holomorphic functions and maps which are obtained by combining basic
one complex variable theory with the calculus of several (real) variables. The
reader should go through this material rapidly, with the goal of familiarizing
himself with the results, notation, and terminology, and return to the appro-
priate sections later on, as needed. The inclusion at this stage of holomorphic
maps and of complex submanifolds, 1.e., the level sets of nonsingular holo-
morphic maps, 1s quite natural in several variables. In particular, 1t allows us
to present elementary proofs of two results which distinguish complex analysis
from real analysis, namely: (i) the only compact complex submanifolds of C" are
finite sets, and (11) the Jacobian determinant of an injective holomorphic map
from an open set in C" into C" is nowhere zero. Section 3, which gives an
introduction to analytic sets, may be omitted without loss of continuity. We
have included 1t mainly to familiarize the reader with a topic which 1s funda-
mental for many aspects of the general theory of several complex variables,
and in order to show, by means of the Weierstrass Preparation Theorem, how
algebraic methods become indispensable for a thorough understanding of the
deeper local properties of holomorphic functions and their zero sets.

§1. Holomorphic Functions

1.1. Complex Euclidean Space

We collect some basic facts, notations, and terminology, which will be used

throughout this book.
R and C denote the field of real, respectively complex numbers; Z and N
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denote the integers, respectively nonnegative integers, while we use N™ for the

positive integers.
For ne N7, the n-dimensional complex number space

C'={z:z=(24,...,2,), 2z;€C for 1<j<n}

1s the Cartesian product of n copies of C. C" carries the structure of an
n-dimensional complex vector space. The standard Hermitian inner product

on C" 1s defined by

(1.1) (a,b) = ) aja, a, be C".
ji=1
The associated norm |a| = (a, a)** induces the Euclidean metric in the usual
way: for a, be C", dist(a, b) = |a — b|.
The (open) ball of radius » > O and center a € C" 1s defined by

(1.2) B(a,r) = {zeC" |z — a| < r}.

The collection of balls {B(a, r): r > 0 and rational} forms a countable neigh-
borhood basis at the point a for the topology of C”".

The topology of C" is identical with the one arising from the following
identification of C" with R*". Given z = (z,, ..., z,) € C", each coordinate z;
can be written as z; = x; + iy;, with x;, y.€ R (i 1s the 1imaginary unit \/ —1).
The mapping

(1.3) Z (X1, Viseers Xy, V) € R

establishes an R-linear isomorphism between C" and R*", which is compatible
with the metric structures: a ball B(a, r) in C” 1s 1dentified with a Euclidean
ball in R*" of equal radius r. Because of this identification, all the usual
concepts from topology and analysis on real Euclidean spaces R*" carry over
immediately to C". In the following, we shall freely use such standard results
and terminology.

In particular, we recall that D < C" is open if for every ae D there is a ball
B(a, r) = D with r > 0, and that an open set D < C" 1s connected 1f and only
if D 1s pathwise connected. Unless specified otherwise, D will usually denote an
open set in C"; such a D will also be called a domain, or region. Notice that
we do not require a domain to be connected. We shall say that a subset Q of
D is relatively compact in D, and denote this by Q —c D, if the closure Q of Q
1s a compact subset of D.

The topological boundary of a set A — C" will be denoted by bA (rather than
the more commonly used 04, as the symbol 0 generally has different meaning
1n complex analysis (see §1.2)).

Given a domain D, dp(z) = sup{r: B(z,r) = D} denotes the (Euclidean)
distance from ze D to the boundary of D. If D # C", then 0 < 0,(z) < oo for
all ze D, and &, extends to a continuous function on D by setting 5,(z) = 0
for zebD. One has d,(z) = inf{|z — {|: {ebD}. The distance between two sets
A, B 1s given by dist(4, B) = inf{|a — b|: ae 4, be B}. Notice that if Q << D,
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‘Zz‘ [‘Zg‘

_ _

r |z, | ry |z, |

7(B(0, r)) 7(P(O, (ry, 1,)))

Figure 1. Representations of ball and polydisc in absolute space.

then dist(QQ, bD) > 0, or, equivalently, there 1s y > 0 such that o,(z) > vy for all
z e Q; conversely, if D 1s bounded (1.e., D < B(0,r) for some r < oc0) and y > 0,
then {zeD: é,(z) > y} << D.

Often it 1s convenient to use another system of neighborhoods: the (open)
polydisc P(a, r) of multiradius r = (r,, ..., r,), r; > 0, and center ac C" 1s the
product of n open discs 1n C:

(1.4) P(a,r)={zeC"|z; —a;j| <r;, 1 <j<nj.

More generally, a polydomain is the product of n planar domains.
Notice that

P, (r,...,r,)) < B(a, R)

whenever Lr} < R?, and that

B(a, p) < P(a,(r{, ..., 1,))

for p <min{r;: 1 <j<nj.

In order to represent certain sets in C" geometrically, 1t 1s convenient to
consider the image t(D) of D in absolute space {(r,,...,r,)eR":r; > 0 for
j=1,..., n}, under the map 7:a —(|a |, ..., |a,|). For example, B(0, r) and
P, (r,, r,)) in C* have the representations shown in Figure 1.

If n > 2, we sometimes write z = (z/, z,), where z’' = (z,...,z,_{)eC" 1.
For example, f 0 <r; < 1,1 <j < n, the domain

H(r) = {zeC":z’e P'(0, 1), |z,| < 1} U {zeC", 2z’ e P'(0, 1), 1, < |z,| < 1}

can be represented schematically by Figure 2.

The pair (H(r), P(0, 1)) 1s called a (Euclidean) Hartogs figure; 1ts significance
will become clear in Chapter I1.

Notice that

() = {(r e, ..., 1,e"):0<0,<2n forl <j<nj
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7(z2")
7(H(r))

Figure 2. Representation of H(r) in absolute space.

1s an n-dimensional real torus. So the representation in absolute space 1s
reasonable only for sets which are circled 1n the following sense.

Definition. A set QQ < C" 1s circled (around 0) if for every a € the torus
T t(a)) = {zeC": z = (a, ", ..., a,e'"),0 < 6, < 27}

lies in Q as well. A Reinhardt domain (centered at 0) is an open circled (around
0) set in C". A Reinhardt domain D 1s complete if for every aeD one has
P(0, t(a)) = D.

It 1s clear how to define the corresponding concepts for arbitrary centers.

B(0, r) and P(O, r) are complete Reinhardt domains, while the domain H(r)
in Figure 2 1s a Reimnhardt domain which 1s not complete.

Reinhardt domains appear naturally when one considers power series or
Laurent expansions of holomorphic functions (see §1.5 and Chapter II, §1).
Observe that a complete Reinhardt domain in C (centered at 0) is an open
disc with center O; what are the Reinhardt domains in C?

1.2. The Cauchy—Riemann Equations

For D = R", open, and ke NU {co0}, C*(D) denotes the space of k times
continuously differentiable complex valued functions on D; we also write
C(D) instead of C°(D). We shall use the standard multi-index notation: if

o= (y,...,,)eN"and x = (x4, ..., X,) € R", one sets
| =ay + -+, oal=oal-a,l

x*=x{...0x, a=20(>0) ifa;>0(>0) forl <j<n,

n >



§1. Holomorphic Functions S

ol

B
For fe C*(D), k < oo, we define the C* norm of f over D by
(1.6) | fli,p = 2, sup|D%(x);

xe NN\®" xe D
la| <k

(1.5) D*

we write | f|p instead of | f |, p, and if D is clear from the context, we may write
| | instead of | f, p- The space B(D) = {f € C¥(D): | f|, < oo} is complete in
the C* norm |-|,, and hence B*(D) is a Banach space. Similarly, the space
C*(D): = { f e C¥(D): D*f extends continuously to D for all « € N" with |«| < k},
with the norm |-|, p, 1s also a Banach space.

Turning to C" = R*" with coordinates z; = x; + \/ —1 y;, one 1ntroduces
the partial differential operators

0 1/0 10 0 1/ 0 | B,
(1.7) = — + - : — = — — - .
0z; 2\0x; i 0y; 0z; 2\0x; 1i0y;

J

The following rules are easily verified:

of)oz; = 0f)0z;,  0f]0z; = 0f/0z;.

The multi-index notation (1.5) 1s extended to the operators (1.7) as follows: for
o, pe N,

(1.8) D% =

5Ial+lﬂl

0z%1...0z%0zb1 ... 0zPn

We write D* for D*° and D” for D; this should cause no confusion with (1.5).
Notice that f € C*(D) if and only if D**f € C(D) for all o, f with || + |B| < k.
We now introduce the class of functions which is the principal object of

study 1n this book.

Definition. Let D < C" be open. A function f: D — C is called holomorphic
(on D) if fe C*(D) and f satisfies the system of partial differential equations

(1.9) (,g (z) =0 for1 <j<nand:zeD.
J

The space of holomorphic functions on D is denoted by (O(D). More gener-
ally, 1f Q2 1s an arbitrary subset of C", we denote by ((Q2) the collection of those
functions which are defined and holomorphic on some open neighborhood of
QQ, with the understanding that two such functions define the same element
in O(Q) if they agree on a neighborhood of Q. A function f is said to be
holomorphic at the point ae C" if fe O({a}).

The following result is an immediate consequence of the definitions and
standard calculus.

' This identification can be formalized by introducing the language of germs of functions (see
Chapter VI, §4).
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Theorem 1.1. For any subset Q of C", (L)) is closed under pointwise addition
and multiplication. Any polynomial in z,...,z, with complex coefficients
is holomorphic on C", and hence, by restriction, is in O(Q). If f, ge O(Q) and
g(z) # 0 for all ze (), then f/g e O(Q).

Equation (1.9) 1s called the system of (homogeneous) Cauchy—Riemann
equations. Notice that any function f which satisfies (1.9) satisfies the Cauchy—
Riemann equations in the z:-coordinate for any j, and hence 1s holomorphic
in each variable separately. It is a remarkable phenomenon of complex analysis
—discovered by F. Hartogs in 1906 [Har 2]—that conversely, any function
f: D — C which 1s holomorphic 1n each variable separately is holomorphic,
as defined above. This shows that the requirement that fe C!'(D) can be
dropped in the definition of holomorphic function. The main difficulty in
Hartogs’ Theorem 1s to show that a function f which satisfies (1.9) 1s locally
bounded. Assuming that f is bounded, it is quite elementary to show that (1.9)
implies f € C*(D) (see Exercise E.1.3 and Corollary 1.5 below).

In order to appreciate the strength of Hartogs® Theorem, the reader
should notice that the function f: R* —» R defined by f(0) = 0 and f(x, y) =
xy/(x* + y*)for (x, y) # 0is C* (even real analytic) in each variable separately,
but 1s not bounded at O.

The inhomogeneous system of Cauchy—Riemann equations

(1.10) 0f/0z; = u;, 1 <j<n,

where u,, ..., u, are given C' functions on D, will also be very important for
the study of holomorphic functions. For n = 1, the system (1.10) is determined
(i.e., one equation for one unknown function, or two real equations for the
two real functions Re f, Im f), while for n > 1 (1.10) is overdetermined (more
equations than unknowns). This fact makes life in several variables harder,
and it accounts for many of the differences between the casesn = 1 and n > 1.
Notice that if there is a solution f € C*(D) of (1.10), then the functions u,, ..., u,
must satisfy the necessary integrability conditions

(1.11) 0u;/0z, = ou,/0z;, 1 <j, k <m;

(1.11) always holds in case n = 1, while it i1s quite restrictive in case n > 1.

We now give another interpretation for the solutions of the homogeneous
Cauchy—Riemann equations. Let f e C'(D); its differential df, at ae D is the
unique R-linear map R?*" — R* which approximates f near a in the sense
that f(z) = f(a) + df,(z — a) + o(|z — a|).! In terms of the real coordinates
(X1, Vis..-5 X, V) Of C", One has

5f
(1.12) df, = }:[ a)(dx;), +5

J

(a) (dy j )a] >

! We use a standard notation from analysis: if A = A(x) is an expression which depends on x € R",
the statements A = O(|x|), and 4 = o(|x|) mean, respectively, that |A(x)| < C|x| as |x| — O for
some constant C, and lim;,;, |A(x)|/| x| =
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where dx;, dy; are the differentials of the coordinate functions, i.e.,
dx;(w) = u;, dy,(w) = v; forw=(Wu,v,...,u,v).

Via the identification R*" = C" and R? = C, the differential df, can be
viewed as a map C" — C which is R-linear, though not necessarily C-linear.
In particular, the differentials dx; and dy; are not linear over C; for example,
if {=(1,0,...,0eR*", then i{ =(0,1,0,...,0), so that dx,(i{) = 0; while
idx.(({) =i. In complex analysis one therefore considers the differentials
dz; = dx; + idy; (this 1s C-linear) and dz; = dx; — idy; (this 1s conjugate C-
linear") of the complex coordinate functions z;, 1 < j < n. A simple computa-
tion shows that

(113 z o)z, + 3 g (@) (@)

The first sum in (1.13) is denoted by df;, or df(a), the second sum by df,, or
of (a). So one can say that

(1.14) f e CY(D) is holomorphic < 0f = 0<df = of.

Theorem 1.2. A function f € C*(D) satisfies the Cauchy—Riemann equations at
the point a€ D if and only if its differential df, at a is C-linear. In particular,
fe0(D) if and only if df is C-linear at every point.

Proor. Since df, is obviously C-linear for any ae D, one implication is
tr1v1al For the other 1mphcat10n suppose B, = 0f/0z,(a) # O for some k. Let

= 0f/0z,(a), and w = (O, . ., 0)eC", with the 1 in the kth place.
Then df (w) = a;, + B, and dj:,(iw) = ocki — B.i =i(oy — B;) # idf,(w), so that
df,1s not linear over C. =

We shall discuss these matters more systematically and in coordinate-free
form 1n Chapter III, §2.2; for the present, let us mention though that 1t 1s
Equation (1.13) for the differential of a C* function which motivates the
definition of the operators 0/0z; and 0/0z; in (1.7).

1.3. The Cauchy Integral Formula on Polydiscs

As in the case of one complex variable, the basic local properties of holo-
morphic functions follow from an integral representation formula, which is

most easily established on polydiscs. Later we will consider an analogous
formula on the ball and on more general domains (see Chapter 1V, §3.2 and

Chapter VII, §1).

YA map l: V — W between two complex vector spaces V and W is conjugate C-linear if [ 1s linear
over R and if /(Av) = Al(v) for all AeC, ve V.
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Theorem 1.3. Let P = P(a, r) be a polydisc in C" with multiradiusr = (ry, ..., 1,).
Suppose f € C(P), and f is holomorphic in each variable separately, i.e., for each
zePand 1 <j<n, thefunctionﬁ)(l) = f(Z15 -5 Zj=1> Ay Zj41y -+ » Z,) iS holO-

morphic on {AeC: |A — a;| < r;}. Then

(115 fG)=@ni)™ f s

where b,P = {{eC": |{; — a;| =1;, 1 <j < nj.

for ze P,

Notice that the region of integration b, P in (1.15) is strictly smaller than the
topological boundary bP of P 1n case n > 1. b, P is called the distinguished
boundary of P, and in many situations i1t plays the same role as the unit circle
in one complex variable (see Theorem 1.8 below for an example).

The integral 1n (1.15) is an example of an n-form integrated over the real
n-dimensional manifold by, P (see Chapter 111, §1). In terms of the standard
parametrization

(i=a;+re%, 0<6,<2n,1<j<n

of b, P(a, r), one has

(1.16) g)dl,...dl, =i"r, ...r,,JA g(L(0))e*:...e"do, ...do,
b,P(a,r) [0, 2x]"

for any g e C(b, P). For the time being, the reader may simply view the left side

in (1.16) as a shorthand notation for the right side.

Proor. We use induction over the number of variables n. For n = 1 one has
the classical Cauchy integral formula, which we assume as known. Suppose
n > 1, and that the theorem has been proved for n — 1 variables. For ze P
fixed, apply the inductive hypothesis with respect to (z,, ..., z,), obtaining

— 1 .f.(.z..la CZ"'L:.LC&) d‘;} 'f'dc'z.
1D ez, z) =@ | St plade

b, P'(a’,r’)

where a’ = (a,,...,a,), r' =(r,,...,r,). For (,,...,(, fixed, the case n =1
glves

f(Cy, -5 Cn) dC4

]

(118) f(zla CZ)H-; Cn) = (27”1)_1"‘
L1 —ay|=ry Cl — 24

Now substitute (1.18) into (1.17) and transform the iterated integral over

{1{; —a,| =ry} x b,P'(d, r)into an integral over b, P—use the parametriza-

tion (1.16). m

Remark 1.4. The continuity of f was used only at the end of the proof. Weaker
conditions on f, for example f bounded and measurable, would work just as
well by basic results in integration theory. On the other hand, it is important
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for the applications given below that (1.15) is an integral over b, P, and not
just an iterated integral.

Corollary 1.5. Suppose f € C(D) (or just bounded on D) is holomorphic in each
variable separately. Then f € C* (D) and, in particular, f € O(D). For any a € N”",
D*f e O(D).

PRroOOF. Apply Theorem 1.3 to a polydisc P(a, r) =< D;1in (1.15) it is legitimate
to differentiate under the integral sign as often as needed. m

Theorem 1.6 (Cauchy estimates). Let f € O(P(a, r)). Then, for all oo.e N,

o]
(1.19 Df(@)] < | pary

) ol(o; + 2)...(ct, + 2)
(120) |D f(a)l < — = (27r)"r“+2 ||f||L1(P(a,r))'

Note that r* =r{'...r", and for meZ, a + m = (a; + m, ..., a, + m); for
1 < p < oo, LP(D) denotes the space of functions on D with | f|? Lebesgue
integrable over D (with respect to Lebesgue measure on R*"), and || f || op) =

(|plfIP) 2.

Proor. Fix 0 < p < r. Apply Theorem 1.3 to P(a, p) =< P(a, r) and differen-
tiate under the integral sign, obtaining

(C o a)a+1

(see (1.5) for the multi-index notation used). After an obvious estimation of
(1.21) and taking the limit p — r, (1.19) follows. For (1.20), use (1.16) in (1.21),

o

(121) Daf(a) - (27I‘l')n J\ b,P(a, p)

multiply by p*** and estimate, obtaining
o!
(1.22) D’f(a)lp*™ < ——, J | fECODIpy-..pydl;...dO,.
(27!) (O, 27"

The desired inequality follows after integrating (1.22) over 0 < p;, <r,,
1 <j<n, and transforming the n-fold integral in polar coordinates into a
volume integral. =

The estimate (1.20) is often used in the following form.

Corollary 1.7. For each ae N", 1 < p < o0, and Q << D there is a constant
C = C(a, p, Q, D) such that

(1.23) D*flo < CIl f oy for all f € O(D)N LA(D).

The space O(D) N LP(D) of holomorphic L? functions on D will be denoted
by OL?(D). -
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PRrOOF. Fix 0 < 0 < dist(€), bD) and let r = 5/ﬁ. Then (1.20) holds for each
aecQ, and since || f || L1 (pa,ry < constant - || f || Lopea,ry> (1.23) follows. =

Another consequence of the Cauchy integral formula is the following ver-
sion of the maximum principle. A different form of the maximum principle is
discussed 1n §1.6., Corollaries 1.22 and 1.23.

Theorem 1.8. For P = P(a, r) and z € P one has

wll—

(1.24) @\ < |fly,p for all f € C(P)N O(P).

The space of functions C(P) N O(P) is known as the polydisc algebra, and is

denoted by A(P). It 1s a subalgebra of C(P) which is closed in the norm |- |p
(this follows from Theorem 1.9. below). We re-emphasize that b, P is strictly

smaller than the topological boundary if n > 1. In the language of Uniform
Algebras, (1.24) says that b, P 1s a boundary for the polydisc algebra A(P); in
fact, b, P is the smallest closed boundary, the so-called Shilov boundary, of A(P).

Proor. It 1s enough to prove (1.24) for ze P. From (1.15) it follows by an
obvious estimate that there is a constant C, such that | f(z)| < C,|f |, p for all
fe A(P). Hence, fork =1, 2, ..., since f*e A(P) for f e A(P), one obtains

f@1 =1 @) < Clf*s,p < CAl flp,p)
this implies | f(z)| < C;™*| f|,_p, and (1.24) follows by letting k - co. =

1.4. Sequences and Compactness 1n Spaces of Holomorphic
Functions

As 1n the case of functions of one complex variable, the Cauchy integral
formula implies strong convergence theorems. We say that a sequence { f;:
j=1,2,...,} © C(D) converges compactly in D if { f;} converges uniformly on
each compact subset of D. It is well known that C(D) is closed under compact
convergence.

Theorem 1.9. Suppose {f::j=1,2,...,} < O(D) converges compactly in D to
the function f: D — C. Then f € O(D), and for each o€ N",

lim D%, = D%

J=©

compactly in D.

The proof of Theorem 1.9 is the same as in the classical case n = 1 and will
be omitted. Combined with Corollary 1.7, Theorem 1.9 implies the following

result.
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Corollary 1.10. For any 1 < p < o0 the space OLP(D) is a closed subspace of
L?(D), and hence OL?(D) is a Banach space.

Unless stated otherwise, we will always consider (D) equipped with the
natural topology in which convergent sequences are precisely those which
converge compactly. This topology is, in fact, metrizable, as follows. Fix an
increasing sequence of compact sets {K,}, such that

1) KiccintK, cc.. K, ccmtK, ,, cc...cD

(1.25) .
(i) | ) K, =D.

A sequence {K,} which satisfies (1.25) is called a normal exhaustion of D. It is
obvious that lim, , f; = f compactly in D if and only if lim f; = f uniformly
on each K. For f, ge C(D), one then defines

e Ay f — 9k,
(1.26) o(f,9g) = ‘;12 L1/ — gl

Lemma 1.11. The function o defined by (1.26) is a metric on C(D). A sequence
{fi} = C(D) converges compactly to f if and only if lim,, 6(f;,f) = 0. The
topology on C(D) defined by o is independent of the choice of the normal
exhaustion {K,}.

The proof is left to the reader.

Theorem 1.9 can now be restated: O(D) is a closed subspace of C(D), and
every partial differentiation D*. O(D) — O(D), a.€ N", is continuous.

The spaces C(D) and (D) are important examples of so-called Fréchét
spaces. These are vector spaces V which are complete metrizable topological
spaces, so that the vector space operations in V are continuous.

A subset S 1in a Fréchét space, or more generally, in a topological vector
space V, 1s called bounded if for every neighborhood U of Oin V thereis A > O
such that S < AU. The reader should convince himself that this definition of
a bounded set 1s equivalent to the familiar one in normed linear spaces.

Lemma 1.12. A subset S < C(D) (or < O(D)) is bounded if and only if for every
compact K < D one has

sup{|flg,f €S} < o0.

The proof is left to the reader.
The following characterization of compact sets in @(D) 1s of fundamental
importance; it should be compared to the analogous characterization in finite

dimensional vector spaces (1.€., for R” or C").
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Theorem 1.13. A subset S < O(D) is compact if and only if S is closed and
bounded.

PRrOOF. As the classical proof for n = 1 generalizes to n > 1, we only give an
outline. Since (D) 1s complete metrizable, a closed set S < (O(D) 1s compact
if and only if every sequence {f;} — S has a convergent subsequence. The
essential part of the theorem thus involves showing that every bounded
sequence {f;} < O(D) has a convergent subsequence (i.e., (D) has the
Bolzano—Weierstrass property).

Fix a normal exhaustion {K,} of D. If { f;} < (O(D) is bounded, Lemma 1.12
and Corollary 1.7 imply that { f;} has uniformly bounded first order derivatives
on each K, and hence, via the Mean Value Theorem, one sees that { fil ,
j=1,2,...,} is uniformly equicontinuous for each v. The theorem of Ascoli—
Arzela, combined with a Cantor diagonal sequence argument, then gives a
subsequence { f;, [ = 1, 2, ...,} which converges uniformly on each K, v = 1,
2,...;thus { f;,1=1,2,...,} converges compactlyin D. =

By Corollary 1.7, any subset S <« OLP(D), 1 < p < oo, which 1s bounded in
LP-norm, is also bounded 1n @(D). By Theorem 1.13, S has compact closure
in @(D), but not necessarily in L?(D). In order to obtain a relatively compact
subset of L? we must restrict to some 2 =< D, as compact convergence in D
implies convergence 1n LP(Q)) for any Q c= D and 1 < p < co. One thus

obtains the following result.

Theorem 1.14. Let QO << D, and suppose 1 < p, g < oo. Then the restriction of
f eO(D) to € defines a compact linear map

OL?(D) — OLY(Q)

Recall that a linear map B, — B, between two Banach spaces i1s called
compact if the image of a bounded set in B, 1s relatively compact in B,. See
also Exercise E.1.7 for a related statement.

1.5. Power Series

We briefly recall first the basic facts about multiple series; that is, formal
€Xpressions
(1.27) > b, b=b, ,eC.

n
ve Nn

If n > 1, the index set N"” does not carry any natural ordering, so that there
is no canonical way to consider ) b, as a sequence of (finite) partial sums as
in case n = 1. The ambiguity 1s avoided if one considers (absolutely) con-

vergent series, defined as follows.
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Definition. The multiple series ) ,.n» b, is called convergent” if

Y |b,| = sup{ Y |b,): Aﬁnite} < 0.

ve N ve A

It is well known that the convergence of ) b,, as defined above, is necessary
and sufficient for the following to hold.

Given any bijection 0. N — N, the ordinary series

00
2 beiy
j=0

converges in the usual sense to a limit Le C which is independent of a. This
number L is called the limit (or sum) of the multiple series, and one writes

In particular, if ) b, converges, its limit can be computed from the homo-
geneous expansion

(1.28) L=Y (Z b,,).

Furthermore, for any permutation t of {1, ..., n}, the iterated series

(1.29) > (( 3 b))

converges to L as well. Conversely, if b, > 0, the convergence of any one of
the iterated series (1.29) implies the convergence of ) b,.?

A power series in n complex variables z, ..., z, centered at the point ae C"
is a multiple series ) , . nn b, With terms

v — Cv(Z o a)v — Cvl...vn(zl B al)v1 . '(Zn N an)vna

where ¢, € C for ve N”. To simplify notation we will only consider power series
centered at a = O in this section.

Definition. The domain of convergence Q = Q({c,}) of the power series

(1.30) >, ¢,z

ve Nn

is the interior of the set of points ze C" for which (1.30) converges.

! Since functions f are defined to be (Lebesgue) integrable if | f| is integrable, we take the liberty
to drop the word “absolutely”. In fact, convergent series are precisely the elements in L'(N", p),
where u 1s counting measure.

> These results can be viewed as special cases of the Fubini—Tonelli theorem in integration theory.
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Notice that (1.30) always converges for z = 0, but if n > 1, Q({c,}) may be
empty even if (1.30) converges at some point z # 0. For example, the power

series

Y v lziizy?

V1 >0
V2>0

converges for z = (z, 0), but notforz = (z, z,)1f z,, z, # O; hence 1ts domain

of convergence is empty.
The following result, known as Abel’s Lemma, gives the basic general result

about convergence of power series.

Lemma 1.15. Suppose ¢, e C for ve N" and that for some we C"

(1.31) sup |c,w'| =M < oo.

ve N”

Let r = t(w) = (lwy|, ..., [W,|). Then the power series Y c,z’ converges on the
polydisc P(0, r). Moreover, the convergence is normal in the following sense:
if K < P(0,r) is compact and ¢ > 0 is arbitrary, there is a finite set A =

A(K, &) < N", such that
Y le,z¥|<e  forall zeK.

veE A

Proor. Given K cc P(0, r), choose 0 < A < 1, such that K < P(0, Ar). For
ze P(0, Ar) one obtains from (1.31) that

c,2"| < |le,w*|AM < MAV for ve N”,

Since ZvENnA"" = () Lo 4’)" < oo, the result follows. =

Corollary 1.16. The domain of convergence Q of the power series ) ¢,z is a
(possibly empty) complete Reinhardt domain, and C is the interior of the set of
points w e C" which satisfy (1.31). The convergence is normal in Q.

Theorem 1.17. A power series f(z) = ) c¢,z* with nonempty domain of con-
vergence ) defines a holomorphic function f € O(Q). Moreover, for a€N", the
series of derivatives ) c,(D*z”) converges compactly to D*f on Q, and

(1.32) D*f(0) = o! c,.
Proor. We fix a bijection o: N — N”. Then
k
f(Z) — llm Z Ca(j)ZG(j)
k—0 j=0

compactly on €. Since the partial sums are holomorphic, Theorem 1.9 implies
fe®(D) and

k
D*f(z) = lim ) c,;,(D*z°V)

k—o0 j=0
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on . Thus, for fixed xe N"and weQ,

sup |c,(D%z") < 00.

ve N7

Z=—W

Corollary 1.16 implies that Q 1s contained 1n the domain of convergence of
the power series ) c,(D*z"). Equation (1.32) follows by evaluating D*f(z) =
Y c(D*2)atz=0. =

In fact, » ¢,z” and ) c¢,(D%z") have the same domain of convergence (see
Exercise E.1.3).

The domains of convergence of power series 1n several variables exhibit a
much greater variety than in one variable. We give some examples in Figure 3
(the reader should verify the statements made).

Clearly a Hartogs domain H(r) (see Figure 2) 1s not the domain of con-
vergence of a power series; every power series which converges on H(r) must
necessarily converge on the polydisc P(0, 1) (use Lemma 1.15). We will show
in Chapter II, §1, that every feO(H(r)) can be represented on H(r) by a
convergent power series, which therefore defines a holomorphic extension of
f to P(0, 1)!

Not every complete Reinhardt domain 1s the precise domain of convergence
of some power series (except 1n case n = 1, of course). We will discuss the
characterization of domains of convergence of power series in Chapter 11, §3.8.

7(§2)
(1.33) Y o ozlizde
Vi,V =0
(134) ZO (leZ)va
(1.35) Y Ll
Vi,V =20 Vz!

Figure 3. Domains of convergence of some power series.
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1.6. Taylor Expansion and Identity Theorems

We now show that every holomorphic function can be represented locally by
a convergent power series. Together with Theorem 1.17, this shows that the
space ()(D) can also be defined in terms of power series. This 1s the approach
taken, for example, in [GuRo] or [ Nar 3].

Theorem 1.18. Let f € O(P(a, r)). Then the Taylor series of f at a converges to f
on P(a, r), that is,

D’f(a)
Z y!

ve N”

f(z) = (z—a)*  for zeP(a,r).

ProoF. In the Cauchy integral formula (1.15), applied to ze P(a, p) c< P(a, r),
one expands (( —2)' =, —z,)"...({, — z,)! into a multiple geometric
Serics

_ (z — a)’
(1.36 [ —2)71 = —,
) == ac—am
which converges uniformly for (eb,P(a, p), since |z; —a;l/|C; — a;| <
z; — a;l/p; <1 for such { and all 1 <j < n. It is therefore legitimate to
substitute (1.36) into (1.15) and to interchange summation and integration,
leading to

o N—n f(C) dClan YV
(1.37) f(z) = v;\ln I:(2m) JAbOP(a,p) C— o™ ](z a)

for ze P(a, p). By (1.21), or by Theorem 1.17, the coefficient of (z — a)’ in (1.37)
equals D*’f(a)/v!. =

Theorem 1.19. Let D < C" be connected. If f € O(D) and there is a € D, such that
D*f(a) = 0 for all e N", then f(z) =0 for zeD. In particular, if there is a
nonempty open set U < D, such that f(z) = O for ze U, thenf = 0 on D.

Proor. Theorem 1.18 implies that the set Q = {ze D: D*f(z) = Ofor all x e N"}
1s open. By continuity of D*f, Q is also closed, and since the hypothesis says
that Q # &, the connectedness of D implies Q = D. =

Remark 1.20. The hypothesis in Theorem 1.19 will hold if f vanishes on a set
E which is “thick” enough. For example, in C*' it suffices that E has an
accumulation point in D, but this 1s clearly not enough if n > 1. The function
f(z{, z,) = z; 1s zero on {(0, z,): z, e C}, but f % 0. An obvious necessary and
sufficient condition is that E not be contained in the zero set of a nontrivial
holomorphic function; but this is really a tautology, unless one has more
precise geometric information about such zero sets. We will consider this
question 1n §3. Here we mention one case which shows that more than
topological or measure theoretic properties are involved: Suppose f € O(D),
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aeD, and f(a + x) = 0 for all x in a neighborhood of 0 in R"; then D*f(a) = 0
for all a, and hence f = 0 on D.

Theorem 1.20. Let D be connected. Then O(D) is an integral domain.

Proor. Suppose f,geO(D) and f(z)-g(z) = OforzeD. If f # O, there1sae D
with f(a) # 0, and hence f(z) # 0 1n a neighborhood U of a. But then g(z) = 0O
for ze U, which implies g(z) = O for all ze D by Theorem 1.19. =

The following result is an easy generalization of the corresponding classical
one variable result.

Theorem 1.21. Let D be connected and suppose f € O(D) is not constant. Then
1(Q) is open for any open set Q2 < D.

Proor. It is enough to show that for any ball B(a,r) = D, f(B(a,r)) 1s a
neighborhood of f(a). Theorem 1.19 implies that f|z,,, 18 not canstant,
otherwise f would have to be constant on D. Choose p e B(a, r) such that
f(p) # f(a), and define h(4) = f(a + Ap) for Ae A = {AeC:|A| < 1}. Then h
is nonconstant on A and holomorphic—just compute dh/di =0, or see
Theorem 2.3. By the known one variable result (cf. [Ah1], p. 132), h(A) <
f(B(a, r)) is a neighborhood of h(0) = f(a). =

Corollary 1.22. Suppose f € O(D) and that | f| has a local maximum at the point
ae D. Then f is constant on the connected component of D containing a.

Corollary 1.23. Suppose D c< C" and f € A(D) = C(D) N O(D). Then
f@) <|flsp  forallzeD.

EXERCISES

E.1.1. Show thatan openset D in C"1s connected if and only if D 1s pathwise connected.
(1e., if P, QeD, there is a continuous map ¢: [0, 1] - D with ¢(0) = P,

o(1) = Q.)
E.1.2. LetDbeopenin C" Forj=1,2,...define
K; = {zeD: ép(z) > 1/j and |z| < j}.

Show that K; is compact, K; < interior K;,; and D = ( )2, K;. (This shows
that every open set D in C" has a normal exhaustion.)

E.1.3. Show that if D is open in C" and f: D — C 1s holomorphic in each variable
separately and locally bounded (1.e., for all ae D there 1s a neighborhood
U, = D of a such that f|, 1s bounded), then f i1s continuous on D.

E.1.4. Show that OL?(C") = {0} for 1 < p < o0 and that OL*(C") = C.

E.1.5. Let C(D) be the space of continuous functions on D < C", with the topology of
compact convergence.
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E.1.6.
E.1.7.

E.1.8.
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I. Elementary Local Properties of Holomorphic Functions

(i) For K = D, compact, ¢ >0, and ge C(D), set U(g; K, ¢) = {fe C(D):
|f — glk < ¢}. Show that if {K;} is a normal exhaustion of D, then
{U(g; K;, 1/1):j,1 =1, 2, ...} is a neighborhood basis for g.

(1) Prove in detail that C(D) i1s metrizable.

Prove Lemma 1.12.

Show that if Q c= D <« C" are open, then the restriction of fe@(D) to
flo€ 0(Q) defines a compact map O(D) — O(Q). (This means that there is a
neighborhood V = (O(D) of 0, such that its image in 0(€2) has compact closure.)

Prove that a power series ) ¢,z’ and the derived series ) ¢,(D*z”) have equal
domain of convergence for every multi-index o e N".

Let D be open in C" and let A = {ze C: |z| < 1}. Show that for NeN™, every
feO(D x AV) has a power series representation

fz,w) = 3, a/ 2w’

ve NN

with coefficients a, € O(D), which converges compactly on D x A",

A domain D in C” 1s called a Hartogs domain if z = (z/, z,) e D implies that
(z’, e*z,)e D for all 0 < 6 < 2n. Show that every function f holomorphic on a
Hartogs domain D has a Laurent series expansion with respect to z,,

Q0

f(z) = Z aj(z’)z};,

— 00

which converges compactly on D, and whose coeflicients are holomorphicin z’.

Let P = PO, (r{,...,r,)) = C"be a polydisc. If { € bP satisfies |{;| = r, for some
[, the set

P(LL,{)={zeP:z;={,|z;| <r;forj +# I}

can be viewed as a polydisc in C"™'. Show that if f e A(P), then f restricts to
a holomorphic function on P'(l, {) in n — 1 variables.

Let P be a bounded polydisc in C". Show that if S < bP satisfies | f(2)| < |f|s
for all ze P and f e A(P), then S contains the distinguished boundary b,P of
P. (Together with Theorem 1.8, this shows that b, P 1s the Shilov boundary of
A(P).)

Let D < C” be connected and suppose f: D x D — C 1s holomorphic in the 2n
complex variables (z, wye D x D. Show that if there is a point pe D with pe D,
such that f(z, Z) = O for all z in a neighborhood of p, then f(z, w) = 0 for all
(z, w)e D x D.(Hint: Introduce new coordinatesu =z + w,v =z — w.)

§2. Holomorphic Maps

2.1. The Derivative of a Holomorphic Map

Let D < C" be open and consideramap F: D - C™. By writing F = (f, ..., f.)
and f, = u, + \/ —1v,, where u,, v, are real valued functions on D, we can
view F = (uy, vq, ..., U,, v,) as a map from D < R*" into R*™. If F is differen-
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tiable at a e D, its differential dF (a): R*" — R?™is a linear transformation with
matrix representation given by the (real) Jacobian matrix

ou, Ouy  Ouy

0x; 0Oy, 0y
OV,

J[R(F) — axl
ov,, ov,
0X 4 0y,

evaluated at a.

The map F: D — C™ 1s called holomorphic if 1its (complex) components
fi, ..., f, are holomorphic functions on D. If F is holomorphic, its differential
dF(a) at ae D 1s a complex linear map C" — C™ (this follows from Theorem
1.2), with complex matrix representation

o, .. 0

52, () 52, (a)
Fa)=| :

Ofm, .. Ofm

52, (a) 52, (a)

We call F'(a) the derivative (or complex Jacobian matrix) of the holomorphic
map F at a.

Lemma 2.1. [f D < C" and F: D — C" is holomorphic, then

det JpF(z) = |det F'(z)|* > 0
for ze D.

ProOOF. After a permutation of the rows and columns one can write

ou, ou,
0X; 0y;

det JRF — det ......... ......... :

oy, oy,
0x;) . \0y:

where the four blocks on the right are real n x n matrices. Adding i = \/ —1
times the bottom blocks to the top and using the Cauchy—Riemann equations
0f/0Z; = 0, 1.e., Ou, /Ox; = Oy, /0y; and Ou, /0y; = — Oy, /0X;, one obtains

ou, 0v.\ : (.0u, Ou
+ 1 : l —
00X, 0X; . 00X axj

J J J

detJ[RF:-det ................E .................
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Now subtracti = \/ — 1 times the left blocks from the right side; it follows that

I
(ax) =0

det J[RF —det | -0 ......... = det F’ - det F’,

where we have used that df /0z; = df /0x; tor holomorphic f. =

2.2. Composition and the Chain Rule

We now discuss the important result that the composition of holomorphic
maps i1s again holomorphic; in particular, this implies that the definition of
holomorphic functions is independent of the Euclidean coordinates of C".

Lemma 2.2. Let D < C" and Q < C™ be open sets. If F = (f{, ..., fn): D — €
is holomorphic and g€ O(L)), thengo F € CO(D); moreover, foraeDand 1 <j < n,

5(g : i
21 D= ¥ L),

ZJ J

(@).

ProOOF. We give two proofs of this result. The first one is based on power series,
while the second uses a complex version of the real chain rule, which 1s useful
in other contexts as well.

Suppose ae D, F(a) = be (). Choose a polydisc P(b, ¢) =< €3, such that

gw) =gb)+ > -l

Mz V!

(b)(w — b)’,
with normal convergence on P(b, ¢). By continuity of F, there is a polydisc
P(a, 0) = D, such that F(z)e P(b, ¢) for ze P(a, 6). Hence, for ze P(a, 9),

DYg )
=(b)(F(2) — b, )

g(F(2)) = g(F(a)) + Y

=1 V

with normal convergence on P(a, 0). Since the terms of the series are holo-
morphic, it follows that g - F € O(P(a, 0)); moreover, forany 1 <j < n,

o(geF) . DYg 0 v
0z; (a) = Z ) (b) |:5Zj (F(z) — b) :|(a)

V=1

In the latter series, the terms with |v| > 1 are 0, and (2.1) follows.
For the second proof, if F and g are only differentiable, then go F is
differentiable on D, and the (real) chain rule implies (use (1.13)!) that

0(geF) & | (99 o | (99 i
(2.2) 0z; ,;1 [(6wk )62 (aw-k )62]
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0(g°F) =1 [ 99 Of 0g Ofy
(2.3) kZ‘ I:(@wk )62 (6Wk )62 ]

foranyl <j<n If, in addition, F and g are holomorphic, then (2.3) implies
d(geF) =0,1e., go Fe®(D), and (2.2) implies (2.1). m

By applying Lemma 2.2 to each component of a holomorphic map G, one
immediately obtains the following result.

Theorem 2.3. Suppose F: D - Q < C™ and G: Q — C' are holomorphic maps.
Then Go F: D — C' is holomorphic and

(GoF)(z) = G'(F(z2)) F'(z) for ze D.

2.3. The Implicit Mapping Theorem

The study of solution sets of analytic equations, that is, the common zero set
of one or several holomorphic functions, is of fundamental importance in the
theory of several complex variables. A brief introduction into the more elemen-
tary properties of such sets, called analytic sets, will be presented in §3. Here
we first deal with the easier case of nonsingular equations.

Theorem 2.4. Let D < C" and let F =(f4,...,[,): D> C™ be holomorphic.
Suppose m < n, F(a) = 0 for some ae D, and

0
(2.4) detI: i (a)],,c=1 - # 0.

aZj’ j=n’—m-l’-1 ..... n
Thentherearee > 0,¢" > 0, and a holomorphicmaph = (h{,...,h,,): B'(d’,&)—
B"(a", &"), where a’ =(a{,...,a,_,), &’ =(a,_,+1, ..., a,), With the following
property.

if z = (2, 2")e B(d, &) x B"(a’, &"), then

(2.5)
F(z,z")=0 if and only if z" = h(Z).

In case m = n, the theorem means that h 1s constant, and hence z = a 1s the
only solution of F(z) = 0 1n a neighborhood of a. If m < n, the theorem means
geometrically that the set {ze D: F(z) = 0} is, near a, the graph of a holo-
morphic map h in n — m variables (see Figure 4).

Proor. Lemma 2.1, applied to the map F, defined by F(z") = F(da/, z") in a
neighborhood of a”, shows that det JgF(a”) # 0. Hence the implicit mapping
theorem from real calculus (see [ Nar 4],§1.3) can be applied, yielding &', &” > 0
anda C'maph = (hy,..., h,): B'(d, &)— B’(a’, ¢), such that (2.5) holds. To
complete the proof we must show that h is holomorphic near a.
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Figure 4. Local representation of the solution set of F(z) = 0 as the graph of the
holomorphic function A.

Since f, is holomorphic and f,(z’, h(z)) =0forZ’ e B'(a,¢')and 1 < k < m,
one obtains, by applying 0/0z,, 1 <1 < n — m, and using (2.3), that

m o, oh.
2.6 ', h(Z) —L(z") = 0, 1 <k <m
2.6 Y gy k@) ) m

n—m+j
By (2.4), the matrix of the system of linear equations (2.6) 1s nonsingular at
z' = d',and hence on B'(d/, ¢') for sufficiently small ¢'. Theretore (0h;/0z;)(z') = 0O
forl <j<mand 1 <[] <n— m,sothat his holomorphic on B'(d’,&’). =

The hypotheses (2.4) in the theorem is equivalent, except for a renumbering
of the components of F, to the statement that the derivative F' has maximal
rank = min(n, m) at the point a. We say that F is nonsingular at a if F'(a) has
maximal rank; F 1s nonsingular (on D), if F i1s nonsingular at every ae D.

It 1s easy to see that in case F: D — C™ is nonsingular at ae D and m > n,
the conclusion 1s the same as in Theorem 2.4 for m = n, namely z = a 1s an
isolated zero of F. In fact, even more is true: F is injective on a neighborhood

of a (see Corollary 2.6 below).

2.4. Biholomorphic Maps
We now consider 1n more detail the equidimensional case m = n.

Theorem 2.5. Suppose D < C" and the holomorphic map F: D — C" is non-
singular at a (i.e., det F'(a) # 0). Then there are open neighborhoods U of a and
W of b = F(a), such that F|,: U —> W is a homeomorphism with holomorphic

inverse H: W - U.

Proofr. We introduce the map G(w, z) = F(z) — w from C" x D into C". By
hypothesis, G(b, a) = 0 and
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0
o [ai], ..... (b, @) = det F'(a) # 0.

Therefore Theorem 2.4 gives a holomorphic map H from a neighborhood W
of b into a ball B(a, ¢) < D, such that for (w, z)e W x B one has G(w, z) = 0,
ie. w = F(z), if and only if z = H(w). It follows that H: W - U = F (W) is
the desired holomorphic inverse of F|,. m

Corollary 2.6. Suppose D < C" and F: D — C™ is holomorphic and nonsingular
at aeD. If m > n, then there is a neighborhood U of a, such that F| is injective.

ProoF. Since rank F'(a) = n, after renumbering the components of F =
(f,...,f.), one can assume that F = (f,, ..., f,) is nonsingular at a. Theorem
2.5 now implies that F, and hence also F, is injective on some neighborhood
Uofa =

Let D,, D, be open sets in C”", resp. C™; we say that the map F: D, —» D, 1s
biholomorphic if F i1s a holomorphic homeomorphism with holomorphic
inverse F~*: D, — D,. If F is biholomorphic, it follows from the chain rule
that (F ') (F(z)) is the inverse matrix of F'(z); in particular, F is nonsingular,
and m = n. The open sets D, and D, are called biholomorphically equivalent if
there is a biholomorphic map F: D, —» D,. F: D, — D, is called biholomorphic
at ae D, 1if there 1s a neighborhood U of a, such that F|,: U —> F(U) 1s
biholomorphic. Theorem 2.5 can now be reformulated: If D < C" and
F: D — C"is holomorphic and nonsingular at ae€ D, then F is biholomorphic at a.

If F: U—- W 1s biholomorphic, with F(z) = w = (w,, ..., w,), we also say
that (w;, ..., w,) 1s a holomorphic, or complex coordinate system on U. A
function h(z) on U can then be expressed in terms of the w-coordinates, 1.e.,
by considering h o (F ~*)(w), and the analytic properties of 4 do not depend on
the choice of coordinates. It will often be useful to introduce special holo-
morphic coordinates in order to simplify the geometry. We will see this
technique at work in the following sections.

Remark. The results discussed here and in the preceding section are the
obvious analogues of well known theorems in real calculus. More surprising
is the fact that an injective holomorphic map F from D < C" into C" 1s
necessarily nonsingular, and hence biholomorphic from D onto F(D). No
comparable result exists in real calculus: consider the map f: R — R given by
f(x) = x°! In case n = 1, this result is an easy consequence of the residue
theorem, but for n > 1 the proof 1s more subtle. We will discuss it 1n §2.8, after
we have introduced the concept of complex submanifold in §2.6.

Example. It 1s well known that every biholomorphic map F: C — C is neces-
sarily linear, i.e., of the form F(z) = az 4+ b for some constants a, be C. In
contrast, the group of automorphisms Aut(C?) = {F: C* —» C?, biholomor-
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phic} is much larger: every entire function h: C — C defines a biholomorphic
map F,: C* — C* by setting F,(z, w) = (z + h(w), w).

2.5. The Biholomorphic Inequivalence of Ball and Polydisc

The Riemann Mapping Theorem states that a connected, simply connected
domain in the complex plane is either C itself or else it is btholomorphic to
the open unit disc. The following result shows that 1t i1s impossible to find
a higher dimensional analog of Riemann’s Theorem which involves only
topological conditions.

Theorem 2.7. There exists no biholomorphic map
F: PO, 1) - B(0, 1)

between polydisc and ball in C" if n > 1.

This fact was discovered by H. Poincaré 1n 1907 (“Les fonctions analytiques
de deux variables et la représentation conforme,” Rend. Circ. Mat. Palermo
23(1907), 185-220). Poincare’s original proof was based on a computation
and comparison of the groups of holomorphic automorphisms of ball and
bidisc which fix the origin. The proof given below 1s more direct and elemen-

tary, and 1ts basic idea 1s applicable in much more general settings (see Exercise
E.I1.2.12).

ProoF. For simplicity, we consider the case n = 2; the argument easily gener-
alizes to arbitrary n > 2. Let A = {{eC: |{| < 1} be the open unit disc in C.
Suppose F = (f,f,): A x A— B = B(0,1) < C? is biholomorphic. We will
show that for each fixed we A the holomorphic map F,,;: A — B defined by

F(2) = (af (2, w), L2, w))

ow ow

satisfies
(*) lim F,(z) = 0.

z—bA
This immediately gives a contradiction, as follows: (x) implies that F,, extends
continuously to A, with boundary values 0. Since F,, is holomorphic on A, it
follows that F,, = 0 on A, i.e., F(z, w) 1s independent of w, and F could not be
one-to-one.

To prove (x) it is enough to show that every sequence {z,} = Awith |z,| —> 1
has a subsequence {z, } with lim;,, F,(z, ) = 0. Given such a sequence {z,},
an application of Montel’s Theorem to the bounded sequence {F(z,, *),
v=1,2,...} of holomorphic maps F(z,, -): A - Bin the second variable gives
a subsequence {z, }, such that {F(z, , -)} converges compactly in A to a holo-
morphic map ¢: A — B. Since F is biholomorphic, we must have F(z,, w) —
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bB for every weA as z, » bA; hence ¢(A) < bB, ie., if ¢ = (¢, ¢,), then
Lo, (W)|* + |p,(W)|* =1 for all we A. By applying 0*/0wdw to this equation
one obtains || (w)|* + |p5(w)|* = 0, so ¢’ = 0 on A. Since

F,(z,,w)—> ¢'(w)  asj— oo,

the desired conclusion follows. =

Theorem 2.7 shows that simply connected domains i1n dimension two or
higher are much more “analytically rigid” than in the plane. Related to this
theme, it has long been known that in C? there exist simply connected
domains whose only holomorphic automorphism is the identity (cf. [BeTh],
p. 169). In 1935 W. Rothstein (“Zur Theorie der analytischen Abbildungen im
Raum zweler komplexer Veranderlichen,” Diss. Univ. Munster, 1935) found
the first domain of holomorphy with these properties. (See Chapter 11, §2.1, for
the definition of this concept.) More recently, D. Burns and S. Shnider [ BuSh]
showed that “almost every” sufficiently small C*® perturbation of the unit ball
in C? has no holomorphic automorphism besides the identity, and hence, in
particular, is not biholomorphically equivalent to the ball.! The situation in
higher dimensions 1s thus considerably more complicated than in the plane,
and a great deal of progress has been made 1n this area during the last decade.
The result of Burns and Shnider mentioned above makes use of Fefferman’'s
Mapping Theorem, a fundamental result dealing with the C* extension to the
boundary of biholomorphic maps, which was proved 1n 1974 by C. Fefferman
[Fef]. This theorem made it possible to apply some classical results of E.
Cartan on biholomorphic invariants of hypersurfaces in C2. We will prove

Fefferman’s Theorem in Chapter VII, §8.

2.6. Complex Submanifolds

We now introduce a (local) generalization of the concept of complex linear
subspace of C" which 1s invariant under complex coordinate changes. Usually
there 1s no need to introduce this concept in function theory in one complex
variable, as the relevant sets are either open subsets of C or discrete, but in
several variables these so-called complex submanifolds appear naturally as
the solution sets of nonsingular systems of holomorphic equations, and,
together with the more general concept of analytic set, they are a very important
tool for proofs by induction over the number of variables.

Definition. A set M < C" 1s called a complex submanifold (of C"), if for every
point Pe M there are a holomorphic coordinate system (w,,..., w,) on a

' Tt is known that—just as in case n = 1—all holomorphic automorphisms of the unit ball B in
C" are rational, and that the group Aut(B) is transitive. This was proved by K. Reinhardt [Rei]
in case n = 2 (see also [ BeTh], p. 162); the reader may find a proof for arbitrary n in [Rud 3].
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neighborhood U of P, and an integer k, 0 < k < n, such that
(2.7) MNU ={zeU:w(z) =0 for j > k}.

The integer k appearing 1n (2.7) 1s called the (complex) dimension of M at
P, and it 1s denoted by k = dimg M, or simply dim M,. dim M, is indepen-
dent of the holomorphic coordinate system appearing in the definition. In fact,
if w” is another such coordinate system on U, with MNU = {ze U: w? (z) =
0 forj > k7 }, then w” ow™1: w(U) - w” (U) is biholomorphic. The sets Q =
w(U)N{w; =0 for j > k} and Q% =w?(U)N{w/ =0 for j > k*} can be
viewed as open subsets of C¥, respectively C*#, and the restriction w” o w™1|:
Q — Q7 is biholomorphic; this implies k = k”.

Notice that dim M, 1s locally constant on M, and hence 1s constant on each
connected component of M. The dimension of M is defined by

dim M = sup dimp M,.
PeM

Every open set D < C" 1s a complex submanifold of dimension n at every
point. Conversely, if dim M, = n, there 1s a neighborhood U of P in C", such
that MN U = U. If E 1s a k-dimensional complex affine subset of C", then E
and E N D are complex submanifolds of dimension k at every point. Also, a
set S < C" 1s discrete (1.€., every point 1s 1solated) if and only if S 1s a complex
submanifold of dimension 0. The details are left to the reader.

The following characterization gives more interesting examples.

Theorem 2.8. A subset M of C" is a complex submanifold if and only if for every
P e M there are a neighborhood U of P, an open ball B¥(a, ¢) = C*, and a non-
singular holomorphic map H: B®(a, &) - C", such that

(2.8) H(B*(a, &) = MNU.

A map H which satisfies all the conditions in Theorem 2.8 is called a local
parametrization of M at P.

Proor. Suppose first that M 1s a complex submanifold, and let w = (w,, ...,
w,). U —> W be a coordinate system on the neighborhood U of P which
satisfies (2.7), with k = dim M,. By shrinking W and U we may assume that
W = B(a, ¢), where a = w(P)and ¢ > 0. Leta’ = (a,, ..., a,)and set H = w™!;
the map H: B®(a’, &) > C" defined by Hw,, ..., w,) = Hw,, ..., w, 0, ..., 0)
has all the required properties.

Conversely, if H: B¥(a, ¢) - C" is a local parametrization of M at P, we
may assume that H(a) = P. Since H is nonsingular, there are vectors u, ., ...,
u, € C" which, together with the vectors 0H/ow,(a), ..., 0H/ow,(a), form a basis
for C". Define the map H for weB(@d,¢) = C", d = (a4, ..., a;, 0, ..., 0), by

H(W) — H(Wla e wk) T Wi +1 Uk +1 T Wpliy.

Then H is biholomorphic at d, and w = H™! is a coordinate system on a
neighborhood U of P which satisfies (2.7). m
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Theorem 2.9. Let D < C” and suppose F: D — C™ is nonsingular. Then for every
a€ D the level set

L,(F)={zeD: F(z) = F(a)}

is a complex submanifold of dimension max(0, n — m) at every point.

Proor. Let Pe L (F). If m > n, then P 1s isolated in L (F) by Corollary 2.6,

and the theorem is proved. We now assume m < n. After replacing F by
F7 = F — F(a) and renumbering the coordinates, the hypotheses of Theorem

2.4 are satisfied for F7. It follows that in a neighborhood U of P, {ze U:
F7(z) = 0} is the graph of a holomorphic map h: BY(P’, ¢) - C™, with k =
n — m. The graph map H(w) = (w, h(w)): B®(P’, ¢) > C" then defines a local
parametrization of {ze U: F7(z) = 0} = L,(F)N U. The result now follows
from Theorem 2.8. =

Example. In the theory of one complex variable the Riemann surface S of
f(z) = \/E 1s typically described as a “branched” covering of C or of the closed
Riemann sphere. Only after a deeper investigation of the “branching point” O
does one realize that in a more abstract sense the complex structure of S near
0 is the same as near every other point on S. Now consider M = {(z, w)e C*:
w? — z = 0}; M is a complex submanifold of C* of dimension 1 (use Theorem
2.91), and M gives a concrete representation of S (without the point at co). The
projection ,: M — C onto the first coordinate exhibits the familiar branched
covering of M = § over C, and the projection n,: M — C onto the second

coordinate represents the function \/z— ”on M. There is an obvious way, made
precise in the following section, in which these functions are “holomorphic on

M”.

2.7. Function Theory on Complex Submanifolds

The local parametrizations of a complex submanifold M < C”" can be used to
define the concept of a holomorphic function on M.

Definition. The function f: M — C is holomorphic at Pe M if foH™ ' is
holomorphic at H™*(P) for a local parametrization H of M at P. f is holo-
morphic on M if f is holomorphic at P for every Pe M.

The definition 1s independent of the particular local parametrization H. (see
Exercise E.2.10). Holomorphic maps F: M — C™ are now defined in the obvi-
ous way. We leave it to the reader to verify the following results.

Theorem 2.10. A function f: M — C is holomorphic at Pe M if and only if there
are a neighborhood U of P (in C") and f € O(U), such that f|ynv = flyuno-

Theorem 2.11. Let H be a local parametrization of M at P, with image M N U.
Then H': MN U — C4™Mr s holomorphic.
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The reader should convince himself that all the results in §1 which do not
involve explicitly the Euclidean coordinates will remain true if the open set
D < C" 1s replaced by a complex submanifold of C”. All the other results still
apply locally once a local parametrization has been fixed.

Remark. The reader familiar with differentiable submanifolds of R", 1.e., curves,
surfaces, etc., will have recognized the obvious formal similarities between
those concepts and the theory of complex submanifolds. But there are some
surprising differences as well, as evidenced by the following result, which has
no counterpart for differentiable or even real analytic submanifolds of R".

Theorem 2.12. Let M < C" be a complex submanifold and suppose that M is
compact. Then M consists of finitely many points.

Proor. It 1s enough to show: if the given M i1s also connected, then M 1s a
single point. For each j =1, ..., n, the restriction to M of the coordinate
function z; is a holomorphic function on M. Since z;,(M) < C 1s compact, the
open mapping theorem (Theorem 1.21) implies that z;|M is a constant p;.

Hence M = {(p1, ..., Pn)}- ™

2.8. Injective Holomorphic Maps

We now prove the result announced in the Remark at the end of §2.4. For
this, we will need the following information about the zero set Z(f, U) =
{ze U: f(z) = 0} of a holomorphic function f defined on U.

Lemma 2.13. Let f be a holomorphic function on the connected region D in C".
Suppose Z( f, D) # & and f #* 0. Then there exists an open set U < D such that

Z(f, U)is a nonempty complex submanifold of U of dimension n — 1.

Proor. In case there 1s a point Pe Z(f, D) with df(P) # 0, the statement
follows immediately from Theorem 2.9. In order to apply this result in the
general case, we consider higher order derivatives of f as follows. Let

A = {AeN: D*(z) =0 for all ze Z(f, D) and |«| < A}.

Since f # 0, the Identity Theorem 1.19 implies that A is finite. So there is
BeN" with || = max A, such that the differential d(D?f)(P) # O for some
PeZ(f, D), and such that

(2.9) Z(f, D) < Z(D*f, D).

By Theorem 2.9, for every sufficiently small neighborhood U of P, the set
Z(DPf, U) is an (n — 1) dimensional complex submanifold of U. We now
complete the proof by showing that U can be chosen so that Z(f, U) =
Z(D*f, U).
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After a holomorphic change of coordinates near P, we may assume that
P = 0 and that

(2.10) Z(DPf, W) = {(W,w,)eW:w, =0}

for some neighborhood W of 0. Choose o0, > 0 sufficiently small so that
f(0', w,) has a zero of some positive order k at w, = 0, and no other zero on
A = {|w,| < d,}. By continuity of f and Rouché’s Theorem ([Ahl], p. 153),
there 1s o' > 0 such that the number of zeroes of f(w', -) in A 1s constant for
w' e P(0', 0'),1.e.,equals k > 0. We clearly may assume that U = P(0, (9, 9,)) <
W. Thus, for each w' e P(0', 0’) there is at least one w,e A with (w', w,) e Z( f, U).
Moreover, by (2.9) and (2.10), if (W', w,)e Z( f, U), then w, = 0. Hence we have
shown that Z(f, U) = {weU:w,=0} = Z(D’f,U). =

Remark. In §3 we will refine some of the arguments used 1n the preceding proof
in order to obtain more precise local information about the zero set of a holo-

morphic function.

Theorem 2.14. Let D < C" and suppose that the holomorphic map F: D — C" is
injective. Then det F'(z) # O for all ze D, and hence F is biholomorphic from D

onto F(D).

The proof of Theorem 2.14 will involve induction over the number of
variables n. We assume as known the classical case n = 1 (see [ Ahl], Theorem
4.11). Given the induction hypotheses that the theorem has been proved for
n — 1 > 0O variables, we first prove the following technical lemma.

Lemma 2.15. Under the above assumption, if F is as in Theorem 2.14, then
F'(a) # 0 at a point ae D implies det F'(a) # 0.

ProoF oF LEMMA 2.15. After renumbering we may assume that F = (f,, ..., f,)
and 0f,/0z,(a) # 0. It w(z) = (24, ..., 2,1, Ju(2)), then det(dw,/0z;)(a) # O, so
that w = (w,, ..., w,) defines holomorphic coordinates in a neighborhood of
a. In these coordinates, F = Fow™! is given by

(2.11) Fw) = (g:(W), ..., gu-1(W), w,)

with g4, ..., g,—; holomorphic at b = w(a). We write w = (W, w,), where w' =

(Wg, ..., w,_;), and define G(w') = (g,(W, b,), ..., g,_1(W, b,)). Then G 1s an
injective holomorphic map in (n — 1) variables in a neighborhood of b’ = (b,,
..., b,_1) so that, by inductive assumption, det G'(b’) # 0. But this and (2.11)
imply that det F'(b) # 0, and hence det F'(a) # 0, as well. m

Returning to the proof of the theorem, notice that h = det F’ € O(D). Suppose
Z(h) = {zeD: h(z) = 0} # . It then follows from Lemma 2.13 that Z(h)
contains a complex submanifold M # ¢ of dimension =n—1> 0. By
Lemma 2.15, F'(z) = Ofor all ze Z(h), and hence F’ = 0 on M. But this implies
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that F is locally constant on M—just express F in terms of local parametriza-
tions of M—and since dim M > O, F could not be injective. This contradiction
shows that Z(h) must be empty.

Remark 2.16. It 1s crucial in Theorem 2.14 that we are in the equidimensional
case. For example, the map f(z) = (z3, z°) from C into C? is injective, but f is
singular at O.

EXERCISES

E.2.1. Let D = C" be open and suppose F = (fy, ..., f,): D = C" has components 1n

C!(D). Show that
of \ [ O

(o))

E.2.2. Suppose D, =« C"i1sopenand F = D, - D, <« C™1s biholomorphic. Show that
n=m.

det J F = det

E.2.3. Let S < C" be a subset. Show that S is discrete if and only if S 1s a complex
submanifold of dimension O.

E.2.4. Let A* be the unit bidisc in C%. Show that every feAut(A?) is of the form
f =(f1,f,), where f, and f, depend each on only one variable and f;, f, €
Aut(A). (Hint: By using an automorphism of the above simple type, reduce the
general case to the case where f(0) = 0.)

E.2.5. Carry out the proof of Theorem 2.7 for arbitrary n.

E.2.6. Prove Cartan’s Uniqueness Theorem: If D — C" 1s a bounded connected region
in C" with OeD, and F: D — D is a holomorphic map with F(0) =0 and
F’(0) = identity matrix, then F is the identity map. (Hint: Let F(z) = z +
P.(z) + O(|z|*"1) be the beginning of the Taylor series of F, where P, is homo-
geneous of degree k > 2, and apply Cauchy estimates to the iterates F’ =
Fo---o F (jtimes)).

E.2.7. Let B, = C" be the unit ball and set G, = {(w, w,)e C": Imw, > |W|*}. G, is
called the Siegel upper half-space. Define ¢(z) = (wy, ..., w,) byw, = z;/(1 + z,)
forl<j<n—-—1landw,=i(l — z,)/(1 + z)).

(1) Show that ¢: B, — G, is biholomorphic. (¢ is called the Cayley transform.)
(ii) The boundary bG, = {(z/, t + i|Z'|*): 2’ e C"™', t e R} is naturally identified
with C*"™! x R = {(Z, t)}. Show that the multiplication

Z,t):- ()= +, t+1+ 2Im(Z, )

turns bG, into a group which 1s non-abelian 1f n > 1. (This group 1s called
the Heisenberg group of order n — 1.)

E.2.8. Generalize the example after Theorem 2.9 to find a concrete realization of the
Riemann surface of the inverse of a polynomial p(z) = ) -, a;z’ with a, # 0.
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E.29. (i) Show that M = {(z, w)ye C*: z?2 = w3} is not a complex submanifold of C=.
(Hint: Consider a local “parametrization” H = (h,, h,) of M near 0 and

show that H'(0) = 0.)
(i) Show that M defined in (i) is homeomorphic to C.

E.2.10. Let M =« D < C" be a complex submanifold near the point Pe M. Suppose H,

and H, are local parametrizations of M near P. Show that for a function
f: M — C the function f o H; ! is holomorphic at H; ' (P) if and only if fo H; !
is holomorphic at H, *(P).

E.2.11. Prove Theorem 2.10.
E.2.12. Prove Theorem 2.11.

E.2.13. Let M; and M, be closed, connected complex submanifolds of the region
D < C". Suppose there is an open neighborhood U of Pe M, N M, such that
UNM, =UNM,.Show that M, = M,.

E.2.14. Let f € O(D). Prove that the set of regular points in the zero set Z(f) of f in D
1s dense in Z(f).

§3. Zero Sets of Holomorphic Functions

3.1. The Riemann Removable Singularity Theorem

We first discuss an elementary result—Lemma 3.2 below—about the struc-
ture of the zero set of a holomorphic function which, nevertheless, has several
interesting applications, including the generalization of the classical one vari-
able theorem of Riemann on removable singularities. For this purpose, it is
necessary to single out one of the coordinates.

Definition. A function f holomorphic at a = (d/, a,) € C", with f(a) = 0, 1s said
to be z,-regular of order ke N™ at q, if g(z,) = f(d, z,), has a zero of order k
at z, = a,, 1.e., if

(3.1) g(a,) =g'(a,) =" =g% a,) =0,9%a,) #0.

Lemma 3.1. Suppose f e O(B(a, ¢)), f(a) = 0, but f is not identically zero. Then,
after a suitable complex linear coordinate change, f is z,-regular of some order
k>1ata.

ProoF. By hypothesis there 1s pe B(a, ¢), p # a, such that f(p) # 0. After
applying an affine complex linear coordinate change, one may assume that
p — a lies 1n the z -axis, 1.e., p = (a/, p,), p, — a, # 0. Then g(z,) = f(d/, z,) 1s
holomorphic and nonconstant on {|z, — a,| < ¢}. By the Identity Theorem
1.19 there is ke N, such that (3.1) holds, and k > 1, since g(a,) =0. m
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Example. The function f(z, z,) = z,-z, + z} satisfies f(0, z,) =0, so it is
not z,-regular at 0. Introducing the coordinates w, = z,, w, = z,, f becomes
w,-regular of order 6. On the other hand, in the coordinates u, =z, — z,,
u, = z,, f becomes u,-regular of order 2. See Exercise E.3.1 for a precise
statement 1nvolving the choice of a minimal order of regularity.

Without loss of generality we will limit ourselves to the case a = 0.

Lemma 3.2. Suppose f is holomorphic at 0, f(0) = O, and f is z,-regular of order
k > 1 at 0. Then for each sufficiently small 0, > O there is 0’ > 0, such that for
each fixed z' € P(0', 0') the equation f(Z, z,) = O has precisely k solutions (counted
with multiplicities) in the disc {|z,| < J,}-

ProoOF. By hypothesis, for each sufficiently small o, > 0, g(z,) = (0, z,) 1s
holomorphic on |z,| < 0,, g has a zero of order k at 0, and g(z,) # O for
0 <|z,| <0, Bycontinuity of f and Rouché’s Theorem, there 1s 0o’ > O such
that the conclusion of the Lemma holds for all z’e P(0’, 0'). =

We see that, locally near O, the zero set of f consists of a “branched covering”
over P(0’, 0') with at most k sheets which are glued together at some points.
We will see later, as a consequence of the Weierstrass Preparation Theorem,
that under suitable hypothesis there will be k distinct sheets over “most”
z e P(0, ¢'), each of which will be an (n — 1)-dimensional complex submani-
fold at the k points lying over Z'.

Corollary 3.3. The zeroes of a function holomorphic in 2 or more variables are
never isolated.

In order to deal with a somewhat more general situation we say that a subset
E of D < C"is thin, if for every point p € D there are a ball B(p, ) and a function
feO(B(p, €)), f not constant, such that f(z) = 0 for ze EN B. Notice that if
E < D 1s thin, its closure (in D) is thin, and, by the Identity Theorem, E is
nowhere dense.

Theorem 3.4. Let E be a thin subset of D < C". Let he O(D — E) and suppose
h is locally bounded on D (i.e., for all Q =< D, h is bounded on  — E). Then
there is H e O(D) such that H = hon D — E.

PRroOOF. Since E is nowhere dense, the extension H—1if it exists—1s determined
uniquely by h. Therefore it 1s enough to construct a holomorphic extension
of h to a neighborhood of an arbitrary point p € E. Without loss of generality
we may assume p = 0 and E = {z: f(z) = 0}, where f is holomorphic at 0,
and—in view of Lemma 3.1—f 1s z,-regular of some order k. With o0 = (¢’, 9,)
as 1n Lemma 3.2, so that P(0, ) =< D, the function

(32) H(Z’, Zn) — (27'Ci)_1 J\ h(Z,, g) dC

=6, 2Zn— 6
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clearly 1s defined and holomorphic on P(0, 0). Now, for z’ fixed, the function
h(z', -)1s holomorphicon |z,| < 0,, with the possible exception of finitely many
points, namely the k zeroes of f lying over z'. By the classical one variable
theorem of Riemann (see [Ahl], p. 124), h(z', -) extends holomorphically to
z,| < 0,, and therefore the integral in (3.2) equals h(Z, z,) if (z/, z,) ¢ E. Thus
H=honP0,0)— E. =

This proof 1s based on the following general principle: in order to find an
extension of h, assume the existence of the required extension and apply an
appropriate integral representation formula—the Cauchy integral formula
(3.2) in the case just discussed. The main difficulty then involves proving that
the integral indeed defines an extension of the given function. We will see much
more striking applications of this principle in Chapter II, §1, and in Chapter
IV, Theorem 2.1.

Remark 3.5. As 1n case n = 1, weaker growth conditions for h are sufficient
for the existence of a holomorphic extension across thin sets. For example,
the conclusion of Theorem 3.4 holds if he O(D — E) 1s only assumed to be
locally in L* (see Exercise E.3.2). On the other hand, the function h(z) = z,*
is holomorphicon C" — E, E = {z: z, = 0}, hislocally in L? for any p < 2 (but
not in L*!), and clearly h has no holomorphic extension across E.

Corollary 3.6. Let E be a thin subset of D < C". If D is connected, so is D — E.

Proor. Since D — E will be connected if D — E is, we may assume that E is
closed. Suppose U # J 1s an open and closed subset of D — E. We must show
that U = D — E. Define the function h by setting h(z) =0 for ze U and
h(z) = 1 for ze(D — E) — U. Then h is bounded and holomorphic on D — E,
so by Theorem 3.4 there 1s He O(D) with H = hon D — E. As D is connected,
the Identity Theorem implies H =0 on D,and hence (D — E) — U = J. =

Finally, we state another property of thin sets which follows from the
geometric information contained in Lemma 3.2.

Theorem 3.7. Let E be a thin subset of D — C". Then the 2n-dimensional
Lebesgue measure of E is zero. In particular, if D is connected and f e O(D)
vanishes on a set of positive measure, then f = 0 on D.

The proof is left to the reader.

3.2. Analytic Sets

In several complex variables it is important to study not just the zero set of
one holomorphic function, but also of several functions, i.e., of holomorphic
maps. In 92 we already studied the case of regular maps, which led us to the
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concept of a complex submanifold. The general case is quite a bit more
complicated. Here we briefly discuss some of the relevant concepts and some
simple examples, mainly in order to familiarize the reader with the basic
terminology. For further studies the interested reader should consult some of
the specialized literature, for example R. Gunning [ Gun ] and R. Narasimhan

| Nar 2.

Definition. A subset 4 of the region D < C"is called analytic in D if A4 is closed
in D and if for every p € A there are an open neighborhood U, of p in D and
a holomorphic map H,: U, — C's, such that

(3.3) UNA={zeU, Hyz) = 0}.

Stated differently, (3.3) means that U, A4 1s the common zero set of the
components h{, ..., ii? of H,,.

It readily follows from the definition that 4, U A, and A, N A, are analytic
sets in D whenever 4, and A, are analytic in D. An analytic set A < D 1s said
to be reducible if 4 can be writtenas A = A; U A,, where A, A, are analytic
in Dand A; # A, A, # A. A 1s said to be irreducible if 4 is not reducible.

A point pe A of an analytic set A4 1s called a regular point of A—or A 1s said
to be regular at p—1f there is a neighborhood U of p, such that AN U 1s a
complex submanifold of U, and a singular point otherwise. The set of regular
points 1s denoted by £(A); it 1s the maximal complex submanifold contained
in A. The set ¥ (A) = A — A(A) 1s called the singular set of A.

We discuss some examples: (1) Every closed (in D) submanifold M of D < C"
1s analytic in D, with (M) = M; in particular, D itself 1s analytic in D. (2) The
set A, = {(z, w)e C?%: z* — w> = 0} is analytic in C?, (0, 0) is a singular point
of A,,and %#(A,) = A, — {0} (see Exercise E.2.9). The map t — (t>, t*) estab-
lishes a homeomorphism between C and A4,, so the topological structure of
A, 1s still very simple, even near the singular set. (3) The analytic set 4, =
(24, 2,): 2,2, = 0} in C* also has (0, 0) as its only singular point, but in
contrast to the previous example, no neighborhood of (0, 0) in 4, is homeo-
morphic to an open set in C; in fact U N A, — {0} is disconnected for any such
neighborhood U. Still, the singularity of 4, arises in a simple way: A, 1s
reducible. In fact A, = C,UC,, where C; = {(z{,2,):z; =0}, i =1, 2 are
complex submanifolds, and {0} = C;NC,. (4) Let B= {zeC>:z§ — z,2, =
0}; we leave it to the reader to check that B — {0} is a connected complex
submanifold of dimension 2, and that B is irreducible (see Exercise E.3.5). We
claim that B is not locally Euclidean at O, that 1s, no neighborhood U of O in
B has the topological structure of an open ball (in R*).! In fact, if U = B is
such a locally Euclidean neighborhood, then U — {0} would have to be simply
connected. But this is not possible, as the map n: C* — {0} - B — {0}, given
by n(t,, t,) = (t{, t3, t;t,) is a two-sheeted covering map. So ¥(B) = {0}.

1 The reader unfamiliar with covering spaces may omit the argument which follows.
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Theorem 3.8. Let A be an analytic set in the connected region D in C". If A # D,
then A is thin, and hence D — A is connected.

Proor. Since the second statement in the conclusion follows from the first, by
Corollary 3.6, it is enough to show that if 4 1s not thin, then 4 = D. For each
pe A we choose a connected neighborhood U, and a holomorphic map
H,: U,— C'» such that (3.3) holds. If A4 is not thin, there must be at least one
pe A, such that all the components of H, are identically zero on U,. Hence,
ANU, = U, and the interior A of A is not empty. Ii; we can show that 4 is
closed in D, the connectedness of D will imply that A = D, and we are done.
So, take ge bA N D. Then A N U, is open and nonempty, and the components
of H, are zero on AN U,. By the Identity Theorem, they must be zero on all
of U,. This implies U, = A4, so g€ A and 4 isclosedin D. =

Remark. It 1s natural to ask whether one obtains a more general notion of
analytic set by considering solution sets of an infinite (rather than finite)
collection of holomorphic equations. The following theorem, whose proof
requires more detailed information about local properties of rings of holo-
morphic functions, shows that this 1s not the case (see [GuRo], Theorem
11.E.3).

Theorem 3.9. If % < (D) and A = {ze D: f(z) =0 for all fe F}, then A is
analytic in D.

3.3. The Weierstrass Preparation Theorem

If f1s holomorphic at 0e C", f(0) =0, and f 1s z,-regular of order k > 1, 1t
follows from Lemma 3.2 that for each z’ € P(0’, &) there is a unique normalized
polynomial 1n z, of degree k,

(3-4) 0(Z, 2,) = Zy + @1 (2)2, "+ + ao(2),

such that f(z’, -) and w(z/, -) have the same zeroes (counting multiplicities) in
z,| < d,: w(Z, z,) is simply the product | |5, (z, — ¢;(z)), where ¢,(2), ...,
¢.(z') are the zeroes of f(z/, -)in |z,| < 0,. Therefore f = w-u for some non-
vanishing function u on P(0, §). It is a remarkable fact, first proved by
K. Weierstrass, that both w and u are holomorphic (Theorem 3.10 below).
This result, for which several different proofs are now known (see [ Nar 2]), s
one of the cornerstones of local function theory in several variables.

A very interesting account of the history of the Welerstrass Preparation
Theorem and of its far-reaching consequences was given by H. Cartan ([ Car],
375—888). The proof given here follows classical arguments of Simart, first
presented in E. Picard’s 1893 Traité d’Analyse, Vol. 11, and later in [Osg],

33—-309.
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We first introduce some terminology. A function w as in (3.4) i1s called a

pseudopolynomial (in z,) at O if the coefficients a,, ..., a,_, are holomorphic
functions in z’ at 0’; w is called a distinguished pseudopolynomial, or Weierstrass
polynomial at O, if, 1n addition, q¢,(0') =--- =a,_,(0') = 0.

Theorem 3.10. Let f be holomorphic at O, f(0) = 0, and suppose f is z,~-regular
of order k > 1. Then there is a unique factorization

(3-3) f=wu

on some polydisc P(0, 8), where we O(P(0, 6'))[z,]" is a distinguished pseudo-
polynomial of degree k at O, ue O(P(0, 9)), and u # 0 on P(0, 0).

Proor. The uniqueness of the factorization (3.5) is obvious in view of the
preceding remarks. In order to prove that the coefficients of w are holomorphic,
we choose P(0, 0) as in Lemma 3.2. Notice that a,(z'), ..., a,_,(2") are the

elementary symmetric functions of the zeroes ¢,(z'), ..., @.(2’) of f(Z, -) in
z,| < 0,. The @;’s will, 1n general, not be holomorphic. However, it 1s a well
known consequence of the residue theorem that for any me N,

1 C"(0f)00)(Z, Q) dE o o
27ri jl . @0 , 2 e P(0, d')

(see [Ahl], p. 153-154). Since f(z/,() #0 for |{| = 0,, (3.6) implies that
S, € O(P(0', 0')). Finally, 1t is known from algebra that any symmetric function
of ¢y, ..., ¢, and therefore also a;,,0 < j < k — 1,1s a polynomialin S, Sy, .. ..
[t follows that a;e O(P(0', &')), and since f(0', z,) = z, - g(z,), with g(0) # 0, one
must have a;(0) = Oforj =0, ..., k — 1. Thus w(Z, z,)1s indeed a distinguished
pseudopolynomial at O.

It remains to be shown that u = f/w 1s holomorphic. From the construction
of w it is clear that u(z’, -) is holomorphic on |z,| < o0, for each fixed Z'

Therefore

3.6) S, (Z) = ; Q7'(2) =

(3.7) u(z, z,) = Sy

L[ 0a
t=6, & — Zn

The function (f/w)(Z’, {) i1s holomorphic in z’ for |{| = 9,, since w(z, {) # O
and o is holomorphic. It then readily follows from (3.7) that ue O(P(0, 0)). =

Theorem 3.10 can be viewed as a generalization of the Implicit Function
Theorem 2.4 in the case of one equation (m = 1). In fact, if df/0z,(0) # O, f 1s
z -regular of order 1, and the theorem implies that for ze P(0, 9), f(Z/, z,) = O
if and only if w(z, z,) =z, — a,(z') = 0, 1.e., z, = a,(2), where a, 1S holo-
morphic. The reader should consult [GuRo], Chapter 1.B, for a “complex
variable proof” of the general Implicit Function Theorem.

' If R is a ring, R[z,] denotes the polynomial ring with coefficients in R.
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3.4. The Zero Set of a Single Function

The Weierstrass Preparation Theorem reduces the local study of analytic sets
to certain pseudopolynomial equations which can be handled by a sophis-
ticated combination of algebraic and analytic techniques. As an introduction
we discuss some of the simpler results in the case of a single equation, a case
which is considerably easier than, but still quite representative of, the general

case.
We consider a pseudopolynomial we R[ X ], where R = O(P(0, o)) for some

polydisc P(0, o) < C", and we denote its zero set by
Z(w) = {(z, w)e P(0, 6) x C: w(z, w) = 0}.

Notice that R 1s an integral domain (Theorem 1.20), and therefore R has a

well defined quotient field which we denote by O.
By Theorem 2.9, every point p in Z(w) at which (dw/0X)(p) # 0 will be a
regular point of Z(w). We therefore analyze the common zero set of w and

ow/oX.

Lemma 3.11. Suppose w € R| X is irreducible in Q| X]. Let E < P(0, ) be the
set of points z, such that w(z, *) has at least one zero of multiplicity greater than

one. Then E is thin.

Proor. The Euclidean algorithm being valid in Q[ X ], the polynomials w and
dw/0X have a greatest common divisor, which must be 1, since w 1s irreducible.

Hence there are ¢, Y € Q[ X], such that
(3.8) ow + Yow/iX = 1.

Let he R, h # 0 be a common denominator for all the coefficients of ¢ and .
Equation (3.8) implies

(3.9) (ho)w + (h-)dw/dX = h,

where h- o and h-y e R[ X ].

We now interpret (3.9) as an equation for functions on P(0, 0) x C. Notice
that if ze E, 1.e.,, there is we C such that w(z, w) = dw/dX(z, w) = 0, then (3.9)
implies that h(z) = 0. Since h # 0 in R, h 1s not identically zero on P(0, 0) and
the lemma is proved. =

We summarize the main consequences.

Theorem 3.12. Let we R[ X ] be a Weierstrass polynomial of degree k which is
irreducible in Q| X ], and let m: C" x C — C" be the projection. Then there is a
thin subset E < P(0, 9), such that the following statements hold.

(i) Z(w)—n"*(E) is an n-dimensional complex submanifold of (P(0, 6)— E) x C;
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(ii) Z(w) — n~'(E) is dense in Z(w);
(ill) 7|z)-n-1g): Z(@) — 7~ (E) = P(0, 6) — E is a k-sheeted covering;
(iv) Z(w) — n *(E) is connected.

Proor. Let E < P(0, 6) be the thin set given by Lemma 3.11. Part (1) 1s a direct
consequence of Lemma 3.11 and Theorem 2.9. For (i1), let pe Z(w) with
a = n(p)e E. Then w 1s z,, {-regular at p. Let U be an arbitrary neighborhood
of p. By Lemma 3.2 there is y > 0, such that for each ze P(q, y), w(z, -) will
have at least one zero A with (z, A)e U. Any such z which is not in E gives a
point g = (z, A)e(Z(w) — n~*(E))N U. (iii) and (iv) require some familiarity
with covering spaces; the details are left to the interested reader (see Exercise
E.3.7). =

Remark 3.13. The reader may be tempted to conclude that Z(w) N n™*(E) is
the singular set of Z(w). Unfortunately, the situation is more complicated.
Even when this set is the exact “branch locus” of the covering exhibited by
Theorem 3.12, 1t may still contain regular points. For example, consider
w = z5 — 2z,2,, S0 that Z(w) is the analytic set B discussed in §3.2; notice that

ow/0z, = 225, and hence
Z()Nn Y (E) = {ze Z(w): 2, -z, = 0}.

But we had seen that Z(w) 1s regular at every point p # 0.
In order to apply Theorem 3.12 in case of arbitrary Weierstrass polynomials,

one needs a factorization into irreducible pseudopolynomials,

Lemma 3.14. Suppose w., w, € Q[ X']| are monic polynomials such that w{  w, €
R[X]. Then w, and w, are in R[ X ].

Proor. Write w =w; 0w, = X*+a,_; X'+ +a, where a,eR =
O(P(0, 0), 0 <j < k — 1. Since the coefficients of w(z, X) are locally bounded
on P(0, d), so are its roots ¢(2), ..., @(z). If w; = X* + bP_ X7 +--- +
by, i =1, 2, with b?e Q, 0 <j<k;— 1, lgt heR, h # 0, be a common de-
nominator for all the coefficients b{". Then E = {ze P(0, 6): h(z) = 0} is thin,
and bj? e O(P(0, ) — E), since the quotient of holomorphic functions is holo-
morphic wherever the denominator 1s #0.

For z¢ E, the zeroes of w,(z, -) respectively w,(z, -) are among the zeroes
of w(z, -); hence the coefficients bJ‘-i’(z) are elementary symmetric functions of
certain subsets of {¢,(2), ..., ¢,(2)}. In view of the remark at the beginning of
the proof, it follows that all coefficients b{” are locally bounded on D. There-
fore, by Theorem 3.4, each b}’ has a holomorphijc extension across the thin

set E, ie,b{’cR. =

Theorem 3.15. Let w e R[ X ] pe a pseudopolynomial. Then

w:wlnwzuuuuuwr,
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where each w;e R| X] is a pseudopolynomial which is irreducible in Q[ X ]. If w
is distinguished, so are w, ..., ,.

PrOOF. Let w = w, - - - w, be the factorization of w into irreducible monic
polynomials in Q[ X ] of degree > 1. Repeated application of Lemma 3.14 gives
w;€ R[X], 1 <i <r. Finally, if (0, X)= X*, one must have w,;(0, X) =
X% k, + -+ k, =k, ie, each w,is distinguished as well. =

By combining Theorem 3.12 and Theorem 3.15 one can now show that
Theorem 3.12 remains true for arbitrary Weierstrass polynomials w € R[ X,
except for part (iv). Unless w is irreducible, Z(w) — n~*(E) need not be con-
nected. Also, the number of sheets of the covering may now be smaller than
the degree of w. The reader may find more details in Exercise E.3.7.

To conclude this brief introduction 1nto analytic sets, let us mention that
the local description of the zero set Z(w) of an irreducible Weierstrass poly-
nomial given in Theorem 3.12 remains true for arbitrary analytic sets in the
following form. Suppose A is an analytic set in C" with Oe A, which 1is
irreducible at 0 (this means that 4 N P(0, ¢) is irreducible for all small ¢ > 0).
Then, after a suitable complex linear change of coordinates, there are an
integer k with O < k < n,a neighborhood U of 0, and a thinset E < n(U) < C¥,
where m = C" — C"is the projection onto the first k coordinates, such that the

following holds:

i) ANU — n " (E) is a k-dimensional complex submanifold of U, which is
dense in AN U,
i) n: ANU — n”Y(E) » n(U) — E is a finitely sheeted covering map;
(iii) ANU — n~*(E) is connected.

The integer k is called the dimension of A at O; 1t clearly depends only on A4
and not on the choice of coordinates, and 1t 1s known to agree with the
topological dimension of the set 4 at 0. For more details about this so-called
Local Parametrization Theorem the reader may consult [Gun] and [ Nar 2].

EXERCISES

E.3.1. Let f be holomorphic at 0 C".
(1) Show that f has a unique homogeneous expansion

where p, is a homogeneous polynomial of order k (i.e., p,(Az) = A*p,(z) for
LeC, ze(C").

(11) The minimal k in (1) such that p, % 0 1s called the order of f at 0. Show that
if f has order k at zero, then after a suitable linear change of coordinates, f
1s z,-regular of order k.
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E.3.2.

E.3.3.
E.3.4.

E.3.5.

E.3.6.

E.3.7.

E.3.8.

E.3.9.
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Let D be open in C" and let E <= D be thin. Show that every f e O(D — E) which
is locally in L? (i.e., every a€ D has a neighborhood U, < D, such that f|, _e
L*(U, — E)) has a holomorphic extension across E.

Show that a thin set in C" has zero 2n-dimensional Lebesgue measure.

Let M be a complex submanifold of D < C". Show that M is irreducible (as an
analytic set) if and only if M 1s connected.

Let A be an analytic set and let Z(A) be the set of regular points of A.

(1) Show that if Z(A) 1s dense 1n A4 (this is true for every analytic set), then A 1s
irreducible if #(A) 1s connected. (The converse is true also, but is much

deeper.)
(1) Show that the analytic set

B={zeC> z,z, — z5 = 0}
1s irreducible.

Continuity of roots. Let f be holomorphic at 0 and z,-regular of some finite
order. Show that thereis 0 > 0O,such thatif ¢: U’ — C defined 1n a neighborhood
U of O'eC"! satisfies |@(z')] < 6 and f(z’, ¢(z')) =0 for zZ’ e U’, then ¢ is

continuous at O’
Consider the setup in Theorem 3.12.

(1) Show that if w is irreducible, then Z(w) — n~'(E) is connected.
(i) Show by an example that Z(w) — n~'(E) need not be connected for an
arbitrary Weierstrass polynomial w.

Suppose A, and A, are analytic sets and let Pe A, N A,. Suppose that for every
neighborhood U of Pone has UN A, # UM A,. Show that P is a singular point
of A=A, UA,. (Hint: Use E.2.13))

Let f be holomorphic at 0. Show that there is a polydisc P(0, ) such that
A = {ze P(0, 9): f(z) = 0} is a finite union A = ( )j-; 4; of irreducible analytic
sets A, ..., A, 1n P(0, o).

Notes for Chapter 1

The origins of much of the material in this chapter are “lost in antiquity”;
certainly most of it was known to K. Weierstrass. One of the earliest systematic

presentations is in the 1924 edition of the book by W.F. Osgood [Osg]. The
first investigations of holomorphic maps between domains invariant under
rotations 1n the coordinate axis (1.e., Reinhardt domains 1n the present termi-
nology) are due to K. Reinhardt [Rei]; major progress in the theory of holo-
morphic maps was made in the early 1930s by H. Cartan (see, for example,
|Car], 141-254, 255-275, and 336-369). A very readable account of Cartan’s
fundamental results 1s given by R. Narasimhan [ Nar 3]. As noted in the text,
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the nonequivalence of ball and polydisc in more than one variable was
discovered by H. Poincaré. Many other proofs of this result are now known,;
in particular, 1t 1s a special case of the general results of H. Cartan. The proof
given here is based on ideas of R. Remmert and K. Stein [ ReSt 2], as presented
in [ Nar 3]. The regularity of injective holomorphic maps 1n the equidimen-
sional case (Theorem 2.14) is due to Clements (Bull. Amer. Math. Soc. 18(1912),
451-456) (cf. [ Osg], p. 149). Osgood’s presentation (| Osg], 141-149) 1s rather
difficult to follow; later proofs (for example, [ Nar 3], 86—89) were still quite
involved. The simple proof given here 1s due to J.P. Rosay [Ros]; the com-
pletely elementary proof of Lemma 2.13, which usually 1s obtained as a
consequence of the Weierstrass Preparation Theorem (see Theorem 3.12),
simplifies matters even further. The systematic investigation of analytic sets
was begun by R. Remmert and K. Stein [ReSt 1]. Their deeper properties are
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