﻿ 3

3. 反双曲函数的定义、图形与特征 3. Definition of inverse hyperbolic functions, graphics and features

[ 反双曲函数的定义及其对数表达式 ] [Definition inverse hyperbolic function and its logarithmic expression]

 ` 函 Letter   数 Number ` ` 记 Remember   号 Number ` 对数表达式 Logarithmic expression 反双曲正弦 Inverse hyperbolic sine 若 x = sh y , If x = sh y, 则 y = Ar sh x Then y = Ar sh x 反双曲余弦 Inverse hyperbolic cosine 若 x = If x = ch y , ch y, 则 y = Ar ch x Then y = Ar ch x 反双曲正切 Inverse hyperbolic tangent 若 x = th y , If x = th y, 则 y = Ar th x Then y = Ar th x 反双曲余切 Inverse hyperbolic cotangent 若 x = cth y , If x = cth y, 则 y = Ar cth x Then y = Ar cth x 反双曲正割 Inverse Hyperbolic Secant 若 x = sech y , If x = sech y, 则 y = Ar sech x Then y = Ar sech x 反双曲余割 Inverse hyperbolic cosecant 若 x = csch x , If x = csch x, 则 y = Ar csch x Then y = Ar csch x
` [ 反双曲函数的图形与特征 ] [Graphics and features inverse hyperbolic function] `
`    反双曲正弦曲线反双曲余弦曲线 Inverse hyperbolic sine curve inverse hyperbolic cosine curve `
`     `

` 曲线关于原点对称 .  曲线关于x轴对称 . Curve symmetric about the origin of the curve on the x-axis symmetry. `
`    拐点 （ 同曲线对称中心 ）： Inflection (with the curve center of symmetry):                    顶点 ： Vertex:  `
`     ， 该点切线斜率为 1 The slope of a tangent point `
`    反双曲正切曲线 Inverse hyperbolic tangent curve                                     反双曲余切曲线 Inverse hyperbolic cotangent curve `
`     `

`    曲线关于原点对称 . 曲线关于原点对称 . Curve symmetrical about the origin curve symmetrical about the origin. `
`    拐点 （ 同曲线对称中心 ）： 不连续点 ： Inflection (curve with the center of symmetry): discontinuity:  `
`     ， 该点切线斜率为 1 渐近线 ： The slope of a tangent point asymptote:  `
`  反双曲正割曲线反双曲余割曲线 Inverse hyperbolic secant hyperbolic cosecant curve curve `
`     `

顶点 Vertex: 不连续点 Discontinuous points:

拐点 Inflection point: 渐近线 Asymptote:

And