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Introduction

Descriptive set theory is the study of “definable sets” in Polish (i.e., sep-
arable completely metrizable) spaces. In this theory, sets are classified in
hierarchies, according to the complexity of their definitions, and the struc-
ture of the sets in each level of these hierarchies is systematically analyzed.

In the beginning we have the Borel sets, which are those obtained from
the open sets, of a given Polish space, by the operations of complementation
and countable union. Their class is denoted by B. This class can be further
analyzed in a transfinite hierarchy of length w; (= the first uncountable
ordinal), the Borel hierarchy, consisting of the open, closed, F, (count-
able unions of closed), Gs (countable intersections of open), F,;5 (countable
intersections of F,), Gs, (countable unions of Gjs), etc., sets. In modern
logical notation, these classes are denoted by 22, l'lg, for 1 < £ < wy,

where 0 0
3); = open, II; = closed;

2= {J Au: Anisin I, for &n < £}
neN
l'lg = the complements of 22 sets.
(Therefore, £ = F,, II§ = G5, =% = Gs,,II3 = F,4, etc.) Thus B
ramifies in the following hierarchy:

20 59 7. 0
me I I e

where £ < 1 < wy, every class is contained in any class to the right of it,
and
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B= | ) =¢= ) m

£ <wy £<w

Beyond the Borel sets one has next the projective sets, which are those
obtained from the Borel sets by the operations of projection (or continuous
image) and complementation. The class of projective sets, denoted by P,
ramifies in an infinite hierarchy of length w (= the first infinite ordinal),
the projective hierarchy, consisting of the analytic (A) (continuous images
of Borel), co-analytic (CA) (complements of analytic), PCA (continuous
images of CA), CPCA (complements of PCA), etc., sets. Again, in logical
notation, we let

2} ‘analytic, H{ = co-analytic;

> ., = all continuous images of II, sets;

I1,,, = the complements of £, ., sets;
so that in the following diagram every class is contained in any class to the
right of it: , , ,
2l E2 En -231+1

and
P=|Jzl=m.

One can of course go beyond the projective hierarchy to study trans-
finite extensions of it, and even more complex “definable sets” in Polish
spaces, but we will restrict ourselves here to the structure theory of Borel
and projective sets, which is the subject matter of classical descriptive set
theory.

Descriptive set theory has been one of the main areas of research in
set theory for almost a century now. Moreover, its concepts and results are
being used in diverse fields of mathematics, such as mathematical logic,
combinatorics, topology, real and harmonic analysis, functional analysis,
measure and probability theory, potential theory, ergodic theory, operator
algebras, and topological groups and their representations. The main aim
of these lectures is to provide a basic introduction to classical descriptive
set theory and give some idea of its connections or applications to other
areas.
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These lectures are divided into five chapters. The first chapter sets up the
context by providing an overview of the basic theory of Polish spaces. Many
standard tools, such as the Baire category theory, are also introduced here.
‘The second chapter deals with the theory of Borel sets. Among other things,
methods of infinite games figure prominently here, a feature that continues
in the later chapters. In the third chapter, the theory of analytic sets, which
is briefly introduced in the second chapter, is developed in more detail. The
fourth chapter is devoted to the theory of co-analytic sets and, in particular,
develops the machinery associated with ranks and scales. Finally, in the
fifth chapter, we provide an introduction to the theory of projective sets,
including the periodicity theorems.

We view this book as providing a first basic course in classical descrip-
tive set theory, and we have therefore confined it largely to “core material”
with which mathematicians interested in the subject for its own sake or
those that wish to use it in their own field should be familiar. Throughout
the book, however, are pointers to the literature for topics not treated here.
In addition, a brief summary at the book’s end (Section 40) describes the
main further directions of current research in descriptive set theory.

Descriptive set theory can be approached from many different view-
points. Over the years, researchers in diverse areas of mathematics—logic
and set theory, analysis, topology, probability theory, and others—have
brought their own intuitions, concepts, terminology, and notation to the
subject. We have attempted in these lectures to present a largely balanced
approach, which combines many elements of each tradition.

We have also made an effort to present a wide variety of examples



xviii About This Book

and applications in order to illustrate the general concepts and results of
the theory. Moreover, over 400 exercises are included, of varying degrees of
difficulty. Among them are important results as well as propositions and
leminas, whose proofs seem best to be left to the reader. A section at the
end of these lectures contains hints to selected exercises.

This book is essentially self-contained. The only thing it requires is fa-
miliarity, at the beginning graduate or even advanced undergraduate level,
with the basics of general topology, measure theory, and functional analy-
sis, as well as the elements-of set theory, including transfinite induction and
ordinals. (See, for example, H. B. Enderton [1977], P. R. Halmos [1960a]
or Y. N. Moschovakis [1994].) A short review of some standard set theo-
retic concepts and notation that we use is given in Appendices A and B.
Appendix C explains some of the basic logical notation employed through-
out the text. It is recommended that the reader become familiar with the
contents of these appendices before reading the book and return to them
as needed later on. On occasion, especially in some examples, applications,
or exercises, we discuss material, drawn from various areas of mathematics,
which does not fall under the preceding basic prerequisites. In such cases,
it is hoped that a reader who has not studied these concepts before will at
least attempt to get some idea of what is going on and perhaps look over a
standard textbook in one of these areas to learn more about them. (If this
becomes impossible, this material can be safely omitted.)

Finally, given the rather informal nature of these lectures, we have
not attempted to provide detailed historical or bibliographical notes and
references. The reader can consult the monographs by N. N. Lusin [1972],
K. Kuratowski [1966], Y. N. Moschovakis [1980], as well as the collection
by C. A. Rogers et al. [1980] in that respect. The Q-Bibliography of Mathe-
matical Logic (G. H. Miiller, ed., Vol. 5, Springer-Verlag, Berlin, 1987) also
contains an extensive bibliography.



CHAPTER I

Polish Spaces

1. Topological and Metric Spaces

1.A Topological Spaces

A topological space is a pair (X,7), where X is a set and 7 a collection
of subsets of X such that 0, X € 7 and 7 is closed under arbitrary unions
and finite intersections. Such a collection is called a topology on X and its
inembers open sets. The complements of open sets are called closed. Both
0, X are closed and arbitrary intersections and finite unions of closed sets
are closed.

A set of the form (), .y Un, where U, are open sets, is called a G set,
and a set of the form |J oy Frn, where F,, are closed sets, is called an F
set.

A subspace of (X,7T) consists of a subset Y C X with the relative
topology 7|Y = {UNY : U € T}. (In general, for a set X, a subset
Y C X, and a collection A of subsets of X, its restriction to Y is defined
by AlY = {ANY : A€ A}.)

A basis B for a topology 7 is a collection B C T with the property that
every open set is the union of elements of B. (By convention the empty union
gives 0).) For a collection B of subsets of a set X to be a basis for a topology,
it is necessary and sufficient that the intersection of any two members of
B can be written as a union of members of Band | J{B: Be B} = X. A
subbasis for a topology 7 is a collection & € 7 such that the set of finite
intersections of sets in S is a basis for 7. For any family S of subsets of
a set X, there is a smallest topology 7 containing S, called the topology
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generated by S. It consists of all unions of finite intersections of members of
S. (By convention the empty intersection gives X.) Clearly, S is a subbasis
for 7. A topological space is second countable if it has a countable basis.

If X is a topological space and 2 € X, an open nbhd (neighborhood)
of x is an open set containing x. A nbhd basis for z is a collection U of
open nbhds of x such that for every open nbhd V of 2 there is U € U with
UcvV.

Given topological spaces X,Y, amap f: X — Y is continuous if the
inverse image of each open set is open. It is open (resp. closed) if the image
of each open (resp. closed) set is open (resp. closed). It is a homeomorphism
if it is a bijection and is both continuous and open. Finally, it is called an
embedding if it is a homeomorphism of X with f(X) (given its relative
topology). A function f : X — Y is continuous at z € X (or z is a point of
continuity of f) if the inverse image of an open nbhd of f(x) contains an
open nbhd of z. So f is continuous iff it is continuous at every point.

If (Y:)ies is a family of topological spaces and f; : X — Y;, a family of
functions, there is a smallest topology 7 on X for which all f; are contin-
uous. It is called the topology generated by (f;);c; and has as a subbasis
the family S = {f7'(U) : U C Y;, U open, i € I}. If S; is a subbasis for
the topology of Y;, we can restrict I/ to S; here.

The product J[..; X; of a family of topological spaces (X;)icys is the
topological space consisting of the cartesian product of the sets X; with the
topology generated by the projection functions (z;);e; — x, (j € I). It has
as basis the sets []. U;, where U; is open in X, for all ¢ € I, and U; = X;
for all but finitely many ¢ € I. If B; is a basis for the topology of X;, the
sets of the form []. U;, where U; = X except for finitely many i for which
U; € B;, form a basis for the product space. Note also that the projection
functions are open. If X; = X for alli € I, we let X! = [Ler X

The sum . X; of a family of topological spaces (X;);er is defined (up
to homeomorphism) as follows: If we replace X; by a homeomorphic copy,
we can assume that the sets X; are pairwise disjoint. Let X = J,; Xi. A
set U C X is open iff U N X is open in X; for each i € 1.

1.B Metric Spaces
A metric space is a pair (X, d), with X aset and d : X2 — [0, 00) a function
satisfying:

i) dz,y) =0z =y;

i) d(z,y) = d(y, x);
iii) d(z, y) < d(z, 2) + d(z,y).

Such a function is called a metric on X.
The open ball with center £ and radius r is defined by

B(z,r)={ye X :d(z,y) <r}.
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(The corresponding closed ball is denoted by
Bua(z,r)={y€ X : d(z.y) < r}.)

These open balls form a basis for a topology, called the topology of the
metric space.

A topological space (X, T) is metrizable if there is a metric d on X so
that 7 is the topology of (X, d). In this case we say that the metric d is
compatible with 7. If 7 is metrizable with compatible metric d, then the
metric q

¢ =1ra

is also compatible and 4’ < 1.

A subset D C X of a topological space X is dense if it meets every
nonempty open set. A space X admitting a countable dense set is called
separable. Every second countable space is separable (but the converse does
not hold). If X is metrizable, then X is separable iff X is second countable,
so we use these terms interchangeably in this case.

A subspace of a metric space (X,d) is a subset Y C X with the in-
duced metric d|Y (i.e., d|Y (z,y) = d(z, y) for any z,y € Y). The topology
of (Y,d|Y) is then the relative topology of Y. Thus a subspace of a metriz-
able topological space is metrizable. Moreover, a subspace of a separable
metrizable space is separable.

A function f : X — Y between metric spaces (X,dx), (Y,dy) is
an isometry if it is a bijection and dx(zy,x2) = dy(f(x,), f(x2)). Every
isometry is clearly a homeomorphism. We call f an isometric embedding if
f is an isometry of X with f(X).

The product of a sequence of metric spaces ((Xn,dn)),, .y is the metric

space ([],, Xn,d), where

d(z,y) = i o-n-1_dn{Tn, Yn)
’ 1+ do(xy, yn)’

7=

with £ = (z,,), v = (y»)- The topology of this metric space is the product of
the topologies of ((X,,,d»)). Thus the product of a sequence of metrizable
topological spaces is metrizable. Moreover, the product of a sequence of sep-
arable metrizable spaces is also separable. The sum of a family ((X;,d;)),_,

of metric spaces is defined (up to isometry) as follows: By copying the met-
ric of each X; on a set of the same cardinality, we can assume that the sets
X; are pairwise disjoint. Let X = |J,c; X;. We define a metric d on X by
letting d(z,y) = d;(z,y), ifr,y € X;,and d(z,y) =1, ifx € X; and y € X,
with ¢ # 7. The topology of this metric space is the sum of the topologies
of ((X;,d;)). Thus the sum of metrizable topological spaces is metrizable,
and the sum of a sequence of separable metrizable spaces is separable.

We recall here the following important metrization theorem. A topo-
logical space X is called T if every singleton is closed and is called regular
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if for every point £ € X and open nbhd U of z, there is an open nbhd V
of x with V C U (where, as usual, A denotes the closure of A, i.e., the
smallest closed set containing A).

(1.1) Theorem. (Urysohn Metrization Theorem) Let X be a second count-
able topological space. Then X is metrizable iff X is Ty and regular.

We conclude with two basic results (the first of which is a special

case of the second) concerning the existence of continuous real functions on
metrizable spaces.

(1.2) Theorem. (Urysohn’s Lemma) Let X be a metrizable space. If A,B are
two disjoint closed subsets of X, there is a continuous function f: X — [0,1]
such that f(x) =0 forx € A and f(x) =1 for x € B.

(1.3) Theorem. (Tietze Extension Theorem) Let X be a metrizable space.
If AC X is closed and f:A — R is continuous, there is f:X — R which is
continuous and extends f. Moreover, if f s bounded by M, i.e., |f(z)| < M
forallz € A, sois f.
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2. Trees

2.A Basic Concepts

The concept of a tree is a basic combinatorial tool in descriptive set theory.
What is referred to as a tree in this subject is not, however, the same
notion as the one used either in graph theory or combinatorial set theory,
although it is closely related. On the rare occasion that we will use the
graph theoretic notion, we will refer to it as a “graph theoretic tree”.

Let A be a nonempty set and n € N. We denote by A™ the set of finite
sequences s = (s(0),...,s8(n—=1)) = (sgp,..., 8n—1) of length n from A. We
allow the case n = 0, in which case A® = {0}, where @ denotes here the
empty sequence. The length of a finite sequence s is denoted by length(s).
Thus length(@) = 0. If s € A™ and m < n, we let sjm = (s0,...,8m-1)-
(So 5|0 = 0.) If s,¢ are finite sequences from A, we say that s is an initial
segment of ¢ and ¢ is an extemsion of s (in symbols, s C ¢) if s = ¢|m,
for some m < length(f). Thus @ C s, for any s. Two such finite sequences
are compatible if one is an initial segment of the other and incompatible
otherwise. We use s L ¢ to indicate that s,¢ are incompatible. Finally, let

A(N — U A"
neEN

be the set of all finite sequences from A. The concatenation of s =
(8i)i<cn: t = (£;),<m is the sequence st = (sg....,8n-1,%0,.-.,tm—1). We
write s a for s"(a), if a € A.

Let AN be the set of all infinite sequences = = (z(n)) = (z,) from
A lfz € AN and n € N, let z|n = (zg,...,Zn—1) € A™. We say that
s € A" is an initial segment of z € AN if s = z|n. We write s C z if
s is an initial segment of z. Also, for s € A<N and = € AN, we let the
concatenation of s,z be the infinite sequence s"xz = y, where y(i) = s(i)
if ¢ < length(s) and y(length(s) + i) = z(¢). The (infinite) concatenation
So 81 82" ...of s; € A<N is the unique x € ANUA<N such that z(3) = s4(2),
if ¢ < length(sg); x(length(sg) + ) = s(2), if ¢ < length(s,); and so on.

(2.1) Definition. A tree on a set A is a subset T C A<N closed under initial
segments; i.e., ift € T and s C i, then s € T. (In particular, 0 € T if T is
nonempty.) We call the elements of T the nodes of T. An infinite branch
of T is a sequence x € AN such that z|n € T, for all n. The body of T,
written as [T, is the set of all infinite branches of T i.e.,

[T] = {z € AN : Vn(z|n € T)}.

Finally, we call a tree T pruned if every s € T has a proper ertension
t2s,teT.

We visualize trees as follows (Figure 2.1):
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0
(@) (b) (o)
(Aa') (2, ") (b,¢) °%4d) Y é) T
l (b f") N")
(b.c f,...) (7]
FIGURE 2.1.

The bold line represents an infinite branch (b,¢’, f,...) € [T]. The tree in
Figure 2.1 is not pruned. The full binary tree {0, 1} <N pictured in Figure 2.2
is, of course, pruned.

(0,0)

AN A

0,1) (1,0) (1,1)

N/

FIGURE 2.2,
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2 B Trees and Closed Sets

We can view a set A as a topological space with the discrete topology, i.e.,
the topology in which every subset of A is open. This is metrizable with
compatible metric 8(a,b) = 1, if @ # b. Therefore AN, viewed as the product
space of infinitely many copies of A, is metrizable with compatible metric:
d(z,y) =271 if x # y and n is the least number with z, # yn.

(2.2) Exercise. A metric d is an ultrametric if
d(z,y) < max{d(z,z2), d(y,2)}.

Show that the above metric is an ultrametric.

The standard basis for the topology of AN consists of the sets
N,={z e AN :sC z},

where s € A<N, Note that sCt <& N, DN, ands Lt < N, NN, =0.

(2.3) Exercise. i) Show that if U C AN is open, then there is a set S C A<N
such that: s, €S, s#t=>s L, and U = J,. ¢ N,.

ii) Let U = |U,.p Ns, with D C A<N closed under extensions. Show
that U is dense in AN iff D is dense in A<V, i.e., Vs € A<N3t € D(s C ¢t).

iii) Let 2™,z € AN, Show that ™ — z iff Vi(z™ (i) = z(i), for all large
enough n).

iv) Show that (AN)* (n > 1), (AN)N are homeomorphic to AN.

(2.4) Proposition. The map T — [T is a bijection between pruned trees on
A and closed subsets of AN, Its inverse is given by

F—Tp={z|n:z € F, n €N}.
We call Tr the tree of F',

The proof is evident.

For later reference we introduce the following notation. If T is a tree
on A, then for any s € A<N

T,={tc AN:s"t e T}

and
Tis) = {t € T : ¢ is compatible with s} .

Thus [Ti5] = [T] N N, forms a basis for the topology of [T]. Note that Tj,)
is a subtree of T', but T; in general is not.

(2.5) Definition. Let S,T be trees (on sets A,B, resp.). A map ¢:S — T is
called monotone if s C ¢ implies p(s) C p(t). For such ¢ let
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D(p)={x €[9]: lim length(p(x|n)) = oo} .

For x € D(p), let
o*(z) = | Jo(aln) € [T].

We call ¢ proper if D(yp) = [5].

(2.6) Proposition. The set D{(y) is Gs in [S] and ¢*:D(p) - [T'] is contin-
uous. Conversely, if f:G — [T] is continuous, with G C [S] a Gs set, then
there is monotone .5 — T with f = *.

Proof. We have x € D(p) & Vndm(length(p(z|m)) > n), so D(p) =
N, Un, with U, = {z : Im (length(y(z|m)) > n)} open. To see that ¢ is
continuous, note that the sets [T] N N; = V; form a basis for the topology
of [T] and (¢*)~t(V}) =U{NsN D, :5 €S, ¢(s) Dt} is open in D,,.

Now, given G, a Gs set in [S] which we can assume is nonempty (oth-
erwise take ¢(s) = 0), and f : G — [T] continuous, define ¢ : § — T as
follows: Let (U, ) be a decreasing sequence of opensets in [S], with Uy = [S],
such that G = (), U,. For any s € S, let k(s) € N be defined as follows:
k(s) = the largest k < length(s) such that Ny, N [S] C U,. Now set ¢(s) =
the longest u € T of length < k(s) such that f(N,NG) C N, if N,NG # 0,
otherwise (s) = (s|m), where m < length(s) is largest with N,,,,NG # 0.
(Note that if NN G # 0, and f(NsNG) C N, N N,, then u and v are
compatible:) Clearly, s C s’ = k(s) < k(s') and ¢(s) C »(s’).

If € G, then lim, k(z|n) = oo because x € Uy for each N, and
thus there is n > N with N, N [S] € Uy, and so k(z|r) > N. Also
lim,, length(yp(z|n)) = oc since for each N there is n with k(z|n) > N
such that @ # f(Nyn NG) C NN, 50 f(z)|IN C ¢(z|n). This also
shows that G C D(p) and f(z) = ¢*(x) for £ € G. Finally, if x € D(yp),
then lim, k(z|n) = o0, so for each N there is n with k(z|n) > N; thus
x € Ny, N[S] C Un. Therefore, z € G and G = D(p).

(2.7) Exercise. Let ¢ : S — T be monotone. We call ¢ Lipschitz if
length(p(s)) = length(s). Show that in this case d(p*(z),¢*(y)) < d(z,y)
for any z,y € D(y), where d is the usual metric on sequences (see remarks
preceding 2.2).

A closed set F' in a topological space X is a retract of X if there is a
continuous surjection f : X — F such that f(z) =z for z € F.

(2.8) Proposition. Let F C H be two closed nonempty subsets of AN. Then
F is a retract of H.

Proof. Let S, T be pruned trees on A such that [$] = F and [T] = H. We
will define a monotone proper ¢ : T — S with ¢(s) = s for s € S (note -
that S C T). Then f = ¢* shows that F is a retract of H. We define ¢(¢)
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by induction on length(t). Let ¢(0) = 0. Given ¢(t), we define ¢(t"a) for
a€ Aand t"a €T as follows: If t"a € S, let (t"a) =t"a. If t"a ¢ S, let
©(t"a) be any ¢(t)"b € S, which exists since S is pruned. 0

2.C Trees on Products

We will sometimes have to deal with trees T on sets A which are products of
the form A = BxCor A= BxC x D, etc. When, for example, A = BxC,
a member of T is a sequence s = (s;);<n with s; = (b;,¢;), b; € B, ¢; € C.
It is more convenient in this case to identify s with the pair of sequences
(t,u) with &; = b;, u; = ¢; and to view T as being a subset of B<N x C<N
with the property that (¢,u) € T implies that length(¢) = length(u), and
(¢,u) € (t',u') (ie, t Ct' and u C u'), (¢,u') € T imply that (t,u) €
T. With this convention [T] is the set of pairs (z,y) € BN x CN with
(z|n,yln) € T for all n. The meaning of T; ,,, Tjs 4, for (¢,u) € BN x <N
with length(¢) = length(u) is also self-explanatory.

According to 2.4, applied to (B x C)N, which we identify with BN x CN,
the closed subsets of BN x CN are exactly those of the form [T, for T a
pruned tree on B x C.

If T is a tree on B x C and x € BN, consider the section tree T'(x) on
C defined by

T(z) = {s € C<N: (z|length(s),s) € T} .
Note that if T is pruned it is not necessarily true that T(x) is pruned. Also,
(z,y) € [T] & y € [T(2)].

Similarly, for s € BN, we define T(s) = {t¢ € C<N : length(t) <
length(s) & (s|length(t),t) € T'}.

2.D Leftmost Branches

We will now discuss the concept of the leftmost branch of a tree. Let T be a
tree on a set A and let < be a wellordering of A. If [T'] # 0, then we specify

the (<-) leftmost branch of T, denoted by ar, as follows. We define ar(n)
by recursion on n:

ar(n) = the <- least element a of A such that [T(,,n)-a]l #0.

If for z # y € AN, or z # y € A™ (for some m), we define the (<-)
lexicographical ordering <)ex by T <jex ¥ < for the least n such that z(n) #
y(n), we have z(n) < y(n), then it is clear that ar is the lexicographically
least element of [T]. When T is pruned, ar is also characterized by the

property that for each m, ar|m is the lexicographically least element of
TNnA™,
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2.F Well-founded Trees and Ranks

If a tree T on A has no infinite branches, i.e., [T] = 0, then we call T
well-founded. This is because it is equivalent to saying that the relation
s <t & s2t restricted to T is well-founded. (See Appendix B.) On the
other hand, if [T'] # 0, we call T ill-founded. If T is a well-founded tree, we
denote the rank function of < restricted to T' by pr. Thus

pr(s) = sup{pT(t) +1:teT, tgs},
for s € T. An easy argument shows that we also have

pr(s) =sup{pr(s"a)+1:5"a €T}.

Also, pr(s) = 0 if s € T is terminal, i.e., for no a, s"a € T. We also
put pr(s) = 0 if s ¢ T. The rank of a well-founded tree is defined by
p(T) =sup{pr(s) +1:s €T} Thus if T # 0, p(T) = pr(0) + 1.

If S,T are trees (on A, B, resp) amap ¢ : S — T will be called
strictly monotone if s G ¢ = go(s) (1), i.e., if  is order preserving for the
relation 2. Then if T is well—founded and ¢ : $ — T is strictly monotone,
we have that S is well-founded and pg(s) < pr(p(s)), for all s € S, so in
particular p(S) < p(T). But we also have the converse here, If S, T are well-
founded and p(S) < p(T), then there is a strictly monotone ¢ : S — T'. We
define ¢(s) by induction on length(s) for s € S, so that ps(s) < pr(p(s)).
First let ¢(0) = 0. Assuming that ¢(s) has been defined, consider s"0 € S.
Then ps(s”a) < ps(s) < pr(p(s)), so there is some b with ¢(s)"b € T and
ps(s”a) < pr(p(s)”b). Let ¢(s”a) = ¢(s) b. We have therefore shown the
following fact.

(2.9) Proposition. Let S, T be trees on A, B, respectively. If T is well-

founded, then S is well founded with p(S) < p(T) iff there is a strictly
monotone map ¢:S — T.

(2.10) Exercise. Given a relation < on X, we associate with it the following
tree on X:

(£0,.++1Tn=1) ET<x © Tpn_) < Tp—2 <-++ < I < *Lp.

(By convention, when n = 1, (zg) € T.. for any 2o € X.) Show that
< is well-founded iff T, is well-founded, and in this case for any z € X
and any zg,...,Z,-) With 2 < T} < -+ < ) < Tg, we have p (1) =
pT. ((Zo,-..,ZTn-1,%)). (We allow the case where n = 0 here, i.e., p<(z) =
pt. ((x)).) Conclude that p(<) = pr_(0).
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9. F The Well-founded Part of a Tree

Even if a tree T is ill-founded, we can define a rank function on its well-
founded part WF 1, which is defined as follows:

s € WFr & se€T &T,is well-founded.

Note that. if s € WFr and s C ¢t € T, then ¢ € WFp. Also, the relation
< = 2 is well-founded on WFr, and so we can define the rank function pr-
on WFT by
pr(s) = sup{pr(t) +1:t €T, t 2 s}
= sup{pr(s"a)+1:s5"a € T},

for s € WFr. Note that any terminal s € T belongs to WFr and pr(s) = 0.
For a tree T on A, it is also convenient to define

pr(s) = 0o = the smallest ordinal of cardinality > max{card(A), Ny},

for s € T\ WFr, so that pr(t) < pr(s) if t € WFp, s ¢ WFp, (Hence,
if A is countable, p7(s) = w;.) Finally, we can extend pp to all of A<N by
letting pr(s) = 0if s € T. Again, we let

o(T) = sup{pr(s) +1:s5 € WFz},
so that pr|WFr maps WFr onto {a: a < p(T)}.

(2.11) Exercise. For each tree T on A, let T* = {s € T : Ja(s"a € T)} and
by transfinite recursion define;

T =T,
T(cx+l) — (T(a))*:‘
T = () T, if Ais lLimit.

<\

Let ag be the least ordinal a such that 7(® = T(@+D gnd let T(®) =
T(*0), Show that WFr = T\ T'>=) and so T is well-founded iff T(>=) = 0.
Additionally, show that for s € WFp,

pr(s) = the unique a with s € () \T(cn+1).

2.G The Kleene-Brouwer Ordering

Now let (A, <) be a linearly ordered set. We define the Kleene-Brouwer
ordering <xp on A<N as follows: If s = (sg,...,5m-1), £ = (£0, ..., bn_1),
then
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s<kgpte (s2t)or|F <min{m,n}(Vj <i(s; =t;) & s; <ti)].

It is easy to check that <y p is a linear ordering (extending the partial
ordering 2).

(2.12) Proposition. Assume that (A, <) is a wellordered set. Then for any

tree T on A, T is well-founded iff the Kleene-Brouwer ordering restricted
to T is a wellordering.

Proof. If T is ill-founded and x € [T, clearly z|(n + 1) <k z|n for each
n, so <gp is not a wellordering on T'. Conversely, let (s,) be an infinite
descending chain in <y p restricted to T. Then s¢(0) > 5,(0) > s,(0) > ---,
so eventually s,(0) is constant, say s,(0) = sp for n > ng. Thus s,(1)
exists for all n > ng and s,,41(1) 2 Sny+2(1) > - --. Therefore, for some
ny > Ng, Sn(l) is constant, say s,(1) = s;, for n > n,, and so on. Then
(s0,81,...) € [T}, i.e., T is ill-founded. 0
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3. Polish Spaces

3.A Definitions and Examples

Let (X,d) be a metric space. A Cauchy sequence is a sequence (z,) of
elements of X such that lim,, ,, d(z,,,z,) = 0. We call (X, d) complete if
every Cauchy sequence has a limit in X. Given any metric space (X, d),

there is a complete metric space (X,d) such that (X,d) is a subspace of

(X,d) and X is dense in X. This space is unique up to isometry and is
called the completion of (X, d). Clearly, X is separable iff X is separable.

(3.1) Definition. A topological space X is completely metrizable if it admits
a compatible metric d such that (X .,d) is complete. A separable completely
metrizable space is called Polish.

(3.2) Exercise. Consider the open interval (0,1) with its usual topology.
Show that it is Polish although its usual metric is not complete.

The following facts are easy to verify.

(3.3) Proposition. i) The completion of a separable metric space is Polish.
it) A closed subspace of a Polish space is Polish.
i1i) The product of a sequence of completely metrizable (resp. Polish)
spaces is completely metrizable (resp. Polish). The sum of a family of com-
pletely metrizable spaces is completely metrizable. The sum of a sequence
of Polish spaces 1s Polish.

EXAMPLES
1) R,C,R",C", RN, and CN are Polish; the unit interval

I=1[0,1]

the unit circle
T={xeC:|z| =1},

the n-dimensional cube I*, the Hilbert cube [N, the n-dimensional torus
T”. and the infinite dimensional torus TN are Polish.

2) Any set A with the discrete topology is completely metrizable, and
if it is countable it is Polish.

3) The space AN, viewed as the product of infinitely many copies of A
with the discrete topology, is completely metrizable and if A is countable it
is Polish. Of particular importance are the cases A =2 = {0,1} and A = N.
We call

c=2N

the Cantor space and
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N =N®
the Baire space.

(3.4) Exercise. i) The Cantor (1/3 -) set is the closed subset Ej/3 of I
consisting of those numbers that have only (’s and 2’s in their ternary
expansion. Show that C is homeomorphic to £ /3.

ii) Denote by Irr the space of irrationals (with the relative topology as
a subset of IR). Show that the continued fraction expansion gives a homeo-
morphism of Irr N (0, 1) with (N\ {0})¥, and therefore Irr is homeomorphic
to NV.

4) The topology of any (real or complex) Banach space is completely
metrizable and for separable Banach spaces it is Polish.

Beyond the finite dimensional spaces R",C", examples of separable
Banach spaces that we will occasionally consider are the P spaces (1 <
p < 00), in particular the Hilbert space £2; ¢, (the space of converging to
0 sequences with the sup norm); the LP(u) spaces (1 < p < o), where u is
a o-finite measure on a countably generated o-algebra; C(X), the space of
continuous (real or complex) functions on a compact metrizable space X
with the sup norm.

5) Let X,Y be separable Banach spaces. We denote by L(X,Y) the
(generally non-separable) Banach space of bounded linear operators T :
X — Y with norm ||T|| = sup{||Tz|| 1z € X, ||z|| < 1}. f X =Y, we let
L(X) = L(X, X). Denote by L,(X,Y) the unit ball

Li(X,Y)={T € L(X,Y) : ||IT|]| < 1}

of L(X,Y). The strong topology on L(X,Y) is the topology generated by
the family of functions f.(T) =Tz, f. : L(X,Y) = Y, for x € X. It has
as basis the sets of the form

le,...,mn;ﬁ;T = {S € L(-X: Y) : ”Sﬂ?] _T:Cl” < €unn, HSwn - Txn” < 6}:

for zy,...,zp,€ X, €¢>0, Te L(X,Y).

The unit ball L, (X, Y) with the (relative) strong topology is Polish. To
see this, consider, for notational simplicity, the case of real Banach spaces,
and let D C X be countable dense in X and closed under rational linear
combinations. Consider Y with the product topology, which is Polish,
since D is countable. The map T — T|D from L,(X,Y) into Y? is injective
and its range is the following closed subset of Y©:

F={feYP Vz,y e DVp,q € Q(f(pz + qy) = pf(z) + ¢ (¥)]
& vz € D(||f ()|l < ll=]])} -

It is easy to verify that this map is a homeomorphism of L;(X,Y) and F,
thus L, (X,Y) with the strong topology is Polish.
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(3.5) Exercise. Show that the following is a complete compatible metric for
the strong topology on L, (X,Y) :

o0

d(5,T) =) 27" |I(S = T)(@n)ll,

n=0

where (z,,) is a dense sequence in the unit ball of X.

3.B Extensions of Continuous Functions
and Homeomorphisms

Let X be a topological space, (Y, d) a metric space, AC X,and f: A—Y.
For any set B C Y, let

diam (B) = sup{d(z,y) : =,y € B}

(with diam(@) = 0, by convention), and define the oscillation of f at z € X
by
oscs(z) = inf{diam(f(U)) : U an open nbhd of z}

(where it is understood that f(U) = f(ANU)). Note that if z € A, then z is
a continuity point of f iff oscs(x) = 0. Letting A, = {x € X : oscs(z) < €},
note that A, is open and {x : oscs(x) =0} =), A1/(n+1) is a G5 set. Thus
we have shown the following proposition.

(3.6) Proposition. Let X be a topological space, Y a metrizable space, and
f:X = Y. Then the points of continuity of f form a Gs set.

Let us also note the following basic fact about metrizable spaces.

(3.7) Proposition. Let X be a metrizable space. Then every closed subset of
X is a Gg sel. |

Proof. Let d be a compatible metric for X. For x € X, 0 # A C X define
d(z, A) = inf{d(z,y) : y € A}.

Note that
|d(z, A) — d(y, A)| < d(x,y).

Thus the e-ball around A, B(A,¢) = {z : d(x, A) < €} is open. It follows
that if ' C X is closed (nonempty without loss of generality), then

F =()B(F,1/(n + 1)),

and so F is a Gg. U
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We will use the preceding ideas to prove the following basic extension
theorem.

(3.8) Theorem. (Kuratowski) Let X be metrizable, Y be completely metriz-
able, A C X, and f:A — Y be continuous. Then there is a Gs set G with

A C G C A and a continuous extension ¢:G— Y of f.

Proof. In the preceding notation, let G = AN {z : osc;(z) = 0}. This is a
G's set and since f is continuous on 4, A C G C A.

Now let £ € G. Since z € A, find z, € A, z, — z. Then
lim, (diam(f({Zn+1, Tnt2....}))) = 0, so (f(z,)) is a Cauchy sequence
and thus converges in Y. Let

9(33) = liflln f(mn) '

It is easy to check that ¢ is well-defined, i.e., it is independent of the choice
of (x,.), and extends f. To see finally that ¢ is continuous on GG, we have to
check that osc,(z) =0, for all zx € G. If U is open in X, then g(U) C f(U),
so diam(g(U)) < diam(f(U)), thus osc,(x) < oscs(z) = 0. D

The following is an important application.

(3.9) Theorem. (Lavrentiev’s Theorem) Let X,Y be completely metrizable
spaces. Let A C X, BCY, and f:A — B be a homeomorphism. Then f
can be extended to a homeomorphism h:G — H where G 2 A, H O B and
G, H are G sets.

In particular, a homeomorphism between dense subsets of XY can be
extended to a homeomorphism between dense GG sels.

Proof. By 38,let f, : Gy —= Y, 1 : HH — X, where Gy D A, HH 2 B
are G sets, be continuous extensions of f, f~! respectively. Let R =
graph(f1), S = graph™'(g1) = {(z,y) : = = g1(y)}. Let G = projx(RN
S), H = projy(RNS),sothat A C G C G&G,, BC HC H,, and
e G e qglhk) =z, ye He fLi{ari(y)) = y. Also, h = fL|G is a
homeomorphism of G with H. It is enough, therefore, to show that G, H
are G5 sets. Consider, for example, GG: The map n(z) = (z, f,(x)) is con-
tinuous from G, into X x Y and G = n~!(S). But S is closed in X x Hj,
so it is a G5 in X X Y. Thus, since inverse images of GG§ sets by continuous
functions are G5 too, GG is G5 in (), so GG is G in X. 0

(3.10) Exercise. Let X be a completely metrizable space and A C X. If f :

A — A is a homeomorphism, then f can be extended to a homeomorphism
h:G — G, where G 2D A is a G5 set.
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3.C Polish Subspaces of Polish Spaces

We will characterize here the subspaces of Polish spaces which are Polish
(in the relative topology).

(3.11) Theorem. If X is metrizable and Y C X is completely metrizable,
then'Y is a G in X. Conversely, if X is completely metrizable andY C X
is a Gg, then Y is completely metrizable.

In particular, a subspace of a Polish space is Polish iff it is a Gs.

Proof. For the first assertion, consider the identity idy : ¥ — Y. It is
continuous, so there is a G5 set G with Y € G C Y and a continuous
extension ¢ : G — Y of idy. Since Y isdense in G, ¢ =idg,so0 Y = G.

For the second assertion, let Y = (), U,, with U, open in X. Let
F, = X\Uy,. Let d be a complete compatible metric for X. Define a new
metric on Y, by letting

It is easy to check that this is a metric compatible with the topology of Y.
We show that (Y, d) is complete.
Let (y;) be a Cauchy sequence in (Y,d’). Then it is Cauchy in (X, d).

So y; — y € X. But also for each n, limiij_m|m—m‘ =0, so

for each n, @ y; 7y converges in R, so d(y;, Fy,) is bounded away from 0.

Since d(y;, Fy.) — d(y, Fy.), we have d(y, Fy,) # 0 for all n, so y € F;, for all
n, ie., y €Y. Clearly, . — v in (Y, d’). O

o 1 1
d(z,y) =d(z,y) + min{2'"",
nz::o ‘d(ax, F.)  d(y, Fn)

(3.12) Exercise. Let 0" = 0...0 (n times). Show that the map f(x) =
0% 10 10*2. .., where £ = (z,), is a homeomorphism of A with a co-
countable G set in C. Identify f(N).
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4. Compact Metrizable Spaces

4.A Basic Facts

A topological space X is compact if every open cover of X has a finite
subcover, i.e., if (U;)ics is a family of open sets and X = |J,; Ui, then
there is finite Ip C I such that X = |J,¢ i, Ui- This is equivalent to saying
that every family of closed subsets of X with the finite intersection property
(i.e., one for which every finite subfamily has nonempty intersection) has
nonempty intersection.

Recall also that a topological space X is Hausdorff if every two distinct
points of X have disjoint open nbhds. Metrizable spaces are Hausdorff.

Here are some standard facts about compact spaces.

(4.1) Proposition. i) Compact (in the relative topology) subsets of Hausdorff
spaces are closed.

it) A closed subset of a compact space is comnpact.

itt) The union of finitely many compact subsets of a topological space
1s compact. Finite sels are compact.

iv) The continuous imnage of a compact space is compact. In particular,
if [:X — Y is continuous, where X is compact and Y is Hausdorff, f(F)
is closed (resp. F,) inY, if F is closed (resp. Fy) in X.

v) A continuous injection from a compact space into a Hausdorff space
s an embedding.

v1) (Tychonoff’s Theorem) The product of compact spaces is compact.

vit) The sum of finitely many compact spaces is compact.

For metric spaces we also have the following equivalent formulations
of compactness.

(4.2) Proposition. Let X be a meiric space. Then the following stotements
are equivalent:

1) X is compact,

it) Fvery sequence in X has a convergent subsequence.

iit) X is complete and totally bounded (i.e., for every e > 0, X can be
covered by finitely many balls of radius < €).

In particular, compact metrizable spaces are Polish.

Remark. A compact subset of a metric space is bounded (i.e., has finite
diameter). So compact sets in metric spaces are closed and bounded. This
characterizes compact sets in R™, C", but not in general.

(4.3) Exercise. Show that the unit ball {z € €2 : ||z|| < 1} of Hilbert space
Is not compact.



4. Compact Metrizable Spaces 19

(4.4) Exercise. If X is compact metrizable and d is any compatible metric,
(X, d) is complete.
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