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Preface

This book 1s an introduction to the subjects of information and
coding theory at the graduate or advanced undergraduate level.
Prerequisites include a basic knowledge of elementary probability, as
well as a foundation in modern and linear algebra, both at the
undergraduate level. A glance at the first section of the appendix will
show the reader what 1s expected in the way of modern algebra. All
material on finite fields 1s developed from scratch in the text.

I have tried in this book to provide a thorough but basic
introduction to the subjects of coding and information theory. My
intention 1s to describe as clearly as I can the fundamental issues
involved in these two subjects, rather than trying to cover all aspects of
the theory. There are a few places where I have included more than is
necessary for this purpose. In such cases, the sections are marked with
an asterisk and can be omitted without loss of continuity.

The first quarter of the book 1s devoted to information
theory — enough to discuss the basic aspects of the subject and give a
full statement of the Noisy Coding Theorem, as well as a complete
proof, in the case of the binary symmetric channel. While the
iInformation theory portion of the book can be omitted, it does provide
a solid foundation to help appreciate the issues involved in both
subjects.

Chapter 1 covers the topic of entropy. In Chapter 2, we discuss
noiseless coding, Including the Noiseless Coding Theorem and the
Huffman algorithm for efficient source encoding. Chapter 3 is devoted
to noisy coding and culminates in the proof of the Noisy Coding
Theorem (and its converses) for the binary symmetric channel, using
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random encoding. The information theory portion of the book has a

decidedly probabilistic flavor.

The remaining portion of the book i1s devoted to coding theory,
and has a decidedly algebraic flavor. The approach is theoretical in
nature. For example, we discuss encoding and decoding algorithms, but
do not cover the shift-register circuits that might be used to implement
these algorithms.

Chapter 4 begins with a brief review for those readers who have
not read the information theory portion of the book, and continues with
general remarks on codes, including a brief discussion of several families
of codes. Chapter 5 covers linear codes 1n detail, and Chapter 6 covers
the Hamming, Golay and Reed-Muller codes. The first three sections of
Chapter 7 are devoted to a fairly thorough discussion of the theory of
finite fields and are followed by a discussion of cyclic codes. In Chapter
8, we study several families of cyclic codes, and one family of non-cyclic
codes.

The appendix, meant to serve as a reference, contains a review of
topics from modern algebra, along with a discussion of Mobius
iversion, and binomial inequalities, both of which are used 1n the text.
There 1s also a discussion of some computational techniques for finite
fields, such as Berlekamp’s factoring algorithm that are not used in the
text. Several tables are included, among which the finite field tables
will prove very useful for the exercise sets.

For a course based completely on coding theory, the instructor
may begin with Chapter 4. For a somewhat more balanced treatment,
Sections 1.1, 1.2, and 3.1-3.3 could be covered rather lightly, skipping
proofs, before beginning the coding theory portion of the text.

A few of the sections 1n the book are fairly technical and may be
omitted by the instructor if desired without loss of continuity. These
sectlons are:

1) Section 1.3 on entropy for countably infinite probability
distributions and typical sequences,

2)  Section 3.4 on the proof of the Noisy Coding Theorem,

3)  Section 4.5 on the main coding theory problem (this section begins
with a summary of results that can be covered quickly),

4)  Section 9.2 on weight distributions of codes (one can state the
MacWilliams identity for linear codes [Corollary 5.2.9], and cover
the related examples in the text),

5)  Section 5.4 on invariant theory and self-dual codes.

Irvine, December 1991 Steven Roman
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Introduction

The main problem of information and coding theory can be
described 1n a simple way as follows. Imagine that a stream of source
data, say in the form of bits (0’s and 1’s), is being transmitted over a
communications channel, such as a telephone line. From time to time,
disruptions take place along the channel, causing some of the 0’s to be
turned into 1’s, and vice-versa. The question is “How can we tell when
the original source data has been changed, and when it has, how can we
recover the original data?”

The issue of accurate communication 1s an extremely important
one and arises in a variety of situations. A particularly important area
for error detection and correction i1s in communication from space
vehicles. Data that 1s in storage i1s also subject to errors, due to
imperfections in the storage medium, for instance, and 1s therefore a
form of communications channel to which this question also applies.

Let us illustrate the i1ssues involved in dealing with the question of
how to detect and correct errors. One of the most fundamental models
of a communications channel is the binary symmetric channel, pictured
in Figure 1. This model describes a situation in which an error i1s made
by the channel —that 1s, a 0 1s turned into a 1 or vice-versa — with
probability p < 1/2. Thus, regardless of the input, a channel error, or
bit error, occurs with probability p.

Now, let us imagine that we must design a scheme for detecting,
and hopefully correcting, bit errors. One possibility would be to do
nothing. When a bit i1s received at the output of the channel, we
simply decide that it was correct. In this case, the probability of
making a decision erroris p.
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Figure 1

On the other hand, we can be a little more clever by instructing
the sender to send each bit three times in succession. The receiver
would then decide that the original source bit is the bit that appears a
majority of the time at the output to the channel. For instance, if the
output is 010, the receiver decides that the original bit was a 0.

Under the assumption that errors occur independently (not always
a reasonable assumption, but certainly a convenient one), the
probability of making a decision error i1s the probability that at least
two bit errors have been made by the channel, which is

Pe = (3) p*(1-p) + (g) p> = 3p° — 2p°

Since this is less than p, for p < 1/2, we deduce that by encoding the
original source data, we can reduce the probability of making a decision
error. In this way, we are able to compensate in part for the loss that is
inherent 1n the channel.

Taking this idea a step further, we can instruct the sender to send
each bit 2n+1 times in succession (we want an odd length so that
majority decisions are always possible). As before, the receiver decides
that the original source bit 1s the bit that appears a majority of the
time in the output.

The probability of a decision error in this case 1s the probability
that at least n+1 bit errors will be made by the channel. Under our
independence assumption, the number of errors made by the channel
has a binomial distribution with parameters (2n+1,p), and so the
expected number of errors is

(20+1)p <n+35

: Y iqf i:nt{‘..{/‘-' "l . € “ '
for p < 1/2. Therefore, the weak law of large numbers tells us that the

probability that at least n+ 1 channel errors are made tends to 0 as
n tends to infinity. In other words, the probability that we make a
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decision error tends to 0 as n gets large, and so we can compensate
for channel errors to any desired degree by choosing n large enough.

However, we pay a heavy price for doing this, in terms of the
efficiency of transmission of the source information. In particular, it
takes a certain amount of timme to send a bit through the channel, and if
we send each bit 2n+1 times, we are spending 2n+1 units of channel
time to send a single source bit. Thus, the rate of source transmaission
T 2n1+1 source bits per channel bit. For n large, this is likely to be
an unacceptably low rate of transmission.

Nevertheless, we can see from this example that the basic i1dea is
to encode source information, by adding additional information,
sometimes referred to as redundancy, that can be used to detect, and
perhaps correct, errors in transmission. The more redundancy that we
add to the original source data, the more reliably we can detect and
correct errors, but the less efficient we become at transmitting the
source data, and so a compromise must be made.

Figure 2 shows the components that are involved in the

,f:.'-%ommunication process.

~ SOURCE ENCODER CHANNEL
‘ | Sends source l lEncodes source messaqe| ) ‘ .. l
message —?101 10 codoword May introduce errors
- - — 1011010
DECODER RECEIVER
Corrects errors and reclaims Receives source
) ! source message l ) ‘ message I
1010010 — 1011 —
Figure 2

Information generated by the SOURCE 1s taken, either one bit at a
time, or more often several bits at a time, and encoded by the
ENCODER into a codeword. This 1s done by an encoding scheme,
which consists of a code (set of codewords) and a function that assigns a
codeword to each source message. The codeword is then sent over the
CHANNEL, during which errors may be introduced. The DECODER
accepts the output of the CHANNEL, attempts to correct any errors in
transmission, and then recovers the original source message from the
corrected codeword. Finally, the RECEIVER receives the (hopefully)
correct source message.

Assuming that all source messages have the same length and all
codewords have the same length, we can define the rate of transmission
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of the communications scheme as the length of a source message divided
by the length of the corresponding codeword. For instance, in the
example shown in Figure 2, the rate of transmission is 4/7.

Now we come to a remarkable result known as the Noisy Coding
Theorem. This theorem says that to every communications channel,
there is a number C, called the capacity of the channel, with the
following property. If we are willing to settle for a rate of transmission
that is strictly below channel capacity, then there is an encoding scheme
for the source data that will reduce the probability of a decision error to
any desired level. In the case of the binary symmetric channel, the
capacity 1s

cbin sym — I+p lOgZ pT (l—p) 1082(1 - p)

For instance, if the probability of bit error is p =10.01, then the
capacity is C = (0.91921.

The Noisy Coding Theorem was first proved by Claude Shannon
in 1948. Unfortunately, neither his proof, using a technique known as
random encoding, nor any proof given since, is at all constructive, and
at this point, no one has found a way to construct the encoding schemes
promised by Shannon’s theorem.

It should be emphasized, however, that there are some additional
practical problems to be considered in searching for desirable encoding
schemes. In particular, a sequence of encoding schemes that fulfills the
promise of the Noisy Coding Theorem would not be of much use unless
these schemes were relatively easy to implement, both in the encoding
and the decoding. This 1s further exacerbated by the fact that, in order
to bring down the probability of error, the Noisy Coding Theorem
implies that we may have to use extremely long codes.

This 1s the point at which the coding theorist gets into the act, so
to speak. In an effort to find encoding schemes that are relatively easy
to implement, coding theorists have been led to search for codes that
have considerable algebraic or geometric structure.

As a simple example, observe that the source alphabet Z, ={0,1}

of the binary symmetric channel is in fact a group, under the operation
of addition modulo 2. In symbols,

060=0, 061 =10=1, 11 =0

One way to use this algebraic structure is by taking source messages of
length 7, say, and adjoining an even parity check bit to each message.
That 1s, we add an 8th bit to the end of each source string in such a
way that the total number of 1’s in the resulting codeword 1s even. Put
more formally, we encode the message string

aln P -a7
as the codeword
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a’l. . -3788
where
al @'“37@38 — O

Now, if a single error is made in transmission, the result will be a
word that has odd parity, that is, an odd number of 1’s. This tells the
decoder that an error has occurred. Unfortunately, it does not allow for
any error correction. Nevertheless, especially in situations where
transmission can be repeated, this is a significant improvement over no
error detection at all. In fact, this scheme 1s used by personal
computers to detect errors in memory.

Let us consider a somewhat more sophisticated example. Observe
that the set Z, 1s actually a field, under addition and multiplication
modulo 2. Furthermore, the set V(n,2) of all binary strings of length
n is a vector space of dimension n over Z,, with componentwise
addition modulo 2. For example, in V(4,2) we have

1101 ¢ 1001 = 0100

(Since the base field 1s Z,, scalar multiphcation 1s trivial.) This
implies that we may add source messages, as well as codewords.

Let us see how we might take advantage of this. Consider the
matrix over Z, defined by

o = O O
_— 0 O &

0 11
1 0 1
1 1 0
1 1 1

o O O -
o O - O

The rows of this matrix can be thought of as vectors in V(7,2), and
since they are linearly independent, they span a 4-dimensional subspace
of V(7,2). We denote this particular code by Jb.

Now, let the message space be the vector space V(4,2) of all
binary vectors of length 4. (We can only encode 2% =16 messages
with this message space, but we are using it only for purposes of
\llustration.) If

a — alaza3a4

is a source message, we encode it by matrix multiplication, to produce
the codeword aG. For instance, the source message a = 1011 1n
Figure 2 becomes the codeword

c=aG =101 1 :1011010]

oo — O O
_—0 O &
e ™
— — D b
— )

0
l
0
0

e acBlan il



0 Introduction

where all operations are performed modulo 2. Thus, ¢ = 1011010.

Notice that, since the leftmost 4 x4 submatrix of G 1s an
identity matrix, the first 4 bits of the codeword are i1dentical to the
source message. This makes recovering the source message from the
codeword essentially trivial. The matrix G, whose rows form a basis
for the code I, i1s called a generating matriz for .

Now let us consider the problem of decoding with this code. Let
H be the matrix

0 00111
H={ 011001
1 01 01O

It 1s not hard to show that each row of H is orthogonal to each row of
G, where we use the ordinary dot product, except that all operations are

performed modulo 2. For instance, taking the dot product of the first
rows of each matrix gives

10000 1 1]-[000 11 1 1]
—1.000-060-050-100-101-1®1-1
— 090000001 d1 =0

Thus, the rows of H, being linearly independent in V(7,2), form a

basis for a 3-dimensional subspace ¥ of V(7,2), with the property that
% C ¥, where

- ={veV(7,2)|v-s=0 for all s€ ¥}

i1s the orthogonal complement of . But it can be shown that
dim($) = dim(V(7,2)) — dim(¥) = 4, and so ¥ = §*.

This gives us a very convenient description of the codewords in
J6, for it tells us that a vector ¢ isin 3 if and only if it is orthogonal
to every row of the matrix H; that is,

cel ifandonlyif cH' =0

where 0 1s the zero vector in V(7,2). For this reason, H is called a
parity check matriz for the code J6.

Now, suppose that a codeword c is sent through the channel, but
incurs a single error, say in the i-th position. Letting e be the vector

in V(7,2) with a 1 in the i-th position, and 0’s elsewhere, the
output of the channel is the vector

X —=C @ ei
Now let us compute
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xH' = (c® ei)HT —cH' GBeiHT = eiHT = 1-th column of H

But notice that the matrix H has been cleverly designed so that its
i_th column, read from the top down, is just the binary representation
of the number i. In other words, the vector xH', known as the
syndrome of the output vector x, when read as a binary number, tells
us the precise location of the error. Thus, the code 3 can not only
detect a single error, but can correct it as well!

For instance, a single error has been introduced into the codeword
in Figure 2, and the output of the channel in this case is x =1010010.
The syndrome of this vector is

xHT:[l 01001 0]-

— e e O O O

0 1

1 0

1 1

0 0 |[={1 0O
0.0 1=[100]
1 0

I 1

which is the binary number 100, = 4,,. Hence, the error has occurred
in the 4th position, as we can clearly see.

Thus, the code 3}t is capable of correcting any single error in the
transmission of a codeword. This code is one of the family of famous
Hamming codes, which we will study at length in Chapter 6.

Let us examine the quality of the Hamming encoding scheme.
Since each source symbol has length 4 and each codeword has length
7, the rate of transmission is 4/7. Furthermore, since any single error
in a codeword will be corrected (but none others, as we will see), the
probability of a decision error is the probability that at least 2 errors
are made in the transmission of a 7-bit codeword. This probability is

b= 1-Tp(1 =p)° —p7 (1-p)’

where p 1s the probability of a channel error. (We are assuming a
binary symmetric channel as before.) If p =0.01, for instance, then
p. =~ 0.00203.

We could try to duplicate these numbers using a simple repeat-
the-source strategy, by sending the same s',3-—bit source message three
times in succession. This would give a rate of transmission equal to
1/3, which is less than 4/7. However, the probability of decision error
using this scheme 1s the probability that more than one of the 3-bit
messages is corrupted, and this is approximately 0.00259, which is
larger than the corresponding number for the Hamming scheme.



8 Introduction

As we mentioned in the preface, this book is divided into two
parts. The first part of the book is devoted to the fundamentals of
information theory, leading to a full statement of the Noisy Coding
Theorem and its proof in the case of the binary symmetric channel.
Then we proceed to the major portion of the book, which is devoted to
a study of several families of codes that are used for error detection and
correction.



Part 1

Intformation Theory
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l.l Entropy of a Source

Our goal 1n this section i1s to develop a satisfactory measure of the
amount of information contained in an i1nformation source. Let us
begin with a formal definition of the term source.

Definition A source is an ordered pair ¥ =(S,P), where
S = {xy,...,X,} 1is a finite set, known as a source alphabet, and P is a
probability distribution on S. We denote the probability of x. by p;,

or p(x;). O

Suppose that we sample a source ¥ = (S,P), that is, we chose an
element of S at random according to the probability distribution P.
Thus, the probability that x; is chosen is p(x;). Before the sampling
takes place, there i1s a certain amount of uncertainty associated with the
outcome, and after the sampling, we have gained a certain amount of
information about the source. Thus, the concepts of uncertainty and
information are related.

To illustrate this further, let us consider some extreme cases. If
p(x;) =1, and p(x;) =0 for 1> 1, then the element x; will always
be chosen, and so iIn this case there 1s no uncertainty, that is, the
uncertainty is zero. Put another way, we get no information from the
sample, since there was nothing to learn about this source. Similarly, if
only a “few” of the elements of S have nonzero probabilities of being
chosen, then we can be reasonably certain about the outcome, and so
the uncertainty is small and the amount of information in the source is
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small. On the other hand, it seems clear that the uncertainty should be
a maximum when each of the outcomes is equally likely, that is, when
p; =1 for all i=1,...,n. In this case, we get the maximum amount
of information by sampling the source.

Since the concepts of uncertainty and information are in this sense
equivalent, we will feel free to continue our discussion using either

concept.

THE ENTROPY FUNCTION H(p,, ..., pn)

Now we wish to define a function H(p,,...,p,) to measure the
uncertainty involved in sampling from a source. Notice that our
notation alludes to the fact that the function H depends only on the

probability distribution and not on the elements of the source alphabet.
In order to define H, we need to look a bit more carefully at the notion
of uncertainty. Of course, we want H(p,,...,p,) to be defined for all
Pys.-yP, satisfying 0 <p, <lI, >_p; = 1. Also, since a small change
in probabilities should produce only a small change in uncertainty, we
require that H be continuous. Next, when all outcomes are equally
likely, it seems reasonable that the more outcomes there are, the greater
should be the uncertainty. Thus, we require that

1
H(,... %

Finally, suppose that the elements of S = {x;,...,x } are
partitioned into nonempty disjoint blocks B,,...,B;, where |B.| =b,,
and of course, )_ b. =n. Consider the following experiment. We first
pick a block B,, with probability proportional to its size, that is,
P(B.) — b./n, and then we pick an element with equal probability, from

the chosen block B;. Now,if x; 1s1n block B, then since

0 if 1 £ u
P(ijBi):{ 1 -f.f
E_ il 1 = U
we have
n | b ,
P(x;) = > _P(x;|B)) P(B)) = i el
1=1 u

Hence, the probability of picking X; 1s the same under these conditions
as iIf we choose directly from S with equal probability. Therefore, the
uncertainty in the outcomes should be the same.

Now, the uncertainty in choosing directly from S with equal

probabilities 1s H(%—,...,%—). On the other hand, the uncertainty in
choosing one of the blocks B,,...,By 1s
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and, once a block has been chosen, we still have the uncertainty
involved in choosing an element from that block. The average
uncertainty in that process is

k k1
E P(B;) - (Uncertainty in choosing from B.) = E = H(_l_ _l_)
1= 1=1 '

Thus, we get

H(g, - 0) = H(-l-:%-l-),-i'-‘-) + i %H(BLBL)

In summary, we want our uncertainty function H to have the
following properties. Let Z% denote the positive integers.

1) H(py-..»p,) is defined and continuous for all py,...,p,
satisfying 0 <p;. <1, ) p. = 1.

9)  H(g-n) <H(Spe- ) for neZt,

n+l’
3) For b.eZ™, >_b. =n

=) + 0L )

It turns out that properties 1)-3) uniquely define a function H.

Theorem 1.1.1 A function H satisfies properties 1)-3) if and only if it
has the form

(1.1.1) Hy(pPyy.--sPp) = an log,, p;

where b > I, and where we set p logy, p=0 for p =0.
Proof. We will leave it as an exercise to show that the function defined

by (1.1.1) satisfies properties 1)-3). For the converse, we proceed as
follows.

Choose positive integers m and n for which m|n, and let
b,=m for all i=1,...,k. Then, since mk= )_b. =n, we have
k =n/m and property 3 gives

11
H(L...8)

k

H(n, ) + ) u H(—,...,—)

1=1
] 1
H(-‘nﬂ,...,fnﬂ) + H(Tﬁ,...,f—n—)

If n=m> where m and s are positive integers, this becomes
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L 1)\ _ gyl 1 l
(L., L) = B ) + B

1 1

Defining the function g by g(n) = H(ﬁ,...,ﬁ) , we get

g(m®) = g(m*') + g(m)
which 1mplies that

(1.1.2) g(m®) = sg(m)

1 Entropy

for all positive integers m and s. (Observe the appearance of
logarithmlike properties.) Further, since property 2) is equivalent to
saying that g(n) is a strictly increasing function, we have

d g(m®) < g(m**1)
sg(m) < (s + 1)g(m)

which 1mplies that g(m) must be positive.

Now, for positive integers r and t, let s be chosen so that

(1.1.3) m® < r' < mt!
Then since g is increasing, we have

g(m®) < g(r*) < g(m**1)

sg(m) < tg(r) < (s + 1)g(m)
S (r) s+1
(1.1.4) 'Ef-gg(m)< T

But from (1.1.3), we also have

slogm<tlogr<(s+1)logm
and so

logr s + 1
S
tSlogm< t

Combining this with (1.1.4) gives

1_ 8(r) logr 1
th(m) logm<t
and since t was arbitrary, we conclude that
g(r) logr
g(m) logm
or
g(r) _ g(m)
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Hence, g(r)/logr s constant for all positive integers r, that is,
g(r) = Clogr, where C >0, since we have already established that
g(r) > 0. By choosing the base of the logarithm appropriately, we may

assume that C =1, and so

(1.1.5) g(r) =logyr

for all positive integers r.
Now let us take another look at property 3), which in view of
(1.1.5) can be written

H(-l?nl,...,-l?ﬁ}i) = g(n) — zk:'lf)il'g(bi)

1=1
X_ b, k_b. b.
1=1 1=1
. Since any positive rational numbers py,,...,p; can be written in the
- form
by by
By ey

*" gimply by forming a common denominator, we get

(1.1.6) H(py,...,Py) = Zp. logy, p,

for all positive rational numbers p,,...,p,. Further, since the function
H is assumed to be continuous, this must also hold for all positive real
numbers p;,...,p,- Finally, we observe that

¥ | =0
p_Lr(I)l+ p 108, P

and so (1.1.6) holds for all nonnegative real numbers py,...,p;. B

Definition Let P = {p,,...,p,,} be a probability distribution. Then
the quantity

n n
Hb(pla-”?pn): o Zpl logb p]: Zpl logb-l%-]-
=1 1=1

1s called the b-ary entropy of the distribution P. If ¥ =(S,P) is a
source, with P(x;) = p;, then we refer to H (¥) = Hy (py,...,p,,) as the
entropy of ¥. [

The term entropy was first used by Clausius in 1864, and first
iIntroduced into information theory by Shannon in 1948. Note that
entropy measures both the amount of uncertainty in a distribution
before sampling, and the amount of information obtained by sampling.

We should emphasize that, while Theorem 1.1.1 tells us that there
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is essentially only one function that satisfies the intuitive properties 1)-
3) of uncertainty, this would not be useful if it were not for the fact
that entropy does indeed play a key role in information theory, as we
will see. In other words, the true justification for defining and studying
the entropy function is its role in the upcoming theory and not that it
happens to satisfy properties 1)-3).

A few remarks about the base b are in order here. For many
results, the base does not need emphasis, and so we will adopt the
“generic” notation

n
H(pla---apn) — Zpi logﬁl;
1=1

for entropy. Should this lead to any possibility of confusion, we will
return to the subscripted notation. We should also mention that many
books on Information theory restrict attention to base 2, that is, to

binary entropy, and use the notation H(p,,...,p,) for binary entropy.

THE UNITS OF ENTROPY

As to the matter of units, if we set S = {0,1,...,k-1}, then it
seems reasonable to say that sampling from S with equal probability
gives an amount of information equal to one k-ary unit. For instance,
if S =1{0,1}, then sampling from S with equal probability gives one
one binary unit of information, or one bit of information. Hence, since

Hk(l_l('""’l_l('): — il—l(-logkll(-: |

1=1
we see that H; measures the number of k-ary units of information. In

particular, the binary entropy H,(p,,...,p,) measures information 1n
binary units, or bits, and the natural entropy H_(p,,...,p,,) measures
iInformation in natural units, or nats.

Example 1.1.1 Sampling from the set S = {x;,x,,x3} with equal

probabilities p. ::-:1;- gives
H (-l-ll-)zllog 3+ Llog, 3+ Llog, 3 =log, 3~ 1.585 bits
2333/ T3 %827 T 3 %820 T 3108 822~ %
Sampling from S={x,,x,,x;} with probabilities p; = p, :EII and p, :.12.

gives

111} _ 1 ] | _ -
H2(Z,Z,§) = 71 |0g2 4 + Z log2 4 + -2' 10g2 2 = 1.5 bltS

As expected, since we are more certain about the outcome 1n the second
case, 1ts uncertainty 1s smaller. [
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Example 1.1.2 Table 1.1.1 shows the letters of the alphabet, along with
their approximate probabilities of occurrence i1n the English language.
(The letters are listed in decreasing order of frequency.) With the help
of a computer, we see that the binary entropy 1s approximately 4.07991
bits. Thus, we get an average of 4.07991 bits of information by
sampling a single letter from English text. []

TABLE 1.1.1

(note the base 2) is often denoted by H(p) and called the entropy

function. Its graph appears in Figure 1.1.1. []

+
1/2

1

Letler Probability Letter Probability

(Space) 0.1859 F 0.0208
E 0.1031 M 0.0198
T 0.0796 \%% 0.0175
A 0.0642 Y 0.0164
O 0.0632 P 0.0152
I 0.0575 G 0.0152
N 0.0574 B 0.0127
S 0.0514 Vv 0.0083
R 0.0484 K 0.0049
H 0.0467 X 0.0013
L 0.0321 Q 0.0008
D 0.0317 J 0.0008
U 0.0228 // 0.0005
C 0.0218

- Example 1.1.3 The important entropy function
Hy(p,1 —p) = p log, ‘%‘)' + (1 —p) log, 1 —1-p

Figure 1.1.1 The entropy function H(p)
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THE ENTROPY OF A RANDOM VARIABLE; JOINT ENTROPY
Most results concerning entropy are expressed in terms of the

entropy of a random variable X or a random vector X = (Xy,...,X, ).
Accordingly, we make the following definitions. (These definitions will

also help set our notation.)

Definition Let X be a random variable with range S = {x;,...,x,}.
I[f P(X=x:) = p(x;), then the entropy of X is defined by
I
]
H(X) = x:) lo 0
(X) i;p( i) log =7

Definition Let X and Y be random variables, where X has range
S, ={xq,...»x,} and Y has range S;,={y;...,¥}- If
P(X=x;,Y=y;) = p(x;,y;), then the joint entropy of X and Y is
defined by

H(X,Y) = X:,y:) lo
(X,Y) ;p( y;) log P57

The entropy of the random vector X =(X,Y) is defined by
H(X) = H(X,Y). 0O

Definition Let X,,...,X, be random variables, where X. has range
S.. If P(X;=xq...,X, =x)=p(xq,...,X,), then the joint entropy of

xl,...,xk iS deﬁned by

]

H(X,,...,X,) = > P(Xyy..ryX,) logm

X1 €S5qy.00yX €5

The entropy of the random vector X = (X,,...,X ) 1is defined by
H(X) = H(X{,...,X, ). O

Example 1.1.4 Suppose we sample with equal probability from the set
S = {xq,...,Xx,}. If the random variable X denotes the outcome of the

sampling, then P(X=x,) =& for all i, and so
I AN o b R
H(X) = H(g,...,;1) = ) tlogn=logn
1=1

(This shows that one n-ary unit of information is the same as log, n
bits of information.) On the other hand, if Y is the outcome of
sampling from S with probabilities P(Y=x;) =1 and P(Y=x;) =0
for 1 > 1, then

H(Y) = H(1,0,...,0) = 1-log 1 =0
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We will prove in the next section that these are the extreme values for
entropy. [

Example 1.1.5 If the random variables X and Y defined in Example
1.1.4 are independent, then

p(xi,xj) — P(X:Xi,Y=Xj)
= P(X=x;)P(Y=x;) = p(x;)p(x;) = p(x;)6; ,

where 6, ; =1 1f j =1, and 0 otherwise, and so the joint entropy of X

HXY) = ) p(x)6;, log —7— Zp ) log

1,} 1)

= H(X)

This says that, under these circumstances, the information obtained by
sampling both random variables is the same as the information
obtained by sampling X alone. []

EXERCISES

1. Show that the function defined by (1.1.1) satisfies properties 1)-3).

2. Compute H,(1/8,1/8,3/4).

3. Compute H,(1/3,2/3).

4. Compute H(1l/a,...,1/a,2/a,2/a).

5. Find a relationship between H(X) and H_(X).

6. Compute H'(p), where H(p) is the entropy function of Example
1.1.3.

7. Prove that the entropy function H(p) of Example 1.1.3 is

symmetric about the line x = 1/2.

8. Suppose we toss a fair coin, and if the outcome is a heads, we toss
1t again. How much uncertainty is there in the outcome?

9. Suppose we toss a fair coin and roll a fair die. Do we get more
iInformation from this experiment or from the experiment of
tossing three fair coins? four fair coins?

10. How much information do we get by sampling from a deck of
cards 1if
(a) each card is equally likely to be drawn?

(b) the black cards are twice as likely to be drawn as the red
cards?

11. Suppose that we roll a fair die that has two faces numbered 1,
two faces numbered 2, and two faces numbered 3. Then we toss
a fair coin the number of times indicated by the number on the
die. How much information do we get by this procedure?



12.

13.

14.

19.

Let
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The accuracy of a certain radio station’s weatherman at predicting
rain 1s given by the following chart

Actual rain Actual no rain
Predicts rain 1/12 1/6
Predicts no rain 1/12 2/3

For instance, 1/12 of the time the weatherman predicts rain when
in fact it does rain. Notice that the weatherman is correct 3/4 of
the time. Now, an unemployed listener observes that he could be
correct 5/6 of the time by simply always predicting no rain, and
so he applies for the weatherman’s job. However, the station
manager declines to hire the listener. Why?

Let S={0,1} be a source with P(0) =p. Let X and Y be
independent random samples from this source. Let Z be the
number of 0’s in the pair {X,Y}. Find the entropy of the
random variable Z. Compute H,(X,Y)—-H,(Z) and interpret
the result.

Let S={0,1} be a source, with P(0) =p. Sample this source
independently twice, to get X, and X,, and let Y =0 if
X=X, and Y =1 1if X; #X,,.

(a) Find H(Y).

(b) Show that H(X,,Y)=H(X,,X,). What does this say?

(c) Predict the value of H(X,,Y)— H(X,), and then justify your
prediction.

Let ¥, =(5,P;) and ¥,=(S,,P,) be sources, with
S, = {xq,..-,X, }, P,(x:) = p, and So ={¥1r--s¥m}
P,(y;) =q;- Let Au>0, A+ pu=1. Define the mized source
=A%, +pu¥, to have alphabet S;US, and probabilities
P(x;) = Ap;, P(y;) = ug;-

(a) Calculate the entropy of ¥.

(b) Determine the value of A that maximizes this entropy.

E  be an event with probability p. We define the snformation

obtained by an occurrence of E 1o be I(p)= —log,p. Use this
definition for Ezxercises 16-19.

16.

17.
18.

Show that I(p) 1s characterized by the fact that it is the only

continuous function on (0,1} with the property that

I(pa) = 1(p) +1(a) and I(}) = 1.

What 1s the relationship between I(p) and H(p,,...,p )7

(a) A personal computer monitor is capable of displaying pictures
made up of pixels at a resolution of 640 columns by 480 rows.

If each pixel can be in any one of 16 colors, estimate the
amount of information in a random picture.
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(b) Estimate the information obtained from a random speech of
1,000 words, assuming a 10,000 word vocabulary. (This
shows that a picture i1s actually worth more than a thousand

words!)
19. Using Table 1.1.1, compute I(E), I(R), I(Z).
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1.2 Properties of Entropy

To establish the main properties of entropy, we begin with two
lemmas.

Lemma 1.2.1 If In x denotes the natural logarithm of x, then
In x < x-1

for all x > 0, with equality holding if and only if x =1. []

Lemma 1.2.2 Let P = {py,py,...,P,,} be a probability distribution,
that is, 0<p; <1 and ) p;=1. Let Q={q;,q5,...,q,} have the
property that 0<q.<1 and ) q,<1 (note the inequality here).
Then

Zpl log pl < Zpl log ql

1=1

where 0-log -(15- =0 and p-log % = 400 for p>0. Furthermore,
equality holds if and only if q; = p; for all 1.
Proof. By multiplying both sides of this inequality by an appropriate

constant, we may assume that all logarithms are natural. Now let us
show that

If p, =0, this becomes 0 <q;, which is certainly true. If p,# 0 but
q; = 0, then (1.2.1) holds since the right side is +00. Finally, if p; and
q; are positive, then we can write (1.2.1) in the form

or

which holds by Lemma 1.2.1. Summing (1.2.1) on 1 gives
ZP; lnj%‘;S ZP, ln— + Zq, Zp, < an ln—
1 1 1

which proves the inequality. By looking at the proof of (1.2.1), and the

conditions implying equality in Lemma 1.2.1, we see that equality holds
if and only if p; =q; for all 1. 1§
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THE RANGE OF THE ENTROPY FUNCTION

With Lemma 1.2.2 at our disposal, we can prove the following.

Theorem 1.2.3 Let X be a discrete random variable with range
{xy...yX,). Then

0 < H(X) <logn

Furthermore, H(X) =logn if and only if p(x;) :-][1—1 for all 1, and
H(X) =0 if and only if p(x;) =1 for some 1.

Proof. Applying Lemma 1.2.2 to the distribution of X and to the
uniform distribution Q = {4,.. .,-Il—,}, we get

H(X) = ZP lOg ) < z“: p(x;) log ‘1—;5
1=1

_Zp ) log n = ( logn)Zp(x)—logn

" Thus, H(X) <log n. Furthermore, equality holds here precisely when
" equality holds in Lemma 1.2.2, that is, when p(x;) =4, for all i. We

will leave the proof of the remainder of the theorem as an exercise. 1

Theorem 1.2.3 confirms the fact that the most information is
obtained when sampling from a uniform distribution.

A GROUPING AXIOM FOR ENTROPY

Property 3 of Section 1.1 1s an example of a grouping aziom for
entropy. Here is another grouping axiom, whose proof we leave as an

exercise.

Theorem 1.2.4 Let {P1s---sPpsQys-- 19} be a probability
distribution. If a=p; +---+p, then

H(pls---spnst--'Sq;n)
:H(a,l—a)+aH(—PETl,...,P§)+(l—a)H(-gL,--- -q—nl) 1

l-a '1-a

PROPERTIES OF JOINT ENTROPY

Now let us consider some properties of joint entropy. It seems
reasonable that the joint information obtained by sampling two random
variables should be no greater than the sum of the information obtained
by sampling each random variable separately, with equality holding
precisely when the random variables are independent. Our next
theorem confirms this.
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Theorem 1.2.5 Let X and Y be discrete random variables. Then
H(X,Y) < H(X) + H(Y)

with equality holding if and only if X and Y are independent.
Proof. Since S“ D(X V.) = p(Y\ and Y‘ p l’:’j p(yJ) , WE have

_] 1’ )/ 1

H(X) + H(Y Zp ) log ) N zjzp(yj) o P(i’j)
_ ;P(Xiayj) log p(i(i) + ;p(xian) log p(;')
= Z P(X;¥j) log =y p(x;)p(y;) )p(yj)

Now, since )} p(x;)p(y;) = |, we may apply Lemma 1.2.2 to get
1)

H(X) + H(Y) > x..v:) log —1— = H(X.,Y
(X) +H(Y) 2 iZj:p( 1Y) 8 %) (X,Y)

Finally, according to Lemma 1.2.2, equality holds here if and only if
p(x;)p(y;) = P(xpY;)
that is, if and only if X and Y are independent. &

Theorem 1.2.5 generalizes readily to more than two variables. We
leave the proofs as exercises.

Corollary 1.2.6 Let X,,...,X be discrete random variables. Then

H(X,,..., X)) < H(X{) +---+ H(X))
with equality holding if and only if the X. are independent. [

Corollary 1.2.7 Let X,,...,X and Y,...,Y_ be discrete random

n m
variables. Then

H(Xq{yo 0, X0, Y, Y ) S H(X .0 X))+ H(Y 0L Y )

1! b} —

with equality holding if and only if the random vectors X = (Xy,...,X )
and ' Y=(Yy...,Y,,) are independent. []

THE ENTROPY FUNCTION H(p)

There 1s a very Interesting relationship between the entropy
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function

1

H(p) =p log 5 + (1 —p) log -

I—-p

(log = log,) first discussed in Example 1.1.3, and certain sums of
binomial coefficients, which we will use in our proof of the Noisy
Coding Theorem 1n Chapter 3 and again 1n later chapters.

Theorem 1.2.8 For 0 <\ < %, we have

I.in:-l (n) < 2nH(/\)
= &/~

where H(A) = -Alog A — (1 —A) log(1 —A) is the entropy function.
Proof. If A =0, both sides of this inequality equal 1. If A =1/2, then
since H(1/2) =1, the right side is equal to 2", and so the inequality
" holds here as well. Let us assume that 0 < A < 1/2.
L We begin with Chebyshev’s inequality. If X is a random
:}j‘.’i‘gi,}f?;.f‘("iirariable that takes on nonnegative values only, then Chebyshev’s

i inequality says

U

ek &(X
A (1.2.2) P(X >a)< (a ) for all a> 0
c. ';.i: ,:(,:f !

3?.EF,‘I>*';!~,€

:f,‘r'f.‘:'z"%&(: Suppose that X has the form X —=e'Y, where Y is a random

":l?ff{’.-:: , o
o' varlable, and t 1s a real number. If we set a = e"b, then (1.2.2)
2 becomes v
e 8(e"
;;,?j’;{x P(e"Y > e"b) < ( T ) for all beR
Wt €
S : : - '
“% Now, if t <0, then we have et >e'® if and only if tY >tb if and
- only if Y <b, and so this is equivalent to
g(etY)
(1.2.3) P(Y<b)<——=—+ forall beER and t <0 \
e

If Y 1s a binomial random variable, with parameters (n,p), then
b

P(Y <b) =) (I)pkq

k=0
where q =1 —p, and where, if b 1s not an integer, the upper limit of
summation is understood to be |b|. Furthermore, 8(e'Y) is the
binomial moment generating function, which is well known to be

8(e'Y) = (q + pe')"

Thus, (1.2.3) becomes
b

Z (Il':) ])k(]n_k S e—-tb(q + pet)n
k=0
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Setting b = An, where 0 < A < I, we get

A

(1.2.4) D (l';') pkgn K < e At (q + pet)n
k=0

valid for t < 0.
By setting x = e' in the right hand side of (1.2.4) and minimizing
over 0 < x < 1 (which is equivalent to t < 0), we see that (1.2.4) is best

when
t_Aq
— HP

where pu=1-—A, and A< p. Substituting this value of e into the
right hand side of (1.2.4) gives

Aq\=Any - Aq\! _ (Aq)- A\
() (a+em) =(m) ~ (1 +3)
Il

I
Aq\—An e
() G =t

€

and so (1.2.4) becomes

An
(125) Z (Ll) pkqn-—k < A—Anp—pnpAllqpn
k=0
for A < p. (This is a useful result as well.) Setting p=q = % gives
An
() rvr
k=0

for A < -;— But /\"A"p_’m = 2"[_’\ log A — ftlog p] _ QnH(’\), which gives
the desired result. B

THE CONVEXITY OF THE ENTROPY FUNCTION

Let K be a subset of R". We say that K 1s convex if x,y € K
implies that
ax+(1 —a)y

is alsoin K for 0 <a < 1. Of course, the set
{ax+(1-a)y|0<a<1}

is just the line segment connecting x and y, and so K 1s convex if

and only if it contains all line segments connecting any pair of points of
K. This idea 1s pictured in Figure 1.2.1.
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Convex Not convex

Figure 1.2.1

If K 1s a convex set, a real-valued function f:K—R is convex up
if
flax + (1 —a)y) < af(x) + (1 —a)f(y)

for every X,y€ K and 0<a<1. Similarly, a function f:K—R 1is
convex down (also called concave) if

f(ax + (1 — a)y) > af(x) + (1 — a)f(y)

- forevery x,y€ K and 0<a<l.
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We may also characterize convex sets (and functions) in terms of

'ff-?ggffconvex combinations as follows. A convex combination of

« Xp,.-.-yX, € K 1s an expression of the form a;x;+-.--+a_x , where
. l{\:;;;l;
10

0<a <1 and ) a =1 A set K is convex if and only if every

;. convex combination of elements of K 1s also in K. A function

f:K—R is convex up if and only 1if
f(alxl Tt a'nxn) < alf(xl) +ect anf(xn)

for every convex combination a;x; +---+4+a_x_, and convex down if

f(a‘lxl nalii & a'n)'(n) 2 alf(xl) t---+ anf(xn)

for every convex combination a;x; +---+a_x .
Now, the set K ={p=(py,.--»P,)|0<p; <1, X p,=1} of all

probability distributions is a convex subset of  R". For if
p=(py-..-»P,) and q=1(qq,...,q,) arein K, then

ap+ (1 —a)q = (ap; + (1 —a)qy,...,ap, + (1 —a)q,)
But 0 <a,p,q;: <1 implies that 0 <ap,+ (1 —a)q; <1 and further,

> lap+(1-a)a]=a) pi+(1-2)) g =a+(1-a)=1

and so ap+ (1 —a)q € K. Thus, K is convex. Our next result shows
that the entropy function H;:K—R 1is convex down.

Theorem 1.2.9 The entropy function H is convex down on the set of
probability distributions p = (p4,...,p,,), that 1s,
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H(ap + (1 —a)q) > aH(p) + (1 —a)H(q)

for all probability distributions p and q.
Proof. Let p=(py-..-,P,) and q=1(qq,...,q,) be probability
distributions, and let 0 <a <1. Then

H(ap+ (1 —a)q) = Z lap; + (1 —a)q;] log m

_az:p] log (l—a)ql

+(1-2))_q;log 1

Now we use Lemnma 1.2.2 to get

?_az:pi logpli- + (1 -—a)Zqi logqli
| |

= al(p) + (1 —a)H(q)

which concludes the proof. 8

ENTROPY AS AN EXPECTED VALUE

We conclude this section by mentioning that the entropy H(X)
can be thought of as the expected value of a certain random variable.
By definition,

H(X) = ) P(X=x;) log ‘ﬁ'('"x_l;";')'

Thus, if we define a random variable W whose value at x. is

I S l
W(x:) = log P(X=x)’ then
H(X) = &(W)
The suggestive notation W = log P(IX) 1s often used for W.

EXERCISES

1. Finish the proof of Theorem 1.2.3.

2.  Prove Theorem 1.2.4.

3. Prove Corollary 1.2.6.

4. Prove Corollary 1.2.7.

5.  Show that H(p,,...,p,) = H(py,-..,P,,0). Interpret this in words.
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10.

11.

12.

13.

14.

Let X,,X,,...,X  be independent random variables with the
same distribution as the random variable X. Prove that
H(X,,...,X, ) = nH(X).

Let {pl, .,P,} be a probability distribution, and let q_ =

pm+1 pale s Py
(a) Prove that

H(pyy.--yPn) S H(Ppy -+ oy Ppr9yy) + 9y l0g(n — m)
(b) When does equality hold in this inequality?

Here is the most general grouping axiom. Let P = {p;,...,p,}
be a probability distribution. Let Gy,...,G;,  be disjoint,
nonempty subsets of P whose union 1s P. Let

G; ={p;(1),...,p;(g;)}, where |G.| =g.. Prove that

p:(1) .(g;)
H(pl,..-,Pn) — H(gl, agk)+ Zgl ( g plgi )

Let X be a random variable, and let = {(X). Prove that
H(Y) < H(X). Show that equality holds if and only if f is one-
to-one on the set of all x such that P(X = x) #0.

Let P, ={py.-.,p,} be a probability distribution, with
P 2Py > -2Pp, ouppose that € >0 has the property that
p; —€ > py+ €. Show that

H(Py- -+ Pp) < H(py — 6Py + g+, Pyp)

Interpret this in words?

Use Lemma 1.2.2 to prove that, if {p,,...,p,} is a probability
distribution, then

Pi...

Xy X,P'n <pyxy 400+ ppX,

where x;,...,x, are positive real numbers. This says that\the
geometric mean of the x; 1s less than or equal to the arithmetic
mean. Prove that equality holds if and only if the x, are all
equal. Hint. Consider the expressions a;x;/ ) a;x

Prove that a set K 1s convex 1if an(i only lf every convex
combination of elements of K 1s also in K.

Prove that a function 1s convex up Iif and only if
fla;x; +---+a x ) <af(xy)+---+af(x) for every convex

11 11
combmatlon a;x; +---+a.x. State and prove the analogous

result for convex down functions.

If W =log (1/P(X)), verify that H(X) = 8(W).
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1.3 Additional Properties of Entropy

In this section, we discuss two issues related to entropy — the

entropy of countably infinite probability distributions and the matter of
so-called typical sequences. This section can be omitted on first reading
without loss of continuity.

THE ENTROPY OF COUNTABLY INFINITE DISTRIBUTIONS
Let us begin this section by defining entropy for countably infinite

probability distributions.

Definition The entropy of a countably infinite probability distribution
{Pl,p2,. . .} 1s defined by

OO
H(plapza- — Z Og pl D
1=1

Notice that, since each term in the above sum is nonnegative, the sum
either converges to a nonnegative real number or else diverges to +oo.

Let us immediately prove the counterpart of Lemma 1.2.2 for
infinite probability distributions.

Lemma 1.3.1 Let {p,,py...} be a countably infinite probability
distribution, and let {q,,q,,...} have the property that q,>0 and
>.q. < 1. Then, assuming that the sums converge, we have

. 1 _ © 1
D Pilog < ) pilogg:
1=1 '

with equality if and only if p. = q;.
Proof. We know from the proof of Lemma 1.2.2 that

p; logﬁli_<_p; log-(%-i-+q;-—p;

Summing from 1 to n gives
n 1 n 1 n n
S pog k< 3 prlod+ 30— 3o
1=1 1=1 1=1 1=1

Since each sum on the right side converges, we can take limits as
follows

Il 1 I I
. | . |
nl_l_l:go Zl P; lOg'p_i < nll_{golz Zl Pi |Og‘q‘i'+ Zqi" Z;Pijl
1— 1= | —
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OO 1 OO OO
= Zl p; log - + Z;q;— zp,
1= ] — 1—

from which the result follows. 8

For our main result on entropy of countably infinite distributions,

we need a result from the theory of infinite series. It is well known that
if an infinite series ) r. converges, then r.—0 as i—oo. However, if

the terrns r; are monotonically decreasing and nonnegative, then we

can say much more.

. Jemma 1.3.2 Let r, >r, > .-+ be a monotonically decreasing sequence

quosmve real numbers. If the series ) r; converges, then ir,—0 as

E‘\f’) v
0} m’ l‘l‘"w

”‘{* ‘Proof. Since Zr converges and each r. 1s positive, given any

Jii

Em ‘€ > 0, there exists a number n such that

i}\ ¢

ﬂ"tf* (1 3. 1) Tl TIpgo oo+ < %

x for all m > n. In particular, taking m = 2n, we get
€
Ih+1 + 42 Tt I < 2

- and since the sequence r; 1s decreasing, this implies

o €
or
2nr2n < €

Hence, ir,—0 as n—oo for even 1. A similar argument proves the
result for odd 1. §

Now we can prove the following result on the convergence of
entropy.

Theorem 1.3.3 Let {p,,py,...} be a countably infinite probability

distribution.
1) If the sum >_p; logi converges, then so does >_p; log ﬁl-
]

2) If py>py>--- and if ) p,log ﬁl- converges, then so does
]

>_p; logi. |
Proof. Since the series Y (1/i?) converges, we can set S = ¥ (1/i?).
(Actually, S = 7r2/6, but we will not need this fact.) Then
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1 _
i;sﬂ_l

and we may take q. = 1/Si? in Lemma 1.3.1, which tells us that

ZP; 108'1—. — Zpi log 1.2
i b; ' (1/517)

= Zpi log Si* :logS-{-QZpi log 1

Hence, if ) p; logi converges, so does ) p; log(1/p,), which proves
part 1. As for part 2, we may assume that p.#0 for all 1, for
otherwise all sums are finite, and the result is obvious. Since the p.
form a monotonically decreasing sequence of positive real numbers for
which ) _p. converges (to 1), we may apply Lemma 1.3.2, which tells
us that 1p.—0 as i—oo. Hence, for any ¢ > 0, there exists an N such
that 1 > N implies ip; < ¢, that is, 1 <¢/p.. Thus,

Z p; log1 < Z pilogﬁf;g logf+z pilog-l%-;
i>N i >N ' i >N '

which shows that if ) _p. log ﬁl- converges, so does )_p: logi. &
|

We will leave 1t as an exercise to show that the condition of
monotonicity is essential in part 2) of Theorem 1.3.3.

Example 1.3.1 Let us consider a situation where countably infinite
sources arise naturally. Suppose we have a source ¥; =(S;,P;), where
S, ={0,1} and P,(0) = p, that is outputting a stream of independent
source symbols. Suppose further that a counting device intercepts this
output and counts the number of 0’s that occur before each 1. Thus,
for example, iIf the output of the source 1s

001011000100000111...

the counter will output the sequence

2103500...

Now, the counter can alsoc be thought of as a source ¥, =(S,,P,),
where S, ={0,1,...} and P, is the geometric distribution, that is,

P,(k) = P(k 0’s followed immediately by a 1) = p*(1 = p)

Let us compare the entropy of the two sources ¥; and ¥,. Of course,

H(¥,) = H(p,1 —p). On the other hand,
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H($,) = — ) p“(1 -p) log p*(1 - p)

k >0

— ) _ p*(1-p)logp*“— ) p*(1-p)log (1 -p)

k>0 k>0

—(1-p)logp Y kp*—(1-p)log(1—p) »  p¥

k>0 k>0

. Using the well-known formulas

Y

k1 k _ P
,_,l:i.{ Z P = ] — P and Z kp o (1 _ p)'Z

—(l—p)(-——p——)logp— (l—p)( ; )log(l—p)

(1-p)’ L=p
plogp—(1-p)log(1—p) _ H(¥)
i l —p  1-p
H(¥,)
0 — 1
i TJ H{¥2) l—p
s

Y, This tells us that, provided p >0, there 1s more uncertainty in the
%, number of consecutive 0’s than in whether or not the next symbol will
..::f.-,;,if.i*f be a 0. Furthermore, as p gets clog to 1, this discrepancy
¢/ increases. [J

vty TYPICAL SEQUENCES
1111111 Now let us return to finite probability distributions. We can get
.+ further insight into the concept of entropy by considering the idea of a
" typical sequence. Let S = {X{y.-+yX,} be a source, with distribution
P(x.) = p;. Suppose that we repeatedly, and independently, sample
from this source, obtaining a sequence X,,...,X_  of independent
random variables, each with the probability distribution P. Roughly
how often should we expect a particular element x. to occur in the
samplings?

To answer this question, we consider each sampling as being a
success 1f the outcome 1s x; and a failure if the outcome is not x..

|
Then each sampling is a Bernoulli trial, with probability of success

equal to p,. If we let X =(X;,...,X, ) and S, =S5.(X) be the
number of successes in the n trials X,,...,X , then S; has the
binomial distribution
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L]
'..l'" Iilll\

P(5;=]) = (?) p(1 —p;)"

with mean p, = np, and variance 0i2 =np;(1 —p;). Now, Chebysher?,
inequality

S; — I ]
(1.3.2) P of > kp < 'l'(—z'

tells us, in rough terms, that it is more likely that 5, is closer (o
p: = np; than farther away from np,. Loosely speaking, we expect the
number of successes, that is, the number of x.’s, to be around

p. = np;. This leads us to make the following definition.

Definition Let X be a random variable with range {x;,...,x_} aud
probability distribution P(X::.xj) = p;- Let X,,..., X be indepondent
random variables with the same distribution as X. It
X;=aq,..., X, =a, is a particular sample of the X., we denote the
number of x.’s among the sequence a = (a,,...,a,) by S;(a). They
a sequence a is a k-typical sequence 1if

IMZ_"-|< k forall i=1,...,n

Ji

that is, 1f

< k forall 1=1,...,n \

I Si(a) — 1P,

V "Pi(1 - p;)

Intuitively, a 1is k-typical if the number of x;’s 1In a, for all i, ix
what Chebyshev’s inequality says is “most likely.”

Now we come to the connection between k-typical sequences awd
entropy. In particular, we show that for any k and for large n, of the
m" possible sample sequences, the number of k-typical sequences is

approximately

nH (X)
m M

where H_(X) 1is the m-ary entropy of X.

Theorem 1.3.4 For any k > 0,

1) The probability that a sampled sequence 1s not k-typical ix at
most m/k® and can therefore be made as small as desired Ly
taking k sufficiently large.

2y If X=(X{...,X ) and If a= (ayy...,ap) 1s a k-typical

sequence, then
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-nH_(X) - /nC, -nH_(X) + /nC,

m <P(X=a)<m

where

Tl
— 2_4 K v/ Pj\1 = P}) WOy, P

depends only on k and the probability distribution. Thus, for
any k and for large n, the probability of getting a particular k-
typical sequence 1s approximately

—nH__(X)
Il

3) The number N = of k-typical sequences of length n satisfies

(1 __r_rl) mnHm(X) — /nCy < nH_(X)+ /nC,

. k2 — Nkan S m
;ﬁ‘;‘ '.f ! .
?‘Xf*\ Thus, for any k and for large n, of the m"™ possible sample
A OO :
Hel sequences, approximately
AR FEIE
'ccfjﬂﬁ'?"‘ t nH x
i _nH, (X)

é:'.:;-:s." are k-typical.
* Proof. According to the definition of typical sequence, the probability
- that X =(Xy,...,X,,) 1s not k-typical 1s

S. — np.
P(X is not k-typical) = P( |——’-——(-,-—{l—ll'-

> k, for some i)
)

P(X 1s not k-typical) < z l—(-li = _rﬂz

g m . _
< ZP(I—TH—[')—'

1=1

Applying Chebyshev’s inequality (1.3.2) gives

This proves part 1).
Next, suppose that a = (ay,...,a,) is k-typical. Since the
random variables X:. are independent, we have

Il I
P(x:a) — P(xlzal,...,xnzan) — HP(XI'—:Q’]) — le
1=1 1=1

Now, the factors p. may not all be distinct, and we can collect like
factors to get
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1. Si(a)
P(X=a) = HP; |
1=1
Taking logarithms gives
N -Lrl-‘
(1.3.3) log. . P(X=a) = LSi(a) log.  p;
1=1

Now, according to the definition of k-typical, we have
and so (1.3.3) implies that

I 4 '
Z [np; — ko] log, . p; < lg P(X=a) < Z np; + ko] log_ p;
1=1 1=1

or, since o; = \/npii 1 — pij,

m nm
n ) p;logy, pi— /1 ) ky/pi(1—p;) log,, p; < log,, P(X=a)
1=1 1=1

m m
<n Z Pj logm p; + \/ﬁ Z kV pi(l _pi) logm Pj
1=1 1=1

Setting
1m
Cy = Z k /p;(1 —p;) log  p;
1 =1

we get
—nH(X) - {/n Cy <log,,, P(X=a) < —nH(X)+ /n C,

This gives part 2).
As for part 3), we first note that if E is a subset of a finite

sample space, and if each element e &€ E has probability satisfying
r, < P(e) <r,, then

e € E
and since P(E) = )_ P(e), we get
e €
P(E P(E
(1.3.4) 52) < |E| < gl)

Now, in the case at hand, we let E be the set of k-typical sequences.
Then from part 1) we get
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(1.3.5) 1 —% <P(E)L1
and from part 2, we have for a € E,

—nH_(X) - /nC —nH_(X)+ /nC
(1.3.6) m SN < P(a) <m )T Vb

Using (1.3.5) for lower and upper estimates on P(E), and using (1.3.6)
* to obtain r, and r,, (1.3.4) gives

H (X)-— H (X
(l—i%)mn m( ) \/HCkSIEISmn m( )+\/Hck

!
..;j
\

" which is part 3). 8

Wi

g (1)

,"J'l-' Show that

=' Z pe = 1__'1?"‘ and Z kpt = — — 2
-1!1 k>0 P k>0 (1 o p)

}2 Finish the proof of Lemma 1.3.2 by supplying the details to show

2 that ip;—0 for i odd.

? 3. Let {p,,py...} Dbe a countably infinite probability distribution,
i and let X be a random variable with P(X =n) =p_. Show that
& H,(X) <1+ 8(X), where &(X) is the expected value of X.
c» When does equality hold 11n this inequality? Hint.

8 > (172 = 1.

- 4. Let {py,ps...} Dbe a countably infinite probability distribution,

| whose entropy is finite. Let {p;,py,-..} be the disjoint union of
the sets {q.,q,,...} and {r{,r,,...}, where > q.=q and
> r.=r. (Thus q+r=1.) Prove that

H(pl’p2" . ) = H(q,r) + qH(ﬁ’ﬁ’ . ) + rH TOT 0 )

You will need a certain result about absolutely convergent series.

What 1s this result?
0. Let {p;,py,.--} be a countably infinite probability distribution,

whose entropy is finite.  Suppose that p;>p, and that
p, —€ > p,+¢ for some ¢ > 0. Prove that

H(p,,pgs--.) S H(py—6,pyte,...) < oo
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(a) Show that the series E———l—2——- converges. Denote the sum

by S. I log I
(b) Let p, = ——1——2— Is H(py,Py,...) finite or infinite?

Sn log“ n

(a) Show that the scries E"li converges for k > 2. Denote the

sum by S I
(b) Let p, = 's_li Show that H(p,,p,,...) is finite.

n

Let S;,=1{0,1,2} be a source, with P(0)=p, P(1l)=q,
P(2) =1-p—aq. Repeatedly performing the experiment of
sampling this source untill a 2 appears produces another source
with alphabet S, ={a;---a;2|a, €S,, a, #2}. Calculate the
probability distribution and the entropy of this source.

Let {p;spy:...} be a countably infinite probability distribution,
whose entropy 1s finite. Can you approximate the entropy
H(p,,P,,-..) to any desired degree of accuracy by the entropy of a
finite probability distribution? Explain.

Show by example that the requirement of being monotonically
decreasing 1s essential to part 2) of Theorem 1.3.3. In other
words, find an example of a probability distribution {p;,p,,... }
for which the sequence pf,pz,... Is not monotonically decreasing

and for which }_p. log p; converges, but Y_p; logi does not
1

converge. ,

/
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:' 5!4)

- Noiseless Coding

:, 3{, ., Now we turn to a discussion of source encoding for noiseless
5 :i }’:iransmzsswn When no errors can occur in the transmission of data, we
,«1 imay concentrate on the question of how to encode the data as
%K‘ efficiently as possible, in a sense we will make precise in a moment.
T Flrst let us set some basic terminology.

t'}&f(*' Let = {ay,...,a,} be a finite set, which we refer to as an
’».,.; alphabet. A string, or word over the alphabet A 1s any sequence of
:;;‘.‘-; elements of A. We will usually (but not always) write strings in the

& form

using juxtaposition of symbols. Occasionally, for readability sake, we
may include spaces, commas, parentheses, or other punctuation marks,
between the symbols in a string. The empty string ¢ 1is the unique
string with no symbols.

The length of a string a, denoted by len(a), is the number of

alphabet symbols appearing in the string. The set of all strings over A
will be denoted by A~.

Definition Let A = {a,,...,a.} be a finite set, which we call a code
alphabet. An r-ary code is a nonempty subset C of the set A*™ of all
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strings over A. The size r of the code alphabet is called the radix of
the code, and the elements of the code are called codewords. A code

whose alphabet i1s {0,1} 1is called a binary code, and a code whose
alphabet is {0,1,2} is called a ternary code. [

Definition Let ¥ = (S,P) be a source. An encoding scheme for ¥ 1s
an ordered pair (C,f), where C 1is a code and f{:S—C 1is an injective
function, called an encoding function. ]

Thus, an encoding function assigns a codeword from C to each
source symbol 1n S.

AVERAGE CODEWORD LENGTH

For the purposes of noiseless encoding, the measure of efficiency of
an encoding scheme 1s its average codeword length.

Definition The average codeword length of an encoding scheme (C,f)
for a source ¥ = (S,P), where S = {s,,...,s_}, is defined by

AvelLen(C,f) = Zn: P(s;)len(f(s:)) i
1=1

Example 2.1.1 Consider the source S = {a,b,c,d}, with probabilitie
P(a) = P(b) =2/17, P(c) =9/17 and P(d) =4/17. Consider also th
encoding schemes (C,f;) and (C,,f,), where

C, ={0,11,100,101} C, ={00,10,11,01010}
fi(a) =11 fr(a) = 01010

fi(b) =0 f,(b) =00

f,(c) =100 fo(c) =10

f,(d) =10 fr(d) =11
inee 2 9 2. 1.9 4. 4 4]
o AUCLCn(Cl,fl) = ﬁ'2+'i-7'1 +ﬁ-3+-1—7-'2 p— ﬁ
— 2.542. 9.9 9,4 9 _ 40
AveLen(C,,f,) = 79 + 17 2 + ¥ 2 + T 2 = 7

we see that (C,,f,) has a smaller average codeword length, and so is
more efficient than (C,,f;), even though the code C, has longer
codewords (on the average) than the code C;. This emphasizes the fact
that the average codeword length of an encoding scheme 1s not the same
as the average codeword length of a code, since the former depends also
on the probability distribution P. [
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We should point out that it makes sense to compare the average
codeword lengths of different encoding schemes only when the
corresponding codes have the same radix. For 1n general, the larger the
radix, the shorter we can make the average codeword length.

Our goal in this chapter is to determine the minimum average
codeword length among all “good” encoding schemes (in a sense we will
make precise soon), as well as to find a method for constructing such
encoding schemes. As we will see, both goals are readily achieved.

FIXED AND VARIABLE LENGTH CODES

Definition If all the codewords in a code C have the same length, we

~say that C i1s a fixed length code, or block code. If C contains
oodewords of different lengths, we say that C 1s a variable length code.

o {1" Any encoding scheme that uses a fixed length code will be referred

""th as a fixed length encoding scheme, and similarly for variable length

,rcncodmg schemes. (]

"ﬁ .

,‘ When the probability distribution P 1s not uniform, variable
length encoding is usually more efficient than fixed length encodmg As

'a simple example, consider a source with alphabet = {Sys.-+»S5},
“whose probability distribution satisfies

P(s;) =1 —¢ and P({s,,55,54,85}) =€

' Since a fixed length binary code must have codeword length at least 3,

_in order to encode 5 words, its average codeword length is also at

~least 3. On the other hand, using a variable length code, we may

- assign the codeword 0 to s; and the codewords 100, 101, 110, and
111 to the other source symbols, giving an average codeword length of
1-(1—¢)+3¢ = 1+ 2¢, which is less than 3 1if ¢ <.

UNIQUE DECIPHERABILITY

Even though variable length encoding schemes can be more
efficient than fixed length schemes, there 1s a potential problem with
variable length schemes, as illustrated by the following example.

S ={ab,c}, C=1{0,01,001}
f(a) =0, f(b)=01, f(c)=001

This encoding scheme is not uniquely decipherable, in the sense that the
codeword string 001 could be decoded as ab or as c¢. In order to
make this encoding scheme uniquely decipherable, we require a



49 2 Noiseless Coding

codeword separator, such as /, which enables us to write the message
ab as 0/01. Of course, the addition of a codeword separator adds to
the overall length of encoded messages, which 1s contrary to the goal of
efficient encoding. (Fixed length encoding schemes are automatically
uniquely decipherable and need no codeword separator.)

The difficulty here can be traced te the fact that a string of code
alphabet symbols may represent more than one string of codewords.

This leads to the following definition.

Definition A code C is uniquely decipherable if whenever c,,...,¢,
dy,...,d; are codewords in C and

cl.. .ck — dl...dj

then k=) and ¢, =d forall 1=1,...,k. [

Clearly, the property of being uniquely decipherable 1s extremely
desirable. Surprisingly, even a small change can make a code that is
not uniquely decipherable into one that is.

Example 2.1.2 Let S = {a,b,c} and consider the encoding scheme

C ={1,01,001}
f(a) =1, f(b)=01, f(c)=001

This differs from the previous code only in that the codeword 0 1s
replaced by the codeword 1. However, this code 1s uniquely
decipherable. To see this, observe that the symbol 1 acts as a kind of
codeword separator, in the sense that the presence of a 1 1ndicates the
end of a codeword. Thus, reading a codeword string from left to right,
we must decode when and only when we encounter a 1. For instance,
consider the string 1001011. Reading from left to right, we must
decode 1 as a, 001 as ¢, 01 as b,and 1 as a to get the source
string acba. No other decoding is possible. [J

Although there are methods for showing that a particular code is
uniquely decipherable, we shall not go into them here, since we will
limit our discussion to a special type of uniquely decipherable code,
without limiting our ability to be efficient.

To be more specific, one of the difficulties with unique
decipherability i1s that, even though a code may have this property, it
may be necessary to wait until the entire message has been received
before we can begin to decode.

Example 2.1.3 Consider the code C = {0,01,001} and the encoding

function
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fla) =0, f(b)=01, f(c)=011, f(d)=0111

It 1s not hard to see that this code 1s uniquely decipherable. Now
suppose that the string 0111 1s being transmitted. Just after receiving
the first 0, we cannot tell whether 1t represents the source letter a, or
the beginning of a different source letter. Similarly. when the first 01 is
received, we cannot tell whether it represents a b, or the beginning of a
¢ or d. In fact, we cannot decipher the source message 0111 until it
has been completely received.

[ On the other hand, consider the code D = {0,10,110,1110} and
" encoding function

g(a) =0, g(b)=10, g(c)=110, g(d)= 1110

>+ In this case, individual codewords can be deciphered as soon as they are

}

M gcelved since the presence of a (0 indicates the end of a codeword.
&hus, each source symbol can be decoded as soon as its codeword is

Qﬁ ‘tpcelved 0

NSTANTANEOUS CODES; THE PREFIX PROPERTY

The previous example prompts us to make the following

efinition A code is said to be instantaneous if each codeword in any

i“Bl’.rlng of codewords can be decoded (reading from left to right) as soon
a8 1t 1s recelved. [}

j If a code 1s Instantaneous, then it is also uniquely decipherable.
i ‘However as the code C of Example 2.1.3 illustrates, the converse is
not true.

’i"-‘ The property of being instantaneous 1s very desirable.

" Fortunately, there i1s a very simple way to tell when a code has this
property. First we need a definition.

d..

{u
e

Definition A code is said to have the prefix property if no codeword is
- a prefix of any other codeword, that is, if whenever ¢ =x;x,---x is a
codeword, then x,;x,---x; is not a codeword for 1 <k <n. 0

Given a code C, it is a simple matter to determine whether or not
it has the prefix property. It is only necessary to compare each
codeword with all codewords of equal or greater length to see if it is a
prefix.  For example, the code {1,01,001} has the prefix property,
since 1 is not a prefix of 01 or 001 and 01 is not a prefix of 001.
However, the code {0,01,001} does not have the prefix property, since
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0 1s a prefix of 0l.

The importance of the prefix property comes from the following
theorem, whose proof we leave as an exercise.

Theorem 2.1.1 A code C is instantaneous if and only 1if 1t has the
prefix property. [

Example 2.14 Let n be a positive integer. A comma code is a code
C with codewords

This terminology comes from the fact that the symbol 1 acts as a kind
of comma, indicating the end of a codeword. (The last codeword is
determined by the unique number of (’s that i1t contains.) Since

comma codes have the prefix property, they are instantaneous. On the
other hand, the code

1, 10, 100, 1000,..., 10---0, 0---0
N——r N —
n-—1l n
does not have the prefix property, and so it is not instantaneous.
However, it 1s uniquely decipherable, since we can decipher any string of
codewords by reading from right to left, where a 1 indicates the

beginning of a codeword. []

KRAFT’S THEOREM

The following remarkable theorem, published by L.G. Kraft in
1949, gives a simple criterion to determine whether or not there is an
instantaneous code with given codeword lengths.

Theorem 2.1.2 (Kraft’s Theorem)

1) If C is an r-ary instantaneous code with codeword lengths
¢,,...,¢ , then these lengths must satisfy Kraft’s inequality

Il 1
Z;@;Sl

=1

2) If the numbers ¢, ¢,, ..., { and r satisfy Kraft’s inequality,
then there 1s an Instantaneous r-ary code with codeword lengths
&ry..., L .

Proof. Suppose first that C = {c;,...,c } is an instantaneous r-ary

code with codeword lengths £,,...,¢ . We will show that Kraft’s
inequality must hold. Let L =max{{}. If ¢ = X3Xg Xy € C, then
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any word of the form

X = X XA *X . o
(211) 1742 Qiy&‘H YL
1
e C. 1Isa
where the y; are any code symbols, cannpt be in (I, because 6
(2.1.1)

’ .
prefix of x. But there are a total of r i words of the form
Summing on 1, we see that there are

~ L-¢, L 1
;I‘ 1 = r Z_é-

i=1 r 1t

i.n] number of

‘words of length L that cannot be in C. However, the l
must have

words of length L o¥er the code alphabet 1s . and so we

) ¢ |
g st
i=1 r 1
?ft?)?l'

i I 1
N Z 1
1=1 r |

Y

e ﬂ\:J:ﬂ“ -

T e e T

r
N g

?:-;'jfvi__hich 1s Kraft’s inequality. o Y
[ Now suppose that €, {,,...,¢ and r satisfy K rafl's inequality.
), over an

{We will show that there exists an instantaneous code

“alphabet A ={a,, a,, ..., a_}, with codeword lengths ;. Let o be
| t!le number of ¢ that are equal to ). Thus, ay L 'l.lw number of
“desired codewords of length 1, a, is the number of Jewired codewords

of length 2, and so on.
| In order to construct the desired code, we want
“words of length 1, say the first a; code letters

(2'1'2) avl, az g soe gy QA

-— ﬁ
-~

]

Lo select  ay

@,

This can be done as long as
a, < T
Next, we want to select a, words of length 2. {jowever, since
our code must be instantaneous, we cannot allow any of the o
codewords in (2.1.2) to be prefixes of the new codewords. In other
words, from among the r? possible words of length 2 ©V¢T A, we
cannot select the «,;r codewords that begin with any of the o

codewords in (2.1.2). This leaves r? — ayT codewords from which to
choose a, codewords, and this can be done provided bt

or
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The next step is to select a5 codewords of length 3. There are
r°  such codewords, but as before, the requirement that C be
instantaneous means that none of the czlr2 codewords of length 3
that begin with any of the a, elements in (2.1.2) can be used, nor can
any of the a,r codewords of length 3 that begin with one of the a,

previously chosen codewords of length 2. Thus, we are left with o —

a1r2 — a,r codewords of length 3, from which to pick a; codewords.

This can be done provided that

3 2

or
2 3
aI” + a,r + ag <rT

Continuing in this manner, we will get the system of inequalities

a; <T
a T + a, < -
(2.1.3) ozlr2 + a,r + a3 < ro

-1 -2
alrn +a2rn +"'+ansrn

Notice, however, that each inequality in (2.1.3) implies the previous
one. Hence, as long as the last inequality is satisfied, we may construct
the desired code. Dividing the last inequality in (2.1.3) by ™ gives

ay O

+24. R
T I'2 =

which 1s equivalent to Kraft’s inequality. §

It 1s important to note that Kraft’s Theorem says that if the
lengths ¢,,(,,...,¢ satisfy Kraft’s Inequality, then there must exist
some instantaneous code with these codeword lengths. It does not say
that any code whose codeword lengths satisfy Kraft’s inequality must be
instantaneous. The next example shows that this is need not be the
case.

Example 2.1.5 Consider the binary code C = {0,11,100,110}, with

codeword lengths 1,2,3 and 3. Since | A]| = 2, the left side of Kraft’s
inequality 1s
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Hence, the lengths satisfy Kraft’s inequality, but the code C is not
instantaneous, since the second codeword is a prefix of the fourth. [

Let us give an example of the construction in the proof of Kraft’s

Theorem.

Example 2.1.6 Let A = {0,1,2} and ¢, =¢,=1,¢,=2,, = 35 = 4,
lgz 5. Then since

1,1, 1,1 , 1,1 _3*+3*+3°+3+3+1 _ 196
373 T3 AT 35T 35 =943 <!

; raft’s Inequality is satisfied. Thus, according to Kraft’s Theorem, we
gghould be able to construct an instantaneous code over A with these

iobdeword lengths.
v The first step in constructing such a code is to choose the

wpdewords of the smallest lengths ¢, =, =1. For this, we may as well
bie,

thoose
i c, =0 and ¢, =1

' Ly ! 'l'.":f:‘
N

X
A"
X

()
vty :
&Mhen we choose a codeword of length ¢ = 2. Since our code must be

i‘i‘;antaneous, we cannot start this codeword with either 0 or 1, and
;fﬁb it must start with 2. Let us choose

c; = 20

f-‘;Now we choose two codewords of length 4. These codewords cannot
¢

" begin with either 0 or 1, and so they must begin with 2. However,

I
;.
L

‘$hey cannot begin with 20, since that is codeword c;. Let us choose

c, = 2100 and ¢, = 2101

¢
.t‘
3K
\ L]

b

R

,1 Finally, we choose a codeword of length 5 that begins with 211,
a Cs — 21100
 Thus, C = {0,1,20,2100,2101,21100}. O

- McMILLAN’S THEOREM

[t i1s interesting to observe that Kraft’s inequality 1s also necessary
and sufficient for the existence of a wuniquely decipherable code. Of
course, Kraft’s inequality is sufficient since any instantaneous code 1is
also uniquely decipherable. The necessity of Kraft’s inequality was
proved by McMillan in 1956. (The proof given here is not McMillan’s,

however.)
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Theorem 2.1.3 (McMillan’s Theorem) If C — {€1,¢qy...,c. )} is a

uniquely decipherable r-ary code, then its codeword lengths ¢

e
1, :!, * v v g
ell must Satley Kraft S lllequallty

I

O
2 0.
k=1 rek

1

1

| /\

Proof. The following proof is the usual one given for this theorem,
although it is not particularly intuitive. Suppose that o is the
number of codewords in C of length k. Then we have

Now let u be a positive integer, and consider the quantity

m u u
Y (X, %, oy
(Z k) —(r+r2+ +rm)

k=1 I

Multiplying this out gives

1
-
L: '
1

Hh-
wﬁ
=~

. . . ° ° . i +'.. +i
ISijSIIl ISianl

Now, since 1< ij <m, each sum i +---4+1, 1is at least m and at

most um. Collecting terms with a common sum ly + -0+ 1

o We get
um uim N
=2 X e )i= S
' 1, 1, 1 rk rk
k= 1 + + lu_—_-k k=m

where

_ . 1, 1
ll+"'+l=k 1 2 u

Now we are ready to use the fact that the code is uniquely

decipherable. Recalling that a; 1s the number of codewords in C of
length 1, we see that

1s the number of possible strings of length k =1, +:--+41, consisting

of a codeword of length i, followed by a codeword of length 1i,, and so
on, ending with a codeword of length 1.

Hence, the sum N; is the total number of strings ¢;---c, of
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\i |

l jength k made up of exactly u codewords. Now, let
N = {Cl' y -Cu l Cj - C, Ien(x) — k}

be the set of all such strings of codewords. Hence, N, = | N |. Each

...c, € N can be though of simply as a string of length k over the r-
ary a.lﬁ)ha,bet A, that is, as a member of A", of length k. But there
are I such strings in A", and since C is uniquely decipherable, no
. two distinct elements of N represent the same string in A™. Hence,

l: .
-y

R d
i ’ m SO
:\0",.

nce this holds for all positive integers u, we may let u approach oo.

‘ut /Um0 as u—oo, and so we must have
Im

o
2 % < :

k=1 T

YRS

Again we should point out that if a code C has the property that
.lts codeword lengths ¢,,...,¢ satisfy Kraft’s inequality, we cannot

conclude that C must be umquely decipherable.
'{?‘

. Example 2.1.7 It is not possible to construct a uniquely decipherable
;,;-;,: :-code, over the alphabet {0,1,2,...,9}, with 9 codewords of length
"‘*"‘ .+ one, 9 codewords of length two, 10 codewords of length three, and 10

o . codewords of length four. For if such a code existed, we would have
(smce r = 10)

38

Z _.li. — ﬂ..}.%_{..&_*__l_g_ — 1_0__ > ]
1—1 l'i 10 10

Since this violates McMillan’s Theorem, no such code can exist. []

b
—
—
wwn] e
Co |

Kraft’s Theorem and McMillan’s Theorem together imply the
following results, whose proofs we leave as exercises.

Theorem 2.1.4 If a uniquely decipherable code exists with codeword

lengths ¢(,,¢,,...,¢ , then an instantaneous code must also exist with
these same codeword lengths. [



L INOLISeless A tnllllg

Corollary 2.1.5 The minimum average codeword length, among all

uniquely decipherable encoding schemes for a source ¥, 1s equal to the
minimum average codeword length among all instantaneous encoding

schemes for ¥. [j

Hence, in seeking to minimize the average codeword length over all

- < . .‘ -. .‘ f 4 f 2 )
"m"ue!y dbc;phcrabfc cn(,uumy schemes, we inay restrict atiention lo

instantaneous codes.

EXERCISES

In Ezercises 1-7, determine whether or not there s an instantaneous
code with given radiz r and codeword lengths. If so, construct such a

code.

1. r=2, lengths 1,2,3,3

2. r1r=2, lengths 1,2,2,3,3

3. r =2, lengths 1,3,3,3,4,4

4. r =2, lengths 2,2,3,3,4,4,5.,5

9. r =23, lengths 1,1,2,2,3.3,3

6. r=295, lengths1,1,1,1,1,8,9

7. r1r=29, lengths 1,1,1,1,2,2,2.3.3.4

8. Is the code C = {0,10,1100,1101,1110,1111} instantaneous? Is it
uniquely decipherable?

9. Is the code C = {0,10,110,1110,1011,1101} instantaneous? Is it

uniquely decipherable?
10. Suppose that we want an instantaneous binary code that contains
the codewords 0, 10 and 110. How many additional codewords
of length 5 could be added to this code?
1. Prove that each inequality in (2.1.3) implies the previous one.
12.  With reference to the proof of Kraft's Theorem, prove that
o

L4224 + y <1
I'

1s equivalent to Kraft’s inequality.

13. Prove Theorem 2.1.4.

14. Prove Corollary 2.1.5.

15. Prove that a code C is uniquely decipherable if and only if for
any  Xy,Xgy...yX,¥12¥9-..,y, Iin G, we have x;xp--x, =
Y1¥g oY, 1mplies X =y, Xo = yg,.. 0y Xy =Y

16. Let C be instantaneous. Prove that the following are equivalent.
(a) C 1s mazimal instantaneous in the sense that no codeword can

be added to C and still maintain the property of being
Instantaneous.
(b) Every finite string of code symbols is the prefix of some string
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17.

of codewords 1n C.
(c) Equality holds in Kraft’s inequality.
For a given .bma,ry code C, let N(k) be the total number of
codeword strings that contain exactly k bits. For instance, if
(?: {(t},c?,%d}, wh(;':re c, =0, c, =10, ¢ =11, then N(3) _ 0
since the codeword stri all
since the codeword strings cieiepicpagyeye and oo
: e:))’(d(,tl;fy 3 Dbits, and no oiher codeword strings contain
exactly its. For the code C, find a recurr ]
ML), and solve it ence relation for
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2.2 Huffman Encoding

In 1952 D.A. Huffman published a method for constructing
efficient instantaneous encoding schemes. This method 1s now known as
Huffman encoding.

[t is clear that the average codeword length of an encoding scheme
is not affected by the nature of the source symbols themselves. Hence,
for the purposes of measuring average codeword length, we may assume
that the codewords are assigned directly to the probabilities.
Accordingly, we may speak of an encoding scheme (c,,...,c ) for the
probability distribution (p,,...,p,). When the probability distribution
is understood, we may speak of an encoding scheme (c,,...,c).

With this in mind, the average codeword length of an encoding

scheme (cy,...,c ) 1s
Il
AveLen(cy,...,c ) = z p; len(c)
1=1

We will use the notation MinAvelen (p,,...,p,) to denote the
minimum average codeword length among all r-ary 1instantaneous
encoding schemes for the probability distribution (p4,...,p,). By

virtue of Corollary 2.1.5, this minimum 1is also over all uniquely
decipherable encoding schemes.

Definition An optimal r-ary encoding scheme for a probability

distribution (p,,...,p,) 1s an r-ary instantaneous encoding scheme

(¢yy...,¢,) for which

Avelen(c,,...,c ) = MinAvelen (p,,...,P,) 0

Note that optimal encoding schemes are, by definition,
Instantaneous.

AN EXAMPLE OF HUFFMAN ENCODING

Before discussing Huffman encoding in general, we would do well
to consider a specific example.

Example 2.2.1 Let us construct a 4-ary Huffman encoding scheme for
the probability distribution

P = (0.24,0.20,0.18,0.13,0.10,0.06,0.05,0.03,0.01)

consisting of 9 probabilities.

With reference to Table 2.2.1, the first step is to arrange the
probabilities in decreasing order of magnitude in the first column of a
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“ble Next, we replace the three smallest probabilities by their sum,
5|-earrange the resulting probabilities in decreasing order, and place them
. in a new column. Notice that we have marked the sum 0.09 with an
A asterlsk Notice also that we have inserted a blank column labeled code
" petween the two columns of probabilities. We will explain the purpose
i of this column momentarily. The process of combining the three
smallest probabilities into a single probability 1s called a Huffman
reduction of size 3. The next step is to perform a Huffman reduction
: of size 4, as shown in the fifth column of Table 2.2.1.
:VI: ~ Thus, the probability columns in Table 2.2.1 are formed by the
.~ aimple process of successive Huffman reductions and reorderings. As to
" :}:" matter of the size of each reduction, when constructing an r-ary
:Zf ﬂuﬂ'man code, all reductions should have size r except possibly the
*“ ﬁrst reduction, whose size is determined by the fact that we want the
lhst probability column of the table to have exactly r entries. In this
: __:.._'- 2 r =4. Thus, noting that a reduction of size s reduces the
umber of probabilities by s—1, and since 9—-(3-1)-(4-1) =4,
' ? pe; see that the first reduction should have size 3. We will discuss the
“__.uctlon size 1n more detall a bit later.
¢ Once the probability columns in Table 2.2.1 are complete, we can
; ‘nstruct a code for each probability column by working from right to
_ For ease of readability, we will do this in Table 2.2.2, although
'ﬁ,fﬁe entire process can certainly be done in a single table. Since the last
;#<i:3lumn contains only r =4 entries (by design), we assign the code
*‘f‘ 01 r-1 to thls column To construct the next code we expand”

i

7 %

:( by concatenating that codeword with the symbols 0,1,...,r-1, as in the
mlddle code column of Table 2.2.2. This expansion is repeated to
’?“;t‘l ‘obtain the first code column of Table 2.2.2, which is the desired

f_;_“ Huffman encoding. [

TABLE 2.2.1

Probabilities Code Probabilities Code Probabilities Code

i 0.24 0.24 > 0.38%
i 0.20 0.20 0.24
: 0.18 0.18 0.18
0.13 0.13 0.13
0.10 0.10
0.06 0.09+

>
0.05 I 0.00
0.03

0.01
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e e L

TABLE 2.2.2

Probabilities Code Probabilities Code Probabilities Code

0.24 1 0.24 1 0.38x 0
0.20 2 0.20 2 0.24 [— 1
0.18 : 0.18 3 0.18 2
0.13 00 0.13 00 0.13 3
0.10 01 0.10 01

0.06 03 0.09+ 02 [ <

0.05 020 0.06 |—_ 03

003 021} "

0.01 022

MOTIVATION FOR THE GENERAL CASE

Since we are dealing with r-ary codes, we may as well assume that

the code alphabet is {0,1,...,r—1}. In view of the previous example,
we make the following observations. Let

P = (pl"“’pn)

be a probability distribution. Performing a Huffman reduction of size
s gives the probability distribution

Q — (p]’ ce) pn_siq)
where q =p,,_o.;+*--+Pp, Suppose that

D = (cy,.. ey €y _syd)

1s an optimal encoding scheme for this distribution. Then we can

construct an encoding scheme for (p;,...,p,,) by “expanding” the
codeword d Into s codewords

d0,dl,...,d(s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>