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Pretface

This book is intended to serve as a textbook for a course in algebraic topology
at the beginning graduate level. The main topics covered are the classification
of compact 2-manifolds, the fundamental group, covering spaces, singular
homology theory, and singular cohomology theory (including cup products
and the duality theorems of Poincaré and Alexander). It consists of material
from the first five chapters of the author’s earlier book Algebraic Topology:
An Introduction (GTM 56) together with almost all of his book Singular
Homology Theory (GTM 70). This material from the two earlier books has
been revised, corrected, and brought up to date. There 1s enough here for a
tull-year course.

The author has tried to give a straightforward treatment of the subject
matter, stripped of all unnecessary definitions, terminology, and technical
machinery. He has also tried, wherever feasible, to emphasize the geometric
motivation behind the various concepts. Several applications of the methods
of algebraic topology to concrete geometrical-topological problems are given
(e.g., Brouwer fixed point theorem, Brouwer—Jordan separation theorem,
Invariance of Domain, Borsuk—Ulam theorem).

In the minds of some people, algebraic topology is a subject which i1s
“esoteric, specialized, and disjoint from the overall sweep of mathematical
thought.” It 1s the author’s fervent hope that the emphasis on the geometric
motivation for the various concepts, together with the examples of the applica-
tions of the subject will help to dispel this point of view.

The concepts and methods which are introduced are developed to the point
where they can actually be used to solve problems. For example, after defining
the fundamental group, the Seifert—Van Kampen theorem is introduced and
explained. This 1s the principal tool available for actually determining the
structure of the fundamental group of various spaces. Another such example
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is the cup product. Not only 1s the cup product defined and its principal
properties explained; cup products are actually determined in real, complex,
and quaternionic projective spaces, and these computations are then applied
to prove certain theorems.

In any exposition of a subject such as algebraic topology, the author has
to make choices at various stages. One such choice concerns the class of spaces
which will be emphasized. We have preferred to emphasize CW-complexes
rather than simplicial complexes. Another choice occurs in the actual defini-
tion of singular homology groups: Should one use singular simplices or
singular cubes? From a strictly logical point of view it does not matter because
the resulting homology and cohomology theories are isomorphic in all re-
spects. From a pedagogical point of view, 1t does make a difference, however.
In developing some of the basic properties of homology theory, such as the
homotopy property and the excision property, it 1s easier and quicker to use
the cubical theory. For that reason, we have chosen to use the cubical theory.
Of course, it is more traditional to use the simplicial theory; the author hopes
that possible prospective users of this book will not reject it because of their
respect for tradition alone.

The prospective user of this book can gain some idea of the material
contained in each chapter by glancing at the Contents. We are now going to
offer additional comments on some of the chapters.

In Chapter I, the classification theorem for compact 2-manifolds is dis-
cussed and explained. The proof of the theorem is by rather standard “cut and
paste” methods. While this chapter may not be logically necessary for the rest
of the book, it should not be skipped entirely because 2-manifolds provide a
rich source of examples throughout the book.

The general idea of a “untversal mapping problem” is a unifying theme in
Chapters 111 and IV. In Chapter 111 this idea 1s used in the definition of free
groups and free products of groups. Students who are familiar with these
concepts can skip this chapter. In Chapter IV the Seifert—Van Kampen
theorem on the fundamental group of the union of two spaces is stated in
terms of the solution to a certain universal mapping problem. Various special
cases and examples are discussed in some detail.

The discussion of homology theory starts in Chapter VI, which contains a
summary of some of the basic properties of homology groups, and a survey
of some of the problems which originally motivated the development of
homology theory. While this chapter is not a prerequisite for the following
chapters from a strictly logical point of view, it should be extremely helpful
to students who are new to the subject.

Chapters VII, VIII, and IX are concerned solely with singular homology
with integer coefficients, perhaps the most basic aspect of the subject. Chapter
VIII gives various examples and applications of homology theory, including
a proof of the general Jordan—Brouwer separation theorem, and Brouwer’s
theorem on “Invariance of Domain.” Chapter IX explains a systematic method
of computing the integral homology groups of a regular CW-complex.
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In Chapter X we introduce homology with arbitrary coefficient groups.
This generalization is carried out by a systematic use of tensor products.
Tensor products also play a significant role in Chapter XI, which is concerned
with the homology groups of a product space, 1.€., the Kunneth theorem and
the Eilenberg—Zilber theorem.

Cohomology groups make their first appearance in Chapter XII. Much of
this chapter of necessity depends on a systematic use of the Hom functor.
However, there is also a discussion of the geometric interpretation of cochains
and cocycles, a subject which is usually neglected. Chapter XIII contains a
systematic discussion of the various products: cup product, cap product, cross
product, etc. The cap product is used in Chapter XIV for the statement and
proof of the Poincaré duality theorem for manifolds. This chapter also con-
tamns the famous Alexander duality theorem and the Lefschetz—Poincaré
duality theorem for manifolds with boundary. In Chapter XV we determine
cup products in real, complex, and quaternionic projective spaces. These
products are then used to prove the classical Borsuk—Ulam theorem, and to
give a discussion of the Hopf Invariant of a map of a (2n — 1)-sphere onto an
n-sphere.

The book ends with two appendices. Appendix A is devoted to a proof of
the famous theorem of DeRham, and Appendix B summarizes various basic
facts about permutation groups which are needed in Chapter V on covering
spaces.

At the end of many chapters there are notes which give further comments
on the subject matter, hints of more recent developments, or a brief history of
some of the ideas.

As mentioned above, there is enough material in this book for a full-year
course In algebraic topology. For a shorter course, Chapters 1-VIII would
give a good introduction to many of the basic ideas. Another possibility for
a shorter course would be to use Chapter I, skip Chapters Il through V, and
then take as many chapters after Chapter V as time permits. The author has
tried both of these shorter programs several times with good results.

Prerequisites

As In any book on algebraic topology, a knowledge of the basic facts of point
set topology 1s necessary. The reader should feel comfortable with such
notions as continuity, compactness, connectedness, homeomorphism, product
space, etc. From time to time we have found it necessary to make use of the
quotient space or identification space topology; this subject is discussed in the
more comprehensive textbooks on point set topology.

The amount of algebra the reader will need depends on how far along he
is in the book; in general, the farther he goes, the more algebraic knowledge
will be necessary. For Chapters Il through V, only a basic, general knowledge
of group theory i1s necessary. Here the reader must understand such terms as
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group, subgroup, normal subgroup, homomorphism, quotient group, coset,
abelian group, and cyclic group. Moreover, it is hoped that he has seen enough
examples and worked enough exercises to have some feeling for the true
significance of these concepts. Most of the additional topics needed in group
theory are developed in Chapter III and in Appendix B. Most of the groups
which occur in these chapters are written multiplicatively.

From Chapter VI to the end of the book, most of the groups which occur
are abelian and are written additively. It would be desirable if the reader were
familiar with the structure theorem for finitely generated abelian groups (see
Theorem V.3.6). Starting in Chapter X, the tensor product of abelian groups
is used; and from Chapter XII on the Hom functor 1s used. Also needed in a
few places are the first derived functors of tensor product and Hom (the
functors Tor and Ext). These functors are described 1n detail in books on
homological algebra and various other texts. At the appropriate places we
give complete references and a summary of their basic properties. In these
later chapters we also use some of the language of category theory for the sake
of convenience; however, no results or theorems of category theory are used.
In order to read Appendix A the reader must be familiar with differential forms

and differentiable manifolds.
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Notation and Terminology

The standard language and notation of set theory i1s used throughout. Some
more special notations that are used in this book are the following:

Z = ring of integers,

Q = field of all rational numbers,

R = field of all real numbers,

C = field of all complex numbers,
R" = set of all n-tuples (x,,..., x,) of real numbers,
C" = set of all n-tuples of complex numbers.

If x =(x4,...,x,) € R" then the norm or absolute value of x 1s
x| = (x3 + x5 + - + x2)'-,

With this notation, we define the following standard subsets of R” for any
n> 0

E"={xeR"||x| £ 1},
U" = {x e R"||x]| < 1},
"' ={xeR"||x| = 1}.

These spaces are called the closed n-dimensional disc or ball, the open n-
dimensional disc or ball, and the (n — 1)-dimensional sphere, respectively. Each
is topologized as a subset of Euclidean n-space, R", The symbols RP", CP",
and QP" are introduced in Chapter IX to denote n-dimensional real, complex,
and quaternionic projective space, respectively.

A homomorphism from one group to another is called an epimorphism if
it is onto, a monomorphism if it is one-to-one (1.e., the kernel consists of a single
element) and an isomorphism if 1t 1s both one-to-one and onto. If h: 4 - B is
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a homomorphism of abelian groups, the cokernel of h 1s the quotient group

B/h(A). A sequence of groups and homomorphisms such as
hn—t hn
I An—l — An - An+1 —
is called exact if the kernel of each homomorphism is precisely the same as
the image of the preceding homomorphism. Such exact sequences play a big
role from Chapter VII on.



CHAPTER 1

Two-Dimensional Manifolds

§1. Introduction

The topological concept of a surface or 2-dimensional manifold i1s a mathe-
matical abstraction of the familiar concept of a surface made of paper, sheet
metal, plastic, or some other thin material. A surface or 2-dimensional mani-
fold 1s a topological space with the same local properties as the familiar plane
of Euclidean geometry. An intelligent bug crawling on a surface could not
distinguish it from a plane if he had a limited range of visibility.

The natural, higher-dimensional analog of a surface is an n-dimensional
manifold, which is a topological space with the same local properties as
Euclidean n-space. Because they occur frequently and have application in
many other branches of mathematics, manifolds are certainly one of the most
important classes of topological spaces. Although we define and give some
examples of n-dimensional manifolds for any positive integer n, we devote
most of this chapter to the case n = 2. Because there 1s a classification theorem
for compact 2-manifolds, our knowledge of 2-dimensional manifolds 1s in-
comparably more complete than our knowledge of the higher-dimensional
cases. This classification theorem gives a simple procedure for obtaining all
possible compact 2-manifolds. Moreover, there are simple computable in-
variants which enable us to decide whether or not any two compact 2-
manifolds are homeomorphic. This may be considered an ideal theorem.
Much research in topology has been directed toward the development of
analogous classification theorems for other situations. Unfortunately, no such
theorem is known for compact 3-manifolds, and logicians have shown that
we cannot even hope for such a complete result for n-manifolds, n = 4.
Nevertheless, the theory of higher-dimensional manifolds 1s currently a very
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active field of mathematical research and will probably continue to be so for

a long time to come.
We shall use the material developed in this chapter later in the book.

§2. Definition and Examples of n-Manifolds

Assume n is a positive integer. An n-dimensional manifold is a Hausdorff space
(1e., a space that satisfies the T, separation axiom) such that each point has
an open neighborhood homeomorphic to the open n-dimensional disc U”
(= {x € R":|x| < 1}). Usually we shall say “n-manifold” for short.

Examples

2.1. Euclidean n-space R" is obviously an n-dimensional manifold. We can
easily prove that the unit n-dimensional sphere

S"={xeR"":|x| =1}

is an n-manifold. For the point x =(1,0,...,0), the set {(x;,..., Xp+1) €
S":x,; > 0} 1s a neighborhood with the required properties, as we see by
orthogonal projection on the hyperplane in R" ' defined by x, = 0. For any
other point x € S”, there 1s a rotation carrying x into the point (1, 0,..., 0).
Such a rotation 1s a homeomorphism of S” onto itself; hence, x also has the
required kind of neighborhood.

2.2. If M" is any n-dimensional manifold, then any open subset of M" 1s
also an n-dimensional manifold. The proof 1s immediate.

2.3. If M is an m-dimensional manifold and N is an n-dimensional manifold,
then the product space M x N i1s an (m + n)-dimensional manifold. This
follows from the fact that U™ x U" is homeomorphic to U™*". To prove this,
note that, for any positive integer k, U* is homeomorphic to R*, and R™ x R”
is homeomorphic to R™*".

In addition to the 2-sphere S2, the reader can easily give examples of many
other subsets of Euclidean 3-space R>, which are 2-manifolds, e.g., surfaces of
revolution, etc.

As these examples show, an n-manifold may be either connected or dis-
connected, compact or noncompact. In any case, an n-manifold 1s always
locally compact.

What is not so obvious is that a connected manifold need not satisfy the
second axiom of countability (i.e., it need not have a countable base). The
simplest example is the “long line.”" Such manifolds are usually regarded as
pathological, and we shall restrict our attention to manifolds with a countable
base.

' See General Topology by J. L. Kelley. Princeton, N.J.: Van Nostrand, 1955. Exercise L, p. 164.
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Note that in our definition we required that a manifold satisfy the Hausdorff
separation axiom. We must make this requirement explicit in the definition
because it is not a consequence of the other conditions imposed on a manifold.
We leave it to the reader to construct examples of non-Hausdorff spaces, such
that each point has an open neighborhood homeomorphic to U" for n = 1

or 2.

§3. Orientable vs. Nonorientable Manifolds

Connected n-manifolds for n > 1 are divided into two kinds: orientable and
nonorientable. We will try to make the distinction clear without striving for
mathematical precision.

Consider the case where n = 2. We can prescribe 1n various ways an
orientation for the Euclidean plane R? or, more generally, for a small region
in the plane. For example, we could designate which of the two possible kinds
of coordinate systems in the plane is to be considered a right-handed coordi-
nate system and which is to be considered a left-handed coordinate system.
Another way would be to prescribe which direction of rotation in the plane
about a point is to be considered the positive direction and which is to be
considered the negative direction. Let us imagine an intelligent bug or some
2-dimensional being constrained to move in the plane; once he decides on a
choice of orientation at any point in the plane, he can carry this choice with
him as he moves about. If two such bugs agree on an orientation at a given
point in the plane, and one of them travels on a long trip to some distant point
in the plane and eventually returns to his starting point, both bugs will still
agree on their choice of orientation.

Similar considerations apply to any connected 2-dimensional manifold
because each point has a neighborhood homeomorphic to a neighborhood of
a point in the plane. Here our two hypothetical bugs agree on a choice of
orientation at a given point. It 1s possible, however, that after one of them
returns from a long trip to some distant point on the manifold, they may find
they are no longer in agreement. This phenomenon can occur even though
both were meticulously careful about keeping an accurate check of the positive
orientation,

The simplest example of a 2-dimensional manifold exhibiting this phe-
nomenon 1s the well-known Mobius strip. As the reader probably knows, we
construct a model of a Mobius strip by taking a long, narrow rectangular strip
of paper and gluing the ends together with a half twist (see Figure 1.1).
Mathematically, a Mobius strip 1s a topological space that 1s described as
follows. Let X denote the following rectangle in the plane:

X={x,)eR?*:—10=x = +10, -1 <y < +1}.

We then form a quotient space of X by identifying the points (10, y) and
(—10, —y)for —1 < y < + 1. Note that the two boundaries of the rectangle
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FIGURE 1.1. Constructing a Mobius strip.

correspondingtoy = +1 and y = — 1 were omitted. This omission is crucial;
otherwise the result would not be a manifold (it would be a “manifold with
boundary,” a concept we will take up later in Chapter XIV). Alternatively, we
could specify a certain subset of R® which is homeomorphic to the quotient
space just described.

However, we define the Mobius strip, the center line of the rectangular strip
becomes a circle after the gluing or identification of the two ends. We leave it
to the reader to verify that if our imaginary bug started out at any point on
this circle with a definite choice of orientation and carried this orientation
with him around the circle once, he would come back to his initial point with
his original orientation reversed. We will call such a path in a manifold an
orientation-reversing path. A closed path that does not have this property will
be called an orientation-preserving path. For example, any closed path in the
plane is orientation preserving.

A connected 2-manifold is defined to be orientable if every closed path is
orientation preserving; a connected 2-manifold 1s nonorientable if there is at
least one orientation-reversing path.

We now consider the orientability of 3-manifolds. We can specify an
orientation of Euclidean 3-space or a small region thereof by designating
which type of coordinate system 1s to be considered right handed and which
type is to be considered left handed. An alternative method would be to specify
which type of helix or screw thread 1s to be designated as right handed and
which kind 1s to be left handed. We can now describe a closed path in a
3-manifold as orientation preserving or orientation reversing, depending on
whether or not a traveler who traverses the path comes back to his initial
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point with his initial choice of right and left unchanged. If our universe were
nonorientable, then an astronaut who made a journey along some orientation-
reversing path would return to earth with the right and left sides of his body
interchanged: His heart would not be on the right side of his chest, etc.

There is a 3-dimensional generalization of the Mobius strip which furnishes
a particularly simple example of a nonorientable 3-manifold. Let

X={(xy2eR -10Sx<+10, -1 <y< +1, -1 <z< +1}.

Form a quotient space of X by identifying the points (10, y, z) and (— 10, — y, 2)
for -1 <y < +1and —1 < z < + 1. This space may also be considered the
product of an ordinary 2-dimensional Mobius strip with the open interval
{ze R: —1 <z < +1}. In any case, the segment —10 < x < + 10 of the x
axis becomes a circle under the identification, and we leave it to the reader to
convince himself that this circle is an orientation-reversing path in the resulting
3-manifold.

We will consider the analogous definitions for higher-dimensional mani-
folds 1n later chapters.

§4. Examples of Compact, Connected 2-Manifolds

To save words, from now on we shall refer to a connected 2-manifold as a
surface. The simplest example of a compact surface is the 2-sphere S*; another
important example is the torus. A torus may be roughly described as any
surface homeomorphic to the surface of a doughnut or of a solid ring. It may
be defined more precisely as

(a) Any topological space homeomorphic to the product of two circles,
St x St
(b) Any topological space homeomorphic to the following subset of R*:

{0y, 2) e RO [(x? + y?)'2 = 2% + 22 = 1}.

[ This is the set obtained by rotating the circle (x — 2)? + z°> = 1 in the xz
plane about the z axis. ]
(¢) Let X denote the unit square in the plane R?:

f{(x,y))eR*: 0 x<1,0y < 1},

Then, a torus is any space homeomorphic to the quotient space of X
obtained by identifying opposite sides of the square X according to the
following rules. The points (0, y)and (1, y) are to be identified for0 < y < 1,
and the points (x, 0) and (x, 1) are to be 1dentified for 0 < x < 1.

We will find it convenient to indicate symbolically how such identifications
are to be made by a diagram such as Figure 1.2. Sides that are to be identified
are labeled with the same letter of the alphabet, and the 1dentifications should
be made so that the directions indicated by the arrows agree.
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a

FIGURE 1.2. Construction of a torus.

We leave it to the reader to prove that the topological spaces described in
(a), (b), and (¢) are actually homeomorphic. The reader should also convince
himself that a torus is orientable.

Our next example of a compact surface is the real projective plane (referred
to as the projective plane for short). It is a compact, nonorientable surface.
Because it is not homeomorphic to any subset of Euclidean 3-space, the
projective plane 1s much more difficult to visualize than the 2-sphere or the

torus.

Definition. The quotient space of the 2-sphere S* obtained by identifying
every pair of diametrically opposite points is called a projective plane. We shall
also refer to any space homeomorphic to this quotient space as a projective
plane.

For readers who have studied projective geometry, we shall explain why
this surface is called the real projective plane. Such a reader will recall that,
in the study of projective plane geometry, a point has “homogeneous” coordi-
nates (x,, X;, X,), Where x4, X;, and x, are real numbers, at least one of which
1s # 0. The term “homogeneous” means (x,, X, X,) and (x5, X1, X5) represent
the same point if and only if there exists a real number 4 (of necessity # 0)
such that

x;=Ax;, i=0,1,2.

If we interpret (x4, X, X,) as the ordinary Euclidean coordinates of a point
in R>, then we see that (x,, x;, X,) and (x4, x}, x5) represent the same point
in the projective plane if and only if they are on the same line through the
origin. Thus, we may reinterpret a point of the projective plane as a line
through the origin in R3. The next question is, how shall we topologize the
set of all lines through the origin in R*? Perhaps th easiest way is to note that
each line through the origin in R3 intersects the unit sphere S in a pair of
diametrically opposite points. This leads to the above definition.

Let H = {(x, y, z) € S*:z Z 0} denote the closed upper hemisphere of S2.
It is clear that, of each diametrically opposite pair of points in S, at least one
point lies in H. If both points lie in H, then they are on the equator, which is
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a

FiGURE 1.3. Construction of a projective plane from a square.

the boundary of H. Thus, we could also define the projective plane as the
quotient space of H obtained by identifying diametrically opposite points on
the boundary of H. As H is obviously homeomorphic to the closed unit disc
E? in the plane,

E? = {(x,y) e R*: x* + y* £ 1},

the quotient space of E* obtained by identifying diametrically opposite points
on the boundary is a projective plane. For E* we could substitute any homeo-
morphic space, €.g., a square. Thus, a projective plane 1s obtained by 1denti-
fying the opposite sides of a square as indicated in Figure 1.3. The reader
should compare this with the construction of a torus in Figure 1.2.

The projective plane is easily seen to be nonorientable; 1n fact, it contains
a subset homeomorphic to a Mobius strip.

We shall now describe how to give many additional examples of compact
surfaces by forming what are called connected sums. Let §; and S, be disjoint
surfaces. Their connected sum, denoted by S, # S,,1s formed by cutting a small
circular hole in each surface, and then gluing the two surfaces together along
the boundaries of the holes. To be precise, we choose subsets D, < §,; and
D, = §, such that D, and D, are closed discs (i.e., homeomorphic to E?). Let
S; denote the complement of the interior of D; in §; for i = 1 and 2. Choose a
homeomorphism h of the boundary circle of D; onto the boundary of D,.
Then S, # S, 1s the quotient space of §; U §’, obtained by identifying the
points x and h(x) for all points x in the boundary of D, . Itis clear that §, # S,
i1s a surface. It seems plausible, and can be proved rigorously, that the topologi-
cal type of §; # S, does not depend on the choice of the discs D, and D, or
the choice of the homeomorphism h.

Examples

4.1. If §, is a 2-sphere, then S, # §, is homeomorphic to §,.

4.2, If §; and S, are both tori, then S, # S, is homeomorphic to the surface
of a block that has two holes drilled through it. (It 1s assumed, of course, that
the holes are not so close together that their boundaries touch or intersect.)

4.3. If S, and S, are projective planes, then S* # S%is a “Klein bottle,” i.e.,
homeomorphic to the surface obtained by identifying the opposite sides of a
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a

F1GURE 1.4. Construction of a Klein bottle from a square.

a C’
(a)

(b)

F1GURE 1.5. The Klein bottle is the union of two Mdbius strips.

square as shown in Figure 1.4. We may prove this by the “cut and paste”
technique, as follows. If §; is a projective plane and D; is a closed disc such
that D; < §;, then S}, the complement of the interior of D;, is homeomorphic
to a Mobius strip (including the boundary). In fact, if we think of S, as the
space obtained by identification of the diametrically opposite points on the
boundary of the unit disc E* in R?, then we can choose D; to be the image of
the set {(x, y)e E*:|y| = 3} under the identification, and the truth of the
assertion is clear. From this it follows that S, # S, i1s obtained by gluing
together two Mobius strips along their boundaries. On the other hand, Figure
1.5 shows how to cut a Klein bottle so as to obtain two Mobius strips. We
cut along the lines AB’ and BA’; under the identification, this cut becomes a

circle.

We will now consider some properties of this operation of forming connected

sums.
It 1s clear from our definitions that there i1s no distinction between S; # S,

and S, # S, 1e., the operation is commutative. It is not difficuilt to see that
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the manifolds (S; # S,) # S, and S, # (5, # S;) are homeomorphic. Thus,
we see that the connected sum is a commutative, associative operation on the

set of homeomorphism types of compact surfaces. Moreover, Example 4.1
shows the sphere is a unit or neutral element for this operation. We must not
jump to the conclusion that the set of homeomorphism classes of compact
surfaces forms a group under this operation: There are no inverses. It only
forms what is called a semigroup.

The connected sum of two orientable manifolds is again orientable. On the
other hand, if either S, or §, is nonorientable, then so 1s §; # §,.

§5. Statement of the Classification Theorem
for Compact Surfaces

In the preceding section we have seen how examples of compact surfaces can
be constructed by forming connected sums of various numbers of tor1 and/or
projective planes. Our main theorem asserts that these examples exhaust all
the possibilities. In fact, it 1s even a slightly stronger statement, in that we do
not need to consider surfaces that are connected sums of both tor1 and

projective planes.

Theorem 5.1. Any compact surface is either homeomorphic to a sphere, or to a
connected sum of tori, or to a connected sum of projective planes.

As preparation for the proof, we shall describe what might be called a
“canonical form” for a connected sum of tor1 or projective planes.

Recall our description of a torus as a square with the opposite sides
identified (see Figure 1.2). We can obtain an analogous description of the
connected sum of two tori as follows. Represent each of the tor1 T, and T, as
a square with opposite sides identified as shown in Figure 1.6(a). Note that
all four vertices of each square are identified to a single point of the corre-
sponding torus. To form their connected sum, we must first cut out a circular
hole in each torus, and we can do this in any way that we wish. It is convenient
to cut out the regions shaded in the diagrams. The boundaries of the holes
are labeled ¢, and c,, and they are to be identified as indicated by the arrows.
We can also represent the complement of the holes in the two tori by the
pentagons shown in Figure 1.6(b), because the indicated edge identifications
imply that the two end points of the segment c; are to be identified, i = 1, 2.
We now identify the segments ¢, and c,; the result is the octagon in Figure
1.6(c), in which the sides are to be 1dentified in pairs, as indicated. Note that
all eight vertices of this octagon are to be identified to a single pointin 7; # T,.

This octagon with the edges identified in pairs i1s our desired “canonical
form” for the connected sum of two tor1. By repeating this process, we can
show that the connected sum of three tori 1s the quotient space of the 12-gon
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b1 ay bz az
ay by az 17
(b)
ay b2
bl ¥ d2
a ba
b1 12

(c)

FIGURE 1.6. (a) Two disjoint tori, T, and T,. (b) Disjoint tori with holes cut out.
(c) After gluing together.

shown in Figure 1.7, where the edges are to be 1dentified in pairs as indicated.
It should now be clear how to prove by induction that the connected sum of
n tori 1s homeomorphic to the quotient space of a 4n-gon whose edges are to
be identified in pairs according to a scheme, the precise description of which
1s left to the reader.

Next, we must consider the analogous procedure for the connected sum of
projective planes. We have considered the projective plane as the quotient
space of a circular disc; diametrically opposite points on the boundary are to
be identified. By choosing a pair of diametrically opposite points on the
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bo _ az

b3

{11

FIGURE 1.7. The connected sum of three tori is obtained by identifying the edges of a
12-gon in pairs as shown.

a

FIGURE 1.8. The projective plane is obtained by identifying opposite edges of a 2-gon.

boundary as vertices, the circumference of the disc 1s divided into two seg-
ments. Thus, we can regard the projective plane as obtained from a 2-gon by

identification of the two edges; see Figure 1.8.
Figure 1.9 shows how to obtain a representation of the connected sum of

two projective planes as a square with the edges identified in pairs. The method
is basically the same as that used to obtain a representation of the connected
sum of two tor1 as a quotient space of an octagon (Figure 1.6). By repeating
this process, we see that the connected sum of three projective planes 1s the
quotient space of a hexagon with the sides identified in pairs as indicated in
Figure 1.10. By a rather obvious induction, we can prove that, for any positive
integer n, the connected sum of n projective planes is the quotient space of a
2n-gon with the sides identified in pairs according to a certain scheme. Note
that all the vertices of this polygon are identified to one point.

It remains to represent the sphere as the quotient space of a polygon with
the sides 1dentified 1n pairs. We can do this as shown 1n Figure 1.11. We can
think of a sphere with a zipper on it, like a purse; when the zipper is opened,
the purse can be flattened out.
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a

FiGURE 1.11. The sphere is a quotient space of a 2-gon with edges identified as shown.

Thus, we have shown how each of the compact surfaces mentioned in
Theorem 5.1 can be considered as the quotient space of a polygon with the
edges identified in pairs. We now introduce a rather obvious and convenient
method of indicating precisely which paired edges are to be identified in such
a polygon. Consider the diagram which indicates how the edges are identified;
starting at a definite vertex, proceed around the boundary of the polygon,
recording the letters assigned to the different sides in succession. If the arrow
on a side points in the same direction that we are going around the boundary,
then we write the letter for that side with no exponent (or the exponent + 1).
On the other hand, if the arrow points in the opposite direction, then we write
the letter for that side with the exponent — 1. For example, in Figures 1.7 and
1.10 the identifications are precisely indicated by the symbols

a,bya;'bi'a,b,a,'b; asbya;' b3t and a,a,a,0a,0a,4,.

In each case we started at the bottom vertex of the diagram and read clockwise
around the boundary. It is clear that such a symbol unambiguously describes
the identifications; on the other hand, in writing the symbol corresponding to
a given diagram, we can start at any vertex, and proceed either clockwise or
counterclockwise around the boundary.

We summarize our results by writing the symbols corresponding to each
of the surfaces mentioned in Theorem 35.1.

(a) The sphere: aa™".

(b) The connected sum of n tori:
a,b,ai'bla,b,a;'b3"...a,ba;'b; .

(c) The connected sum of n projective planes:

a,a,a,a,...a,aq,.
EXERCISES

5.1. Let P be a polygon with an even number of sides. Suppose that the sides are
identified in pairs in accordance with any symbol whatsoever. Prove that the

quotient space is a compact surface.
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= <42

FiGURE 1.12. Some types of intersection forbidden in a triangulation.

§6. Triangulations of Compact Surfaces

To prove Theorem 5.1, we must assume that the given surface 1s triangulated,
i.e., divided up into triangles which fit together nicely. We can easily visualize
the surface of the earth divided into triangular regions, and such a subdivision
is very useful in the study of compact surfaces in general.

Definition. A triangulation of a compact surface S consists of a finite family
of closed subsets {7}, T5, ..., T,} that cover S, and a family of homeomor-
phisms ¢,: T > T,,i = 1, ..., n, where each T is a triangle in the plane R
(i.e., a compact subset of R* bounded by three distinct straight lines). The
subsets T are called “triangles.” The subsets of T; that are the images of the
vertices and edges of the triangle T under ¢; are also called “vertices” and
“edges,” respectively. Finally, it is required that any two distinct triangles, T;
and T, either be disjoint, have a single vertex in common, or have one entire
edge in common.

Perhaps the conditions in the definition are clarified by Figure 1.12, which
shows three unallowable types of intersection of triangles.

Given any compact surface S, it seems plausible that there should exist a
triangulation of S. A rigorous proof of this fact (first given by T. Rado 1n 1925)
requires the use of a strong form of the Jordan curve theorem. Although it is
not difficult, the proof is tedious, and we will not repeat it here.

We canregard a triangulated surface as having been constructed by gluing
together the various triangles in a certain way, much as we put together a
jigsaw puzzle or build a wall of bricks. Because two different triangles cannot
have the same vertices we can specify completely a triangulation of a surface
by numbering the vertices, and then listing which triples of vertices are vertices
of a triangle. Such a list of triangles completely determines the surface together
with the given triangulation up to homeomorphism.

Examples

6.1. The surface of an ordinary tetrahedron in Euclidean 3-space 1s homeo-
morphic to the sphere S%; moreover, the four triangles satisfy all the conditions
for a triangulation of S2. In this case there are four vertices, and every triple
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3

F1GURE 1.13. A triangulation of the projective plane.

of vertices is the set of vertices of a triangle. No other triangulation of any
surface can have this property.

6.2. In Figure 1.13 we show a triangulation of the projective plane, con-
sidered as the space obtained by identifying diametrically opposite points on
the boundary of a disc. The vertices are numbered from 1 to 6, and there are
the following 10 triangles:

124 245
235 135
156 126
236 346
134 456

6.3. In Figure 1.14 we show a triangulation of a torus, regarded as a square
with the opposite sides 1dentified. There are 9 vertices, and the following 18
triangles:

124 245 235
356 361 146
457 578 658
689 649 479
187 128 289

239 379 137
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7
AN

F1GURE 1.14. A triangulation of a torus.

We conclude our discussion of triangulations by noting that any triangula-
tion of a compact surface satisfies the following two conditions:

(1) Each edge 1s an edge of exactly two triangles.

(2) Let v be a vertex of a triangulation. Then we may arrange the set of all
triangles with v as a vertex in cyclic order, T,,, T}, T5, ..., T,,—,, T, = T,
such that T, and T;,, have an edge in common for0 <i<n — 1.

The truth of (1) follows from the fact that each point on the edge in question
must have an open neighborhood homeomorphic to the open disc U?. If an
edge were an edge of only one triangle or more than two triangles, this would
not be possible. The rigorous proof of this last assertion can be given by using
the concept of “The local homology groups at a point.” We will take up this

concept in Chapter VIIL
Condition (2) can be demonstrated as follows. The fact that the set of all

the triangles with v as a vertex can be divided into several disjoint subsets,
such that the triangles in each subset can be arranged in cyclic order as
described, is an easy consequence of condition (1). However, if there were more
than one such subset, then the requirement that v have a neighborhood
homeomorphic to U? would be violated. This statement can also be proved
by using local homology groups at a point.

§7. Proof of Theorem 5.1

Let S be a compact surface. We shall demonstrate Theorem 5.1 by proving
that § 1s homeomorphic to a polygon with the edges identified in pairs as
indicated by one of the symbols listed at the end of §3.
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First step. From the discussion in the preceding section, we may assume
that § is triangulated. Denote the number of triangles by n. We assert that we
can number the triangles T}, T,, ..., T,, so that the triangle T; has an edge e;
in common with at least one of the triangles Ty,..., T._,,2 £ i £ n. To prove
this assertion, label any of the triangles T;; for T, choose any triangle that has
an edge in common with T;, for T; choose any triangle that has an edge in
common with T; or T,, etc. If at any stage we could not continue this process,
then we would have two sets of triangles {T}, ..., T;},and {T; ., ..., T, } such
that no triangle in the first set would have an edge or vertex in common with
any triangle of the second set. But this would give a partition of S into two dis-
joint nonempty closed sets, contrary to the assumption that S was connected.

We now use this ordering of the triangles, T}, T,, ..., T,, together with the
choice of edges e,, e,, ..., e,, to construct a “model” of the surface S in the
Euclidean plane; this model will be a polygon whose sides are to be identified
in pairs. Recall that for each triangle T; there exists an ordinary Euclidean
triangle 7" in R% and a homeomorphism ¢; of T onto T,. We can assume that
thetnangles Ty, 7,, ..., T, are pairwise disjoint; if they are not, we can translate
some of them to various other parts of the plane R?. Let

Tf — U T;r;
=1

then T is a compact subset of R%. Define a map ¢ : T’ — S by ¢|T; = ¢;; the
map ¢ is obviously continuous and onto. Because T’ is compact and S is a
Hausdorff space, ¢ is a closed map, and hence S has the quotient topology
determined by ¢. This is a rigorous mathematical statement of our intuitive
idea that S is obtained by gluing the triangles T3, T,, ... together along the
appropriate edges.

The polygon we desire will be constructed as a quotient space of T,
Consider any of the edges ¢;, 2 £ i £ n. By assumption, e, is an edge of the
triangle T; and one other triangle T;, for which 1 < j < i. Therefore, ¢ ™' (e;)
consists of an edge of the triangle T’ and an edge of the triangle T'. We identify
these two edges of the triangles T; and T; by identifying points which map
onto the same point of e; (speaking intuitively, we glue together the triangles
T’ and T). We make these identifications for each of the edges ¢;, e3, ..., ¢,.
Let D denote the resulting quotient space of T'. It 1s clear that the map
@ : T' — S induces a map y of D onto S, and that S has the quotient topology
induced by ¢ (because D is compact and § is Hausdorff, ¢ 1s a closed map).

We now assert that topologically D is a closed disc. The proof depends on

two facts:

(a) Let E, and E, be disjoint spaces, which topologically are closed discs (1.e,,
they are homeomorphic to E*). Let A, and A4, be subsets of the boundary
of E, and E,, respectively, which are homeomorphic to the closed interval
[0, 1],and let h: A; — A, be a definite homeomorphism. Form a quotient
space of E, u E, by identifying points that correspond under h. Then,
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topologically, the guotient space is also a closed disc. The reader may
either take this very plausible fact for granted, or construct a proof using
the type of argument given in IL8. Intuitively, it means that if we glue two
discs together along a common segment of their boundaries, the result is
again a disc.

(b) In forming the quotient space D of T', we may either make all the
identifications at once, or make the identifications corresponding to e,,
then those corresponding to e,, etc., in succession. This i1s a consequence
of standard theorems about quotient spaces.

We now use these facts to prove that D is a disc as follows. T{ and T, are
topologically equivalent to discs. Therefore, the quotient space of T} U T,
obtained by identifying points of ¢ ' (e, ) is again a disc by (a). Form a quotient
space of this disc and T; by making the identifications corresponding to the
edge e,, etc.

It is clear that S is obtained from D by identifying certain paired edges on
the boundary of D.

Examples

7.1. Figure 1.15 shows an casily visualized example. The surface of a cube
has been triangulated by dividing each face by a diagonal into two triangles.
The resulting disc D might look like the diagram, depending, of course, on
how the triangles were enumerated, and how the edgese,, ..., e,, were chosen.
The edges to D that are to be identified are labeled in the usual way. At this
stage, we can forget about the edges e,, e,, ..., €;,. Thus, instead of the
polygon in Figure 1.15, we could work equally well with the one in Figure 1.16.

FiGURE 1.15. Example illustrating the first step of the proof of Theorem 5.1.
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FiGURE 1.16. Simplified version of polygon shown in Figure 1.15.

EXERCISES

Carry out the above process for each of the surfaces whose triangulations are given
below. (NOTE: these examples will be used later.)

7.1. 124 236 134 246
367 347 469 459
698 678 457 259
289 578 358 125
238 135
7.2. 123 234 341 412
7.3. 123 234 345 451 512
136 246 356 416 526
74. 124 235 346 457 561 672
713 134 245 356 467 571
126 237
7.5. 123 256 341 451
156 268 357 468
167 275 374 476
172 283 385 485

Second step. Elimination of adjacent edges of the first kind. We have now
obtained a polygon D whose edges have to be identified in pairs to obtain the
given surface S. These identifications may be indicated by the appropriate
symbol; e.g., in Figure 1.16, the identifications are described by

aa 'fbb~'fle"gec™ g7 dd e.
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(b)

(c) (d)

FiGURE 1.17. Elimination of an adjacent pair of edges of the first kind.

If the letter designating a certain pair of edges occurs with both exponents,
+1 and —1, in the symbol, then we will call that pair of edges a pair of the
first kind; otherwise, the pair is of the second kind. For example, in Figure
1.16, all seven pairs are of the first kind.

We wish to show that an adjacent pair of edges of the first kind can be
eliminated, provided there are at least four edges in all. This is easily seen from
the sequence of diagrams in Figure 1.17. We can continue this process until
all such pairs are eliminated, or until we obtain a polygon with only two sides.
In the latter case, this polygon, whose symbol will be aa or aa™!, must be a
projective plane or a sphere, and we have completed the proof. Otherwise, we
proceed as follows.

Third step. Transformation to a polygon such that all vertices must be
identified to a single vertex. Although the edges of our polygon must be
identified in pairs, the vertices may be identified in sets of one, two, three, four,
... . Let us call two vertices of the polygon equivalent if and only if they are to
be identified. For example, the reader can easily verify that in Figure 1.16 there
are eight different equivalence classes of vertices. Some equivalence classes
contain only one vertex, whereas other classes contain two or three vertices.

Assume we have carried out step two as far as possible. We wish to prove
we can transform our polygon into another polygon with all its vertices
belonging to one equivalence class.

Suppose there are at least two different equivalence classes of vertices. Then,
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(a) (b)

FIGURE 1.18. Third step in the proof of Theorem 5.1.

the polygon must have an adjacent pair of vertices which are nonequivalent.
Label these vertices P and Q. Figure 1.18 shows how to proceed. As P and Q
are nonequivalent, and we have carried out step two, it follows that sides a
and b are not to be identified. Make a cut along the line labeled ¢, from the
vertex labeled Q to the other vertex of the edge a (i.e., to the vertex of edge a,
which is distinct from P). Then, glue the two edges labeled a together. A new
polygon with one less vertex in the equivalence class of P and one more vertex
in the equivalence class of Q results. If possible, perform step two again. Then
carry out step three to reduce the number of vertices in the equivalence class
of P still further, then do step two again. Continue alternately doing step three
and step two until the equivalence class of P is eliminated entirely. If more
than one equivalence class of vertices remains, we can repeat this procedure
to reduce the number by 1. If we continue in this manner, we ultimately obtain
a polygon such that all the vertices are to be identified to a single vertex.
Fourth step. How to make any pair of edges of the second kind adjacent. We
wish to show that our surface can be transformed so that any pair of edges of
the second kind are adjacent to each other. Suppose we have a pair of edges
of the second kind which are nonadjacent, as in Figure 1.19(a). Cut along the

(a) (b)

FIGURE 1.19. Fourth step in the proof of Theorem 5.1.
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B

FIGURE 1.20. A pair of edges of the first kind.

dotted line labeled a and paste together along b. As shown in Figure 1.19(b),

the two edges are now adjacent.
Continue this process until all pairs of edges of the second kind are adjacent.

If there are no pairs of the first kind, we are finished, because the symbol of
the polygon must then be of the form q,q,a,aq,...a,a,, and hence S is the
connected sum of n projective planes.

Assume to the contrary that at this stage there is at least one pair of edges
of the first kind, each of which 1s labeled with the letter c¢. Then we assert that
there is at least one other pair of edges of the first kind such that these two
pairs separate one another; i.e., edges from the two pairs occur alternately as
we proceed around the boundary of the polygon (hence, the symbol must be
of the formc...d...c7'...d7'..., where the dots denote the possible occur-
rence of other letters).

To prove this assertion, assume that the edges labeled ¢ are not separated
by any other pair of the first kind. Then our polygon has the appearance
indicated in Figure 1.20. Here A and B cach designate a whole sequence of
edges. The important point is that any edge in A must be identified with
another edge in A4, and similarly for B. No edge in A4 is to be identified with
an edge 1n B. But this contradicts the fact that the initial and final vertices of
either edge labeled ¢ are to be 1dentified, in view of step three.

Fifth step. Pairs of the first kind. Suppose, then, that we have two pairs of
the first kind which separate each other as described (see Figure 1.21). We
shall show that we can transform the polygon so that the four sides in question
are consecutive around the perimeter of the polygon.

First, cut along ¢ and paste together along b to obtain Figure 1.21(b). Then,
cut along d and paste together along a to obtain Figure 1.21(c), as desired.

Continue this process until all pairs of the first kind are in adjacent groups
of four, as cdc™'d ™! in Figure 1.21(c). If there are no pairs of the second kind,
this leads to the desired result because, in that case, the symbol must be of the

form
a;byartbila,b,a;'byt .. a,b,a;'h, !

and the surface i1s the connected sum of n tori.
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(b) (c)

FIGURE 1.21. Fifth step in the proof of Theorem 5.1.

It remains to treat the case in which there are pairs of both the first and
seccond kind at this stage. The key to the situation is the following rather
surprising lemma:

Lemma 7.1. The connected sum of a torus and a projective plane is homeomor-
phic to the connected sum of three projective planes.

PROOF. We have remarked that the connected sum of two projective planes
is homeomorphic to a Klein bottle (see Example 4.3). Thus, we must prove
that the connected sum of a projective plane and a torus is homeomorphic to
the connected sum of a projective plane and a Klein bottle. To do this, 1t will
be convenient to give an alternative construction for a connected sum of any
surface S with a torus or a Klein bottle. We can represent the torus and Klein
bottle as rectangles with opposite sides identified as shown in Figure 1.22. To
form the connected sum, we first cut out the disc that is shaded in the diagrams,
cut a similar hole in S, and glue the boundary of the hole in the torus or Klein
bottle to the boundary of the hole in S. However, instead of gluing on the
entire torus or Klein bottle in one step, we may do it in two stages: First, glue
on the part of the torus or Kiein bottle that is the image of the rectangle
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(b)

FiGURE 1.22. (a) Torus with hole. (b) Klein bottle with hole.

ABB’ A" under the identification, and then glue on the rest of the torus or Klein
bottle. In the first stage we form the connected sum of S with an open tube or
cylinder. Such an open tube or cylinder is homeomorphic to a sphere with
two holes cut in it, and forming the connected sum of S with a sphere does
not change anything. Thus, the space resulting from the first stage is homeo-
morphic to the original surface S with two holes cut in it. In the second stage
we then connect the boundaries of these two holes with a tube that is the
remainder of the torus or Klein bottle. The difference between the two cases
depends on whether we connect the boundaries so they will have the same or
opposite orientations. This is illustrated in Figure 1.23, where S is a MoObius
strip.

We now assert that the two spaces shown in Figures 1.23(a) and 1.23(b)
(i.e., the connected sum of a MoObius strip with a torus and a Klein bottie,
respectively) are homeomorphic. To see this, imagine that we cut each of these
topological spaces along the lines 4 B. In each case, the result is the connected
sum of a rectangle and a torus, with the two ends of the rectangle to be
identified with a twist, as shown in Figure 1.24. Hence, the two spaces are
homeomorphic.

As stated previously, we obtain the projective plane by gluing the boundary
of a disc to the boundary of a Mobius strip. As the spaces shown in Figure
1.23 are homeomorphic, so are the spaces obtained by gluing a disc on the
boundary of each. Thus, the connected sum of a projective plane and a torus
is homeomorphic to the connected sum of a projective plane and a Klein
bottle, as was to be proved. Q.E.D.

It should be clear that this lemma takes care of the remaining case. Assume
that after the fifth step has been completed, the polygon has m pairs (m > 0)
of the second kind such that the two edges of each pair are adjacent, and n
quadruples (n > 0) of sides, each quadruple consisting of two pairs of the first
kind which separate each other. Then, the surface is the connected sum of m
projective planes and n tori, which by the lemma is homeomorphic to the
connected sum of m + 2n projective planes. This completes the proof of
Theorem 5.1.
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(b)

FiGURE 1.23. (a) Connected sum of a Mobius strip and a torus. (b) Connected sum of
a Mobius strip and a Klein bottle.

A B

FIGURE 1.24. The result of cutting the spaces shown in Figure 1.23 along the line AB.
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EXERCISES

7.6. Carry out each of the above steps for the examples given in Exercises 7.1-7.5.

It is clear that we can also work the process described above backwards;
whenever there are three pairs of the second kind, we can replace them by one
pair of the second kind and two pairs of the first kind. Alternatively, we can
apply Lemma 7.1 to any connected sum of which three or more of the
summands are projective planes. The following alternative form of Theorem
5.1, which may be preferable in some cases, results.

Theorem 7.2. Any compact, orientable surface is homeomorphic to a sphere or
a connected sum of tori. Any compact, nonorientable surface is homeomorphic
to the connected sum of either a projective plane or Klein bottle and a compact,
orientable surface.

§8. The Euler Characteristic of a Surface

Although we have shown that any compact surface 1s homeomorphic to a
sphere, a sum of tori, or a sum of projective planes, we do not know that all
these are topologically different. It is conceivable that there exist positive
integers m and n, m # n, such that the sum of m tor1 is homeomorphic to the
sum of n tori. To show that this cannot happen, we introduce a numerical
invanant called the Euler characteristic.

First, we define the Euler characteristic of a triangulated surface. Let M be
a compact surface with triangulation {7}, ..., T,}. Let

v = total number of vertices of M,
e = total number of edges of M,
t = total number of triangles (in this case, t = n).

Then,
yMy=v—e+1t

is called the Euler characteristic of M.

Example

8.1. Figure 1.25 suggests uniform methods of triangulating the sphere,
torus, and projective plane so that we may make the number of triangles as
large as we please. Using such triangulations, the reader should verify that the
Euler characteristics of the sphere, torus, and projective plane are 2,0, and 1,
respectively. He should also verify that the Euler characteristics are inde-
pendent of the number of vertical and honizontal dividing lines in the diagrams
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(c)
FiGURE 1.25. Computing the Euler characteristic from a triangulation. (a) Sphere.

(b) Torus. (c) Projective plane.



28 I. Two-Dimensional Manifolds

(b)

(c)
FiGURE 1.26. (a) 1-gon. (b) A 2-gon. (c) A 3-gon.

F1GURE 1.27. An allowable kind of edge.

for the sphere and torus, and of the number of radial lines or concentric circles
in the case of the diagram for the projective plane.

Consideration of these and other examples suggests that y(M) depends only
on M, not on the triangulation chosen. We wish to suggest a method of
proving this. To do this, we shall allow subdivisions of M into arbitrary
polygons, not just triangles. These polygons may have any number n of sides
and vertices, n = 1 (see Figure 1.26). We shall also allow for the possibility of
edges that do not subdivide a region, as in Figure 1.27. In any case, the interior
of each polygonal region is required to be homeomorphic to an open disc,
and each edge 1s required to be homeomorphic to an open interval of the real
line, once the vertices are removed (the closure of each edge shall be homeo-
morphic to a closed interval or a circle). Finally, the number of vertices, edges,
and polygonal regions will be finite. As before, we define the Euler characteristic
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of such a subdivision of a compact surface M to be
y(M) = (No. of vertices) — (No. of edges) + (No. of regions).

It 1s now easily shown that the Euler characteristic is invariant under the
following processes:

(a) Subdividing an edge by adding a new vertex at an interior point (or,
inversely, if only two edges meet at a given vertex, we can amalgamate the
two edges into one and eliminate the vertex).

(b) Subdividing an n-gon, n = 1, by connecting two of the vertices by a new
edge (or, inversely, amalgamating two regions into one by removing an
edge).

(¢) Introducing a new edge and vertex running into a region, as shown in
Figure 1.27 (or, inversely, eliminating such an edge and vertex).

The invariance of the Euler characteristic would now follow if it could be
shown that we could get from any one triangulation (or subdivision) to any
other by a finite sequence of “moves” of types (a), (b), and (c). Suppose we have
two triangulations

9-”: {Tl!* Tz,..., Tm},
I ' ={1],T;,...,T,}

of a given surface. If the intersection of any edge of the triangulation 7 with
any edge of the triangulation 7' consists of a finite number of points and a
finite number of closed intervals, then it 1s easily seen that we can get from the
triangulation  to the triangulation 7' in a finite number of such moves; the
details are left to the reader. However, it may happen that an edge of I
intersects an edge of 7' in an infinite number of points, like the following two

curves 1n the xy plane:

{(x,y):y=0 and —1<xZ +1},
{(x, y):y = x sin -1— and 0 < |x| £ 1} v {(0,0)}.
X

If this 1s the case, 1t 1s clearly impossible to get from the triangulation 9 to
the triangulation .7 by any finite number of moves. It appears plausible that
we could always avoid such a situation by “moving” one of the edges slightly.
This 1s true and can be proved rigorously. However, we do not attempt such
a proof here for several reasons: (a) The details are tedious and involved.
(b) In Chapter IX we will define the Euler characteristic for a more general
class of topological spaces and prove its invariance by means of homology
theory. In these more general circumstances, the type of proof we have
suggested here 1s not possible. (c) We will use the Euler characteristic to
distinguish between compact surfaces. We will achieve this purpose with
complete rigor in later chapters by the use of the fundamental group and by
use of homology groups.
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Proposition 8.1. Let S, and S, be compact surfaces. The Euler characteristics
of S, and S, and their connected sum, S, # S,, are related by the formula

xSy # 52) = x(5,) + x(52) — 2.

ProOF. The proof is very simple; assume S; and S, are triangulated. Form
their connected sum by removing from each the interior of a triangle, and then
identifying edges and vertices of the boundaries of the removed triangles. The
formula then follows by counting vertices, edges, and triangles before and after
the formation of the connected sum. Q.E.D.

Using this proposition, and an obvious induction, starting from the known
results for the sphere, torus, and projective plane, we obtain the following
values for the Euler characteristics of the various possible compact surfaces:

Surface Euler characteristic
Sphere 2
Connected sum of n tort 2—2n
Connected sum of n projective planes 2—n
Connected sum of projective plane and n tori 1 —2n
Connected sum of Klein bottle and n tort —2n

Note that the Euler characteristic of an orientable surface is always even,
whereas for a nonorientable surface it may be either odd or even.
Assuming the topological invariance of the Euler characteristic and Theorem

5.1, we have the following important resulit:

Theorem 8.2. Let S, and S, be compact surfaces. Then, S, and S, are homeo-
morphic if and only if their Euler characteristics are equal and both are
orientable or both are nonorientable.

This 1s a topological theorem par excellence; 1t reduces the classification
problem for compact surfaces to the determination of the orientability and
Euler characteristic, both problems usually readily soluble. Moreover, Theorem
5.1 makes clear what are all possible compact surfaces.

Such a compilete classification of any class of topological spaces is very rare.
No corresponding theorem 1s known for compact 3-manifolds, and for 4-
manifolds it has been proven (roughly speaking) that no such result is possible.

We close this section by giving some standard terminology. A surface that
1s the connected sum of n tori or n projective planes is said to be of genus n,
whereas a sphere 1s of genus 0. The following relation holds between the genus
g and the Euler characteristic y of a compact surface:

- {3(2 =) in the orientable case
|2 —y in the nonorientable case.
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EXERCISES

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

For over 2000 years it has been known that there are only five regular polyhedra,
namely, the regular tetrahedron, cube, octahedron, dodecahedron, and icosa-
hedron. Prove this by considering subdivisions of the sphere into n-gons (n fixed)
such that exactly m edges meet at each vertex (m fixed, m, n = 3). Use the fact that

x(8%) =2

For any triangulation of a compact surface, show that
3t = 2e,
=3 — x)

v 2 4T + /49 — 24y)

In the case of the sphere, projective plane, and torus, what are the minimum values
of the numbers v, e, and ¢? (Here, ¢, ¢, and v denote the number of triangles, edges,

and vertices, respectively.)

In how many pieces do n great circles, no three of which pass through a common
point, dissect a sphere?

(a) The sides of a regular octagon are identified 1n pairs in such a way as to obtain
a compact surface. Prove that the Euler characteristic of this surface 1s = —2.
(b) Prove that any surface (orientable or nonorientable) of Euler characteristic
2> —2 can be obtained by suitably identifying in pairs the sides of a regular

octagon.

Prove that it 1s not possible to subdivide the surface of a sphere into regions, each
of which has six sides (i.e,, it 1s a hexagon) and such that distinct regions have no
more than one side in common.

Let S, be a surface that is the sum of m tort, m > 1, and let S, be a surface that is
the sum of n projective planes, n = 1. Suppose two holes are cut 1n each of these
surfaces, and the two surfaces are then glued together along the boundaries of the
holes. What surface is obtained by this process?

What surface is represented by a regular 10-gon with edges identified in pairs, as
indicated by the symbol abcdec ™ 'da™'b'e™!? (HINT: How are the vertices identified
around the boundary?)

What surface is represented by a 2n-gon with the edges identified in pairs according

to the symbol L 1
a,a,...a,a; ad, ...a,-,4a,?

What surface is represented by a 2n-gon with the edges identified in pairs according
to the symbol

-1 -1 -1 1
A,a,...8,d, Gy ...0,-,0," 7

(HINT: The cases where n is odd and where n 1s even are different.)

Remark: The results of Exercises 8.8 and 8.9 together give an alternative
“normal form” for the representation of a compact surface as a quotient space

of polygon.
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NOTES

Definition of the connected sum of two manifolds

The definition of the connected sum given in §4 is adequate for 2-dimensional
manifolds, but more care is necessary when we define the connected sum of
two orientable n-manifolds for n > 2. We must worry about whether the
homeomorphism h in our definition preserves or reverses orientations. The
essential reason for this difference is that any orientable surface admits
an orientation-reversing self-homeomorphism, whereas there exist orien-
table manifolds in higher dimensions which do not admit such a self-
homeomorphism. Seifert and Threlfall ([ 6], pp. 290-291) give an example of
a 3-dimensional manifold with this property. The complex projective plane is
a 4-dimensional manifold having the property in question.

Triangulation of manifolds

In the early days of topology, it was apparently taken for granted that all
surfaces and all higher-dimensional manifolds could be triangulated. The first
rigorous proof that surfaces can be triangulated was published by Tibor Rado
in a paper on Riemann surfaces [7]. Rado pointed out the necessity of
assuming the surface has a countable basis for its topology and gave an
example (due to Priifer) of a surface that does not have such a countable basis.
Rado’s proof, given in Chapter I of the text by Ahlfors and Sario [ 1], makes
essential use of a strong form of the Jordan Curve Theorem. The triangulability
of 3-manifolds was proved by E. Moise (Affine Structures in 3-manifolds, V:
The triangulation theorem and Hauptvermutung. Ann. Math. 56 (1952), 96—
114).

Recent results of A. Casson and M. Freedman show that some 4-
dimensional manifolds cannot be triangulated.

Models of nonorientable surfaces in Euclidean 3-space

No closed subset of Euclidean n-space is homeomorphic to a nonorientable
(n — 1)-manifold. This result, first proved by the Dutch mathematician L.E.J.
Brouwer in 1912, can now be proved as an easy corollary of some general
theorems of homology theory. This fact seriously hampers the development
of our geometric intuition regarding compact, nonorientable surfaces, since
they cannot be imbedded homeomorphically in Euclidean 3-space. However,
it is possible to construct models of such surfaces in Euclidean 3-space pro-
vided we allow “singularities” or “self-intersections.” We can even construct
a mathematical theory of such models by considering the concept of immersion
of manifolds. We say that a continuous map f of a compact n-manifold M”
into m-dimensional Euclidean space R™ is a topological immersion if each point
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of M" has a neighborhood mapped homeomorphically onto its image by f.
(The definition of a differentiable immersion 1s analogous; f is required to be
differentiable and have a Jacobian everywhere of maximal rank.) The usual
model of a Klein bottle in R> is an immersion of the Klein bottle in 3-space.
Werner Boy, in his thesis at the University of Goéttingen in 1901 [Uber die
Abbildung der projektiven Ebene auf eine im Endlichen geschlossene singu-
laritatenfreie Flache. Nach. Konigl. Gesell. Wiss. Gottingen (Math. Phys. Kl.),
1901, pp. 20-33. See also Math. Annal. 57 (1903), 173—-184], constructed
immersions of the projective plane in R>. One of the immersions given by Boy
1s reproduced in Hilbert and Cohn-Vossen [3]. Since any compact, non-
orientable surface is homeomorphic to the connected sum of an orientable
surface and a projective plane or a Klein bottle, 1t is now easy to construct
immersions of the remaining compact, nonorientable surfaces in R°.

The usual immersion of the Klein bottle in R is much nicer than any of
the immersions of the projective plane given by Boy. The set of singular points
for the immersion of the Klein bottle consists of a circle of double points,
whereas the set of singular points for Boy’s immersions of the projective plane
1s much more complicated. This raises the question, does there exist an
immersion of the projective plane in R> such that the set of singular points
consists of disjoint circles of double points? The answer to this question 1s
negative, at least in the case of differentiable immersions; for the proof, see the
two papers by T. Banchoff in Proceedings of the American Mathematical
Society published in 1974 (46, 402-413).

For further information on the immersion of compact surfaces in R°, see
the interesting article entitled “Turning a Surface Inside Out” by Anthony
Phillips in Scientific American published 1n 1966 (214, 112-120).

Bibliographical notes

The first proof of the classification theorem for compact surfaces 1s ascribed
by some to H. R. Brahana (Ann. Math. 23 (1922), 144-68). However, Seifert
and Threlfall ([6], p. 322), attribute it to Dehn and Heegard and do not even
list Brahana’s paper in their bibliography. During the 19th century several
mathematicians worked on the classification of surfaces, especially at the time
of Riemann and afterword. The nonexistence of any algorithm for the classifi-
cation of compact triangulable 4-manifolds is a result of the Russian mathe-
matician A. A. Markov (Proc. Int. Cong. Mathematicians, 1958, pp. 300-306).
For the use of the Euler characteristic to prove the 5-color theorem for maps,
see R. Courant and H. Robbins, What Is Mathematics? (Oxford University
Press, New York, 1941, pp. 264-267). We also refer the student to excellent
drawings in the books by Cairns ([2], p. 28), and Hilbert and Cohn-Vossen
([3], p. 265), illustrating how the connected sum of two or three tori can be
cut open to obtain a polygon whose opposite edges are to be identified in pairs.
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CHAPTER II

The Fundamental Group

§1. Introduction

For any topological space X and any point x, € X, we will define a group,
called the fundamental group of X, and denoted by n(X, x,). (Actually, the
choice of the point x, is usually of minor importance, and hence it is often
omitted from the notation.) We define this group by a very simple and intuitive
procedure involving the use of closed paths in X. From the definition, it will
be clear that the group is a topological invariant of X; 1.e., if two spaces are
homeomorphic, their fundamental groups are isomorphic. This gives us the
possibility of proving that two spaces are not homeomorphic by proving that
their fundamental groups are nonisomorphic. For example, this method suf-
fices to distinguish between the various compact surfaces and in many other
cases.

Now only does the fundamental group give information about spaces, but
it also 1s often useful in studying continuous maps. As we shall see, any
continuous map from a space X into a space Y induces a homomorphism of
the fundamental group of X into that of Y. Certain topological properties of
the continuous map will be reflected 1n the properties of this induced homo-
morphism. Thus, we can prove facts about certain continuous maps by
studying the induced homomorphism of the fundamental groups.

We can summarize the above two paragraphs are follows: By using the
fundamental group, topological problems about spaces and continuous maps
can sometimes be reduced to purely algebraic problems about groups and
homomorphisms. This is the basic strategy of the entire subject of algebraic
topology: to find methods of reducing topological problems to questions of
pure algebra, and then hope that algebraists can solve the latter.
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This chapter will only give the basic definition and properties of the
fundamental group and induced homomorphism, and determine its structure
for a few very simple spaces. In later chapters we shall develop more general
methods for determining the fundamental groups of some more interesting
spaces.

§2. Basic Notation and Terminology

As usual, for any real numbers a and b such that a < b, [a, b] denotes the
closed interval of the real line with @ and b as end points. For conciseness, we
set I = [0, 1]. We note that, given any two closed intervals [a, b] and [, d],
there exist unique /linear homeomorphisms

h,, hy:[a, b]—[c d],

such that
hy(a) = c, h,(b) = d,

h,(a) = d, h,(b) =c.

We distinguish between these two by calling h, orientation preserving and
h, orientation reversing.

A path or arc 1n a topological space X is a continuous map of some closed
interval into X. The images of the end points of the interval are called the end
points of the path or arc, an the path is said to join its end points. One of the
end points is called the initial point, the other is called the terminal point (it
is clear which i1s which).

A space X 1s called arcwise connected or pathwise connected if any two
points of X can be joined by an arc. An arcwise-connected space 1s connected,
but the converse statement is not true. The arc components of X are the
maximal arcwise-connected subsets of X (by analogy with the ordinary com-
ponents of X). Note that the arc components of X need not be closed sets. A

space 1s locally arcwise connected 1f each point has a basic family of arcwise-
connected neighborhoods (by analogy with ordinary local connectivity).

EXERCISE

2.1. Prove that a space which i1s connected and locally arcwise connected is arcwise
connected.

Definition. Let f,, f, : [a, b] = X be two paths in X such that f,(a) = f,(a),
fo(b) = f1(b) (i.e., the two paths have the same initial and terminal points). We
say that these two paths are equivalent, denoted by f, ~ f,, if and only if there
exists a continuous map

fi[a,b] xI->X,
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such that
£(t,0) = £,(1)
fit, 1) = f, (t)} tela bl

f(a, s) = fola) = fl(a)}s el
f(b, 5} = f,(b) = f,(b) |

Note that in the above definition we could replace I by any other closed
interval if necessary. We leave 1t as an exercise to verify that this relation is
reflexive, symmetric, and transitive.

Intuitively we say that two paths are equivalent if one can be continuously
deformed into the other in the space X. During the defomation, the end points
must remain fixed.

Our second basic definition is that of the product of two paths. The product
of two paths 1s only defined if the terminal point of the first path is the initial
point of the second path. If this condition holds, the product path is traversed
by traversing the first path and then the second path, in the given order. To
be precise, assume

f:la, b] - X,
g.[bc]->X

are paths such that f(b) = g(b) (here a < b < c¢). Then the product f-g is
defined by

f(t), tel[a, b]
gt), telb,c].

[tis amap [a, c] = X. In the above definition, we had the rather cumbersome
requirement that the domains of f and g had to be the intervals [a, b] and
[b, c], respectively. We can remove this requirement by changing the domain
of f or g by means of an orientation-preserving linear homeomorphism.
Actually, in the future we shall only be interested in equivalence classes of
paths rather than the paths themselves. By “equivalence class,” we mean, with
respect to the equivalence relation defined above and also with respect to the
following obvious equivalence relation: If f: [a, b] - X and g: [c,d] — X are
paths such that g = fh, where h:[c, d] — [a, b] 1s an orientation-preserving
linear homeomorphism, then f and g are to be regarded as equivalent. Rather
than considering paths whose domain is an arbitrary closed interval and
allowing orientation-preserving linear homeomorphisms between any two
such intervals, we find it technically simpler to demand that all paths be
functions defined on one fixed interval, namely, the interval I = [0, 1]. As a
result of this simplification, the simple formula for the product of two paths,
(2.2.1), has to be replaced by a more complicated formula. Also, it will not be
immediately obvious that the multiplication of path classes 1s associative.
However, the reader should keep in mind that there are various alternative
ways of proceeding with this subject.

(2.2.1)

(f'g)t={
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§3. Definition of the Fundamental Group of a Space

From now on, by a path in X we mean a continuous map I — X. If f and g
are paths in X such that the terminal point of f is the initial point of g, then
the product f- g is defined by

. M@, 0=t
Y g)t_{gat—l), 1<t

We say two paths, f, and f,, are equivalent (f, ~ f,) if the condition in §2 is
satisfied.

Lemma 3.1. The equivalence relation and the product we have defined are

compatible in the following sense: If f, ~ f, and gy ~ g,, then fo-go ~ f1 91
(it is assumed, of course, that the terminal point of [, is the initial point of g,).

The proof may be left to the reader. In proving lemmas such as this, the
following fact is often useful: Let A and B be closed subsets of the topological
space X such that X = Au B. If f is a function defined on X such that the
restrictions f|A and f|B are both continuous, then f is continuous. The proof,
which is easy, is left to the reader. In the future, we will use this fact without
comment.

As a result of Lemma 3.1, the multiplication of paths defines a multiplica-
tion of equivalence classes of paths (provided the terminal point of the first
path and the 1nitial point of the second path coincide). It is this multiplication
of equivalence classes with which we are primarily concerned. Note that the
multiplication of paths is not associative in general,i.e.,(f:g) - h # (g h)(we
assume both products are defined). However, we have

Lemma 3.2. The multiplication of equivalence classes of paths is associative.

Proor. It suffices to prove the following: Let f, g, and h be paths such that
the terminal point of f = initial point of g, and the terminal point of g = initial
point of h. Then

(f-g)h~f-(g h

To prove this, consider the function F : I x I - X defined by

s 4t s+ 1
0<t <
f(1+s)’ -~ = 4

F(t,s) =< g4t — 1 — ),

4
h(l 4(1—t))5 S+2<t§1.

2—5
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&1 G 11

% 5 1

FIGURE 2.1. Proof of associativity.

Then, F is continuous, F(t,0) = [(f-g) h]t, and F(¢t, 1) =[f-(g  h)]t. The
motivation for the definition of F is given in Figure 2.1. Q.E.D.

For any point x € X, let us denote by &, the equivalence class of the
constant map of I into the point x of X. This path class has the following
fundamental property:

Lemma 3.3. Let @ be an equivalence class of paths with initial point x and
terminal point y. Then &, a = aand a- &, = .

PrOOF. Let e: I — X be the constant map such that e(I) = {x} and let f: ] —
X be a representative of the path class . To prove the first relation, it suffices
toprovethate f ~ f. Define F: I x I - X by

F(t, s) = < f(2t—s

Then F(t, 0) = f(t) and F(t, 1) = (e f)t as required. The motivation for the
definition of F is shown in Figure 2.2. The proof that «* &, = « 1s similar and
1s left to the reader. Q.E.D.

For any path f: I — X, let f denote the path defined by

foo=fa—v, tel
The path f is obtained by traversing the path f in the opposite direction.

Lemma 3.4 Let « and @ denote the equivalence classes of the paths f and f,
respectively. Then,
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31) (1,1)

0

FIGURE 2.2. Proof of existence of units.

o= &, aa=4,

where x and y are the initial and terminal points of the path f.

Proor. To prove the first equation, it suffices to show that f- f ~ e, where e
1s the constant path at the point x. Therefore, we define F:I x I - X by

rf(Zt)a 0<t<3s
F(I,S)=4f(s)j %Sétél—%s
Q-2 1-4s=tL1

We then see that F(t, 0) = x, whereas (f f)t = F(t, 1). Figure 2.3 explains the
choice of the function F. We can also motivate the deformation of the path

8

A

(3,1) (1,1)
] ——— —y

0

FiGURE 2.3. Proof of existence of inverses.



§3. Definition of the Fundamental Group of a Space 41

f- f into the constant path e by a simple mechanical analogy. Consider the
path f as an elastic “thread” in the space X from the point x to y; then f is
another “thread” in the opposite direction, from y to x, and f - f is represented
by joining the two threads at the point y. We can now “pull in” the doubled
thread to the point x because we do not need to keep it attached to the point y.

The proof that @-« = &, 1s similar and 1s left to the reader. Q.E.D.

In view of these properties of the path class @, from now on we will denote
it by a'. It is readily seen that the conditions of the lemma just proved
characterize « ! uniquely. Hence, if f, ~ f,, then f, ~ f;.

We can summarize the lemmas just proved by saying that the set of all path
classes in X satisfies the axioms for a group, except that the product of two
paths is not always defined.

Definition. A path, or path class, is called closed, or a loop, if the initial and
terminal points are the same. The loop is said to be based at the common end
point.

Let x be any point of X it is readily seen that the set of all loops based at
x is a group. This group is called the fundamental group or Poincaré group of
X at the base point x and is denoted by n(X, x).

Next, we will investigate the dependence of the group n(X, x) on the base
point x. Let x and y be two points in X, and let y be a path class with 1nitial
point x and terminal point y (hence, x and y belong to the same are component
of X). Using the path y, we define a mapping u: n(X, x) - n(X, y) by the
formula a — y "'ay. We see immediately that this mapping is a homomorphism
of n(X, x) into n(X, y). By using the path y™' instead of y, we can define a
homomorphism v: n(X, y) = n(X, x) in a similar manner. We immediately
verify that the composed homomorphisms vu and uv are the identity maps of
n(X, x) and n(X, y), respectively. Thus, u and v are isomorphisms, each of
which is the inverse of the other. Thus, we have proved

Theorem. 3.5. If X is arcwise connected, the groups n(X, x) and n(X, y) are
isomorphic for any two points x, y € X.

The importance of this theorem is obvious; e.g., the question as to whether
or not n(X, x) has any given group theoretic property (e.g., it is abelian, finite,
nilpotent, free, etc.) is independent of the point x, and thus depends only on
the space X, provided X 1s arcwise connected.

On the other hand, we must keep in mind that there is no canonical or
natural 1somorphism between n(X, x) and n(X, y); corresponding to each
choice of a path class from x to y there will be an isomorphism, from (X, x)
to n(X, y), and, in general, different path classes will give rise to different
isomorphisms.
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EXERCISES

3.1. Under what conditions will two path classes, y and y’, from x to y give rise to the
same isomorphism of n(X, x) onto (X, y)?

3.2. Let X be an arcwise-connected space. Under what conditions is the following
statement true: For any two points x, y € X, all path classes from x to y give rise
to the same isomorphism of n(X, x) onto (X, y)?

3.3. Let f, g: I - X be two paths with initial point x, and terminal point x,. Prove
that f ~ g if and only if /-7 is equivalent to the constant path at x, (g is defined
as In Lemma 34).

We will actually determine the structure of the fundamental group of
various spaces later in this chapter and in Chapter IV.

§4. The Eftect of a Continuous Mapping
on the Fundamental Group

Let ¢ : X — Y be a continuous mapping, and let f,, f; : I = X be paths in X.
[t 1s readily seen that if f, and f; are equivalent, then so are the paths ¢f, and
¢f, represented by the composed functions. Thus, if a denotes the path class
that contains f, and f,, it makes sense to denote by ¢, (x) the path class that
contains the paths ¢f, and ¢f,. ¢,(2) is the image of th path class « in the
space Y, and it 1s readily verified that the mapping ¢, which sends « into ¢, ()
has the following properties:

(a) If « and B are path classes in X such that - f is defined, then ¢ (2" f) =

(94 %) - (@4 P)-
(b) For any point x € X, ¢, (&) = &,x)-

(©) @4(@™") = (07"
For these reasons, we shall call ¢, a “homomorphism,” or, the “homomor-

phism induced by ¢.”
If y:Y — Z is also a continuous map, then we can verify the following

property easily:
(d) Vo), = Yy,
Finally, if ¢ : X — X is the identity map, then

(€) ¢,(x) = afor any path class a in X i.e., ¢, is the identity homomorphism.

Note that, in view of these properties, a continuous map ¢ : X — Y induces
a homomorphism ¢, : n(X, x) - n(Y, ¢(x));and, if ¢ 1sa homomorphism, then
@, 1s an isomorphism. This induced homeomorphism will be extremely impor-
tant in studying the fundamental group.
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Caution: If ¢ 1s a one-to-one map, it does not follow that ¢* is one-to-one;
similarly, if ¢ is onto, 1t does not follow that ¢, 1s onto. We shall see examples
to illustrate this point later.

EXERCISE

4.1. Let ¢ : X - Y be a continuous map and let y be a class of paths in X from x, to
x,. Prove that the following diagram 1s commutative:

(X, xo) —— n(Y, ¢(x,))

n(X, x;) —— (Y, p(X1)).

Here the isomorphism u is defined by u(a) = y 'ay, and v is defined similarly using
@, (y) in place of y. [NOTE: An important special case occurs if ¢(xy) = @(x,). Then,
@,(7) 1s an element of the group n(Y, ¢(xy)).]

To make further progress in the study of the induced homomorphism ¢,
we must introduce the important notion of homotopy of continuous maps.

Definition. Two continuous maps ¢,, ¢, : X — Y are homotopic if and only if
there exists a continuous map ¢ : X x I — Y such that, for x € X,

(D(X, 0) = (PO(x)!
o(x, 1) = @, (x).

If two maps ¢, and ¢, are homotopic, we shall denote this by ¢, ~ ¢,. We
leave it to the reader to verify that this is an equivalence relation on the set of
all continuous maps X — Y. The equivalence classes are called homotopy

classes of maps.

To better visualize the geometric content of the definition, let us write
@(x) = @(x, t) for any (x,t) € X x I. Then, forany t€ I,

o X—-Y

is a continuous map. Think of the parameter ¢ as representing time. Then, at
time ¢t = 0, we have the map ¢,, and, as t varies, the map ¢, varies continuously
so that at time t = 1 we have the map ¢, . For this reason, a homotopy is often
spoken of as a continuous deformation of a map.*

! The student who is familiar with the compact-open topology for function spaces will recognize
that two maps ¢,, ¢, : X = Y are homotopic if and only if they can be joined by an arc in the
space of all continuous functions X — Y (provided X and Y satisfy certain hypotheses). Indeed,
the map t — ¢, in the above notation is a path from ¢, to ¢,.
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Definition. Two maps ¢y, ¢, : X — Y are homotopic relative to the subset A
of X if and only if there exists a continuous map ¢ : X x I — Y such that

@(x, 0) = @o(x), x € X,
o(x, 1) = @, (x), x € X,

0(a, 1) = @o(a) = @,(a), a€A,tel
Note that this condition implies @y,| A4 = ¢, | A.

Theorem 4.1. Let ¢,, ¢, : X - Y be maps that are homotopic relative to the
subset {x}. Then
Pox = D1 « : R(Xa x) - R(er Q)O(X)),

i.e., the induced homomorphisms are the same.
PROOF. The proof 1s immediate.

Unfortunately, the condition that the homotopy should be relative to the
base point x is too restrictive for many purposes. This condition can be
omitted, but we then complicate the statement of the theorem. We shall,
however, do this in §8.

We shall now apply some of these results.

Definition. A subset A of a topological space X is called a retract of X if there
exists a continuous map r: X — A (called a retraction) such that r(a) = a for
any a € A.

As we shall see shortly, it is a rather strong condition to require that a
subset A be a retract of X. A simple example of a retract of a space is the
“center circle” of a Mobius strip. (What is the retraction in this case?)

Now let r: X — A be a retraction, as in the above definition, andi: 4 - X
the inclusion map. For any point a € A, consider the induced homomorphisms

i, : (A, a) - n(X, a),
r, . (X, a) = n(A, a).

Because ri = identity map, we conclude that r i, = 1dentity homomorphism
of the group n(A, a), by properties (d) and (e) given previously. From this we
conclude that i, is a monomorphism and r,, is an epimorphism. Moreover, the
condition that r i, = identity imposes strong restrictions on the subgroup
i, (A, a) of n(X, a).

We shall actually use this result later to prove that certain subspaces are
not retracts.

EXERCISES

4.2. Show that a retract of a Hausdorff space must be a closed subset.
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4.3. Provethatif Aisaretractof X,r: X — Aisaretraction,i: A —» X is theinclusion,
and i, m(A) 1s a normal subgroup of n(X), then n(X) is the direct product of the
subgroups image i, and kernel r_ (see §2 of Chapter III for the definition of direct

product of groups).

4.4. Let A bea subspace of X, and let Y be a nonempty topological space. Prove that
A x Yisaretract of X x Y ifand only if A is a retract of X.

4.5. Prove that the relation “is a retract of” 1s transitive, i.e., if A is a retract of B and
B 1s a retract of C, then A 1s a retract of C.

We now introduce the notion of deformation retract. The subspace 4 1s a
deformation retract of X if there exists a retraction r: X - 4 homotopic to
the identity map X — X. The precise definition is as follows:

Definition. A subset A of X is a deformation retract® of X if there exists a
retractionr: X — A and a homotopy f: X x I - X such that

f(x,0)=x
f(x, 1) = r(x)} e

fla,ty=a, aeAtel

Theorem 4.2. [f A is a deformation retract of X, then the inclusion map
i : A— X induces an isomorphism of n(A, a) onto n(X, a) for any a € A.

PROOF. As above, r i, 1s the identity map of n(A4, a). We will complete the
proof by showing that i_r, is the identity map of #(X, a). This follows because
ir 1s homotopic to the identity map X — X (relative to {a}); hence, Theorem
4.1 1s applicabile. Q.E.D.

We shall use this theorem 1n two different ways. On the one hand, we shall
use it throughout the rest of this book to prove that two spaces have isomor-
phic fundamental groups. On the other hand, we can use it to prove that a
subspace is not a deformation retract by proving the fundamental groups are
not isomorphic. In particular, we shall be able to prove that certain retracts
are not deformation retracts.

Definition. A topological space X i1s contractible to a point if there exists a
point x, € X such that {x,} is a deformation retract of X.

Definition. A topological space X is simply connected if it is arcwise connected
and n(X, x) = {1} for some (and hence any) x € X.

Corollary 4.3. If X is contractible to a point, then X is simply connected.

* Some authors define this term in a slightly weaker fashion.
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Examples

4.1. A subset X of the plane or, more generally, of Euclidean n-space R" is
called convex if the line segment joining any two points of X lies entirely in
X. We assert that any convex subset X of R" is contractible to a point. To prove
this, choose an arbitrary point x, € X, and then define f: X x I - X by the
formula

fix, ) =(1 = )x + ixg

for any (x, t) € X x I[i.e., f(x, t)is the point on the line segment joining x and
x, Which divides it in the ratio (1 — ¢):t]. Then f 1s continuous, f(x, 0) = x,
and f(x, 1) = x,, as required. More generally, we may define a subset X of R”
to be starlike with respect to the point x, € X provided the line segment joining
x and x, lies entirely in X for any x € X. Then, the same proof suffices to

show that if X is starlike with respect to x,, it is contractible to the point x,.
4.2. We assert that the unit (n — 1)-sphere S"! is a deformation retract of

E" — {0}, the closed unit n-dimensional disc minus the origin. To prove this,
defineamap f: X x I - X, where

X=E"-{0}={xeR":0<[x| =1},
by the formula

foty = (1 — t)x + t-—

x|

(The reader should draw a picture to show what happens here when n = 2 or
n = 3.) Then f is continuous, f(x, 0) = x, f(x, 1) = x/|x| € $"!, and, if x €
S"~1, then f(x,t) = x for all t e I. In particular, for n = 2, we see that the
boundary circle is a deformation retract of a punctured disc.

EXERCISES

4.6. Let x, be any point in the plane R*. Find a circle C in R* which is a deformation
retract of R? — {x,}. What is the n-dimensional analog of this fact?

4.7. Find a circle C which is a deformation retract of the Maobius strip.

4.8. Let T be a torus and let X be the complement of a point in 7. Find a subset of
X which is homeomorphic to a figure “8” curve (1.e., the union ot two circles with
a single point in common) and which is a deformation retract of X.

4.9. Generalize Exercise 4.8 to arbitrary compact surfaces, 1.e, let S be a compact
surface and let X be the complement of a point in S. Find a subset A of X such
that (a) A is homeomorphic to the union of a finite number of circles and (b) A
is a deformation retract of X. (HINT: Consider the representation of S as the space
obtained by identifying in pairs the edges of a certain polygon.)

4.10. Let x and y be distinct points of a simply connected space X. Prove that there
1S a unique path class in X with initial point x and terminal point y.
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4.11. Let X be a topological space, and for each positive integer n let X, be an
arcwise-connected subspace containing the base point x, € X. Assume that the
subspaces X, are nested, i.e., X, < X,,, for all n, that

X =] X,
n=1

and that for any compact subset A of X there exists an integer nsuch that 4 < X,.
(EXAMPLE: Each X, is open.) Let i, : n(X,) —» n(X) and j,,, : 1(X,,) = 7(X,), m < n,
denote homomorphisms induced by inclusion maps. Prove the following two
statements: (a) For any a € n(X), there exists an integer n and an element
o' € m(X,)such thati (a') = a. (b) If f € n(X,,) and i (B) = 1, then there exists an
integer n = m such that j_.(f) = 1. [REMARK: These two statements imply that
n(X) is the direct limit of the sequence of groups n(X,) and homomorphisms j,,,,.
We shall see examples later on where the hypotheses of this exercise are valid.]
If the homomorphisms j, .., are monomorphisms for all n, prove that each i, 1s
also a monomorphism and that n(X) is the union of the subgroups i,7(X,).

§5. The Fundamental Group of a Circle 1s
Infinite Cyclic

Let S' denote the unit circle in the Euclidean plane R? S' = {(x,y)e
R%:x? + y* = 1} (or, equivalently, in the complex plane C). Let f:I — S?
denote the closed path that goes around the circle exactly once, defined by

f(t) = (cos 2at,smn 2nt), 0=t =<1,

and denote the equivalence class of f by the symbol a.

Theorem 5.1. The fundamental group n(S*, (1, 0)) is an infinite cyclic group
generated by the path class a.

ProOF. Let g: I — S!, g(0) = g(1) = (1, 0) be a closed path in S'. We shall
prove first that g belongs to the equivalence class o™ for some integer m (m
may be positive, negative, or zero). Let

1 ={(x,y)ESlfy> _-fl_ﬁ}a
U, ={(x,y)eS' 1y < +15}-

Then, U, and U, are connected open subsets of S!, each of which is slightly
larger than a semicircle, and U, u U, = S*. Obviously U, and U, are each
homeomorphic to an open interval of the real line, hence, each is contractible.
In the case where g(I) = U, or g(I) = U,, it is then clear that g is equivalent
to the constant path, and hence belongs to the equivalence class of «°. We put
this case aside and assume from now on that g(I) & U, and g(I) ¢ U,.

We next assert that it 1s possible to divide the unit interval into subintervals
[0, ¢, 1, [£4, 8510, ---5 [tn-1, 1], Wwhere 0 =1t, <t, <" <t,.; <t,=1, such
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that the following conditions hold:

(a) g(Lt;, tir )= U or
g([t;,t..;])cU, for 0Zi<n.
(b) g(lti-1, 1) and g([¢;, ti1 1)

are not both contained in the same open set U;, j = 1 or 2.

This assertion may be proved as follows. {g~'(U,), g '(U,)} is an open
covering of the compact metric space I; let & be a Lebesgue number? of this
covering.

Divide the unit interval in any way whatsoever into subintervals of length
< &. With this subdivision, condition (a) will hold; however, condition (b) may
not hold. If two consecutive subintervals are mapped by g into the same set
U;, then amalgamate these two subintervals into a single subinterval by
omitting the common end point. Continue this process of amalgamation until
condition (b) holds.

Let B denote the equivalence class of the path g, and let f; denote the
equivalence class of g|[t;-,, t;] for 1 =i < n. Then, obviously, f 1s a product,

B=pBr-- b

Each f; is a path in U; or U,. Because of condition (b), it is clear that
g(t;) e U n U,. U, n U, has two components, one of which contains the point
(1, 0), and the other of which contains the point (— 1, 0). For each index i,
0 < i < n,choose a path class y; 1n U; n U, with initial point g(t;) and terminal
point (1, 0) or (— 1, 0), depending on which component of U; n U, contains
g(t;). Let

o1 = Birs
o; =v-1By; for 1<i<n,
0n = Va1 Be-
Then, 1t is clear that
B =0,0,""0,. (2.51)

where each ¢, is a path class in U, or U, having its initial and terminal points
in the set {(1, 0), (— 1, 0)}. For any index i, if ; is a closed path class, then
0; = 1, because U, and U, are simply connected. We may therefore assume
that any such 9, has been dropped from formula (2.5-1), and, changing notation
if necessary, that 9, 9,, ..., and 9, are not closed paths.

Becuase U, 1s simply connected, there 1s a unique path class n, in U, with

> We say ¢ is a Lebesgue number of a covering of a metric space X if the following condition holds:
Any subset of X of diameter < ¢ 1s contained in some set of the covering. It 1s a theorem that any
open covering of a compact metric space has a Lebesgue number. The reader may either prove
this as an exercise or look up the proof in a textbook on general topology.
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initial point (1, 0) and terminal point (— 1, 0) (see Exercise 4.10). Also, ;! is
the unique path class in U, with initial point (— 1, 0) and terminal point (1, 0).
Analogously, we denote by 7, the unique path class in U, with initial point
(— 1, 0) and terminal point (1, 0). Note that n,7, = a.

Thus, we see that, for each index i,

_ 1 _ a1
;=1; Or o;=n;3 .

In view of condition (b) above, if §; = n{!, then 6., , = 5!, while if §, = 3,
then 6., , = n{'. Therefore only the following possibilities remain;

B: 1:
B=mninnny - nin,,

or
B=mny'ni'ny'nytnytngt

In the second case f = a™ for some m > 0, whereas 1n the third case f = o™

for some integer m < 0. Thus, we have f = o™ i1n all cases.

From this it follows that n(S') is a cyclic group. However, this argument
gives no hint as to the order of z(S'). In §3 of Chapter V we will complete the
proof by showing that z(S') is an infinite group, using the theory of covering
spaces; another proof is given in the discussion of Example 7.1 of Chapter V.
When we introduce homology theory later on, it will be easy to give still other
proofs.

It would be possible to give a direct, ad hoc proof now that n(S") is infinite;
see Massey ([ 2], Chapter II) or Ahlfors and Sario ([ 1], Chapter 1, Section 10).
It 1s also possible to give a proof using the concept of the winding number or
index of a closed path in the plane with respect to a point; this is explained in
most textbooks on complex function theory. The theory of the winding
number or index can also be developed in the context of real function theory.

Given the fundamental importance of Theorem 5.1 and its basic intuitive
appeal, it is not surprising that there should be so many different proofs

available. Q.E.D.

As a corollary of Theorem 5.1, we see that the fundamental group of any
space with a circle as deformation retract is infinite cyclic. Examples of such
spaces are the Mobius strip, a punctured disc, the punctured plane, a region
in the plane bounded by two concentric circles, etc. (see the exercises in the

preceding section).
EXERCISES

5.1. Let {U;} be an open covering of the space X having the following properties:
(a) There exists a point x, such that x, € U; for all i. (b) Each U, i1s simply connected.
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(©) If i # j, then U; n U, is arcwise connected. Prove that X is simply connected.
[HINT: To prove any loop f: 1 — X based at x, is trivial, first consider the open
covering { f 1(U,)} of the compact metric space I and make use of the Lebesgue
number of this covering, ]

Remark. The two most important cases of this exercise are the following: (1) A
covering by two open sets and (2) the sets U, are linearly ordered by inclusion.
The student should restate the exercise for these two special cases.

5.2. Use the result of Exercise 5.2, remark (1), to prove that the unit 2-sphere S or,
more generally, the n-sphere S™, n > 2, 1s simply connected.

5.3. Prove that R? and R" are not homeomorphic if n # 2. (HINT: Consider the
complement of a point in R* or R")

5.4. Prove that any homeomorphism of the closed disc EZ onto itself maps S* onto S*
and U? onto U~

§6. Application: The Brouwer Fixed-Point Theorem
in Dimension 2

One of the best known theorems of topology is the following fixed-point
theorem of L.E.J. Brouwer. Let E” denote the closed unit ball in Euclidean
n-space R":

E"={xeR":|x| < 1}.

Theorem 6.1. Any continuous map f of E" into itself has at least one fixed point,
i.e., a point x such that f(x) = x.

We shall only prove this theorem for n < 2. Before going into the proof, it
seems worthwhile to indicate why there should be interest in fixed-point

theorems such as this one.
Suppose we have a system of n equations in n unknowns:

gl(xls-”:xn)zos
gr(Xyy ...y x,) =0,
2 (2.6.1)
ga(X4,...,X%,) = 0.

Here the g;’s are assumed to be continuous real-valued functions of the real
variables x,, ..., x,. It is often an important problem to be able to decide
whether or not such a system of equations has a solution. We can transform
this problem into a fixed-point problem as follows. Let

hi(xis SIS xn) — gi(xls -y xn) + X;
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fori=1,2,...,n Then, for any point x = (x, ..., Xx,), we define

h(x) = (hy(x), ..., ha(x)).

Then, A is a continuous function mapping a certain subset of Euclidean n-space
(depending on the domain of definition of the functions ¢,, ..., g,) into
Euclidean n-space. If we can find a subset X of Euclidean n-space homeo-
morphic to E”, such that h is defined in X and h(X) < X, then we can conclude
by Brouwer’s theorem that the function A has a fixed point in the set X; but
any fixed point of the function h is readily seen to be a common solution of
Equations (2.6.1).

Brouwer’s theorem has been extended from the subset E” of Euclidean
space to apply to certain subsets of function spaces. The resulting theorem
can then be used to prove existence theorems for ordinary and partial differ-
ential equations; 1n fact, this 1s one of the most powerful methods of proving
existence theorems for certain types of nonlinear equations.

PRrROOF OF THEOREM 6.1. For n < 2: First we prove that, for any integer n > 0,
the existence of a continuous map f: E" — E", which has no fixed points,
implies that the (n — 1)-sphere $"~' = {x e R":|x| = 1} is a retract of E". We
do this by the following simple geometric construction. For any point x € E”,
let r(x) denote the point of intersection of " ! and the ray starting at the point
f(x) and going through the point x. Figure 2.4 shows the situation for the case
where n = 2. Using vector notation, we can easily write a formula for r(x) in
terms of f(x). From this formula, we see that r is a continuous map of E" into
S" 1. If x e $"71, it is clear that r(x) = x. Therefore, r is the desired retraction.

r(x)

J(x)

FIGURE 2.4. Proof of the Brouwer Fixed-Point Theorem.
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If we could prove that S"~! is not a retract of E", then we would have a
contradiction. For n = 1, this is clear, because E! is connected, but S° is
disconnected. For n = 2, we invoke what we have learned about the funda-
mental groups of retracts. Because n(S!) is infinite cyclic, whereas n(E?) is a
trivial group, it easily follows that S! is not a retract of E? (see the discussion
of retracts in §4). Q.E.D.

The proof of this theorem for the case where n > 2 will be given in Chapter
VIIL.

§7. The Fundamental Group of a Product Space

In this section, we shall prove that the fundamental group of the product of
two spaces is naturally isomorphic to the direct product of their fundamental

groups; in symbols,

(X x Y) = n(X) x n(Y).

(For a review of the definition of the direct product of groups, see §2 of
Chapter 111.)

Let X, Y, and A be topological spaces. If f: A - X x Y is any map, let us
denote the coordinates of f(a) by (fi(a), f>(a)) for any point a € A. Then f,
and f, are maps of 4 into X and Y, respectively, and it is well known f is
continuous if and only if both f; and f, are continuous. This is a basic property
of the product topology. Thus, a natural one-to-one correspondence exists
between continuous maps f: A - X x Y and pairs of continuous maps f; :
A-X, fb,A-Y Ilf wedenote by p: X x Yo X and g. X x Y > Y the
projection of the product space onto its two factors, then f;, = pf and f, = qf.

Let us apply these considerations to the case where A = I, the unit interval.
We see that there is a natural one-to-one correspondence between paths
f:1 - X x Yin the product space and pairs of paths f, : I - X, f,:I - Yin
the factors. Note that f;, = pf and f, = qf as before. This natural correspon-
dence has the following obvious but important properties:

(@) If f,g:1— X x Y are paths with the same initial and terminal points, then
f~gifandonly if f; ~ g, and f, ~ g, (here g, = pg and g, = q9).

(b) Let f,g: 1 - X x Y be paths such that the terminal point of f is the initial
point of g, and let h= f-g. Then h, = f,-g, and h, = f, g,, where
h, = phand h, = gh.

We can summarize these two statements by stating that the natural cor-
respondence f <> (f,, f,) is compatible with the equivalence relation and
product we have defined between paths. We leave the verification of these
statements to the reader.
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Now let us apply these considerations to the study of the fundamental
group of the product space, n(X x Y, (x, y)). Let p,:n(X X Y, (x,y))—
n(X, x) and g, : (X x Y, (x, y)) = n(Y, y) denote the homomorphisms in-
duced by the projections p and q. From property (a), we see that the cor-
respondence o — (p, , g, ) establishes a one-to-one correspondence between
the sets #(X x Y, (x, ¥)) and =(X, x) x =(Y, y). Moreover, it follows from
property (b) that this correspondence preserves products, i.e., it 1S an 1Somor-
phism of groups. We summarize these results as follows:

Theorem 7.1. The fundamental group of the product space, n(X x Y, (x, y)), is
naturally isomorphic to the direct product of fundamental groups, n(X, x) x
n(Y,y). The isomorphism is defined by assigning to any element o€
n(X x Y, (x,y)) the ordered pair (p, o, q,a), where p: X X Y > X and q:
X x Y - Y denote the projections of the product space onto its factors.

Obviously, this theorem can be extended to the product of any finite
number of spaces.

EXERCISES

7.1. Describe the structure of the fundamental group of a torus.

7.2. Prove that the subset S x {x,} is a retract of S' x S!, but that it is not a
deformation retract of S' x S! for any point x, € S*.

7.3. Generalize Theorem 7.1 to obtain a description of the fundamental group of the
product of an infinite collection of topological spaces.

74. Leti: X - X x Yandj: Y = X x Y be maps defined by i(x) = (x, yo)and j(y) =
(xo, ¥), where x,e X and y, € Y are base points which are chosen once for all.
Prove that the mapping of (X, xq) x n(Y, yg) into 7(X x Y, (x4, yo)) defined by
(B,7) = (i,B) (j,y) is an isomorphism of the first group onto the second. (HINT:
Prove it is the inverse of the isomorphism described in Theorem 7.1.) Deduce as

a corollary that the elements i_f§ and j,y commute, i.e., (i, ) (j,7) = (j 7)), B).

7.5. Assume that G 1s a topological space, u: G x G = G 1s a continuous map, and
e € G is such that the following conditions hold: For any x € G, u(x, €) = u(e, x) =
x. [An important example: G is a topological group, e is the identity element, and
u(x, y) = the product of x and y for any elements x, ye G.] Leti: G - G x G and
j:G = G x G be defined as in Exercise 7.4: i(x) = (x, e) and j(x) = (e, x) for any
x € G. Prove that, for any elements 8, y € n(G, e), p [(i,B)(j,7)] = B-y. [HINT:
Consider first the case where § or y = 1.]. Deduce as a corollary that #(G, ¢) 1s an
abelian group.

7.6. Let G, e, and u be as in Exercise 7.5. Assume in addition that there exists a
continuous map ¢ : G = G such that u(x, c(x)) = u(c(x), x) = efor any x € G. [An
important example: G is a topological group and ¢(x) = x™! for any x € G.] Prove
that, for any element g € n(G, e), e, (8) = 7.
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§8. Homotopy Type and Homotopy Equivalence
of Spaces

Before we can prove the next theorem, we need to develop some preliminary
material about the topology of certain subsets of the plane. A topological
space will be called a closed disc if it 1s homeomorphic to the set

E? ={x,y)e R*:x* + y? < 1};
it will be called an open disc if 1t is homeomorphic to the set
U2 =1{(x,y)eR?:x* + y* < 1}.

The boundary of a closed disc is the subset that corresponds to the circle S*
under a homeomorphism of the disc onto E?; it can be proved that this subset
1s independent of the choice of the homeomorphism (see Exercise 3.5).

We shall now consider some elementary properties of discs.

(a) Any compact, convex subset E of the plane with nonempty interior is a
closed disc.

PrROOF. We can set up a homeomorphism between E and E? as follows.
Choose a point x, belonging to the interior of E. Consider any ray in the plane
starting at the point x,; the intersection of this ray with E must be a closed
interval having x, as one end point. Map this interval linearly onto the unit
interval on the parallel ray through the origin. If we do this for each ray
through x,, we obtain a one-to-one correspondence between the points of E
and E* which can be proved to be continuous in both directions.

(b) Let E, and E, be closed discs with boundaries B, and B,, respectively.
Then, any continuous map f: B, — B, can be extended to a continuous
map F: E, - E,. If f is a homeomorphism, then we can choose F to be a
homeomorphism also.

ProoOF. In view of the definition of a closed disc, it suffices to prove this
statement in the case where E, = E, = E? and B, = B, = S!. We leave this
proof to the reader.

(c) Let E, be a closed disc. Let E, denote the quotient space of E,; obtained
by identifying a closed segment of the boundary of E, to a point. Then,
this quotient space E, is again a closed disc.

PROOF. In view of property (b), it suffices to prove this assertion for the case
of a particular closed disc and a particular segment on the boundary of that
disc. We are at liberty to choose the particular disc and segment in any
convenient way. We choose E; to be the trapezoid ABDE in the xy plane
shown 1n Figure 2.5, and E, to be the triangle ABC. We shall define a map
f: E, - E, such that the segment DE of the boundary of E, 1s mapped onto
the vertex C of E,, but otherwise f is one-to-one. Then, we shall complete the
proof by showing that E, has the quotient topology determined by .
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FIGURE 2.5. Proof of Theorem 8.3.

We define f by the condition that, for any point P € E,, the points P,
P’ = f(P)and C = (0, 1) will lie on a straight line, and the y coordinate of P’
will be twice that of P. If (x, y) are the coordinates of P and (x’, y’) are the
coordinates of P’, then we find that

, (2}’—1)"

X =X

y=1/% 0<y=<i
y' =2y )
or
(6=
X =X
2y'=2) % 0y <l

y =13y )

This first pair of formulas shows that f is continuous, whereas the second pair
of formulas shows that f is one-to-one except on the segment DE; obviously
the segment DE is all mapped into the point C. Because E; is compact and

E, is Hausdorff, f 1s a closed map, and hence E, has the quotient topology.
Q.E.D.

We are now ready to state and prove a key lemma. Let D denote a closed
disc, let B denote its boundary (which 1s a circle), and let g : I - B denote a
continuous map which wraps the interval exactly once around the circle; i.e.,
g(0) = ¢g(1) = d, € B, and g maps the open interval (0, 1) homeomorphically
onto B — {d,}. Let X be a topological space.

Lemma 8.1. A continuous map f:B — X can be extended to a map D — X if
and only if the closed loop fg:1 — X is equivalent to the constant loop at the

base point f(d,).
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Proor. First assume that f: B - X can be extended to a continuous map
F:D — X. Consider the unit square {(x,y))eR?*:0<x<land 0Ly < 1}.
Define a continuous map h of the boundary of this square into B as follows:

h(x,0) =g(x), 0=x=1,
h(x, 1) = h(0, y) = h(L, y) = d,

for x € I or y € 1. By property (b), we can extend s to a continuous map H of
the unit square. Then, the existence of the composite map FH proves the loop
fg is equivalent to the constant path.

Next, assume the loop fg is equivalent to the constant path. By definition,
this means there exists a continuous map G of the unit square into X such that

G(x, 0) = f(g(x)),
G(x, 1) = G(0, y) = G(1, y) = f(do).

Because G maps the top and the two sides of this square into the single point
f(d,), it 1s clear that G induces a continuous map of the quotient space of the
square (obtained by identifying the top and two sides of the square to a single
point) into X. By property (c), this quotient space 1s a closed disc, which we
may take to be D, and the natural map of the boundary of the square onto
the quotient space may be taken to be the map & in Equations (2.8.1). The

induced map of the disc D into X 1s clearly an extension of f, as desired.
Q.E.D.

(2.8.1)

R

In applying this lemma, it is convenient to use the following “abuse of
language”: We shall say that the map f: B - X “represents” the equivalence
class of the loop fg.

To state the next theorem, let ¢,, ¢, : X — Y be continuous maps, and let
o:X x I - Y be a homotopy between ¢, and ¢,, i.e., ¢(x, 0) = ¢,(x) and
@(x, 1) = ¢@,(x). Choose a base point x, e X. Then, ¢, and ¢, induce
homomorphisms

Pos : T(X, X0) = 7(Y, @o(X0)),

P14 - (X, X0) = (Y, @,(x0))

Let y denote the homotopy class of the path t - ¢@(x,,1),0 <t £ 1,1in Y. This
defines an isomorphism u: n(Y, ¢y(x4)) = n(Y, @,(x,)) by the formula

(@) =y 'ay, o€ n(Y, po(xo)).
Theorem 8.2. Under the above hypotheses, the following diagram is commutative:

fﬂ/‘ (Y, @o(xo))

R'(X, xo) u
\ n(Y, @1 (xo))

This theorem is the natural and full generalization of Theorem 4.1.
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PrOOF. Let 2 € n(X, x,); we must prove that

@15(%) =77 (@04 2)7-
Choose a closed path f:I — X representing the path a. Consider the map

g: I xI->Y
defined by
g(x, y) = @(f(x), y).

Then, for x, y € I, we have

g(x, 0) = @o(f(x)),
g(x, 1) = @, (f(x)),
g(os y) = g(ls y) = (O(JCO, y)

Hence, the map g of the bottom of the square represents ¢,, (), on the top
of the square it represents ¢,, (), and on the two sides of the square it
represents y. If we read around the boundary of the square, the map represents
(00, 0)7(01,%) 'y"'. Now apply Lemma 8.1 conclude that

(@ox ) V(@12 'y~ = L.

From this the desired equation follows [ multiply on the rnight by y(¢, ,2) and
then on the left by y™!]. Q.E.D.

Definition. Two spaces X and Y are of the same homotopy type if there exist
continuous maps (called homotopy equivalences) f : X — Y,g : Y — X such that
qf ~ identity: X —» X and fg ~ identity: Y - Y.

Obviously, two homeomorphic spaces are of the same homotopy type, but
the converse is not true.

EXERCISES

8.1. Prove that, if A is a deformation retract of X, then the inclusioni: 4 - X is a
homotopy equivalences. (Actually, one of the conditions in the definition of a
deformation retract given in §4 is superfluous here; omission of this condition
leads to the notion of a “deformation retract in the weak sense.” For spaces which
are sufficiently “nice,” it can be proved that the two notions agree.)

Theorem 8.3. If f:X - Y is a homotopy equivalence, then f, :n(X, x)—
n(Y, f(x)) is an isomorphism for any x € X.

PrROOF. Because ¢gf ~ identity : X — X, we obtain the following diagram
(which 1s commutative by Theorem 8.2):

(X, x) —2— (Y, f(x))

De

n(X, gf(x))
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Here u 1s an isomorphism induced by a certain path from x to gf (x). Therefore,
we conclude f, 1s a monomorphism and g, is an epimorphism.

If we apply the same argument to the homotopy fg ~ identity: Y — Y, we
obtain the following commutative diagram:

n(Y, f(x))

v
I n

n(X, gf(x)) —— =(Y, fgf(x))

Therefore, we conclude g, 1s a monomorphism. Because g, 1s both an epimor-
phism and a monomorphism, it 1s an isomorphism. Because

g*f* =Uu

and both g, and u are isomorphisms, we conclude that f, is also an
isomorphism. Q.E.D.

This theorem will be used as an aid in the determination of the fundamental
group of certain spaces, and as a method of proving that certain spaces are
not of the same homotopy type (and hence are not homeomorphic).

EXERCISE

8.2. Assume that G, u, and e satisfy the hypotheses of Exercise 7.5. Use Lemma 8.1 to
prove directly that for any elements o, 8 € 7(G, e), xfo™ ' 7! = 1. (HINT: Choose D
to be a square, and choose a map of B into G which represents affa 187!, Use the
existence of u to define the required extension.) Deduce that n(G, e) is abelian.

NOTES

The fundamental group was introduced by the great French mathematician
Henri Poincaré in 1895 (Analysis Situs, J. Ecole Polytechn. 1 (1895), 1-121).
The notation of two spaces being of the same homotopy type was introduced
by Witold Hurewicz in a series of four papers, in 1935-1936, which appeared
in the Proceedings of the Koninklijke Nederlandse Akademie van Wetenschapen.
In these papers, Hurewicz also introduced higher-dimensional analogs of the
fundamental group, called homotopy groups. These 1deas of Hurewicz have
played a significant role in algebraic topology since 1935.

The reader who is interested in the proof of existence theorems in analysis
by the use of fixed-point theorems 1s referred to the following book by Jane
Cronin: Mathematical Surveys No. 11, Fixed Points and Topological Degree
in Nonlinear Analysis, American Mathematical Society, Providence, R.1., 1964.
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CHAPTER III

Free Groups and
Free Products of Groups

§1. Introduction

In the preceding chapters we have introduced the fundamental group of a
space and actually determined its structure in some of the simplest cases. In
more complicated cases we need a larger vocabulary and a greater knowledge
of group theory to describe its structure and actually to make use of its
properties. The object of this chapter is to supply this need. We first discuss
the case of abelian groups because this case 1s simpler and more closely related
to the student’s previous experience. Then we discuss the general case of not
necessarily abelian groups. Here the results are entirely analogous to the
abelian case, but the possibilities are more varied and less intuitive.

The three main group theoretic concepts introduced 1n this chapter are the
following: free group, free product of groups, and presentation of a group by
generators and relations. These concepts will be used throughout the next two
chapters. The definition of a free group or a free product of groups involves
a mathematical concept of wide application, the so-called “universal mapping
problem,” which is also a basic concept in Chapter IV.

§2. The Weak Product of Abelian Groups

We assume the student is familiar with the concept of the direct product of a
finite number of groups,

G=G, x G, x - x G,.
The elements of G are ordered n-tuples
g=1(9:,92 - 9n)
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where g, € G;fori =1, 2, ..., n, with multiplication defined componentwise:

(gi>92s-- s 9n)G15 92> ---59n) = (9191592925 - > GnGn)-

It is easy to extend this definition to the case of an infinite collection of groups
{G;:iel}. Here I is an index set, which may be countable or uncountable.
The direct product of such a collection is denoted by

[16.

iel

Its elements are functions g which assign to each index i € I an element g; € G;.
These elements are multiplied componentwise: if g and & are elements of the
direct product, then

(gh); = (9:)(h;)

foranyiel.
Let {G;:ie I} be any collection of groups, and let

G¢=T]6G

iel

be their product.

Definition. The weak product® of the collection {G;: i € I} is the subgroup of
their product G consisting of all elements g € G such that g, is the identity
element of G; for all except a finite number of indices i.

Obviously, if {G;:ie I} is a finite collection of groups, then the product

and weak product are the same.

If G denotes either the product or weak product of the collection {G;:i e I},
then, for each index i € I, there is a natural monomorphism ¢, : G; - G defined
by the following rule: For any element x € G; and any index j € I,

x ifj=i

(9ex); = {1 if j # i

In the case where each G, is an abelian group, the following theorem gives an
important characterization of their weak product G and the monomorphisms

@;.

Theorem 2.1. If {G;:i e I} is a collection of abelian groups and G is their weak
product, then for any abelian group A and any collection of homomorphisms

;. G, - A, iel,

! When each group G, is abelian and the group operation is addition, it is customary to call the
weak product the “direct sum.” In this definition, we do not require that any two groups in the
collection {G;} be nonisomorphic. In fact, it may even occur that all of the groups of the collection
are isomorphic to some given group.
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there exists a unique homomorphism f:G — A such that for any iel the
following diagram is commutative:

Proor. Given the y,;’s, define f by the following rule: For any x € G, f(x) will
be the product of the elements y/,(x;) for all i € I. Because x; = 1 for all except
a finite number of indices i, this product is really a finite product; and because
all the groups involved are abelian, the order of multiplication is immaterial.
Thus, f(x) 1s well defined, and it is readily verified that f is a homomorphism,
which renders the given diagram commutative. It is easy to see that f 1s the
unique homomorphism having this property. Q.E.D.

Our next proposition states that this theorem actually characterizes the
weak product of abelian groups.

Proposition 2.2. Let {G;}, G, and ¢, : G; — G be as in Theorem 2.1; let G’ be any
abelian group and let ¢’ . G, — G’ be any collection of homomorphisms such that
the conclusion of Theorem 2.1 holds with G’ and ¢; substituted for G and ¢;,
respectively. Then, there exists a unique isomorphism h: G — G’ such that the
following diagram is commutative for any ie I:

“’/’

G; h

\ +
(pg‘

GJ’

PRrRoOF. The existence of a homomorphism h: G - G’ making the required
diagram commutative is assured by Theorem 2.1. Because Theorem 2.1 also
applies to G’ and the ¢; (by hypothesis), there exists a unique homomorphism
k: G’ - G such that the following diagram i1s commutative for any index i € I:

G; k

From these facts, we readily conclude that the following two diagrams are
commutative for any i e I.
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G»"

G; kh G; hk

However, these two diagrams would also be commutative if we replaced kh
by the identity map G — G 1n the first, and hk by the identity map G’ - G’ in
the second. We now invoke the uniqueness statement in the conclusion of
Theorem 2.1 to conclude that kh and hk are both identity maps. Hence, h and
k are inverse isomorphisms of each other. Q.E.D.

The student should reflect on the significance of the characterization of the
weak product given by Theorem 2.1. We may consider any other abelian
group A with definite homomorphisms y;: G; - 4 as a candidate for some
kind of a “product” of the abelian groups G;; then this theorem asserts that
the weak product G is the “freest” among all such candidates in the sense that
there exists a homomorphism of G into A commuting with ¢, and y; for all i.
Here we use the word “freest” in the sense of “fewest possible relations
imposed,” and the general philosophy 1s that if certain relations hold for the
group G, they also hold for any homomorphic image of G; of course, additional
relations may hold for the homomorphic image. This same philosophy also
holds for other kinds of algebraic objects, such as rings, etc.

As we shall see, the argument used to prove Proposition 2.2 applies almost
verbatim to many other cases.

Since the weak product G of a collection {G;} of abelian groups is com-
pletely characterized by the properties of the monomorphisms ¢;: G; —» G
stated in Theorem 2.1, we could just as well ignore the fact that Gis a subgroup
of the product

[lG

iel
and focus our attention instead on the group G and the homomorphisms ;.
Furthermore, because each ¢, 1s a monomorphism, we can identify G; with its
image in G under ¢;, and consider ¢; as an inclusion map, if this is convenient.
In this case, we say that G 1s the weak product of the subgroups G;, it being
understood that each ¢, is an inclusion map.

§3. Free Abelian Groups

We recall that, if S is a subset of a group G, then S is said to generate G in
case every element of G can be written as a product of positive and negative
powers of elements of S. (An equivalent condition is the following: S is not
contained in any proper subgroup of G.) For example, if G is a cyclic group



64 III. Free Groups and Free Products of Groups

of order n,
G=1{x,x%x°..,x"=1},

then the set S = {x} generates G.
If the set S generates the group G, certain products of elements of S may

be the identity element of G. For example,

(a) If x € S, then xx™' = 1.
(b) If G is a cyclic group of order n generated by {x}, then x" = 1.

Any such product of elements of S that 1s equal to the identity 1s often called
a relation between the elements of the generating set S. Roughly speaking, we
may distinguish between two types of relations between generators: trivial
relations, as in Example (a), which are a direct consequence of the axioms for
a group and thus hold no matter what the choice of G and S, and nontrivial
relations, such as Example (b), which are not a consequence of the axioms for
a group, but depend on the particular choice of G and S.

These notions lead naturally to the following definition: Let S be a set of
generators for the group G. We say that G is freely generated by S or a free
group on S in case there are no nontrivial relations between the elements of
S. For example, if G is an infinite cyclic group consisting of all positive and
negative powers of the element x, then G is a free group on the set S = {x}.

These notions also lead to the idea that we can completely prescribe a group
by listing the elements of a generating set S and listing the nontrivial relations
between them.

The 1deas described in the preceding paragraphs have been current among
group theorists for a long time. Unfortunately, when stated as above, these
ideas are lacking in mathematical precision. For example, what precisely is a
nontrivial relation? It cannot be an element of G, because considered as
elements of G, all relations give the 1dentity. Also, under what conditions are
two relations to be considered the same? For example, in a cyclic group of
order n, are the relations

xn+l x*-l — 1
to be considered the same or different?

We should emphasize that it was not an easy matter for mathematicians
to find an entirely satisfactory and precise way of treating these questions.
Fortunately, such a treatment has been found in recent years. This treatment
has the advantage that it applies not only to groups, but also to other algebraic
structures such as rings, and even to many situations in other branches of
mathematics. As so often happens in mathematics, the method of definition
finally chosen seems rather roundabout and nonobvious.? This method of
definition depends on the following rather simple observations:

2 An analogous situation occurs in the problem of precisely defining limits in the calculus. The
¢ — o technique which is standard today seems rather far removed from our intuitive notion of

a variable quantiy approaching a limit.
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(1) Let S be a set of generators for G, and let f : G - G’ be an epimorphism;
1.€., G’ is a homomorphic image of G. Then, the set f(S) is a set of generators
for G’. Moreover, any relation which holds between the elements of S also holds
between the elements of f(S). Thus, the group G’ satisfies at least as many
relations as or more relations than G.

(2) Let S be a set of generators for G, and let f: G —» G’ be an arbitrary
homomorphism. Then, f is completely determined by its restriction to the set
S. However, we do not assert that any map ¢g: S — G’ can be extended to a
homomorphism f:G — G’ (the student should give a counterexample). The
intuitive reason for this is clear: Given amap g : § — G’ there may be nontrivial
relations between the elements of S which do not hold between the elements
of g(S).

We shall now give a precise definition of a free abelian group on a given
set S; in §5 we shall discuss the case of general (i.e., not necessarily abelian)
groups. The case of abelian groups is discussed first because it is simpler.

Definition. Let S be an arbitrary set. A free abelian group on the set S 1s an
abelian group F together with a function ¢ : § — F such that the following
condition holds: For any abelian group A and any function i : S — A, there
exists a unique homomorphism f: F - A such that the following diagram is
commutative:

o AF
S/ f
N

First, we show that this definition does indeed characterize free abelian
groups on a given set 3.

Proposition 3.1. Let F and F' be free abelian groups on the set S with respect
to the functions @:S - F and ¢’ .S - F’, respectively. Then, there exists a
unique isomorphism h . F — F' such that the following diagram is commutative:

Proor. The proofis completely analogous to that of Proposition 2.2, and may
be left to the reader.

Let us emphasize that all we have done so far 1s make a definition; given
the set S, it is not at all clear that there exists a free abelian group F on the
set S. Moreover, even if F exists, it is conceivable that the map ¢ need not be
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one-to-one, or that F may not be generated by the subset ¢(S) 1in the sense of
the definition at the beginning of this section. We shall clarify all these points
by actually proving the existence of F and elucidating its structure completely.

EXERCISES

3.1. Prove directly from the definition that ¢(S) genertes F. [HINT: Assume not;
consider the subgroup F’ generated by ¢(S).]

As a first step, we consider the following situation. Assume that {S;:i e I}
is a family of nonempty subsets of S, which are pairwise disjoint and such that

S — U Sl"
iel

For each index i € I, let F; be a free abelian group on the set S; with respect
to a function ¢, : §; - F;. Let F denote the weak product of the groups F; for
alli e I, and let n, : F; > F denote the natural monomorphism. Since the S; are
pairwise disjoint, we can define a function ¢ : S —» F by the rule

@|S; = n;0;.

Proposition 3.2. Under the above hypotheses, F is a free abelian group on the
set S with respect to the function ¢ : S — F.

Roughly speaking, this proposition means that the weak product of any
collection of free abelian groups is a free abelian group.

PRrROOF. Let A be an abelian group and let v : S - A be a function. We have
to prove the existence of a unique homomorphism f: F - A such thaty = fo.
For each index i, let ;: S; > A4 denote the restriction of y to the subset S;.
Because F;1s a free abelian group on the set S;, there exists a unique homomor-
phism f;: F; - A such that the following diagram is commutative:

S f; (3.3.1)

We now invoke the fundamental property of the weak product of groups
contained in Theorem 2.1 to conclude that there exists a unique homo-
morphism f: F — A such that the following diagram is commutative for any

index i;

F; f (3.3.2)
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We can put these two commutative diagrams together into a single diagram

as follows:

Si——?i—b F; X, F

Vi f.-/ f (3.3.3)
A

Because ¢|S; = n,¢;, we conclude that the following diagram is commutative
for each index i.

i3
S. _eb g

11’\ /f. (3.3.4)
A

Finally, because ; = /|S; for eachiand S = { ) S, we conclude that y = fo,

as required.

To prove uniqueness, let f be any homomorphism F — A having the
required property. Define f; . F; > A by f, = fn,. With this definition, it follows
that diagram (3.3.1) 1s commutative for each index i; for,

fioi = fmo: = f(olS) = (YIS))
= '//i-

Because F; 1s the free abelian group on §; (with respect to ¢,), it follows that
each f; 1s unique. Then because (3.3.2) is commutative for each i, and F is the
weak product of the F;, it follows that f 1s unique. Q.E.D.

We now apply this theorem as follows: Suppose that
S={xiel}

For each index i, let S; denote the subset {x;} having only one element, and
let F; be an infinite cyclic group consisting of all positive and negative powers
of the element x;:

F,={x!:nel}.

Let ¢;: S; — F,; denote the inclusion map, ie., ¢;(x;) = x;. It is clear that F;, is
a free abelian group on the set S;. Therefore, all the hypotheses of Proposition
3.2 are satisfied. Thus, we conclude that a free abelian group on any set S is
a weak product of a collection of infinite cyclic groups, with the cardinal
number of the collection equal to that of S.

Because F 1s the weak product of the F;, any element g € F 1s of the
following form: For any index i, the ith component g; = x;* where each n; € Z
and n; = O for all but a finite number of indices i. Moreover, the function ¢ 1s
defined by the following rule: For any index j e I,
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x; ifi=j

(9xi); = {xj? if i #j.

From this formula, it is clear that ¢ i1s a one-to-one map.

As ¢ 1s a one-to-one map, if we wish, we can identify each x; € S with its
image ¢(x;) € F. Then S becomes a subset of F, and it 1s clear that we can
express each element g # 1 of F uniquely in the following form:

— M1 P2 L P
g—xilxiz xik,

(3.3.5)

where the indices iy, i,, ..., i, are all distinct, and n,, n,, ..., n, are nonzero
integers. This expression for the element g 1s unique except for the order of
the factors. Moreover, each such product of the x/s represents a unique
element g # 1 of F. From this it is clear that F 1s generated by the subset
S = ¢(3).

This 1dentification of S and ¢(S) is quite customary in the discussion of free
abelian groups. When this is done, ¢ : S — F becomes an inclusion map, and
often 1t 1s not even mentioned in the discussion.

An alternative approach to the topic of free abelian groups would be to
define an abelian group F to be free on the subset {x;:ie I} < F if every
element g # 1 of F admits an expression of the form (3.3.5), which 1s unique
up to order of the factors. Actually, this procedure would be somewhat quicker
and easier than the one we have chosen. However, it would suffer from the
disadvantage that it could not be generalized to non-abelian groups and other
situations which will actually be our main concern.

One reason for the importance of free abelian groups is the following
proposition.

Proposition 3.3. Any abelian group is the homomorphic image of a free abelian
group; i.e., given any abelian group A, there exists a free abelian group F and
an epimorphism f: F —» A.

PrOOF. The proof is very simple. Let S < A4 be a set of generators for 4 (e.g.,
we could take S = A), and let F be a free group on the set S with respect to a
function ¢ : S —» F. Let ¢: S - A denote the inclusion map. By definition,
there exists a homomorphism f: F — A such that fo = . It is clear that f

must be an epimorphism, since S was chosen to be a set of generators for A.
QE.D.

This proposition enables us to attach a precise meaning to the notion
“nontrivial relation between the generators S,” mentioned earlier. Let 4, S, F,
and f have the meaning just described; then we define any element r # 1 of
kernel f to be a nontrivial relation between the set of generators S. If {r, : i € I'}
is any collection of such relations, and r is an element of the subgroup of F
generated by the r;’s, then the relation r is said to be a consequence of the
relations r;. This implies that r can be expressed as a product of the r;’s and
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their inverses. If the collection {r;:i € I} generates the kernel of f, then the
group A is completely determined up to isomorphism by the set of generators
S and the set of relations {r;: i € I}; A 1s isomorphic to the quotient group of

F modulo the subgroup generated by the r;’s.

It 1s clear that, if S and S’ are sets having the same cardinal number, and
F and F’ are free abelian groups on S and §’, respectively, then F and F' are
isomorphic. We shall now show that the converse of this statement 1s true, at
least for the case of finite sets. For this purpose, we make the following
definition. If G is any group, and n is any positive integer, then G" denotes the
subgroup of G generated by the set

{g" g€ G}

If the group G is abelian, then the set {g":g € G} 1s actually already a
subgroup.

Lemma 3.4. Let F be a free abelian group on a set consisting of k elements.
Then, the quotient group F/F" is a finite group of order n*

PRrROOF. We leave the proof to the reader; it is not difficult if one makes use of
the explicit structure of free abelian groups described above.

Corollary 3.5. Let S and S’ be finite sets whose cardinals are not equal, and let
F and F' be free abelian groups on S and S', respectively. Then, F and F' are

nonisomorphic.

PrROOF. The proof is by contradiction. Any isomorphism between F and F’
would induce an isomorphism between the quotient groups F/F" and F'/F™",
which 1s impossible by the lemma.

EXERCISES

3.2. Prove that the statement of this corollary is still true if S 1s a finite set and S’ is
an infinite set.

Let F be a free abelian group on a set S. The cardinal number of the set S
is called the rank of F. We have proved that two free abelian groups are
isomorphic if and only if they have the same rank, at least in the case where
onc of them has finite rank.

We shall conclude this section on abelian groups with a brief discussion of
the structure of finitely generated abelian groups. Let A4 be an abelian group;
the set of all elements of A which have finite order is readily seen to be a
subgroup, called the torsion subgroup of A. When the torsion subgroup
consists of the element 1 alone, A is called a torsion-free abelian group. On
the other hand, if every element of 4 has finite order, then A 1s called a torsion
group. If we denote the torsion subgroup by T, then the quotient group A/T
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1s obviously torsion free. It is clear that, if A and 4’ are isomorphic, then so
are their torsion subgroups, T and T', and their torsion-free quotient groups,
A/T and A’/T'. However, the converse 1s not true in general; we cannot
conclude that A4 1s isomorphicto A'if T ~ T'and A/T ~ A'/T'. However, for
abelian groups which are generated by a finite subset we have the following
theorem which describes their structure completely:

Theorem 3.6. (a) Let A be a finitely generated abelian group and let T be its
torsion subgroup. Then, T and A/T are also finitely generated, and A is isomor-
phic to the direct product T x A/T. Hence, the structure of A is completely
determined by its torsion subgroup T and its torsion-free quotient group A/T.
(b) Every finitely generated torsion-free abelian group is a free abelian group
of finite rank. (c) Every finitely generated torsion abelian group T is isomorphic
to a product C; x C, x --- x C,, where each C, is a finite cyclic group of order
g; such that ¢; is a divisor of ¢; . fori = 1,2, ..., n — 1. Moreover, the integers
E1,Es,...,E, are uniquely determined by the torsion group T and they completely
determine its structure.

The numbers ¢4, ..., &, are called the torsion coefficients of T, or more
generally, if T is the torsion subgroup of A4, they are caled the torsion coeffi-
cients of 4. Similarly, the rank of the free group A/T 1s called the rank of A.
With this terminology, we can summarize Theorem 3.6 by stating that the
rank and torsion coefficients are a complete set of invariants of a finitely
generated abelian group. Theorem 3.6 asserts that every finitely generated
abelian group 1s a direct product of cyclic groups, but it also asserts much
more. Note that a finitely generated torsion group is actually of finite order.

A word of explanation about the various isomorphisms mentioned in
Theorem 3.6 seems 1n order here. These 1somorphisms are not natural, or
uniquely determined in any way. In each case, there are usually many different
choices for the isomorphism 1n question and one choice is as good as another.

Theorem 3.7. Let F be a free abelian group on a set S, and let F' be a subgroup
of F. Then, F' is a free abelian group on a certain set S’, and the cardinal of S’
is less than or equal to that of S.

Although the proofs of Theorems 3.6 and 3.7 are not difficult, we shall not
give them here, because they properly belong in the study of linear algebra
and modules over a principal ideal domain.

E XERCISES

3.3. Give an example of a torsion-free abelian group which is not free.

34. Let A be an abelian group which is a direct product of two cyclic groups of orders
12 and 18, respectively. What are the torsion coefficients of A? (Note that the
torsion coefficients are required to satisfy a divisibility condition.)
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3.5. Give an example to show that in Theorem 3.7 the subset S = F and the subgroup
F' = F may be disjoint, even in the case where the cardinals of S and §’ are equal.

§4. Free Products of Groups

The free product of a collection of groups 1s the exact analog for arbitrary (1.¢.,
not necessarily abelian) groups of the weak product for abelian groups. (It
should be emphasized that any groups considered in this section may be either
abelian or non-abelian, unless the contrary is explicitly stated.)

Definition. Let {G,:i € I} be a collection of groups, and assume there is given
for each index i a homomorphism ¢, of G, into a fixed group G. We say that
G is the free product or coproduct of the groups G, (with respect to the
homomorphisms ¢;) if and only if the following condition holds: For any
group H and any homomorphisms

Y. G, > H, i€l

there exists a unique homomorphism f: G — H such that for any i € I, the
following diagram 1s commutative:

First, we have the following uniqueness proposition about free products:

Proposition 4.1. Assume that G and G’ are free products of a collection
{G;:i€ 1} of groups (with respect to homomorphisms ¢,;.G,— G and ¢
G, — G/, respectively). Then, there exists a unique isomorphism h: G — G’ such
that the following diagram is commutative for any i€ I:

o G
G, h
“’\‘G

ProoF. The proof is almost word for word that of Proposition 2.2.

Although we have defined free products of groups and proved their unique-
ness, it still remains to prove that they always exist. We shall also show that
each of the homomorphisms ¢, occurring in the definition is a monomorphism,
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that the free product is generated by the union of the images ¢;(G,), and get
more detailed insight into the algebraic structure of a free product.

Theorem 4.2. Given any collection {G,:ie I} of groups, their free product
exists.

PrOOF. We define a word in the G,;’s to be a finite sequence (x,, x,, ..., X,)
where each x, belongs to one of the groups G;, any two successive terms in the
sequence belong to different groups, and no term is the identity element of any
G;. The integer n is the length of the word. We also include the empty word,
i.e., the unique word of length 0. Let W denote the set of all such words.

For each index i, we now define left operations of the group G, on the
set W (see Appendix B). Let g€ G; and (x,, ..., x,) € W; we must define

g(xls"':xn)'
Case 1: x, ¢ G,. Then, if g # 1,

g(xli “'rrxn) =(grrx1&'“=xn)'

We shall also define the action of g on the empty word by a similar formula,
1.e., g( ) =(g). If g =1, then,

gxi, .00y X)) = (Xg5--05 X,)

Case 2: x, € ;. Then,

gXi, Xo,...,%,) 1fgx,; #1
g(xls"':xn)z {( : ? :

(X5, .00y Xp) if gx, = 1.

[When gx, = 1 and n = 1, 1t is understood, of course, that g(x,) i1s the empty,
word. ]

We must now verify that the requirements for left operations of G; on W
are actually satisfied; i.e., for any word w,

lw=w,

(g9’ )w = g(g'w).

This verification 1s a trivial checking of various cases.

It i1s clear that each of the groups G; acts eflectively. Thus, each element g
of G, may be considered as a permutation of the set W, and G; may be
considered as a subgroup of the group of all permutations of W (see Appendix
B). Let G denote the subgroup of the group of all permutations of W which
is generated by the union of the G;’s. Then, G contains each G; as a subgroup;
we let

0;:G; > G

denote the inclusion map.

Any element of G may be expressed as a finite product of elements from
the various G;’s. If two consecutive factors in this product come from the same
G;, it is clear that they may be replaced by a single factor. Thus, any element
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g # 1 of G may be expressed as a finite product of elements from the G;’s in
reduced form, 1.e., so no two consecutive factors belong to the same group,
and so no factor is the identity element. We now assert that the expression of
any element g # 1 of g in reduced form is unique: If

g =9192" " Gm = hihy --h,

with both products in reduced form, thenm = nand g; = h;for1 <i < m. To
see this, consider the effect of the permutations ¢g,9,°°°¢g,, and h,h, -+ h, on
the empty word; the results are the words (g, g,, ..., g,)and (h, h,, ..., h,),
respectively. Because these two words must be equal, the conclusion follows.

It 1s clear how to form the inverse of an element of G written in reduced
form, and how to form the product of two such elements.

It is now an easy matter to verify that G is actually the free product of the
G;’s with respect to the ¢,’s. For, let H be any groupand let y,: G; > H, i€ I,
be any collection of homomorphisms. Define a function f: G — H as follows.
Express any given g # 1 in reduced form,

g=49192" " "Y9m> ngGik! 1 é k é m,
and then set

flg) = (¢i191)('//izgz)' " (l/’imgm)-

We also set f(1) = 1, of course. It 1s clear that f is a homomorphism, and that
f makes the required diagrams commutative. It 1s also clear that f is the only
homomorphism that makes these diagrams commutative. Q.E.D.

Because the homomorphisms ¢, : G; = G are monomorphisms, it is cus-
tomary to identify each group G; with its image under ¢;, and to regard it as
a subgroup of the free product G. Then, ¢; becomes an inclusion map, and it
is not usually necessary to mention it explicitly.

The two most important facts to remember from the proof of Theorem 4.2
are the following:

(a) Any element g # 1 of the free product can be expressed uniquely as a
product in reduced form of elements from the groups G;.

(b) The rules for multiplying two such products in reduced form (or for
forming their inverses) are the obvious and natural ones.

These facts give one great insight into the structure of a free product of
groups.

Examples

4.1. Let G, and G, be cyclic groups of order 2, G, = {1, x,} and G, =
{1, x,}. Then, any element g # 1 of their free product can be written uniquely
as a product of x, and x,, with the factors x, and x, alternating. For example,
the following are such elements:

X1, X1 X3, X1 XX, X1 XX X5, €LC,
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or
Xz, X3X1, X3X X3, X3X1 XXy, €LC.

Note that the elements x, x, and x,x, are both of infinite order, and they are
different. Note also the great difference between the direct product or weak
product of G, and G, and their free product in this case. The direct product
is an abelian group of order 4, whereas the free product is a non-abelian group
with elements of infinite order.

Notation: We denote the free product of groups G, G,,...,G, by G, * G, - *
G, or

[T* G

l‘
1<i<n

The free product of the family of groups {G,:i € I} is denoted by

[T* G..

iel
E XERCISES

4.1. Let {G;:i€e I} be a collection containing more than one group, each of which
has more than one element. Prove that their free product is non-abelian, contains
elements of infinite order, and that its center consists of the identity element
alone.

4.2. For each index i, let G;: be a subgroup of G, (proper or improper). Prove that the
free product of the collection {G;:i € I} may be considered as a subgroup of the
free product of the G,.

4.3. Let {G;:ie I} and {G;:ie€ I} be two families of groups indexed by the same set
I. Assume that for each index i € I there is given a homomorphism f;: G, — G..
Prove that there exists a unique homomorphism f: G — G’ of the free product
of the first family of groups into the free product of the second family such that
the following diagram is commutative for each index i:

P
G; ——

g

G, — G
@i

Show that if each f; is a monomorphism (respectively, epimorphism), then f is a
monomorphism (respectively, epimorphism).

4.4. Prove that if an element x of the free product G » H has finite order, then x is an
element of G or H, or is conjugate to an element of G or H. (HINT: Express x as
a word in reduced form; then make the proof by induction on the length of the
word.) Deduce that if G and H are cyclic groups of orders m and n, respectively,
where m > 1 and n > 1, then the maximum order of any element of G* H i1s
max(m, n).
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4.5,

4.6.

4.7.

4.8.

4.9.

4.10.

§5.

Let {G;:ie I} be a collection of abelian groups, and let G be their free product
with respect to homomorphisms ¢; : G; - G. Let G’ = G/[ G, G] be the quotient
of G by its commutator?® subgroup and let ¢}: G; = G’ be the composition of ¢,
with the natural homomorphism G — G'. Prove that G’ is a weak product of the
groups {G;} with respect to the homomorphisms ¢; (i.e., the conclusion of
Proposition 2.1 holds).

Let G, H, G’, and H’ be cyclic groups of orders m, n, m’, and n’, respectively. If
G * H is isomorphicto G’ * H',thenm = m’andn =n’orelsem = n"and n = m’.
(HINT: Apply Exercise 4.5 to G » H and G’ » H'; thus we see that, if we “abelianize”
G+ H and G’ » H', we obtain finite abelian groups of orders mn and m'n’, respec-

tively. Now apply Exercise 4.4.)

Let H and H’ be conjugate subgroups of G. Prove that if f is any homomorphism
of G into some other group such that f(H) = 1, then f(H') = 1 also.

Let G be the free product of the family of groups {G;: i € I}, where it is assumed
that G, # {1} for any index i. Prove that, for any two distinct indices i and i’ € I,
the subgroups G; and G.. of G are not conjugate. (HINT: Apply Exercise 4.7. Use
Exercise 4.3 to construct a homomorphism f of G into another free product with
the required properties.)

Let G = G, * G,, and let N be the least normal subgroup of G which contains
G,. Prove that G/N is isomorphic to G,. (HINT: Use Exercise 4.3. Let G| = {1},

5 = G,, f1: Gy = G be the trivial homomorphism, and let f, : G, = G be the
identity map. Prove that N is the kernel of the induced homomorphism
f:G-G)

Let G admit two different decompositions as a free product:
G —_ GO *(1—[* Gl) — HO*(H* Hl)
iel iel

with the same index set I. Assume that, for each index ie I, G; and H; are
conjugate subgroups of G. Prove that G, and H, are isomorphic. (HINT: The
method of proof is similar to that of Exercise 4.9.)

Free Groups

As the reader may have guessed, the definition of a free group is entirely
analogous to that of a free abelian group.

Definition. Let S be an arbitrary set. A free group on the set S (or a free group
generated by S) is a group F together with a function ¢ : S — F such that the
following condition holds: For any group H and any function y : S — H, there
exists a unique homomorphism f: F — H such that the following diagram is

> This terminology and notation is explained in the following section just before the statement
of Proposition 5.3.
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commutative:
y 1
S f
w\. 1}

Exactly as in the previous cases we have encountered, this definition
completely characterizes a free group. To be precise:

Proposition 5.1. Let F and F' be free groups on the set S with respect to
functions ¢ : S > F and ¢': S — F', respectively. Then, there exists a unique
isomorphism h . F — F’ such that the following diagram is commutative:

F

S h

~
@\‘I;

It still remains to prove that, given any set S, there exists a free group on
the set S, and to establish its principal properties. We shall do this by exactly
the same method as that used for the case of free abelian groups.

Assume, then, that

S — U Si!
iel

where the subsets S, are disjoint and nonempty. For each index i, let F, be a
free group on the set §; with respect to a function ¢, : S; - F;. Let F denote
the free product of the groups F; with respect to homomorphisms #;: F; - F

(recall that we have proved that each #, is actually amonomorphism!). Because
the subsets S; are pairwise disjoint, we can define a function ¢ : § — F by the

rule

Q|S; = 1;0;.

Proposition 5.2. Under the above hypotheses, F is the free group on the set S
with respect to the function ¢ . S —> F.

The proof of this proposition is the same as that of Proposition 3.2 except
for obvious modifications. Hence, it is not necessary to go through these
details again. This proposition may be restated as follows: The free product
of any collection of free groups is a free group.

We shall now apply this proposition to prove the existence of free groups
exactly as we applied Proposition 3.2 to prove the existence of free abelian
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groups. The details are as follows: Let S = {x;:i € I} be an arbitrary nonempty
set, and, for each index i, let S; = {x,}. Let f; denote an infinite cyclic group

generated by x;,

and let ¢ : S; —» F; denote the inclusion map. Then, F; is readily seen to be a
free group on the set S; with respect to the map ¢, (as we shall see later, this
case, where S has only one element, is the only one where the free group on a
set S and the free abelian group on S are the same). The hypotheses of
Proposition 5.2 are all satisfied; we conclude that F is a free group on the set
S with respect to the functon ¢ : § — F. Note that F is a free product of infinite
cyclic groups. From what we have learned about free products, we see that
every element g # 1 of the free group F can be expressed uniquely in the form

g = quxgz ‘o x:k,

where x{, x5, ..., x; are elements of S such that any two successive elements are
different, and n, n,, ..., n, are nonzero integers, positive or negative. Such an
expression for g is called a reduced word in the elements of S. To avoid
exceptions, we say that the identity 1 is represented by the empty word. The
rules for forming inverses and products of reduced words are the obvious ones.

From these facts, it is clear that the function ¢ : § —» F is one-to-one, and
that F is actually generated by the subset ¢(S) in the sense defined earlier.

In many cases it i1s convenient to take S to be a subset of F and ¢ to be the
inclusion map. If this is the case, we may as well omit any mention of ¢.

EXERCISES

5.1. Prove that a free group on a nonempty set S is abelian if and only if S has exactly
one element.

5.2. Prove that the center of a free group on a set having more than one element
consists of the identity element alone.

5.3. Let g and h be two elements of a free group on a set S having more than one
element. Give a necessary and sufficient condition for g and & to be conjugate in
terms of their expressions as reduced words. (HINT: Consider cyclic permutations
of the factors of a reduced word.)

We shall conclude this section by considering the relation between free
groups and free abelian groups. Recall that, if x and y are any two elements
of a group G, the notation [x, y] denotes the element xyx~'y™! € G, and it is
called the commutator of x and y (in the given order). The notation [ G, G]
denotes the subgroup of G generated by all commutators; it is called the
commutator subgroup and 1s readily verified to be a normal subgroup. The
quotient group G/[ G, G] 1s abelian. Conversely, if N 1s any normal subgroup
of G such that G/N is abelian, then N = [G, G].



18 III. Free Groups and Free Products of Groups

Proposition 5.3. Let F be a free group on the set S with respect to a function
@:S—> F,and let n. F — F/[F, F] denote the natural projection of F onto the
quotient group. Then, F/[F, F] is a free abelian group on S with respect to the
functionnp : S - F/[F, F].

The proof is a nice exercise in the use of the definitions and the facts stated
in the preceding paragraph.

Corollary 5.4. If F and F’ are free groups on finite sets S and §', then F and F'
are isomorphic if and only if S and S’ have the same cardinal number.

PrROOF. Any isomorphism of F onto F’ would induce an isomorphism of the
quotient groups, F/[F, F] and F'/[F', F']. We now reach a contradiction by
using the preceding proposition and Corollary 3.5. This proves the “only if”
part of the corollary. The proof of the “if” part is trivial.

EXERCISES
5.4. Prove that this corollary is still true if S is a finite set and S is an arbitrary set.

If F is a free group on a set S, the cardinal number of S 1s called the rank
of F. Corollary 5.4 shows that the rank is an invariant of the group at least in
the case of free groups of finite rank. It can also be proved that the rank of a
free group is an invariant even in the case where it is an infinite cardinal. The
proof is more of an exercise in the arithmetic of cardinal numbers than in
group theory, and we shall not give it here.

If F is a free group on the set S with respect to the function ¢ : S - F,
because ¢ 1s one-to-one i1t is usually convenient to consider S as a subset of
F and ¢ as an inclusion map, as we mentioned above. With this convention,
S is called a basis for F. In other words, a basis for F is any subset S of F such
that F is a free group on S with respect to the inclusion map S — F. A free
group has many different bases.

§6. The Presentation of Groups by
Generators and Relations

We begin with a result that is the analog for arbitrary groups of Proposition
3.3.

Proposition 6.1. Any group is the homomorphic image of a free group. To be
precise, if S is any set of generators for the group G, and F is a free group on
S, then the inclusion map S — G determines a unique epimorphism of F onto G.
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The proof is the same as that of Proposition 3.3. This proposition enables
us to give a mathematically precise meaning to the term “nontrivial relation
between generators” by a method analogous to that used in the case of abelian
groups. There is one slight difference between the abelian case and the present
case because, in the case of abelian groups, any subgroup can be the kernel
of a homomorphism, whereas in the case of non-abelian groups, only a normal
subgroup can be a kernel. For this reason we shall give a complete discussion
of this case.

Let S be a set of generators for the group G let F be a free group on the set
S with respect toamap ¢ : S = F, let  : S — G be the inclusion map, and let
f: F - G be the unique homomorphism such that fo = . Any element r # 1
of the kernel of F is (by definition) a relation between the generators of S for
the group G. In view of what we have proved, r can be expressed uniquely as
a reduced word 1n the elements of S. Because every element of S i1s also an
element of G, this reduced word can also be considered as a product in G;
however, in G, this product reduces to the identity element. Thus, by this device
of introducing the free group F on the set S, we have given the relation r a
“place to live,” to use a figure of speech. If {r;} is any collection of relations,
then any other relation r is said to be a consequence of the relations r; if and
only if r is contained in the least normal subgroup of F which contains the
relation r;. In the case where every relation is a consequence of the set of
relations {r;}, the kernel of f is completely determined by the set {r;}; it is the
intersection of all normal subgroups of F which contain the set {r;}. In this
case, the group G is completely determined up to isomorphism by the set of
generators S and the set of relations {r;}, because it is isomorphic to the
quotient of F modulo the least normal subgroup containing the set {r;}. Such
a set of relations is called a complete set of relations.

Definition. A presentation of a group G is a pair (S, {r;}) consisting of a set of
generators for G and a complete set of relations between these generators. The
presentation is said to be finite in case both S and {r;} are finite sets, and the
group G 1is said to be finitely presented in case it has at least one finite
presentation.

Let us emphasize that any group admits many different presentations,
which may look quite different. Conversely, given two presentations (S, {r;})
and (§', {r:}), it is often nearly impossible to determine whether or not the two
groups thus defined are isomorphic.

Examples

6.1. A cyclic group of order n admits a presentation with one generator x

and one relation x”.
6.2. We shall prove later that the fundamental group of the Klein bottle
admits the following two different presentations (among others):
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(a) Two generators a and b and one relation baba™".
(b) Two generators a and ¢ and one relation a®c?.

The relationship between the two presentations in this case is fairly simple:
¢ = ba ! or b = ca. To be precise, let F(a, b) and F(a, c) denote free groups on
the sets {a, b} and {a, c}, respectively. Define homomorphisms f: F(a, b) —
F(a, c)and g: F(a, c) - F(a, b) by the following conditions:

flay=a,  f(b)=ca,
g(a) = a, g(c) = ba™'.

It follows directly from the definition of a free group that these equations
define unique homomorphisms. We compute that

glf(@]=a, g[f(b)]=0b,

flg@]l=a, f[g0)]=c

Therefore, gf is the identity map of F(a, b),and fg is the identity map of F(q, c).
Hence, f and g are isomorphisms which are the inverse of eac other. Next, we
check that

a’c® = ¢ [ f(baba™')]c,
baba™' = (ba ")[g(a*c?)](ba™!)™L.

Therefore, the normal subgroup of F(a, b), generated by baba™', and the
normal subgroup of F(a, c), generated by a’c?, correspond under the isomor-
phisms f and g. Hence, f and g induce isomorphisms of the corresponding

quotient groups.
Note that the essence of the above argument is contained in the following

two simple calculations:

(@) If b = ca, then baba™! = ca®*c and a®*c* = ¢! [baba™!]c.
(b) If ¢ = ba™}, then a®c? = a’ba *ba™! and baba™! = (ba™*)(a*c?)(ba 1)1

6.3. Consider the following two group presentations:

(a) Two generators a and b and one relation a*b™2.
(b) Two generators x and y and one relation xyxy 'x~'y™!,

We assert that these are presentations of isomorphic groups. The relationship
between the two different pairs of generators is given by the following system
of equations:

a = xy! b — xyx,
x=a 'b, y = b~ 1a?.
We leave it to the reader to work out the details. We shall see in Section IV.6

that this is a presentation of the fundamental group of the complement of a
certain knotted circle in Euclidean 3-space.
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In dealing with groups presented by means of generators and relations, it
is often convenient to take a more informal approach. To illustrate what we
mean, consider the first presentation in Example 6.3. The group G under
consideration is the quotient of a free group F on two generators a and b by
the least normal subgroup containing the element a*b™2. Let us denote the
image of the generators a and b 1n the group G by the same symbols. Then,
a’b™? = 11in G, or a®> = b%. When computing with elements of G (which are
products of powers of a and b) we can use the equation a®> = b? in whatever
way is convenient.

EXERCISES

6.1. Suppose we are given presentations of two groups G, and G, by means of
generators and relations. Show how to obtain from this a presentation of the direct
product G; x G,, the free product G, * G,, and the commutator quotient group

Gl/[Gla Gl]

§7. Universal Mapping Problems

In the preceding sections of this chapter we have defined and studied the
following types of algebraic objects: weak products of abelian groups, free
abelian groups, free products of groups, and free groups. In each of these cases,
the algebraic object in question was actually a system consisting of two things
with a mapping between them, e.g., ¢ : S — G. This system consisting of two
things and a mapping between them was characterized by a certain triangular

diagram, e.g.,
y
N

G

S f

\ 2

H

As the reader will recall, the object H and the map  in this diagram could
be chosen in a fairly arbitrary manner, subject only to minor restrictions. It
was then required that there exist a unique map f making the diagram
commutative.

This method of characterizing the system ¢ : S — G is usually referred to
by the statement that ¢ : S — G (or for brevity, G) is the solution of a “universal
mapping problem.” We shall see another important example of such a uni-
versal mapping problem in the next chapter. Defining or characterizing
mathematical objects as the solution to a universal mapping problem has
become very common in recent years. For example, one of the most prominent
contemporary algebraists (C. Chevalley) has written a textbook on algebra
[6] that has universal mapping problems as one of its main themes.
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If a mathematical object is defined or characterized as being the solution
to a universal mapping problem, it follows easily (by the method used to prove
Proposition 2.2) that this object is unique up to an isomorphism. In fact, the
1somorphism is even uniquely determined! However, the existence of an object
satisfying a given universal mapping problem is another question. The reader
will note that in the four cases discussed in this chapter, at least three different
constructions were given to prove the existence of a solution. However, in
each case, the existence proof carried with it a bonus, in that it gave great
insight into the actual structure of the desired mathematical object.

There exists a rather general method for proving the existence of solutions
of universal mapping problems (see [5], [7]). However, this general method
gives absolutely no insight into the mathematical structure of the solution. It
is a pure existence proof.

We now give two more examples of the characterization of mathematical
objects as solutions of universal mapping problems. The examples are given
for illustrative purposes only and will not be used in any of the succeeding
chapters.

Examples

1.1. Free commutative ring with a unit. Let Z[x,, x,, ..., X, ] denote, as
usual, the ring of all polynomials with integral coeflicients in the “variables™
or “indeterminates” x,, X,, ..., X,. Each nonzero element of this ring can be
expressed uniquely as a finite linear combination with integral coefficients of
the monomials x}'x%2... x* where k,, k,, ..., k, are non-negative integrs. This
ring may be considered to be the free commutative ring with unit generated
by the set S = {x,,..., x,}. We make this assertion precise, as follows: Let
¢:S—>Z[x,,...,x,] denote the inclusion map. Then, for any commutative
ring R (with unit) and any function  : S — R, there exists a unique ring
homomorphism f: Z[x,, ..., x,] = R [with f(1) = 1] such that the following
diagram is commutative:

Z[xla "-:xn]

o
x’é

7.2. The Stone—Cech Compactification. For any Tychonoff space X, there
is defined a certain compact Hausdorfl space f(X) which contains X as an
everywhere dense subset; it is called the Stone—Cech Compactification of X.
Let ¢: X — B(X) denote the inclusion map. Then, we have the following
characterization: For any compact Hausdorff space Y and any continuous
map ¥ : X — Y, there exists a unique continuous map f : §(X) — Y such that
the following diagram is commutative:

S f
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For a more complete discussion see J. L. Kelley, General Topology. Princeton,
N.J.: Van Nostrand, 1955. pp. 152-153.

For a precise, axiomatic treatment of universal mapping problems and
further exampiles, see references [ 5, 7].

NOTES

Definition of free groups, free products, etc.

The concepts of free abelian group, free group, free product of groups, etc.,
are rather old. The main difference between a modern treatment of the subject
and one of the older treatments is the method of defining these algebraic
objects. Formerly, they were defined in terms of what are now considered some
of their characteristic properties. For example, a free group on set § was
defined to be the collection of all equivalence classes of “words” formed from
the elements of S. From a strictly logical point of view, there can be no
objection to this procedure. However, from a conceptual point of view, it has
the disadvantage that the definition of each type of free object requires new
insight and ingenuity, and may be a difficult problem. The idea of defining
free objects as solutions to universal mapping problems, which gradually
evolved during the time of World War II and immediately thereafter, seems
to be one of the important unifying ideas in modern mathematics.

The elegant proof given in the text for the existence of free products of
groups (Theorem 4.2), which is simpler than the older proofs, is due to B.L.
Van der Waerden (Am. J. Math. 70 (1948), 527—528). In a more recent paper
(Proc. Kon. Ned. Akad. Weten. (series A) 69 (1966), 78—-83), Van der Waerden
has pointed out how the basic idea of the procedure used for the proof of
Theorem 4.2 is applicable to prove the existence of solutions to universal
mapping problems in many other algebraic situations.

Different levels of abstraction in mathematics

The first time the student encounters the material in this chapter, it may seem
rather foreign to him. The probable reason is that it is on a higher level of
abstraction than any of his previous studies in mathematics. To make this
point clearer, we shall try to describe briefly the diflerent levels of abstraction
that seem to occur naturally in mathematics.

The lowest level of abstraction is the level of most high school and begin-
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ning undergraduate mathematics courses. This level is characterized by a
concern with a few very explicit mathematical objects, e.g., the integers,
rational numbers, real numbers, the complex numbers, the Euclidean plane,
etc. The next level of abstraction occurs when certain properties common to
several different concrete mathematical objects are isolated and studied for
their own sake. This leads to the study of such abstract and general mathe-
matical systems as groups, rings, fields, vector spaces, topological spaces, etc.
Ordinarily the mathematics student makes the transition to this level of
abstraction some time in this undergraduate career.

The material of this chapter provides an introduction to the next higher
level of abstraction. As was pointed out in Example 4.1, the weak direct
product of two abelian groups, G, and G,, and their free product G, * G,, are
quite different types of groups. Yet there is a strong analogy between the weak
direct product of abelian groups and the free product of arbitrary groups. To
perceive this analogy, i1t 1s necessary to consider the category of all abelian
groups and the category of all (i.€., not necessarily abelian) groups, respectively.
This is characteristic of this next level of abstraction: the simultaneous con-
sideration of all mathematical systems (e.g., groups, rings, or topological
spaces) of a certain kind, and the study of the properties of such a collection
of mathematical systems.

The history of mathematics in the last two hundred years or so has been
characterized by the considerations of mathematical systems on ever higher
levels of abstraction. Presumably this trend will continue in the future. It
should be emphasized strongly, however, that this movement is not a case of
abstraction for the sake of abstraction itself. Rather, it has been forced on
mathematicians for various reasons, such as bringing out the analogies between
seemingly quite different phenomena.

Presentations of groups by generators and relations

Let us emphasize that the specification of a group by means of generators and
relations is very unsatisfactory in many respects, because some of the most
natural problems that arise in connection with group presentations are very
difficult or impossible. For a further discussion of this point, see the texts by
Kurosh [1, Chap. X] or Rotman [4, Chap. 12].

That part of group theory which is concerned with groups presented by
generators and relations is called “Combinatorial Group Theory.” The stan-
dard introductory text on this subject is Magnus, Karrass, and Solitar [3]. A
more advanced treatise 1s Lyndon and Schupp [2].
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CHAPTER 1V

Seifert and Van Kampen Theorem
on the Fundamental Group of the Union
of Two Spaces. Applications

§1. Introduction

So far we have actually determined the structure of the fundamental group of
only a very few spaces (e.g., contractible spaces, the circle). To be able to apply
the fundamental group to a wider variety of problems, we must know methods
for determining its structure for more spaces. In this chapter, we shall develop
rather general means for doing this.

Assume that we wish to determine the fundamental group of an arcwise-
connected space X, which is the union of two subspaces U and V, each of
which 1s arcwise connected, and whose fundamental group is known. Choose
a base pomt x, € U n V; it seems plausible to expect that there should be
relations between the groups n(U, x,), n(V, x,), and n(X, x,). The main
theorem of this chapter (discovered independently by H. Seifert and E. Van
Kampen) asserts that, if U and V are both open sets, and it is assumed that
their intersection U n V is also arcwise connected, then n(X, x,) i1s completely
determined by the following diagram of groups and homomorphisms:

“’/"’W)
2(U A V) (4.L.1)

PN

(V)

Here ¢, and ¢, are induced by inclusion maps. The way in which n(X, x,) is
determined by this diagram can be roughly described as follows. The above
diagram can be completed by forming the following commutative diagram:
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. ,U)
N
n(UnV) » 1t(X). (4.1.2)

AN

n(V)

Here all arrows denote homomorphisms induced by inclusion maps, and the
base point x, 1s systematically omitted. Then, the Seifert—-Van Kampen
theorem asserts that n(X) is the freest possible group we can use to complete
diagram (4.1.1) to a commutative diagram like (4.1.2). As usual, the phrase
“freest possible” is made precise by the consideration of a certain universal
mapping problem.

Actually, we shall state and prove a more general version of the theorem,
in that we allow X to be the union of any number of arcwise-connected open
subsets rather than just two. This more general version is no more difficult to
prove, and in some situations it is the only applicable version.

After proving the Seifert—Van Kampen theorem, we state several corol-
laries and then use these corollaries to determine the structure of the funda-
mental groups of the various compact surfaces and certain other spaces. In
the final section of this chapter we show how these methods can be applied
to distinguish between certain knots.

§2. Statement and Proof of the Theorem
of Seifert and Van Kampen

First, we give a precise statement of the theorem. Assume that U and V are
arcwise-connected open subsets of X such that X =UuV and UnV is
nonempty and arcwise connected. Choose a base point x, € UV for all
fundamental groups under consideration.

Theorem 2.1. Let H be any group, and p,, p,, and p; any three homomorphisms
such that the following diagram is commutative:

AN,
n(Uny) —£ H

NP

(V)

n(U)

Then, there exists a unique homomorphism o : n(X) — H such that the following
three diagrams are commutative:



88 IV. The Theorem of Seifert and Van Kampen

LX) LX) , m(X)
TE(U) G K(V) G TE(U M V) o
T N o~

(Here the homomorphisms ¢; and ;, i = 1, 2, 3, are induced by inclusion
maps.)

By the methods used in Chapter III, we can prove that the group n(X) 1s
characterized up to isomorphism by this theorem. We leave the precise state-

ment and proof of this fact to the reader.
We shall next state the more general version of the Seifert—Van Kampen

theorem. The generalization consists in allowing a covering of the space X by
any number of open sets instead of just by two open sets as in Theorem 2.1.
Of course, the open sets must all be arcwise connected, and the intersection
of any finite number of them must be arcwise connected and contain the base
point. To be precise, we assume the following hypotheses:

(a) X 1s an arcwise-connected topological space and x, € X.
(b) {U,: 1€ A} is a covering of X of arcwise-connected open sets such that

forall Ae A, x, € U,.
(c) For any two indices A,, A, € A there exists an index A€ A such that

U,,n U, = U, (weexpress this fact by saying that the family of sets {U, }
is “closed under finite intersections”).

We now consider the fundamental groups of these various sets with base point
X,. For brevity, we omit the base point from the notation.
If U, = U,, then the notation

@i - (U;) = (U

denotes the homomorphism induced by the inclusion map. Similarly, for any
index 4,

Y, . n(U;) — n(X)

i1s induced by the inclusion map U, — X. Note that, if U, = U,, the following
diagram is commutative:

’T(UA)\%‘

Py 7T(‘X')
¥

nU,) *

Theorem 2.2. Under the above hypotheses the group n(X) satisfies the following
universal mapping condition: Let H be any group and let p, : n(U,) > H be any
collection of homomorphisms defined for all A € A such that if U, c U, the
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following diagram is commutative:

TE(UA)\‘DA‘
Pau H
n(U,) "

Then, there exists a unique homomorphism o : n(X) — H such that forany A e A
the following diagram is commutative:.

n(X)

P

K(UA) o

\T
2.

H

Moreover, this universal mapping condition characterizes n(X) up to a unique
isomorphism.

The proof of the last sentence of the theorem is a routine matter which may
be left to the reader. We shall now give the proof of the rest of this theorem.
Applications of this theorem are given in §3-§6.

Lemma. 2.3. The group n(X)is generated by the union of the images y,[n(U,)],
/€ A.

ProOF. Let a € n(X), choose a closed path f: I — X representing a. Choose
an integer n so large that 1/n is less than the Lebesgue number of the open
covering { f "'(U,): 1 € A} of the compact metric space I. Subdivide the in-
terval I into the closed subintervals J, = [i/n,(i + 1)/n], 0 £i<n— 1. For
each subinterval J;, choose an index 4; € A such that f(J;) = U, .. Choose a
path g; in U, N U, joining the point x, to the point f(i/n), 1 Si<n—1.
Let f;: I - X denote the path represented by the composite function

h; 1Y

[ — J, — X,

where h; 1s the unique orientation-preserving linear homeomorphism. Then

forgv's 91 f1°92", 92 127 95", .- Gn-2" fa-2" Ga 15 Gn-1 * fay 2re closed paths,
each contained 1n a single open se: U,, and their product in the order given
1s equivalent to f. Hence, we can write

0= Ol 0y Oy e Opyys
where
ey, [nU)], 0sisn-—1.

This completes the proof of the lemma.
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Remark: The hypotheses could be slightly weakened for the purposes of this
lemma. Actually it is only required that {U, } be an open covering by arcwise-
connected subsets of X such that the intersection of any two sets be arcwise
connected. It does not matter whether or not the intersection of three sets is

arcwise connected.

PrOOF OF THEOREM 2.2. Iet H be any group and let p, : n(U,) > H, A € A, be
a set of homomorphisms satisfying the hypotheses of the theorem. We must

demonstrate the existence of a unique homomorphism ¢ : 7(X) — H such that
the following diagram is commutative for any 4 € A:

g, X
TE(U;_)\ o.
P2 I:I

From the lemma just proved, it is clear that such a homomorphism g, if it
exists, must be unique, and must be defined according to the following rule.
Let a € n(X), Then, by Lemma 2.3, we have

o=y, (@) ¥, (22) -y (), (4.2.1)

where a; e n(U, ), i =1, 2, ..., n. Hence, if the homomorphism o exists, we
must have

a(@) = py, (@) pa,(@z) ...  pa (). (4.2.2)

Our strategy will be to take equation (4.2.2) as a definition of o. To justify this
definition, we must show that it is independent of the choice of the representa-
tion of « 1in the form (4.2.1). Clearly, if it 1s independent of the form of the
representation of a, then it isa homomorphism, and the desired commutativity

relations must hold.
To prove that o 1s independent of the representation of « in the form (4.2.1),

it suffices to prove the following lemma:

Lemma 24. Let ;e n(U,),i=1,..., q be such that

Vo (By) ¥, (B2) .. 'ﬁaq(ﬁq) = 1.
Then, the product

pr’-l(ﬁl)plz(ﬁZ) T pgq(ﬁq) = 1.

Although the proof of this lemma does not require any new methods, it is
rather long, tedious, and complicated. In order not to interrupt the exposition,
the proof has been relegated to §7 at the end of this chapter.
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§3. First Application of Theorem 2.1

Assume, as in the statement of Theorem 2.1, that X is the union of the open
sets U and V and that U, V, and U n V are all arcwise connected. Let ¢; and
; have the meaning assigned to them 1n §2.

Theorem 3.1. If U N V is simply connected, then n(X) is the free product of the
groups n(U) and n(V) with respect to the homomorphisms y, : n(U) - n(X) and
W, (V) = n(X).

Proor. This is a direct corollary of Theorem 2.1. If n(U n V) = {1}, then the
diagram

K(U) P
n(UnNV) £ /r.H
n(V) P2

will be commutative for any choice of p; and p,; hence, these two homomor-
phisms are completely arbitrary, whereas p; 1s uniquely determined. Similarly,
the diagram

%/'H(X)
TE(U M V) o

\v
4

H

will be commutative for any choice of o; requiring it to be commutative
imposes no condition on . The remaining two conditions on ¢ in Theorem
2.1 are exactly those which occur in the definition of the free product of two

groups. Q.E.D.

We now give some examples where this theorem is applicable. These
examples will, 1n turn, be used later to study other examples.

Examples

3.1. Let X be a space such that X = AUB, AnB = {x,},and 4 and B
are each homeomorphic to a circle S' (see Figure 4.1). X may be visualized
as a curve shaped like a figure “8.”

If A and B were open subsets of X, we could apply Theorem 3.1 with U = A4
and V = B to determine the structure of n(X). Unfortunately, 4 and B are not
open.

However, a slight modification of this strategy will work. Choose points
aecA and be B such that a# x, and b # x,. Let U =X — {b}, and
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A B

FIGURE 4.1. Example 3.1, a figure “8” curve.

let V=X —{a}. U and V are each homeomorphic to a circle with two
“whiskers.” Then, it is clear that 4 and B are deformation retracts of U and
V, respectively, and that UV = X — {q, b} is contractible, hence, simply
connected. Thus, we conclude that n(X) is the free product of the groups n(U)
and n(V) or, equivalently, the free product of n(A4) and n(B) [because n(A4)
n(U) and n(B) ~ n(V)]. Because 4 and B are circles, n(A4) and n(B) are infinite
cyclic groups. Therefore, n(X) 1s the free product of two infinite cyclic groups;
by Proposition II1.5.2, n(X) is a free group on two generators. We can take as
generators closed path classes o and f based at x,, which go once around A4
and B, respectively.

3.2. Let E* be the closed unit disc in the plane, let a and b be distinct interior
points of E*,and let Y = E* — {q, b}. Itis easily seen that we can find a subset
X < Y, such that X 1s the union of two circles with a single point in common,
as in Example 3.1, and X 1s a deformation retract of Y (see Figure 4.2).
Therefore, n(Y) =~ n(X), and n(Y) is a free group on two generators. We can
take as generators path classes a and f based at x, which go once around the
“holes™ a and b.

FIGURE 4.2. Example 3.2, a disc with two holes.
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There is an experimental physical verification of this result that appeals to
one’s geometric intuition, Take a piece of plywood or some other strong, light
material in the shape of a circular disc, and at the points a and b attach vertical
pegs several inches long. Fasten both ends of a piece of string a few feet long
to the plywood at the point x, with a thumbtack. Any element #1 of the
fundamental group of Y can be represented uniquely as a “reduced word” in
a and f; and for any such reduced word, we can choose a representative path
in Y and then lay out the string on the board to represent this path. We can
then test experimentally whether or not this path is equivalent to the constant
path by moving the string about on the board. Of course, it 1s not permissible
to lift the string over the pegs while doing this.

3.3. The same argument applies if Y is an open disc minus two points, or
the entire plane minus two points, or a sphere minus three points. It also
applies if, instead of removing isolated points from a disc, we remove small
circular discs, either open or closed.

3.4. Let X be the union of n circles with a single point incommon, n > 2;i.e.,

X=A VAU UA,

where each 4; is homeomorphic to ', and, if i # j, 4; " A; = {x,}. The space
X can be pictured as an “n-leafed rose” in the plane (see Figure 4.3 for the
case where n = 4). We will prove by induction on n that n(X) is a free group
on ngenerators, o, %,," " -, a,, wherea; is represented by a path that goes around
the circle A; once. We have already proved this in the case where n = 2. To
make this induction, we apply Theorem 3.1 as follows. Choose a point g, € A4,

such that a; # x,. Let
U=X —{a,},
V == X - {al, az, .y an_l}.

Then, U and V are open sets, A, u--- U A,_, 1s a deformation retract of U,
A, 1s a deformation retract of V, and U NV is contractible. Thus, using
Theorem 3.1, we can conclude n(X, x,) 1s the free product of n(U) and n(V)
or equivalently, of n(4A, u--- U A4,_,) and n(A4,). Proposition II1.5.2 can now
be applied to complete the proof of the inductive step.

(KR

FIGURE 4.3. Example 3.4 for the case n = 4.
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3.5. We can use the result just proved to discuss the following example:
Let Y be a space obtained by removing n points from a disc (open or closed)
or from the entire plane. By the same type of argument as that used in Example
3.2, we conclude n(Y) 1s a free group on n generators, o, a,, -, o,. Roughly
speaking, a; 1s represented by a closed path which goes around the ith hole

ONcCeE.

We leave it to the reader to discuss a physical model illustrating that n(Y)

is a free group on n generators, as was done for Example 3.2.

EXERCISES

3.1.

3.2

3.3.

3.4.

3.5.

3.6.

Prove the following generalization of Theorem 3.1. Let (W} u {V.:iel} be a
covering of X by open arcwise-connected sets having the following properties: (a)
W is a proper subset of V; for all i € I. (b) For any two distinct indices i, j €1,
V.V, = W (c) Wis simply connected. (d) x, € W. Using Theorem 2.2, prove that
n(X, x4) 1s the free product of the groups n(V;, x,) [with respect to the homomor-
phisms ¥; : n(V,) - n(X) induced by inclusion maps].

Let
X — U AI".’

iel
where each A, is homeomorphic to S!, be such that, for any two distinct indices
i,jel, A;n A; = {x,}, and the topology on X satisfies the Hausdorff separation
axiom and the following condition: A subset B of X is closed (open) if and only if
B A; 1s a closed (open) subset of A; for all i e I. For each index i, let a; be a
generator of the infinite cyclic group n(A4;, x,). Use the result of Exercise 3.1 to
prove that (X, x,) is a free group on the set {«;:i e I}.

Give an example of a compact Hausdorff space
X —_ U Ai’
=1

where each A4; is homeomorphic to S, 4;n 4; = {x,} for i # j, and yet X does
not satisfy the condition of the previous exercise. (SUGGESTION: there exists a subset
of the Euclidean plane having the required properties.) Is n(X, x,) a free group
on the set {«;}, as in Exercise 3.2?

Let Y be the complement of the following subset of the plane R?:
{(x,0) € R*: x is an integer}.
Prove that n(Y) is a free group on a countable set of generators.

Let X be a Hausdorff space such that X = A U B, where A and B are each
homeomorphic to a torus, and A n B = {x,}. What is the structure of n(X, x,)?

Let M, and M, be disjoint, connected n-manifolds. Prove that the following
method of constructing the connected sum M, # M, isequivalent to the definition
given 1n §1.4 in the case where n = 2. Choose points m; € M;, and open neighbor-
hoods U; of m; such that there exist homeomorphisms h; of U, onto R” with
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h(m;)) =0,i=1, 2. Define M, # M, to be the quotient space of (M; — {m,})u
(M, — {m,}) obtained by identifying points x, € U; — {m, } and x, € U, — {m,}
if and only if

y(x,)
|hy(x2)]?

3.7. If M, and M, are connected n-manifolds, n > 2, prove that n(M,; # M,) is the
free product of n(M,) and n(M,).

hy(xy) =

§4. Second Application of Theorem 2.1

Once again we assume the hypotheses and notation of Theorem 2.1: U, V, and
U NV are arcwise-connected open subsetsof X, X = Uvu V,and x,e UNn V.

Theorem 4.1. Assume that V is simply connected. Then, s, . n(U) - n(X) is an
epimorphism, and its kernel is the smallest normal subgroup of n(U) containing
the image @, [n(U N V)].

Note that this theorem completely specifies the structure of n(X): It is
isomorphic to the quotient group of 7(U) modulo the stated normal subgroup.

Proor. Consider the following commutative diagram:

(%) "
N
TE(UF\ V) SN n(X)

AN

n(V)

Because n(V) = {1}, it readily follows that y; 1s a trivial homomorphism and
that image ¢, 1s contained 1n kernel /,. It 1s also clear that i, 1s an epimor-
phism; this follows from Lemma 2.3, or we could prove it directly from
Theorem 2.1.

Thus, the only thing remaining is to prove that the kernel of y, is the
smallest normal subgroup of n(U) containing image ¢, (conceivably, 1t could
be a larger normal subgroup containing image ¢,). For this purpose, take
H = n(U)/N, where N 1s the smallest normal subgroup of n(U) containing
image ¢,, and let p, : 1(U) — H be the natural map of n(U) onto its quotient
group. Let p, : n(V)— H and p;: n(U n V) - H be trivial homomorphisms.
Then, the hypotheses of Theorem 2.1 are satisfied. Hence, we conclude that
there exists a homomorphism ¢ : 7(X) = H such that the following diagram

1s commutative;
.

TE(U) o

N
H

n(X)
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From this, 1t follows that

kernel , < kernel p, = N.

Because we already know that

N c kernel y,

we can conclude tht
kernel y, = N

as required. Q.E.D.

In the next section we combine this theorem with our preceding results to
determine the structure of the fundamental groups of the various compact,
connected 2-manifolds.

EXERCISES

4.1. Assuming the hypotheses and using the notation of Theorem 2.1, prove the
following assertions:

(a) If ¢, 1s an iSsomorphism onto, then so is ;.

(b) If both ¢, and ¢, are epimorphisms, then i/, is also an epimorphism, and 1ts
kernel is the smallest normal subgroup of n(U n V) which contains both the
kernel of ¢, and the kernel of ¢,.

(c) If n(U n V) is a cyclic group with generator «, then n(X) is isomorphic to the
quotient group of the free product of n(U) and n(V) by the least normal
subgroup containing (@, a)(@,0) 1.

(d) n(X) is isomorphic to the quotient group of the free product n(U)* z(V) by
the smallest normal subgroup containing.

{(p0) (@) i e (U A V)}.

() Assume that you are given presentations for the groups n(U ) and n(V), also
a set of generators for n(U n V). Show how to obtain a presentation for n(X)
from this data and the knowledge of the homomorphism ¢, and ¢,. Prove
that, f n(U) and n(V) have finite presentations, and n(U n V) 1s finitely
generated, then n(X) has a finite presentation.

(f) If @, is an epimorphism, then so is i, . Describe the kernel of i/, in this case.

(g) If there exists a homomorphism r: a(V)— n(U ~ V) such that re, is the
identity, then there exists a homomorphism s: z(X) — a(U) such that sy, is
the identity, and ¢@,r = sy,.

§5. Structure of the Fundamental Group
of a Compact Surface

We shall show by examples how Theorem 4.1 can be used to determine
the structure of the fundamental group of the various compact, connected 2-
manifolds.
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o) b Xo

FIGURE 4.4. Determination of the fundamental group of a torus.

Examples

5.1. The torus, T. Because T = S! x S!, we already know by Theorem

I1.7.1 that
n(T) ~ n(S') x n(S')

1s the product of two infinite cyclic groups, 1.e., a free abelian group on two
generators. However, we shall derive this result from Theorem 4.1. This simple
case serves as a good introduction to the rest of the examples.

Represent the torus as the space obtained by identifying the opposite faces
of a square, as shown in Figure 4.4. Under the identification the sides a and
b each become circles which intersect in the point x,. Let y be the center point
of the square, and let U = T — {y}. Let V be the image of the interior of the
square under the 1dentification. Then, U and V are open subsets, U, V, and
U NV are arcwise connected, and V 1s simply connected (V is homeomorphic
to an open disc). Thus, we can apply Theorem 4.1. We conclude that

Y, (U, x;) = (T, x,)

1s an epimorphism, and its kernel is the smallest normal subgroup containing
the image of the homomorphism

o (UnV,x)—nU, x;).

Because the boundary of a square is a deformation retract of the whole square
minus a point, it is clear that the union of the two circles a and b 1s a
deformation retract of U. Therefore, n(U, x,)1s a free group ontwo generators.
To be more precise, (U, x,) 1s a free group on two generators a and 8, where
« and B are represented by the circles a and b, respectively. Hence, n(U, x,) is
a free group on the two generators

a =0 lad,
B =4d""p9,

where 0 1s the equivalence class of a path d from x, to x, (see Figure 44).
It 1s also clear that U n V has the homotopy type of a circle. Therefore,
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(U NV, x,) 1s an 1nfinite cyclic group generated by 7y, the equivalence class
of a closed path ¢ which circles around the point y once. It is also clear from
Figure 4.4 that

o) = 2B B

Hence, n(T, x,) is isomorphic to the free group on the generators o’ and f'
modulo the normal subgroup generated by the element o'’ " '~!. Changing
to the base point x,, we see that n(T, x,) 1s isomorphic to the free group on
the generators « and  modulo the normal subgroup generated by afa™" 7.

This means exactly that we have a presentation of the group n(T) (see
§II1.6). In this case, we can readily determine the structure of n(T) from this
presentation. On the one hand, it follows that the generators a and 8 of n(T)
commute; from this it follows that #(T) is a commutative group, and therefore
the least normal subgroup of the free group on « and f containing afa™' 7"
contains the commutator subgroup. On the other hand, it is obvious that this
normal subgroup is contained in the commutator subgroup. Therefore, the
two subgroups are equal. Hence, by Proposition II1.5.3, n(T) 1s a free abehan
group on the generators o and p.

5.2. Thereal projective plane, P,. We shall prove that n(P,) 1s cyclic of order
2 by using Theorem 4.1. We consider P, the space obtained by identifying the
opposite sides of a 2-sided polygon, as shown in Figure 4.5. Under the
identification, the edge a becomes a circle. Let y be the center point of the

polygon,
U — Pz - {y},
V' = image of the interior of the polygon under the identifications.

Then, the conditions for the application of Theorem 4.1 hold. In this case the
circle a 1s a deformation retract of U; therefore, n(U, x,) 1s an infinite cyclic
group generated by an element a represented by the closed path a. Also,
n(U, x,) 1s an infinite cycle group generated by o’ = 6~ 'ad, where é has the
same meaning as in Example 5.1, Finally, n(U n V, x,) is an infinite cyclic

Xo o

a

FIGURE 4.5. Determination of the fundamental group of a projective plane.
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b2 az

a1

b

FIGURE 4.6. Determination of the fundamental group of an orientable surface of
genus n.

group with generator y represented by a closed path ¢ which goes around the
point y once. It is clear that

@1(y) = o',

Therefore, n(P,, x,) is the quotient of an infinite cyclic group generated by o
modulo the subgroup generated by o'%; equivalently, n(P,, x,) is the quotient
of an infinite cyclic group generated by « modulo the subgroup generated by
o?. Thus, n(P,) is a cyclic group of order 2.

5.3. The connected sum of n tori. Here the method is completely analogous
to the two preceding examples, but the final result is new and more compli-
cated. We can represent M, the sum of n tori, as a 4n-gon with the sides
identified 1n pairs, as shown in Figure 4.6. Under the identification, the edges
a,, b, a,, b,, ..., a, b, become circles on M, and any two of these circles
intersect only in the base pont x,. As before, let U = M — {y}, the comple-
ment of the center point y, and let V be the image of the interior of the polygon
under the identification; V is an open disc in M. The union of the 2n circles
a,, b, ..., a,, b, 1s a deformation retract of U, therefore, n(U, x,) 1s a free
group on the 2n generators a,, f,, a,, B, ..., @,, B,, where a; 1s represented
by the circle g;, and §; 1s represented by the circle b;. As before, n(U NV, x,)
is an infinite cyclic group with generator y represented by the circle ¢, and

o1(7) = n [, 1],

where [}, B/ ] denotes the commutator «}fia; ' fi™", and
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a; = 0 'y,

ﬁ: = 5_1ﬁi5-

As a result, n(M, x,) 1s the quotient of the free group on the generators
ay, By, ..., 2, B, modulo the normal subgroup generated by the element

—:.

[aia ﬂi]a

1

e, n(M, x,) has a presentation consisting of the set of generators
{ay, Bis ..., oy By} and the single relation

[Cl,-, ﬁa]

—.

1

In the case where n > 1, there is no simple, invariant description of this group.
It 1s readily seen however that if we “abelianize” n(M, x,) (i.e., if we take its
quotient modulo its commutator subgroup), we obtain a free abelian group
on 2n generators. This is a consequence of the single relation’s obviously being
contained in the commutator subgroup of the free group on the generators
ais Prs.-.» %, B,. From this it follows that, if m # n, the connected sum of m
tori and the connectd sum of n tori have nonisomorphic fundamental groups.
Therefore, they are not of the same homotopy type. This is a stronger result
than that proved in Chapter I, where it was shown that these spaces were not
homeomorphic (assuming the proof that the Euler characteristicis a topologi-
cal invariant).

5.4. The connected sum of n projective planes. The connected sum M of n
projective planes can be obtained by identifying in pairs the sides of a 2n-gon,
as shown in Figure 4.7. By carrying out exactly the same procedure as before,

FiGURE 4.7. Determination of the fundamental group of a nonorientable surface of
genus 7 (first method).
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we find that the fundamental group n(M, x,) has a presentation consisting of
the set of generators

{0y, 0oy nny Oyt

where a; is represented by the circle a;, and one relation

asas ... o

For n > 1, this 1s again a group with no simple invariant description. If we
abelianize, we obtain an abelian group which also has a presentation con-
sisting of n generators and one relation. The reader who 1s familiar with the
theory of finitely generated abelian groups can easily determine the rank and
torsion coefficients of this group by reducing a certain integer matrix to
canonical form. We shall do this by a more geometric procedure.

Using Theorem 1.7.2, we see that M, a nonorientable surface of genus n,
has the following alternative representation:

(a) For n odd, M 1s homeomorphic to the connected sum of an orientable

surface of genus 5(n — 1) and a projective plane.
(b) For n even, M is homeomorphic to the connected sum of an orientable

surface of genus 3(n — 2) and a Klein bottle.

This leads to the representation M as the space obtained by identifying the
edges of 2n-gon 1n pairs as shown in Figure 4.8(a) and (b). In case (a), we see
that m(M, x,) has a presentation with generators

{al, ﬁlg"'jakﬂ ﬁk’g}

and one relation

[or, Brdlea, Bo] - [, ﬁk]gz;

whereas 1n case (b) there 1s a presentation of n(M, x,) with generators

{ala Bis .oy 0y Brs 0y 8}

and the one relation

[y, Brdlos, Bad: [otes B tis 1 6%crr &

Using this presentation, we can easily determine the structure of the abelianized
group,

(M)
[n(M), n(M)]

In case (a) 1t s the direct product of a free abelian group on the 2k generators
1, Bi,y .5 o, Bi} and a cyclic group of order 2 (generated by ¢); i.e,, it is an
abelian group of rank 2k = n — 1 and with one torsion coefficient of order 2.
In case (b) 1t 1s the direct product of a free abelian group on the 2k + 1
generators {a, B, ..., %, B, %+ and a cyclic group of order 2 (generated
by ¢); ie., it 1s an abelian group of rank 2k + 1 = n — 1 with one torsion
coefficient of order 2.
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b2 az

e Qk 41

(b)

FIGURE 4.8. Determination of the fundamental group of a nonorientable surface of
genus n (second method). (a) n odd, k = 4(n — 1). (b) neven, k = 2(n — 2).
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We can summarize our results on the abelianized fundamental groups as
follows:

Proposition 5.1. If M is the connected sum of n tori, then the abelianized
fundamental group, n(M)/[n(M), n(M)] is a free abelian group of rank 2n. If
M is the connected sum of n projective planes, then the abelianized fundamental
group is of rank n — 1, and has one torsion coefficient, which is of order 2.

From this result we see that a compact, connected orientable manifold is
never of the same homotopy type as a compact, connected nonorientable
manifold, because the abelianized fundamental group of a nonorientable
manifold always contains an element of order 2, whereas in the orientable
case, every element is of infinite order. It also follows that, if m # n, then the
connected sum of m projective planes and of n projective planes are not of the
same homotopy type.

These results are a slight improvement on those of Chapter I, obtained by
using the Euler characteristic.

EXERCISES

5.1. Show how to obtain geometrically the two different presentations of the funda-
mental group of a Klein bottle mentioned as an example in §II1.6.

5.2. Consider the presentation of the fundamental group of the Klein bottle with two
generators, a and b, and one relation, baba™!. Prove that the subgroup generated
by b 1s a normal subgroup, and that the quotient group is infinite cyclic. Prove
also that the subgroup generated by a is infinite cyclic.

5.3. The fact that the connected sum of three projective planes is homeomorphic to
the connected sum of a torus and a projective plane gives rise to two different
presentations of the fundamental group (as in Problem 5.2). Prove algebraically
that these presentations represent isomorphic groups.

5.4. For any integer n > 2, show how to construct a space whose fundamental group
is cyclic of order n.

5.5. Prove that the fundamental group of a compact nonorientable surface of genus
n has a presentation consisting of n generators, a,, ..., ®,, and one relation,
oty 0y ... 00 0. 0t o, (See Exercise 1.8.8).

5.6. Prove that the fundamental group of a compact, orientable surface of genus n has
a presentation consisting of 2n generators, a,, «,, ..., ®%,,, and one relation,
oy0y... 0,07 ... 05, (see Exercise 1.8.9).

§6. Application to Knot Theory

A knot is, by definition, a simple closed curve in Euclidean 2-space. It is a
mathematical abstraction of our intuitive idea of a knot tied in a piece of string;
the two ends of the string are to be thought of as spliced together so that the
knot can not become untied.
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It is also necessary to define when two knots are to be thought of as
equivalent or nonequivalent. Here it would be highly desirable to frame the
definition so that it corresponds to the usual notion of two knots in two
different pieces of string being the same. Of several alternative ways of doing
this, the following definition is now universally accepted (as the result of many
years of experience) as being the most suitable.

Definition. Two knots K, and K, contained in R are equivalent if there exists
an orientation-preserving homeomorphism h:R> - R? such that h(K,) =
K,.

Obviously, if K, and K, are equivalent according to this definition, then
h maps R® — K, homeomorphically onto R?® — K,. Therefore, R?® — K, and
R’ — K, have isomorphic fundamental groups. Thus, given two knots K, and
K, in R’ if we can prove that the groups n(R?® — K,) and =n(R?® — K,) are
nonisomorphic, then we know the knots K, and K, are nonequivalent. This
is the most common method of distinguishing between knots. The funda-
mental group n(R? — K) is called the group of the knot K.

We shall show how it is possible to use the Seifert—Van Kampen theorem
to determine a presentation of the group of certain knots, and then discuss

the problem of proving that these groups are nonisomorphic.
In certain cases, 1t will be convenient to think of the knots we shall consider

as being imbedded in the 3-sphere S°,
S?={xeR*:|x| =1}

rather than being imbedded in R3. This makes little difference because S° is
homeomorphic to the Alexandroff 1-point compactification of R3; this can be
proved by stereographic projection (see M. H. A. Newman, Elements of the
Topology of Plane Sets of Points, The University Press, Cambridge, 1951,
pp. 64-65).

EXERCISES

6.1. If K is a knot in R* and we regard S° as the 1-point compactification of R>, prove
that the fundamental groups n(R3 — K)and n(S® — K) are isomorphic. (HINT: Use

Theorem 4.1.)

We shall consider a class of knots called torus knots because they are
contained in a torus imbedded in R? in the standard way (i.e., the torus is
obtained by rotating a circle about a line in its plane). Recall that a torus may
be considered as the space obtained by identifying the opposite edges of the

unit square,
{(x,)) eR*:0x 1,0y 1}

or, alternatively, as the space obtained from the entire plane R? by identifying
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FIGURE 4.9. Torus knot of type (2, 3).

two points (x, y)and (x’, y')if and only if x — x" and y — y’ are both integers.
Let p: R* - T be the identification map. Let L be a line through the origin
in R* with slope m/n, where 1 <m < n, and m and n are relatively prime
integers. It is readily seen that the image

K = p(L)

is a simple closed curve on the torus T; it spirals around the torus m times
while going around it n times the order way. If we now assume that T i1s
imbedded in R? in the standard way, then

K cTcR?,

and K is a knot in R7 called a torus knot of type (m, n). Such knots will be our

main object of study.
We shall also consider unknotted circles in R?, ie., any knot equivalent to

an ordinary Euclidean circle in a plane in R?.

To begin, we obtain a presentation of the group of a torus knot of type
(m, n) and of the group of an unknotted circle. The first step is to obtain a
certain decomposition of the 3-sphere S> into two pieces, which is necessary
for the use of the Seifert—Van Kampen theorem. Let

A= {(x;, X3, X3, X4) €S : x] + x5 < x5 + x5},
B = {(x,, x5, X3, X4) € $: x] + x3 = x5 + x3}.
It is clear that A and B are closed subsets of S°, that A w B = S3, and that

AN B = {(x;, Xz, X3, X4) €S?: x{ + x5 =% and xj + x5 = 3}.
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From this it is clear that 4 N B is a torus; in fact, it is the Cartesian product
of the circle x? + x3 = 1 [in the (x,, x,) plane] and the circle x3 + x7 = 4 [in
the (x5, x,) plane].

We now assert that A and B are each solid tori (i.e., homeomorphic to the
product of a disc and a circle). We shall prove this by exhibiting a homeomor-
phism. Let

D ={(x,,x,)eR%: x{ + x5 =1},
S'={(x3,x,)eR*: x5 + x5 =13
be a closed disc and a circle, each of radius %\/ﬁ Define a map
f:DxSt—> A
by the formula

f(xp X2,y X35 x4)
= (X1, X2, /2%3[1 — (x3 + xH)]2, /2x,[1 — (x2 + x3)]"?).

This function is obviously continuous. We leave it to the reader to verify that
it is one-to-one and onto, and hence a homeomorphism. A similar proof
applies to the set B. It is also clear from this that the torus A n B1s the common
boundary of the two solid tori A and B.

We leave it to the reader to verify that, under stereographic projection, the
torus A N B corresponds to a torus imbedded in R” in the standard way.

First, we consider the group of an unknotted circle K in S°. We can take
as our unknotted circle the “center line” of the solid torus A4:

K = {(xla X2, X3, x4) €A Xy = X = 0}

Then, K is the unit circle 1n the (x5, x,) plane. Clearly, the boundary of A4 1s
a deformation retract of A — K ; therefore Bis a deformation retract of S° — K.
It 1s also clear that the center line of B.

{(x15 X2, X3, X, ) EB:x3= x4 = 03,

1s a deformation retract of B. Therefore, the center line of B 1s a deformation
retract of S° — K. Hence, S° — K has the homotopy type of a circle, and the
group of K is infinite cyclic. Thus, we have proved.

Proposition 6.1. The group of an unknotted circle in R? is infinite cyclic.

Next, we consider a torus knot K of type (m, n) in S°. We can consider K
a subset of the torus 4 N B < S°. It would be convenient to apply the Seifert—
Van Kampen theorem to determine the fundamental group of S° — K by
using the fact that

S — K=(4 - K)u(B - K).
Then, A — K, B — K, and (A — K) n(B — K) are all arcwise connected, but
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unfortunately A — K and B — K are not open subsets of > — K. The way
around this difficulty 1s clear: We enlarge 4 and B slightly to obtain open sets
with the same homotopy type as 4 and B.

To be precise, choose a number ¢ > 0 small enough so that, if N denotes a
tubular neighborhood of K of radius ¢, then $° — N is a deformation retract
of §° — K. It is clear that this will be the case provided ¢ is sufficiently small,
the precise meaning of the phrase “sufficiently small” depends on the integers
m and n. Then, let U and V be the 3¢ neighborhoods of 4 and B, respectively.
It is clear that U and V are each homeomorphic to the product of an open
disc with a circle, and 4 and B are deformation retracts of U and V. Also,
U n Visa “thickened” torus, i.e., homeomorphic to the product of A n B and
the open interval (—3¢, 3¢). We can now use the fact that

S3 - N=U~-Nu(V—N)

and apply the Seifert-Van Kampen theorem to arrive at a presentation of
n(S°> — N) = n(S° — K).

First, U — N and V — N both have the homotopy type of a circle; in fact,
the center lines of A and B are deformation retracts of these two spaces.
Therefore, their fundamental groups are infinite cyclic.

Second, the spaces (U - N)Nn(V —N)=UnV)—N and (4 — K)n
(B — K) = (A n B) — K both have the same homotopy type. In fact, the set
(A— N)n(B— N)=(ANnB) — N is a deformation retract of each of these
spaces. We can readily see that (A N B) — K is a subset of the torus A N B
homeomorphic to the product of a circle with an open interval. It is a strip
wound spirally around the torus, like a bandage. Its fundamental group 1s
infinite cyclic.

Finally, we must determine the homomorphisms

¢,:t(UNnV — N)- (U — N),
@, . t(UNnV — N)-> n(V — N).

Here we leave the details to the reader. The result is that one of these
homomorphisms is of degree m, and the other 1s of degree n. (We say a
homomorphism of one infinite cyclic group into another is of degree m if the
image of a generator of the first group is the mth power of a generator of the
second group.) If we combine this result with Exercise 4.1(c) we obtain the

following result:

Proposition 6.2. The group G of a torus knot of type (m, n) has a presentation
consisting of two generators, {a, B}, and one relation, a™p".

There remains the task of proving that these groups are nonisomorphic for
different values of the pair (m, n). This we now do by a method due to O.
Schreier. Consider the element «™ = 7" 1n this group. This element commutes
with o and B, and hence with every element; thus it belongs to the center. Let
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N denote the subgroup generated by this element; it 1s obviously a normal
subgroup. Consider the quotient group G/N. Let o’ and B’ denote the coset of
a and B in G/N. Obviously, G/N is generated by the elements o’ and f#, and
it has the following presentation:

Generators: o, f’ Relations: a'™, p".

From this presentation, it follows that G/N 1s the free product of a cyclic group
of order m (generated by «') and a cyclic group of order n (generated by f').
The proof, which is not difficult, is left to the reader. We now apply Exercise
I11.4.1 to conclude that the center of G/N is {1}. Because the image of the
center of G is contained 1n the center of G/N, 1t follows that N 1s the entire
center of G. Thus, the quotient of G by its center is the free product of two
cyclic groups (of order m and n). We can now apply the result of Exercise
IT1.4.6 to conclude that the integers m, n are completely determined (up to
their order) by G. Thus, we have proved the following.

Proposition 6.3. If torus knots of types (m, n) and (m’, n’) are equivalent, then
m=m"and n=n',or elsem = n" and n = m’. No torus knot is equivalent to an

unknotted circle (assuming m, n > 1).

Thus, by means of torus knots we have constructed an infinite family of

nonequivalent knots.

Of course, most knots are not torus knots. The foregoing paragraphs
should only be considered a brief introduction to the subject of knot theory.
The reader who wishes to learn more about this subject can consult the
following books: Burde and Zieschang [2], Crowell and Fox [4], Kauffman
[61, Moran [7], Neuwirth [81], or Rolfsen [12].

§7. Proof of Lemma 2.4

For the convenience of the reader, we will restate Lemma 2.4. The hypotheses
and notation are listed 1n §2.

Lemma 24. Let f;en(U,),i=1,..., q be such that
l'{/%(ﬁl) . dlﬁ.z(ﬁ?.)' coe’ lp{/j_q(ﬁq) = 1.

Then, the product

P, (B)pi,(B2) 01 (B) = 1.

PrOOF. Choose closed paths

ﬁ_‘ l_la_l—:l_)Uli
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representing f; fori =1, 2, ..., q. Then, the product

q
[Il .(B)
i1s clearly represented by the closed path f:[0, 1] - X defined by
~f1_1}}=ﬁ i=1,2,...,q.
g9 4

By hypothesis, f is equivalent to the constant path. Hence, there exists a
continuous map

F:IxI-X

such that, for any s, t € I,

F(s, 0) = f(s),
F(s,1)=F(0,t) = F(1,1) = x,.

Let ¢ denote the Lebesgue number of the open covering {F~'(U,): A e A} of
the compact metric space I x I (we give I x I the metric 1t has as a subset of
the Euclidean plane). We now subdivide the square I x I into smaller rect-
angles of diameter < ¢ as follows. Choose numbers

So =0, $4,8,...,8, =1,

to=0, t,ty...st,=1,

such that the following three conditions hold: (a) s, < 5; <5, < - < 5, and
to <t; <t, < <t,, (b) the fractions 1/g, 2/q, ..., (9 — 1)/g are included
among the numbers s,, s,, ..., 5,.; (¢) if we subdivide the unit square I x I into
rectangles by the vertical and horizontal lines,

S=Si, i=0,1,...,m,

t=tj,

j=0,1,...,n,

the length of the diagonal of each rectangle is less than & Clearly, such a
subdivision is possible.

Before proceeding further with the proof, we must introduce a rather
elaborate notation for the various vertices, edges, and rectangles of this

subdivision as follows.

Vertices:

0y =(snt) 0Si<m0s)

A

n.

Subintervals of I = [0, 11]:
Ji = [Si-—la Si]: 1 g I é m,
1

K;= [tj-—la tj]a sSJjsn



110

Rectangles:

IV. The Theorem of Seifert and Van Kampen

> 3

FIGURE 4.10. Notation used in the proof of Lemma 2.4.

Horizontal edges:

a;=J;x {4}, 1sisml1=<j<n

Vertical edges:

by=1{s;} xK;, 02isml1<j<n

In Figure 4.10 we indicate how a typical rectangle of this subdivision and its
vertices and edges are labeled. We also need the following notation for certain

paths:

Aij Jy = X, A,:,-(S) = F(§, tj), seJ.
ij : K.f - X" ij(t) - F(Sia t)a [ € Kj-

With a slight abuse of notation, we can write

ijs

ije

For each rectangle R;;, choose an open set U,; , such that

Ly

F(RU) = UA(U).

Condition (c) on the subdivisions assures us that such a choice is possible.
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Each vertex v;; is a vertex of 1, 2, or 4 of the rectangles R,;; let U, ; denote
the intersection of the corresponding 1, 2, or 4 open sets U, ;. Then, U, ;
is an open set of the given covering and

F(v;) e U,

(i, 4)
Choose a path
9ij- 1 = Uy

with 1nitial point x, and terminal point F(v;;), if F(v;;) = xo, we require that
g;; be the constant path.
Having introduced most of the necessary notation, we now interpolate a

sublemma.

Sublemma. Let U, and U, be two sets of the given open covering of X and let
h . I — U.l M U;_, h(O) — h(l) — xo,

beaclosed path. Leta € n(U;, xy)and B € n(U,, x,) denote the equivalence class
of the loop h in the two different groups. Then, p; = («) = p,(B).

ProoF ofF SuBLEMMA. The set U, = U; n U, also belongs to the covering by
hypothesis, and h represents an element y € n(U,, x,). Then, clearly,

a = (Pv}.(y):
B = 0,,().

Hence,

pi(@) = pr@,i(y) = pu(7),

p.(B) = p,@,.(y) = p. (7).
Q.E.D.

This sublemma enables us to adopt a certain sloppiness of notation without

fear of ambiguity. We can denote the element p;(a) = p,(f) € H by the nota-
tion p(h), we need not worry about whether we should take the equivalence

class of h in the group n(U,) or in the group n(U,).
With this convention, let

&;; = p[(gi—l.jAEj)(gij)_l]:
Bi; = p[(gi,j—lBIj)(gij)_l]'

[Here (g;;)~" denotes the path defined by t — g,,(1 — t).] Note that «;; and B,
are both well-defined elements of H.

Next, we assert that, corresponding to each rectangle R,
of the following form in the grup H:

&; -1 Bii = i—1,;%ij- (4.7.3)

-

;» there 1s a relation
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To prove this, note first that we have the following equivalence between
(nonclosed) paths in U,; »:

A; j-1Bij ~ By ;A5

This equivalence is a consequence of Lemma I1.8.1 applied to the mapping
F|R;;:R;;—» U,; », and Exercise I1.3.3. As a result, we have the following
equivalence between closed paths in U ;.

di-1,j-1 Ai,j—l(gi,j—l)_lgi,j—l Bij(gij)_l ~ di-1,j-1 Bi—l,j(gi—l,j)_lgi—l,inj(gij)_l'
4.7.4)

If we now take the equivalence class in n(U,; ;) of both sides, and then apply
the homomorphism p;; ;, we obtain equation (4.7.3). [NoTE: To be strictly
correct, since multiplication of paths is not associative, parentheses should be
inserted in (4.7.4). However, it does not matter how the parentheses are

inserted. |
The next relation we need is

*=ﬁ1 Aip = ﬂ 01, (Bo); (4.7.5)

which is an easy consequence of requirement (b) that the points 1/g, 2/q, ...,
(9 — 1)/q be included in the set {s;: 0 < i < m} together with the definitions
and constructions we have made. Finally, we have the relations

o, = 1, 1<ism, (4.7.6)
Pos=PBm=1, 1=j=n (4.7.7)
These relations result from the fact that
F(s,1)=F(0,t) = F(1, t) = x,

for any, s, te I
In view of relation (4.7.5), we must prove

.];! aio = 1. (478)

We shall now do this by using relations (4.7.3), (4.7.6), and (4.7.7). First, we
show that

m m
[ o, -1 =[] o (4.7.9)

i=1 i=1

for any integer j, 1 < j < n. Indeed, we have
A1,j—1%2 j—1" " Oy j—1 = &y j—1%p -1 " %y 51 ﬁm,j by (4.7.7)
Ay, j—1%2 j—1 """ Ly—1, j—1 ﬁm—1,j°‘m,j by (4.7.3)

Ay, j—1%2 j—1""° ﬁm—z,jam—l,jam,j by (4.7.3)

= ﬁo;al,jaz,j' m—1, j%m, j by (4.7.3)

= Oy j0a 5 " Oy—1,j0m, j- by (477)
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In all, we must apply (4.7.3) m times. If we now apply (4.7.9)withj=1,2,...,
n is succession, we obtain

13

m
aiO - l—[ ain'
i=l1

-

I

Il
-y

But, by use of (4.7.6),
GCI-,, — 1.
i=1
This completes the proof of (4.7.8), and hence of Lemma 2.4. Q.E.D.
NOTES

Apparently a theorem along the lines of Theorem 2.1 was first proved by
H. Seifert in 1931 1n a paper entitled “Konstruktion dreidimensionaler ge-
schlossener Raume” [ Ber. Sdchs. Akad. Wiss. 83 (1931), 26—66]. A little later
a similar theorem was discovered and proved independently by E. R. Van
Kampen [“On the connection between the fundamental groups of some
related spaces,” Am. J. Math. 55 (1933), 261-267]. In spite of this, 1t 1s uaually
referred to as “Van Kampen’s theorem” in American books and papers. Of
course, the formulation of the theorem as the solution of a universal mapping
problem came later. Our exposition is based on a paper by R. H. Crowell [ 3],
which was apparently inspired by lectures of R. H. Fox at Princeton; see their

joint textbook [4].

Free products with amalgamated subgroups

Let {W} U {V;:i€ I} be a covering of X by arcwise-connected open sets such
that V.n V., = Wif i #j and x, € W (see Exercise 3.1). Assume that, for each
index i, the homomorphism n(W, x,) = n(V;, x,) is a monomorphism. Then, the
fundamental group n(X, x,), as specified by Theorem 2.2, has a structure that
has been well studied by group theorists; it is called a “free product with
amalgamated subgroup.” It 1s a quotient group of the free product of the
groups n(V;) obtained by “amalgamating” or identifying the various sub-
groups which correspond to n(W, x,) under the given monomorphisms. Every
element of such a free product with amalgamated subgroups has a unique
expression as a “word in canonical form.” Such groups are important in
certain aspects of group theory and have also been used in topology. For
further information on this subject, see the textbooks on group theory listed
in the bibliography of Chapter III.

The Poincaré conjecture

It follows from the computations made in this chapter that any simply-
connected, compact surface is homeomorphic to the 2-sphere S%. Poincaré
conjectured 1n the early 1900s that an analogous statement is true for 3-
manifolds, namely, that a compact, simply-connected 3-manifold is homeo-
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morphic to the 3-sphere §°. In spite of the expenditure of much effort by many
outstanding mathematicians over the years since Poincaré, it is still unknown
whether or not this famous conjectue is true. It i1s easy to give examples of
compact, simply-connected 4-manifolds which are not homeomorphic to $*
(e.g., S* x §%). However, for all integers n > 3 there is an analog of the
Poincaré conjecture, namely, that a compact n-manifold that has the homot-
opy type of an n-sphere 1s homeomorphic to S”. This generalized Poincaré
conjecture was proved forn > 4 by S. Smale in 1960 [see Ann. Math. 74(1961),
391-406]. The case where n = 4 was proved by Michael Freedman in 1982.
Until the classical Poincaré conjecture (the case where n = 3) is settled, we
cannot hope to have a classification theorem for compact 3-manifolds.

Homotopy type vs. topological type for compact manifolds

From the computations of the fundamental groups of compact surfaces in this
chapter, the following fact emerges: If two compact surfaces are not homeo-
morphic, then they do not have the same homotopy type. The analogous
statement for compact 3-manifolds is known to be false; there are fairly simple
examples of compact 3-dimensional manifolds which are of the same homot-
opy type, but not homeomorphic (the so-called “lens spaces™). The proof of
this fact is the culmination of the work of mathematicians in several countries
over a period of years. The details are rather elaborate.

Higher-dimensional examples of manifolds which are of the same homot-
opy type but not homeomorphic have been constructed by using a theorem
of S. P. Novikov (topological invariance of rational Pontrjagin classes).

Fundamental group of a noncompact surface

The fundamental group of any noncompact surface (with a countable basis)
is a free group on a countable or finite set of generators. Any simply-connected,
noncompact surface is homeomorphic to the plane R?. For a proof of these
facts, see Ahlfors and Sario [1, Chapter I].

Sketch of the proof that any finitely presented group can be
the fundamental group of a compact 4-manifold

First, note that the fundamental group of S' x S° is infinite cyclic. Hence, by
forming the connected sum of n copies of S x S°, we obtain an orientable,
compact 4-manifold whose fundamental group 1s a free group on n generators
(see Exercise 3.7).

Next, suppose that M is a compact, orientable 4-manifold and C is a
smooth, simply closed curve in M, it may be shown that any sufficiently small,
closed tubular neighborhood N of C is homeomorphic to S! x E® (this
assertion would not be true if M were nonorientable). Also, the boundary of
N is homeomorphic to S x $%. Now S! x §%is also the boundary of EZ x §?,
a 4-dimensional manifold with boundary. Let M’ denote the complement of
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the interior of N. Form a quotient space of M’ U (E* x §*) by identifying
corresponding points of the boundary of N and the boundary of E* x §2;
denote the quotient space by M,. Then, M, 1s readily seen to be a compact,
orientable 4-manifold also; the process of obtaining M, from M 1s often called
“surgery.”

What is the fundamental group fo M,? We can answer this question by
applying the Seifert—Van Kampen theorem twice. First, M = MU N and
M’ ~ N is homeomorphic to S§' x §2. It is readily seen that the homomor-
phism n(M’ n N)— n(N) (induced by the inclusion) 1s an isomorphism,;
therefore by Exercise 4.1(a) the homomorphism n(M’) - n(M) is also an
isomorphism. Next, M, = M U(E%? x §%) and M'n(E* x §))=M'n N.
Because E* x §% is simply connected, Theorem 4.1 is applicable, and we can
conclude that 7(M’) » n(M,)is an epimorphism, and the kernel is the smallest
normal subgroup containing the image of n(M’ N N) —» n(M’); but 1t is readily
seen that the images of n(M’' N N) - n(M’) and n(C) — n(M) are equivalent.
(NOTE: Actually, each time we apply the Seifert—Van Kampen theorem, it is
necessary to make use of deformation retracts, etc., because M’ and N are not
open subsets of M.)

We can summarize the conclusion just obtained as follows: (M, ) i1s natu-
rally isomorphic to the quotient of n(M) by the smallest normal subgroup
containing the image of n(C) —» n(M). In other words, we have “killed off” the
element a of n(M) represented by the closed path C. If the group n(M) is
presented by means of generators and relations, then n(M,) has a presentation
consisting of the same set of generators and having one additional relation,
namely, a.

It 1s not difficult to show that any element « € (M) can be represented by
a smooth closed path C without any self-intersections, as required in the
preceding argument. In fact, this is true for any orientable n-manifold M
provided n = 3. In a manifold of dimension =3 there i1s enough “room” to
get rid of the self-intersections in any closed path by means of arbitrarily smalli
deformations.

Now let G be a group which has as a presentation consisting of n generators
X{,...,X,and k relations r,, r,,..., .. Let M be the connected sum of n copies
of ' x §3; then n(M) is a free group on n generators, which we may denote
by x,, ..., x,. We now perform surgery k times on M, killing off in succession
the elements r,, ..., r,. The result will be a compact, orientable 4-manifold M,
such that 7(M,) = G, as required.’

This construction was utilized by A. A. Markov in his proof that there
cannot exist any algorithm for deciding whether or not two given compact,
orientable, triangulable 4-manifolds are homeomorphic. Markov’s proof
depends on the fact that there exists no general algorithm for deciding whether
or not two given group presentations represent isomorphic groups (see Pro-
ceedings of International Congress of Mathematicians, 1958, pp. 300-306; also,

'This result is due to Seifert and Threlfall [9, p. 187].
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W. Boone, W. Haken, and V. Poenaru, “On Recursively Unsolvable Problems
in Topology and Their Classification” in Contributions to Mathematical
Logic, edited by H. Schmidt, K. Schutte and H.-J. Thiele, North-Holland,
Amsterdam, 1968, pp. 37-74).

Alternative proof of the Seifert—Van Kampen theorem

There is another method of proving the theorem of Seifert and Van Kampen,
using the theory of covering spaces as described in the next chapter. Although
this proofis not as long as that given in §2, it uses more machinery and requires
the assumption of additional hypotheses. An exposition of this proof is given
in the French text Godbillon [10] and in the research paper Knill [11].
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CHAPTER V

Covering Spaces

§1. Introduction

Let X be a topological space: a covering space of X consists of a space X
and a continuous map p of X onto X which satisfies a certain very strong
smoothness requirement. The precise definition is given below. The theory of
covering spaces 1s important not only in topology, but also in related disci-
plines such as differential geometry, the theory of Lie groups, and the theory
of Riemann surfaces.

The theory of covering spaces 1s closely connected with the study of the
fundamental group. Many basic topological questions about covering spaces
can be reduced to purely algebraic questions about the fundamental groups
of the various spaces involved. It would be practically impossible to give a
complete exposition of either one of these two topies without also taking up

the other.

§2. Definition and Some Examples of
Covering Spaces

In this chapter, we shall assume that all spaces are arcwise connected and
locally arcwise connected (see §I1.2 for the definition) unless otherwise stated.
To save words, we shall not keep repeating this assumption. On the other
hand, it 1s not necessary to assume that the spaces we are dealing with satisfy
any separation axioms.
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Definition. Let X be a topological space. A covering space of X 1s a pair
consisting of a space X and a continuous map p: X — X such that the
following condition holds: Each point x € X has an arcwise-connected open
neighborhood U such that each arc component of p~* (U) is mapped topologi-
cally onto U by p [in particular, it ia assumed that p~'(U) is nonempty]. Any
open neighborhood U that satisfies the condition just stated 1s called an
elementary neighborhood. The map p 1s often called a projection.

To clarfy this definition, we now give several examples. In some of the
examples our discussion will be rather informal, which is often more helpful
than a more rigorous and formal discussion in getting an intuitive feeling for
the concept of covering space.

Examples

2.1. Let p: R - S’ be defined by
p(t) = (sin t, cos t)

for any t € R. Then, the pair (R, p) is a covering space of the unit circle S*. Any
open subinterval of the circle S' can be serve as an elementary neighborhood.
This is one of the simplest and most important examples.

2.2. Let us use polar coordinates (r, 0) in the plane R%. Then, the unit circle
S is defined by the condition r = 1. For any integer n, positive or negative,
define a map p, : S' —» S! by the equation

pa(1, 8) = (1, nb).

The map p, wraps the circle around itself n times. It is readily seen that, if
n # 0, the pair (S', p,) 1s a covering space of S*. Once again, any proper open
interval in S* is an elementary neighborhood.

2.3. If X 1s any space, and i : X — X denotes the identity map, then the pair
(X, i) 1s a trivial example of a covering space of X. Similarly, if f is a homeo-
morphism of Y onto X, then (Y, f) 1s a covering space of X, which is also a
rather trivial example. Later in this chapter, we shall prove that, if X is simply
connected, then any covering space of X 1s one of these trivial covering spaces.
Thus, we can only hope for nontrivial examples of covering spaces in the case
of spaces that are not simply connected.

2.4. If (X, p) is a covering space of X, and (Y, q) is a covering space of Y,
then (X x ¥, p x q) is a covering space of X x Y [the map p x q is defined
by (p x q9)(x, y) = (px, qy)]. We leave the proof to the reader. It is clear that,
if U 1s an elementary neighborhood of the point x € X and V is an elementary
neighborhood of the point y € Y, then U x ¥V is an elementary neighborhood
of (x,y)e X x Y.

Using this result and Examples 2.1 and 2.2, the reader can construct
examples of covering spaces of the torus T = S x S'. In particular, the plane
R? = R x R, the cylinder R x S, or the torus itself can serve as a covering
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FIGURE 5.1. A surface of genus 2 as a quotient space of a bordered surface.

space of the torus. The reader should try to visualize the projection p involved
in each of these cases.

2.5. In §1.4, the projective plane P was defined as a quotient space of the
2-sphere S2. Let p: S* —» P denote the natural map. Then, it is readily seen
that (S, p) is a covering space of P. We can take as an elementary neighbor-
hood of any point x € P an open disc containing x.

2.6. Let S be a compact, orientable surface of genus 2. We shall show how
to construct a great variety of covering spaces of S. Note that we can regard
S as a quotient space of a compact, bordered surface M, where M is orientable,
of genus 0, and its boundary consists of four circles Cy, Cy, C;, and C;. The
natural map M — S identifies the boundary circles in pairs (see Figure 5.1).
C; and C; are identified to a single circle C; by means of a homeomorphism
h.of C; onto C/,i = 1,2. We can also think of M as obtained from S by cutting
along the circles C, and C,.

Let D be the finite set {1, 2, 3, ..., n} with the discrete topologyand ¢ : M x
D — M, the projection of the product space onto the first factor. We can think
of M x D as consisting of n disjoint copies of M, each of which is mapped
homeomorphically onto M by g. We now describe how to form a quotient
space of M x D, which will be a connected 2-manifold § and such that the
map g will induce a map p: 8 — S of quotient spaces; i.e., so we will have a
commutative diagram

MxD — §
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It will turn out that (S, p) is a covering space of S. The identification by which
we form S from M x D will all be of the following form: The circle C; x {j}
i1s identified with the circle ¢’ x {k} by a homeomorphism which sends the
point (x, j) onto the point (h;(x), k), where i = 1 or 2, and j and k are positive
integers <n. We can carry out this identification of circles in pairs in many
different ways, so long as we obtain a space S which is connected. For example,
in the case where n = 3, we could carry out the identifications according to
the following scheme: Identify

C; x {1} with €} x {2},
C; x {2} with C{ x {3},
C; x {3} with C7 x {1},
C, x {1} with Cj x {2},
C, x {2} with Cj x {1},
C, x {3} with Cj x {3}.

We leave it to the reader to concoct other examples and to prove that in each
case we actually obtain a covering space. Obviously, we could use a similar
procedure to obtain examples of covering spaces of surfaces of higher genus.

2.7. Let X be a subset of the plane consisting of two circles tangent at a

point;
Cy={(y:(x—1)7*+y* =1},
C,={(xy):0x+ 17 +y> =1},
X =C,u(,.

We shall give two different examples of covering spaces of X. For the first
example, let X denote the set of all points (x, y) € R* such that x or y (or both)
is an integer; X is a union of horizontal and vertical straight lines. Define

p: X = X by the formula

(1 + cos(n — 2nx), sin 2nx) if y 1s an integer,
(—1) + cos 2ny, sin 2ny) if x 1s an integer.

p(x, y) = {

The map p wraps each horizontal line around the circle C; and each vertical

line around the circle C,.

For the second example, let D, denote the circle {(x, y) e R? : (x — 1)* +
(y — 3n)*> = 1} for any integer n, positive, negative, or zero, and let L denote
the vertical line {(x, y): x = 0}. The circles D, are pairwise disjoint, and each
is tangent to the line L. Define

X’:LU(U D,,),

nelz

and p': X’ — X as follows: Let p’ map each circle D, homeomorphically onto



§2. Definition and Some Examples of Covering Spaces 121

C, by a vertical translation of the proper amount. Let p’ wrap the line L
around the circle C, in accordance with the formula

2ny . 2my

p'(0, y) = (—1 + cos—3—, smT).

Then, (X', p’) is a covering space of X.
2.8. Here 1s an example for students who have at least a slight familiarity
with the theory of functions of a complex vanable. As usual, let

| Ny

exp(z) = i} !

-

denote the exponential function, where z 1s any complex number. The expo-
nential function is a map, exp : C - C — {0}, where C denotes the complex
planc. We assert that (C, exp) is a covering space of C — {0}, and that, for any
z € C — {0}, the open disc

U, ={weC:|lw—z| <|z|}

is an elementary neighborhood. To prove this, we would have to show that
any component V of the inverse image of U, is mapped homeomorphically
onto U, by exp; i.e., that there exists a continuous function f: U, » V such
that, for any w € U,,

exp[ f(w)] = w,

and, foranyve ¥V,
flexp v) = v.

Such a function f is called a “branch of the logarithm function in the disc U,”
in books on complex variables, and in the course of establishing the properties
of the logarithm, the required facts are proved.

Recall that, if z = x + iy, then exp z = (exp x)-(cos y + i sin y), where
exp x = ¢* now refers to the more familiar real exponential function,
exp: R — {teR:t > 0}. From this formula, the following fact emerges. We
canregard C=R x Rand C — {0} = {re R:r > 0} x S' (use polar coordi-
nates). Then, we can consider the map exp: C—> C — {0} as a map p x ¢:
RxR-o{rcR:r>0} x 8! where p(x)=e* and g(y)= (cosy,sin y).
Compare Examples 2.1, 2.3, and 2.4.

2.9. We now give another example from the theory of functions of a
complex variable. For any integer n # 0, let p, : C - Cbe defined by p,(z) = 2"
Then, (C — {0}, p,) is a covering space of C — {0}. The proof is given in
books on complex variables when the existence and properties of the various
“branches” of the function \"ﬁ are discussed; the situation 1s analogous to that
in Example 2.8. Note that it is necessary to omit 0 from the domain and range
of the function p,; otherwise we would not have a covering space. As in
Example 2.8, we can consider C — {0} = {re R:r > 0} x S! and decompose
the covering space (C — {0}, p,) into the Cartesian product of two covering

spaces.
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To clanfy further the concept of covering space, we shall give some ex-
amples which are almost, but not quite, covering spaces.

Definition. A continuous map f: X — Y 1s a local homeomorphism if each
point x € X has an open neighborhood V such that f(V)is open and f maps
V topologically onto f(V).

It is readily proved that, if (X, p) is a covering space of X, then p is a local
homeomorphism (the proof depends on the fact that in a locally arcwise
connected space, the arc components of an open set are open). Also, the
inclusion map of an open subset of a toplogical space into the whole space is
a local homeomorphism. Finally, the composition of two local homeomor-
phisms 1s again a local homeomorphism. Thus, we can construct many ex-

amples of local homeomorphisms.
On the other hand, it is easy to construct examples of local homeomor-

phisms which are onto maps, but not covering spaces. For example, let p map
the open interval (0, 10) onto the circle S' as follows:

p(t) = (cos t, sin t).

Then, p 1s a local homeomorphism, but ((0, 10), p) is not a covering space of
S'. (Which points of S? fail to have an elementary neighborhood?) More
generally, if (X, p) is a covering space of X, and V is a connected, open, proper
subset of X, then p|V is a local homeomorphism, but (¥, p|V)is not a covering
space of X. It 1s important to keep this distinction between covering spaces
and local homeomorphisms in mind.

Note that a local homeomorphism is an open map. In particular, if (X, p)
is a covering space of X, then p is an open map.

We next give a lemma which makes it possible to give many additional
examples of covering spaces.

Lemma 2.1. Let (X, p) be a covering space of X, let A be a subspace of X which
is arcwise connected and locally arcwise connected, and let A be an arc compo-
nent of p~'(A). Then, (A, p|A) is a covering space of A.

The proof 1s immediate. The two covering spaces described in Example 2.7
can also be obtained by applying this lemma to the covering spaces R* = R x
R and R x S! of the torus S' x S! described in Example 2.4 [choose 4 to be
the following subset of S x §1: 4 = (8§ x {xo}) U ({xo} x S'), where x, €
S

We close this section by stating two of the principal problems in the theory
of covering spaces:

(a) Give necessary and sufficient conditions for two covering spaces
(X, p;) and (X,, p,) of X to be isomorphic (by definition, they are
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isomorphic if and only if there exists a homeomorphism & of X, onto
X, such that p,h = p)).

(b) Given a space X, determine all possible covering spaces of X (up to
isomorphism).

As we shall see, these problems have reasonable answers 1n terms of the
fundamental groups of the spaces involved.

EXERCISES

2.1. Prove that the following four conditions on a topological space are equivalent:

(a) They are components of any open subset are open.
(b) Every point has a basic family of arcwise-connected open neighborhoods.
(c) Every point has a basic family of arcwise-connected neighborhoods (they are

not assumed to be open).
(d) Forevery point x and every neighborhood U of x, there exists a neighborhood
V of x such that ¥V < U and any two points of V can be joined by an arcin U.

Thus, any one of these conditions could be taken as the definition of local
arcwise connectivity.

2.2. Give an example of a local homeomorphism f: X — Y and a subset A < X such
that f|A 1s not a local homeomorphism of A onto f(A).

2.3. Prove that if X is compact and f: X — Y is a local homeomorphism, then, for
any point y e Y, f “1(y) is a finite set. If it is also assumed that Y is a connected

Hausdorff space, then f maps X onto Y.

24. Assume X and Y are arcwise connected and locally arcwise connected, X is
compact Hausdorff, and Y is Hausdorff. Let f : X — Y be a local homeomorphism;
prove that (X, ) 1s a covering space of Y. (WARNING: This exercise 1s more subtle
than it looks!)

§3. Lifting of Paths to a Covering Space

In this section, we prove some simple lemmas which provide the key to many
of the results in this chapter. Let (X, p) be a covering space of X, and let
g:I - X be a path in X; then, pg is a path in X. Also, if g,, g, : I = X and
do ~ 9, then pgy, ~ pg,. We can now ask for a sort of converse result: If
f:1-> X is apathin X, does there exist a path g: I - X such that pg = f?If
do, 9, :1 = X and pgo ~ pg,, does it follow that g, ~ g,? We shall see that
the answer to both questions is Yes. This fact expresses one of the basic
properties of covering spaces.

Lemma 3.1. Let (X, p) be a covering space of X, %, € X, and xq = p(%X,). Then,
for any path f: I - X with initial point x,, there exists a unique path g : I - X
with initial point X, such that pg = f.
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ProOF. If the path f were contained in an elementary neighborhood U there
would be no problem. For, if V denotes the arc component of p~!(U) which
contains X,, then, because p maps V topologically onto U, there would exist
a unique g in V with the required properties.

Of course, f will not, in general, be contained in an elementary neighbor-
hood U. However, we can always express f as the product of a finite number
of “shorter” paths, each of which is contained in an elementary neighborhood,
and then apply the argument 1n the preceding paragraph to each of these
shorter paths 1n succession.

The details of this procedure may be described as follows. Let {U;} be a
covering of X by elementary neighborhoods; then { f =1 (U,)} is an open covering
of the compact metric space I. Choose an integer n so large that 1/n is less than
the Lebesgue number of this covering. Divide the interval I into the closed
subintervals [0, 1/n], [1/n,2/n], ..., [(n — 1)/n, 1]. Note that f maps each
subinterval into an elementary neighborhood in X. We now define g succes-
sively over these subintervals, starting with [0, 1/n].

The uniqueness of the lifted path g 1s a consequence of the following more
general lemma.

Lemma 3.2. Let (X, p) be a covering space of X and let Y be a space which is
connected. Given any two continuous maps f,, f; : Y = X such that pfy = pf;.,
the set {y € Y: fo(y) = f1(y)} is either empty or all of Y.

PRrROOF. Because Y is connected, it suffices to prove that the set in question is
both open and closed. First we shall prove that it i1s closed. Let y be a point
of the closure of this set, and let

x = pfo(¥) = pf1(y).

Assume f,(y) # f1(y); we will show that this assumption leads to a contradic-
tion. Let U be an elementary neighborhood of x, and let V,, and V; be the
components of p~! (U) which contain f,(y) and f;(y), respectively. Since f, and
f, are both continuous, we can find a neghborhood W of y such that f,(W) <
Vo and f; (W) < V;. But 1t 1s readily seen that this contradicts the fact that any
neighborhood W of y must meet the set in question.

An analogous argument enables us to show that every point of the set

{y e Y: fo(y) = fi(y)} is an interior point. Q.E.D.

Lemma 3.3. Let (X, p) be a covering space of X and let go, g, : 1 - X be paths
in X which have the same initial point. If pgo ~ pg,, then g, ~ g.; in particular,
go and g, have the same terminal point.

PRrROOF. The strategy of this proof is essentially the same as that of Lemma
3.1. Let X, be the initial point of g, and g,. The hypothesis pg, ~ pg, implies
the existence of a map F: I x I - X such that
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F(s, 0) = pgo(s),
F(s, 1) = pg,(s),
F(0, t) = pgo(0) = p(Xo),
F(1, t) = pgo(1).

By an argument using the Lebesgue number, etc, we can find numbers
O=spo<s;, < "<s,=land 0=t,<t; < - <t,=1 such that F maps
each small rectangle [s;_;, s;] x [t;—, t;] into some elementary neighborhood
in X. We shall prove that there exists a unique map G:I x I - X such that
pG = F and G(0, 0) = X,. First, we define G over the small rectangle [0, s, ] x
[0, ¢, ] so that the required properties hold; it is clear that this can be done
because F maps this small rectangle into an elementary neighborhood of the
point p(X,)- Then, we extend the definition of G successively over the rectangles
[si-1,8;1 x [0,¢,]fori=23,..., m taking care that the definitions agree on
the common edge of any two successive rectangles. Thus, G is defined over
the strip I x [0, t,;]. Next, G is defined over the rectangles in the strip I x
[t,,t,], etc.

The uniqueness of G is assured by Lemma 3.2. Similarly, by the uniqueness
assertion of Lemma 3.1, we see that G(s, 0) = go(s), G(0, t) = Xp, G(s, 1) =
g,(s), and that G maps {1} x I into a single point X, such that

p(X1) = pgo(l) = pg(1).

Thus, G defines an equivalence between the paths g, and g, as required.
Q.E.D.

As a corollary to these results on the lifting of paths, we shall prove the
following lemma:

Lemma 34. If (X, p) is a covering space of X, then the sets p~'(x) forall x € X
have the same cardinal number.

PrROOF. Let x, and x, be any two points of X. Choose a path f in X with
initial point x, and terminal point x,. Using the path f, we can define a
mapping p !(x,) = p~'(x;) by the following procedure. Given any point
Vo € 1 (xo), lift f to a path g in X with initial point y, such that pg = f. Let
y, denote the terminal point of g. Then, y, — y, is the desired mapping. Using
the inverse path f [defined by f(t) = f(1 — t)], we can define in an analogous
way a map p '(x;) = p '(xo) It is clear that these maps are the inverse of
each other; hence each is one-to-one and onto. Q.E.D.

This common cardinal number of the sets p~!(x), x € X, is called the number
of sheets of the covering space (X, p). For example, we speak of an n-sheeted
covering, or an infinite-sheeted covering.
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Examples

3.1. Consider the covering space (R, p) of S described in Example 2.1.
According to Lemmas 3.1 and 3.3, any element o € n(S’, (0, 1)) can be “lifted”
to a unique path class in R starting at the point 0. The end point of this path
class will be some integral multiple of 27. Conversely, suppose we have a path
class fin R starting at 0 and ending at some point which is an integral multiple
of 27. The path class p, () is an element of 7(S*). According to this argument,
path classes in R which end at different integral multiples of 2z must give rise
to different elements of 7(S'). Thus, n(S") is an infinite group. This completes
the proof of Theorem 5.1 of Chapter I1.

§4. The Fundamental Group of a Covering Space

As a corollary of Lemma 3.3, we have the following fundamental resuit:

Theorem 4.1. Let (X, p) bea covering spaceof X, %, € X, and x, = p(X,). Then,
the induced homomorphism p, : (X, X,) = (X, xo) is a monomorphism.

This is a direct consequence of the special case of Lemma 3.3 in which g,

and g, are assumed to be closed paths.
This theorem leads to the following question: Suppose X, and X, are points
of X such that p(X,) = p(X,) = x,. How do the images of the homomorphisms

Px : R(f, i0) - TE(X, xO)&

Py (X, %1) = 1(X, Xo),
compare? The answer is very simple. Choose a class y of paths in X from %,
to %,; this defines an isomorphism u: n(X, X,) = n(X, x,) by the formula
u(e) = y'ay. Thus, we obtain the following commutative diagram (see the

exercises in §11.4):

21X, £5) — (X, X,)

u U

(X, %,) SLLEN (X, xo)
Here, v(8) = (p,7) " B(p.7) But p,(y) is a closed path, and, hence, an element
of n(X, x,). Thus, we see that the images of n(X, X,) and of n(X, %,) under p,
are conjugate subgroups of n(X, xy).

Next, the question arises, can every subgroup in the conjugacy class of the
subgroup p,n(X, X,) be obtained as the image p,n(X, £,) for some choice of
the point X, € p~!(x,)? Here the answer is Yes. To prove this, note that any
subgroup in this conjugacy class is of the form a™'[p_n(X, %;)]a for some
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choice of the element a € n(X, x,). Choose a closed path f: I - X representing
a. Apply Lemma 3.1 to obtain a path g : I = X covering « with initial point
X,. Let X, be the terminal point of this lifted path. Then, it is readily seen that

p,(X, %) =a'[p,n(X, %))

We can summarize what we have proved in the following theorem:

Theorem 4.2. Let (X, p) be a covering space of X and x, € X. Then, the
subgroups p n(X, X) for X € p~'(x,) are exactly a conjugacy class of subgroups
of (X, xp).

The student who desires examples of this theorem can consider the various
examples of covering spaces given in §2.

EXERCISES

4.1. Discuss the effect of the changing the “base point” x, in the statement of Theorem
4,2 to a new base point x, € X.

This conjugacy class of subgroups of 7(X, x,) is an algebraic invariant of
the covering space (X, p). We shall later prove that it completely determines
the covering space up to isomorphism!

§5. Lifting of Arbitrary Maps to a Covering Space

In §3 we studied the “lifting” of paths in X to a covering space X. We now
study the analogous problem for maps of any space Y into X. To discuss this
question, we introduce the following notation: If X and Y are topological
spaces, x € X and y € Y, then the notation f:(X,x)— (Y, y) means f is a
continuous map of X into Y and f(x) = y. With this notation, we can concisely
state our main question as follows: Let (X, p) be a covering space of X, %, € X,
Xo = p(Xo) Vo € Y,and ¢ : (Y, yo) = (X, X,). Under what conditions does there
exist a map & : (Y, yo) — (X, %) such that the diagram

P (X'& 560)
(Y, yo) p
(P v
(X& xO)

is commutative? If such a map ¢ exists, we say that ¢ can be lifted to @, or
that @ is a lifting of .

It is easy to obtain a necessary condition for the existence of such a lifting
¢ by consideration of the fundamental groups of the spaces involved. For, if
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we assume such a map ¢ exists, then we obtain the following commutative
diagram of groups and homomorphismes:

@;t/v (‘?& jEt’]l)

77:(Ya yO) Py

" TR(X, x,)

Because p, 1s a monomorphism, the existence of a homomorphism @, :
(Y, yo) — (X, %,), which makes this diagram commutative, is exactly equiva-
lent to the condition that the image of ¢, be contained in the image of p,,.
This is our desired necessary condition. The surprising thing is that this
necessary condition is also sufficient.

Theorem 5.1. Let (X, p) be a covering space of X, Y a connected and locally
arcwise-connected space, yo,€ Y, Xo€ X, and x, = p(X,). Given a map o :
(Y, yo) = (X, x,), there exists a lifting &:(Y, yo) = (X, %X,) if and only if
@, (Y, ¥o) € pn(X, %o).

PrOOF. We have aiready proved the necessity of the given condition; it
remains to prove it is sufficient. To do this, we must actually define the map
¢. The following considerations show that there 1s an essentially unique way
to define @ if it exists at all. Assume that @ exists; let y be any point of Y.
Because Y is arcwise connected, we may choose a path f: I — Y with initial
point y, and terminal point y. Consider the paths of and ¢f in X and X,
respectively. The path ¢f is a lifting of the path ¢f, and @(y) is the terminal
point of the path &f.

In view of these considerations, we define the map @ : (Y, y,) = (X, X,) as
follows: Given any point y € Y, choose a path f:I — Y with initial point y,
and terminal point y. Then, ¢f is a path in X with initial point x,. Apply
Lemma 3.12 to obtain a path g: I — X such that the initial point of g is X,
and pg = ¢f. Define

@(y) = terminal point of g.

To justify this definition, we must show that @(y) is independent of the
choice of the path f. By using Lemma 3.3, we see that we can replace f by an
equivalent path without altering the definition of @(y); i.e., ¢(y) only depends
on the equivalence class « of the path f. Suppose that « and f are two different
equivalence classes of paths in Y from y, to y. Then, aff ! is a closed path
based at y,; hence, a8~ € n(Y, y,) and therefore by the hypothesis of the
theorem, ¢, (2f ') € p*n()? , Xo).- Thus, there is a class of loops based at X, in
X which projects onto (¢, %) (¢, B)7", or, if (¢, 0) (¢, p)~" is “lifted” to a path
in X starting at %,, the result is a closed path in X. Hence, if p o and ¢, are
each lifted to paths in X starting at %,, they have the same terminal point.
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Next, we must prove that the function ¢ thus defined is continuous. Let
ye Y and let U be an arbitrary neighborhood of @(y). We must show that
there exists a neighborhood V of y such that ¢(V) c U. Choose an elementary
neighborhood U’ of p@(y) = ¢(y) such that U’ < p(U). Let W be the arc
component of p~!(U’) which contains @(y), and let U” be an elementary
neighborhood of ¢(y) such that U” < p(U n W). Then it is easily shown that
the arc component of p~!(U"), which contains @¢(y) is contained in U. Because
@ 1s continuous, we can choose V such that ¢(V) « U”. We can also choose
V so that it 1s arcwise connected, because Y 1s locally arcwise connected. We
leave it to the reader to verify that the neighborhood V thus chosen has the
required properties.

It is obvious from our method of defining ¢ that the required commuta-
tivity relation pg = ¢ holds. Q.E.D.

Remarks: 1. The map ¢ is unique, in view of Lemma 3.2. The uniqueness of

¢ 1s also clear from the proof of the theorem.

2. This theorem is a beautiful illustration of the general strategy of
algebraic topology: A purely topological question (the existence of a con-
tinuous map satisfying certain conditions) i1s reduced to a purely algebraic
question. In most cases in algebraic topology where such a reduction can be
effected, the details are much more complicated than in Theorem 5.1.

EXERCISES

5.1. Let G be a topological space with a continuous multiplication u: G x G — G with
a unit e such that u(e, x) = u(x, e) = x for any x € X (see Exercise 11.7.5). Let (G, p)
be a covering space of G and & e G a point such that p(é) = e. Prove that there
exists a unique continuous multiplication ji: G x G — G such that & is a unit [i.e.,
ii(é, y) = ji(y, & = y for any y € G] and p commutes with the multiplication in G
and G [i.e., u(px, py) = pji(x, y)]. (HINT: Use Theorem 5.1 together with the result
of Example 2.4 and the exercise of §I1.7 referred to above.) Assume G is arcwise
connected and locally arcwise connected as usual. Prove also that, if the multipli-
cation y is associative, then so is the multiplication fi.

5.2. Let G be a connected, locally arcwise-connected topological group with unit e.
Let (G, p) be a covering space of G and & € G such that p(é) = e. Prove that there
exists a unique continuous multiplication u: G x G — G such that G is a topologi-
cal group with unit € and p is a homomorphism. (HINT: Use the results of Exercises
5.1 and I1.7.6 to show the existence of inverses in G.) Prove also that the kernel
of p is a discrete normal subgroup of G and hence is contained in the center of G.

5.3. Apply the considerations of Exercise 5.2 to the case in which G = §!, the multipli-
cative group of all complex numbers of absolute value 1. Examples of covering
spaces of S! were described in §2.

5.4. In Exercises 5.1 and 5.2, if the multiplication in G 1s commutative, prove that the
multiplication in G is also commutative.
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§6. Homomorphisms and Automorphisms
of Covering Spaces

We wish to obtain some information about the various possible covering
spaces of a given space X. As we shall see, we can gain much insight into this
problem by considering homomorphisms and automorphisms of covering
spaces of X. This procedure is in accordance with the following semimystical
principle which seems to help guide much present-day mathematical research:
Whenever we wish to gain information about a certain class of mathematical
objects, it 1s usually helpful to consider also the appropriate class of admissible

maps and automorphisms of these objects.

Definition. Let(X,, p,)and (X,, p,)be covering spaces of X. A homomorphism
of (X,, p,) into (X,, p,) is a continuous map ¢: X, » X, such that the
following diagram is commutative:

X 1 — X 2
N
X
Note that the composition of two homomorphisms is again a homomor-

phism, and that, if (X, p) is a covering space of X, then the identity map X —» X
is a homomorphism.

Definition. A homomorphism ¢ of (X, p,) into (X, p,) is called an isomor-
phism if there exists a homomorphism ¥ of (X,, p,) into (X,, p,) such that
both compositions ¢ and ¢y are identity maps. Two covering spaces are
said to be isomorphic if there exists an 1Isomorphism of one onto the other. An
automorphism 1s an isomorphism of a covering space onto itself; it may or may
not be the identity map.

Automorphisms of covering spaces are usually called covering transforma-
tions in the literature (German: Deckbewegung). Note that a homomorphism
of covering spaces 1s an isomorphism if and only if it is a homeomorphism in
the usual sense. The set of all automorphisms of a covering space (X, p) of X
1s obviously a group under the operation of composing maps. We shall use

the notation A(X, p) to denote this group.
We now derive some basic properties of homomorphisms and automor-

phisms of covering spaces.

Lemma 6.1. Let ¢, and ¢, be homomorphisms of (X,, p,) into (X,, p,). If there
exists any point x € X, such that @o(x) = ¢,(x), then ¢, = ¢,

This is a special case of Lemma 3.2.
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Corollary 6.2. The group A(X, p) operates without fixed points on the space
X:ie,if oe A(X, p) and @ # 1, then @ has no fixed points.

Lemma 6.3. Let (X,, p,) and (X,, p,) be covering spaces of X and %;€ X, i =
1, 2, points such that p,(X,) = p,(X,;). Then, there exits a homomorphism ¢ of
(X,, pL) into (X,, p,) such that o(X,) =%, if and only if P (X, %)) ©
pz*ﬂ(ng 5&2)

This is a special case of Theorem 5.1.

Corollary 6.4. Under the hypotheses of Lemma 6.3, there exists an isomorphism
@ Of(‘?la p1) onto (X, p;) such that ¢(X,) = X, if and only lfpl*n(}?la Xy) =
Pz*ﬂ'(f?za X,).

This is a direct consequences of Lemma 6.3, the definition of an isomor-
phism, and Corollary 6.2.

Corollary 6.5. Let (X, p) be a covering space of X and %,, X, € p~'(x,), where
Xo € X. There exists an automorphism ¢ € A(X, p) such that ¢(X,) = X, if and

Only lf p*n(XE jEl) - pZ*H(X'& 562)
This is a special case of Corollary 6.4.

Theorem 6.6. Two covering spaces (X, p,) and (X,, p,) of X are isomorphic if
