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Preface

Category Theory has developed rapidly. This book aims to present
those 1deas and methods which can now be effectively used by Mathe-
maticians working in a variety of other fields of Mathematical research.
This occurs at several levels. On the first level, categories provide a
convenient conceptual language, based on the notions of category,
functor, natural transformation, contravariance, and functor category.
These notions are presented, with appropriate examples, in Chapters I
and II. Next comes the fundamental idea of an adjoint pair of functors.
This appears in many substantially equivalent forms: That of universal
construction, that of direct and inverse limit, and that of pairs of functors
with a natural isomorphism between corresponding sets of arrows. All
these forms, with their interrelations, are examined in Chapters III to V.
The slogan is “Adjoint functors arise everywhere”.

Alternatively, the fundamental notion of category theory is that of a
monoid —asetwithabinary operation of multiplication whichisassociative
and which has a unit; a category itself can be regarded as a sort of general-
ized monoid. Chapters VI and VII explore this notion and its generaliza-
trons. Its close connection to pairs of adjoint functors illuminates the
ideas of universal algebra and culminates in Beck’stheoremcharacterizing

categories of algebras; on the other hand, categories with- a monoidal
structure (given by a tensor product) lead inter alia to the study of more
conventent categories of topological spaces.

Since a category consists of arrows, our subject could also be de-
scribed as learning how to live without elements, using arrows instead.
This line of thought, present from the start, comes to a focus in
Chapter VIII, which covers the elementary theory of abelian categories
and the means to prove all the diagram lemmas without ever chasing
an element around a diagram.

Finally, the basic notions of category theory are assembled in the
last two chapters: More exigent properties of limits, especially of filtered
limits, a calculus of “ends”, and the notion of Kan extensions. This is the
deeper form of the basic constructions of adjoints. We end with the ob-
servations that all concepts of category theory are Kan extensions
(§ 7 of Chapter X).
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Introduction

Category theory starts with the observation that many properties of
mathematical systems can be unified and simplified by a presentation
with diagrams of arrows. Each arrow f: X — Y represents a function;
that is, a set X, a set Y, and a rule x+ fx which assigns to each element
xe X an element fx e Y; whenever possible we write fx and not f(x),
omitting unnecessary parentheses. A typical diagram of sets and func-

tions 1s
Y
7N\
X Z:

h

it is commutative when h is h=g - f, where g- f is the usual composite
function g: f : X — Z, defined by x+—g(f x). The same diagrams apply
in other mathematical contexts; thus in the “category” of all topological
spaces, the letters X, Y, and Z represent topological spaces while f, g,and h
stand for continuous maps. Again, in the “category” of all groups,
X, Y, and Z stand for groups, f, g, and h for homomorphisms.

Many properties of mathematical constructions may be represented
by universal properties of diagrams. Consider the cartesian product

X x Y of two sets, consisting as usual of all ordered pairs {x, y) ofelements

xe X and ye Y. The projections {x, y>+—x, {x, y>+y of the product

on its “axes” X and Y are functions p: X xY—X, g: X xY—-Y. Any
function h: W— X x Y from a third set W is uniquely determined by its
composites poh and g-h. Conversely, given W and two functions
f and g as in the diagram below, there is a unique function h which makes
the diagram commute; namely, hw={fw,gw):

w

N
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Thus. given X and Y, {p. g> is “universal” among pairs of functions from
some set to X and Y, because any other such pair {(f, g) factors uniquely
(via h) through the pair {p.¢). This property describes the cartesian
product X x Y uniquely (up to a bijection); the same diagram, read in the
categoryoftopologicalspacesorofgroups,describesuntquely thecartesian
product of spaces or of the direct product of groups.

Adjointness is another expression for these universal properties.
If we write hom(W. X) for the set of all functions f: W—X and
hom(¢CU, V). (X, Y>) for the set of all pairs of functions f:U—X,
g:V—Y, the correspondence h—{ph,qh)={/,g)> indicated in the
diagram above is a bijection

hom(W, X x Y)=hom({W, W)>. (X, Y)).

This bijection is “natural” in the sense (to be made more precise later)
that it is defined in “the same way"” for all sets W and for all pairs of sets
(X,Y) (and it is likewise “natural” when interpreted for topological
spaces or for groups). This natural bijection involves two constructions
on sets: The construction Wi— W, W which sends each set to the diagonal
pair AW = (W, W), and the construction (X, Y >+ X x Y which sends
each pair of sets to its cartesian product. Given the biection above,
we say that the construction X x Y is a right adjoint to the construction 4,
and that 4 is left adjoint to the product. Adjoints, as we shall see, occur
throughout mathematics.

The construction “cartesian product” is called a “functor” because it
applies suitably to sets and to the functions between them; two functions
k:X— X and t: Y— Y’ have a function k x { as their cartesian product:

kxt: XxY—=X'xY', (Ix,yp—<lkx,ty).

Observe also that the one-point set 1 = {0} serves as an identity under the
operation “cartesian product”, in view of the bijections

IxXAHXE&EXx1 (1)

given by A0, x> =x, 0{(x,0) = x.
The notion of a monoid (a semigroup with identity) plays a central
role in category theory. A monoid M may be described as a set M to-

gether with two functions
uMxM-—-M, n:1-M (2)

such that the following two diagrams commute

MxMxM—LE2  MxM . I x M -1X1 wMx M1 Mx

lm - l.a l l 3

MxM—2" M. M M M

il
|
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here'l in 1 x u is the identity function M— M, and 1 in | x M is the one-
point set | = {0}, while 4 and p are the bijections of (1) above. To say
that these diagrams commute means that the following composites are
equal:

u(Ixpy=pu (ux1), px=4, pu-(Ixn=pg.

These diagrams may be rewritten with elements, writing the function u
(say)as a product u(x, y)=xy for x, ye M and replacing the function
on the one-point set | = {0} by its (only) value, an element y(0)=ue M.
The diagrams above then become

{x,y, 2)F y (X, y2> {0, x>— {u, x> (x, u)——{x, 0
(xy, 2>——(xy)z=x(y2), X = ux, XxXu = X.

They are exactly the familiar axioms on a monoid, that the multiplica-
tion be associative and have an clement u as left and right identity.
This indicates, conversely, how algebraic identities may be expressed by
commutative diagrams. The same process applies to other identities;
for example, one may describe a group as a monoid M equipped with
a function {: M — M (of course, the function x+—x"1!) such that the
following diagram commutes

M—=2oMxM3MxM xr—{x, x)—{x,x™ 1

N R "

] - » M Ob——— u = xx!,

here 0 . M—M x M 1s the diagonal function x—<{x,x)> for xeM,.

while the unnamed vertical arrow M — | = {0} is the evident (and unique)
function from M to the one-point set. As indicated just to the right,
this diagram does state that { assigns to each element x e M an element
x ! which is a right inverse to x.

This definition of a group by arrows u, n, and { in such commutative
diagrams makes no explicit mention of group elements, so applies
to other circumstances. If the letter M stands for a topological space
(not just a set) and the arrows are continuous maps (not just functions),
then the conditions (3) and (4) define a topological group — for they
specify that M is a topological space with a binary operation u of multi-
plication which 1s continuous (simultaneously in its arguments) and
which has a continuous right inverse, all satisfying the usual group

axioms. Again, if the letter M stands for a differentiable manifold (of
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class C'*) while [ is the one-point manifold and the arrows u. n. and ¢
are smooth mappings of manifolds, then the diagrams (3) and (4) become
the definition of a Lie group. Thus groups, topological groups, and Lie
groups can all be described as “diagrammatic” groups in the respective
categories of sets. of topological spaces, and of differentiable manifolds.

This definition of a group in a category depended (for the inverse
in (4)) on the diagonal map 6: M—M x M to the cartesian square
M x M. The definition of a monoid is more general, because the cartesian
product x in M x M may be replaced by any other operation [] on two
objects which is associative and which has a unit 1 in the sense prescribed
by the 1somorphisms (1). We can then speak of a monoid in the system
(C. 3, 1), where C is the category, ] is such an operation, and 1 is its
unit. Consider, for example, a monoid M in (Ab, ®, Z), where Ab is
the category of abelian groups, x is replaced by the usual tensor product
of abelian groups, and 1 is replaced by Z, the usual group of integers;
then (1) is replaced by the familiar isomorphism

ZRX=2X=2X®Z, X an abelian group.

Then a monoid M in (Ab, ®, Z) is, we claim, simply a ring. For the given
morphism u: M@M — M is, by the definition of ®, just a function
MxM—M, call it multiplication, which is bilinear; i.e., distributive
over addition on the left and on the right, while the morphismn: Z— M
of abelian groups is completely determined by picking out one element
of M; namely, the image u of the generator 1 of Z. The commutative
diagrams (3) now assert that the multiplication u in the abelian group M
1S associative and has u as left and right unit: — in other words, that M
1s indeed a ring (with identity = unit).

The (homo)-morphisms of an algebraic system can also be described
by diagrams. If (M, u, n) and {M’, i, n") are two monoids, each described
by diagrams as above, then a morphism of the first to the second may
be defined as a function f: M — M’ such that the following diagrams
commute

M MxM—+&—M 1 T M
lf ]’.Nf lf lf (5)
M, M x M —4— M’ {—1 M.

In terms of elements, this asserts that f(xy)=(fx)(fy) and fu=u/
with u and v’ the unit elements; thus a homomorphism is. as usual, just
a function preserving composite and units. I[f M and M’ are monoids
in (Ab, ®. Z); that is, rings, then a homomorphism [ as here defined 1s
just a morphism of rings (preserving the units).
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Finally, an action of a monoid (M, u,n) on a set S is defined to be
a function v: M x S— S such that the following two diagrams commute

MxMxS-t2 . MxS I xS . MxS
”11 lv \lv
MxS§S—"———§, S.

If we write v(x, s) = x + s to denote the result of the action of the monoid
element x on the element s € S, these diagrams state just that

X-(yes)=(xy)*s, u:s=s

for all x, ye M and all s € S. These are the usual conditions for the action
of a monoid on a set, familiar especially in the case of a group acting
on a set as a group of transformations. If we shift from the category of
sets to the category of topological spaces, we get the usual continuous
action of a topological monoid M on a topological space S. If we take
(M, u, 1) to be a monoid in (Ab, ®, Z), then an action of M on an object
S of Ab is just a left module S over the ring M.

I. Categories, Functors, and Natural Transformations

1. Axioms for Categories

First we describe categories directly by means of axioms, without
using any set theory, and calling them. “metacategories”. Actually, we
begin with a simpler notion, a (meta)graph.

A metagraph consists of objects a, b,c, ..., arrows f,g, h, ..., and two
operations, as follows:

Domain, which assigns to each arrow f an object a=dom f;
Codomain, which assigns to each arrow f an object b=cod f.

These operations on f are best indicated by displaying f as an actual
arrow starting at its domain (or “source”) and ending at its codomain
(or “target™):

f:a—b or abb.

A finite graph may be readily exhibited: Thus + —+— -+ or - =3-.
A metacategory is a metagraph with two additional operations:
Identity, which assigns to each object a an arrow id,=1,:a—a;
Composition, which assigns to each pair (g, f) of arrows with
domg=cod f an arrow g- f, called their composite, with g- f:dom f
— codg. This operation may be pictured by the diagram

b
7\
a g<f >¢

which éexhibits all domains and codomains involved. These operations
in a metacategory are subject to the two following axioms:
Associativity. For given objects and arrows in the configuration

aLbLcisd
one always has the equality

ko(gef)=(kog)- f. (1)
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This axiom asserts that the associative law holds for the operation of
composition whenever it makes sense (i.e., whenever the composites on
either side of (1) are defined). This equation is represented pictorially
by the statement that the following diagram is commutative

k-ig-N=tk-g)= f *d

d

k*" A
Ao~ T,
' ~~
b ¢

Unit law. For all arrows f:a—b and g:b—c composition with
the identity arrow 1, gives

l,of=f and g-l,=g. (2)

This axiom asserts that the identity arrow 1, of each object b acts as an
identity for the operation of composition, whenever this makes sense.

The Egs. (2) may be represented pictorially by the statement that the
following diagram is commutative:

a—L-—b
SN
b——¢

We use many such diagrams consisting of vertices (labelled by objects
of a category) and edges (labelled by arrows of the same category).
Such a diagram is commutative when, for each pair of vertices ¢ anf:l ¢,
any two paths formed from directed edges leading from ¢ to ¢’ yield,
by composition of labels, equal arrows from ¢ to ¢’. A considerable part
of the effectiveness of categorical methods rests on the fact that such
diagrams in each situation vividly represent the actions of the arrows
at hand. |

If b is any object of a metacategory C, the corresponding idenuty
arrow 1, is uniquely determined by the properties (2). For this reason, it
is sometimes convenient to identify the identity arrow 1, with the object b
itself, writing b:b—b. Thus 1,= b =id,, as may be convenient.

A metacategory is to be any interpretation which satisfies all- these
axioms. An example is the metacategory of sets, which has objects all
sets and arrows all functions, with the usual identity functions and t_he
usual composition of functions. Here “function” means a function with
specified domain and specified codomain. Thus a function f: X =Y
consists of a set X, its domain, a set Y, its codomain, and arule x— fx
(i.e., a suitable set of ordered pairs (x, f x)) which assigns, to each element
x € X, an element fx € Y. These values will be written as fx, f,, or f(x),
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as may be convenient. For example, for any set S, the assignment s+ s
for all s e S describes the identity function 15: S— S, if § is a subset of Y,
the assignment st>s also describes the inclusion or insertion function
S— Y ; these functions are different unless S = Y. Given functions f: X —Y
and g:Y—2Z, the composite function g f:X—2Z is defined by
(g f)x=g(fx) for all xe X. Observe that g - f will mean first apply f,
then g — in keeping with the practice of writing each function f to the
left of its argument. Note, however, that many authors use the opposite
convention.

To summarize, the metacategory of all sets has as objects, all sets, as
arrows, all functions with the usual composition. The metacategory of all
groups is described similarly: Objects-are all groups G, H, K ; arrows are
all those functions' f from the set G to the set H for which f:G—H
1s 2 homomorphism of groups. There are many othrer metacategories:
All topological spaces with continuous functions as arrows; all compact
Hausdorff spaces with the same arrows; all ringed spaces with their
morphisms, etc. The arrows of any metacategory are often called its
morphisms.

Since the objects of a metacategory correspond exactly to its identity
arrows, it 1s technically possible to digpense altogether with the objects
and deal only with arrows. The data for an arrows-only metacategory C
consist of arrows, certain ordered pairs {g, f), called the composable
pairs of arrows, and an operation assigning to each composable pair
(g, f) an arrow g- f, called their composite. We say “ge f is defined”
for #(g, f > is a composable pair”.

With these data one defines an identity of C to be an arrow u such
that fou = f whenever the composite f - u is defined and uo g =g when-
ever u - g 1s defined. The data are then required to satisfy the following
three axioms:

(1) The composite (k- g)e f is defined if and only if the composite
ko(g>f) is defined. When either is definedy they are equal (and this
triple composite is written as kg f). |

(1) The triple composite kg f is defined whenever both composites kg
and g f are defined.

(iii) For each arrow g of C there exist identity arrows u and ' of C
such that u'- g and g- u are defined.

In view of the explicit definition given above for identity arrows, the
last axiom is a quite powerful one; it implies that 4’ and u are unique in
(111), and it gives for each arrow g a codomain v’ and a domain u. These
axioms are equivalent to the preceding ones. More explicitly, given a
metacategory of objects and arrows, its arrows, with the given composi-
tion, satisfy the “arrows-only” axioms; conversely, an arrows-only
metacategory satisfies the objects-and-arrows axioms when the identity
arrows, defined as above, are taken as the objects (Proof as exercise:.
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2. Categories

A category (as distinguished from a metacategory) will mean any
interpretation of the category axioms within set theory. Here are the
details. A graph (also called a “diagram scheme™) is a set O of objects,
‘a set A of arrows, and two functions

dom

A—0. | (1)

cod

In this graph, the set of composable pairs of arrows is the set
Ax,A={{g,f)|g,feA and domg=cod f},

called the “product over 0. |
A category 1s a graph with two additional functions

0454, Ax,A——A,

(2)
c—id,, <gif>'_'—"g°f1

called identity and composition, such that
dom(ida)=a = cod(ida), dom(g-f)=domf, cod(g-f)=codg (3)

for all objects ae O and all composable pairs of arrows {g, f) € A X yA,
and such that the associativity and unit axioms (1.1) and (1.2). ho!d.
In treating a category C, we usually drop the letters 4 and O, and write

ceC fin C (4)

for “c is an object of C” and “f is an arrow of C”, respectively. We also

write
hom(b,c)={f|fin C, domf=b, cod f=c} (5)

for the set of arrows from b to c. Categories can be defined directly in
terms of composition acting on these “hom-sets” (§ 8 below); we do n.ot
follow this custom because we put the emphasis not on sets(a rather spec1?l
category), but on axioms, arrows, and diagrams of arrows. We will
later observe that our definition of a category amounts to saying th_at a
category is a monoid for the product x ,, in the general sense described
in the introduction. For the moment, we consider examples.

0 is the empty category (no objects, no arrows);
1 is the category O with one object and one (identity) arrow;

2 is the category © — 9 with two objects g, b, and just one arrow |

a— b not the identity;

Categories T

3 is the category with three objects whose non-identity arrows are

arranged as in the triangle -L\- ;

LL 1s the category with two objects a, b and just two arrows a=2b

not the identity arrows. We call two such arrows parallel arrows.

In each of the cases above there is only one possible definition of
composition.

Discrete Categories. A category is discrete when every arrow is an
identity. Every set X is the set of objects of a discrete category (just add
one identity arrow x— x for each x € X), and every discrete category is
so determined by its set of objects. Thus, discrete categories are sets.

Monoids. A monoid is a category with one object. Each monoid is
thus determined by the set of all its arrows, by the identity arrow, and
by the rule for the composition of arrows. Since any two arrows have a
composite, a monoid may then be described as a set M with a binary
operation M x M — M which is associative and has an identity (= unit).
Thus a monoid is exactly a semigroup with identity element. For any
category C and any object ae C, the set hom(a, a) of all arrows a—a
1S a monoid. ‘

Groups. A group is a category with one object in which EVery arrow
has a (two-sided) inverse under composition.

Matrices. For each commutative ring K, the set Matr, of all rect-
angular matrices with entries in K is a category; the objects are all
positive integers m, n, ..., and each m x n matrix A4 is regarded as a arrow
A : n—m, with composition the usual matrix product.

Sets. If V is any set of sets, we take Ens, to be the category with
objects all sets X eV, arrows all functions f: X — Y, with the usual
composition of functions. By Ens we mean any one of these’ categories.

Preorders. By a preorder we mean a category P in which, given
objects p and p’, there is at most one arrow p—p’. In any preorder B, _.
define a binary relation < on the objects of P with p=p if and only if.
there is an arrow p—p’ in P. This binary relation is reflexive (because
there is an identity arrow p—p for each p) and transitive (because arrows
can be composed). Hence a preorder is a set (of objects) equipped with
a reflexive and transitive binary relation. Conversely, any set P with
such a relation determines a preorder, in which the arrows p—p’ are
exactly those ordered pairs {p, p'> for which p < p'. Since the relation is
transitive, there is a unique way of composing these arrows: since it is
reflexive, there are the necessary identity arrows.

Preorders include partial orders (preorders with the added axiom
that p<p and p'<p imply p=p') and linear orders (partia! orders
such that, given p and p', either p<p’ or p' < p).

Ordinal Numbers. We regard each ordinal number n as the linearly
ordered set of all the preceding ordinalsn=1{0,1,...,n—1}:in particular.
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O is the empty set, while the first infinite ordinal is o = (0,1,2,...}.
Each ordinal n is linearly ordered, and hence is a category (a preorder).
For example, the categories 1, 2, and 3 listed above are the preorders be-
longing to the (linearly ordered) ordinal numbers 1, 2. and 3. Another
example is the linear order w. As a category, it consists of the arrows

0—1—2-53—...,

all their composites, and the identity arrows for each object.

4 1s the category with objects all finite ordinals and arrows f:m—n
all order-preserving functions (i £ j in m implies f; < f;iin n). This category
4, sometimes called the simplicial category, plays a central role
(Chapter VII). _

Finord = Set,, isthecategory withobjects all finite ordinals nand arrows
J :m—n all functions from m to n. This is essentially the category of all
{inite sets, using just one finite set n for each finite cardinal number n.

Large Categories. In addition to the metacategory of all sets — which
Is not a set — we want an actual category Set, the category of all small
sets. We shall assume that there is a big enough set U, the “universe”,
then describe a set x as “small” if it is a member of the universe, and take

Set to be the category whose set U of objects is the set of all small sets, with

arrows all functions from one small set to another. With this device
(details in §7 below) we construct other familiar large categories, as
follows:

Set: Objects, all small sets; arrows, all functions between them.

Set,: Objects, small sets each with a selected base-point; arrows,
base-point preserving functions.

Ens: Category of all sets and functions within a (variable) set V.

Cat: Objects, all small categories; arrows, all functors (§ 3).

Mon: Objects, all small monoids; arrows, all morphisms of monoids.

Grp: Objects, all small groups; arrows, all morphisms of groups.

Ab: Objects, all small (additive) abelian groups, with morphisms
of such. |

Rng: All small rings, with the ring morphisms (preserving units)
between them. |

CRng: All small commutative rings and their morphisms.

R-Med: All small left modules over the ring R, with linear maps.

Mod-R: Small right R-modules.

K-Mod: Small modules over the commutative ring K.

Top: Small topological spaces and continuous maps.

Teph: Topological spaces, with arrows homotopy classes of maps.
Top, : Spaces with selected base point, base point-preserving maps.
Particular categories (like these) will always appear in bold-face type.

Script capitals are used by many authors to denote categories.
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3. Functors

A functor is a morphism of categories. In detail, for categories C and B
a functor T: C— Bwithdomain C and codomain B consists of two suitably
related functions: The object function T, which assigns to each object
¢ of C an object Tc of B and the arrow function (also written T) which
assigns to each arrow f:c—c’ of C an arrow Tf: Tc— T¢’ of B, in such
a way that

Il)=1y., T(g-f)=Tg-TY, (1)

the latter whenever the composite g- f is defined in C. A functor, like a
category, can be described in the “arrows-only” fashion: It is a function T
from arrows f of C to arrows Tf of B, carrying each identity of C to
an identity of B and each composable pair {g, /> in C to a composable
pair {Tg, Tf) in B, with Tg-Tf=T(g- f).

A simple example is the power set functor 2 :Set — Set. Its object
function assigns to each set X the usual power set 2 X, with elements all
subsets SCX'; its arrow function assigns to each f:X—Y that map
P f:PX—>PY which sends each SC X to its image fSC Y. Since both
P(lx)=1zx and P(g-f)=Pg-Pf, this clearly defines a functor
2 .Set—Set.

Functors were first explicitly recognized in algebraic topology,
where they arise naturally when geometric properties are described by
means of algebraic invariants. For example, singular homology in a
given dimension n (n a natural number) assigns to each topalogical space
X an abelian group H,(X), the n-th homology group of X\ and also to
cach continuous map f : X — Y of spaces a corresponding hom morphism
H,(f): H(X)— H,(Y) of groups, and this in such a way that H becomes
a functor Top— Ab. For example, if X = Y =5! is the circle, H (SH=12,
so the group homomorphism H,( f): Z—Z, is determined by an integer d
(the image of 1); this integer is the usual “degree” of the continuous:
map f: §'—S". In this case and in general, homotopic maps f,g: X—Y
yield the same homomorphism H(X)—HL(Y), so H, can actually be
regarded as a functor Toph— Grp, defined on the homotopy category.
The Eilenberg-Steenrod axioms for homology start with the axioms that
H,, for each natural number n, is a functor on Toph, and continue with
certain additional properties of these functors. The more recently
developed extraordinary homology and cohomology theories are also
functors on. Toph. The homotopy groups n,(X) of a space X can also
be regarded as functors; since they depend on the choice of a base point
in X, they are functors Top, — Grp. The leading idea in the use of functors
In topology is that H, or =, gives an algebraic picture or image not just
of the topological spaces, but also of all the continuous maps between
them.
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Functors arise naturally in algebra. To any commutative ring K
the set of all non-singular n x n matrices with entries in K is the usual
general linear group GL,(K); moreover, each homomorphism f: K— K’
of rings produces in the evident way a homomorphism GL, /' GL,(K)
—GL (K') of groups. These data define for each natural number n a
functor GL,: CRng— Grp. For any group G the set of all products
of commutators xyx~1y~!(x, ye G) is a normal subgroup [G, G] of G,
called the commutator subgroup. Since any homomorphism G—H
of groups carrics commutators to commutators, the assignment
G+ [G, G] defines an evident functor Grp— Grp, while G+ G/[ G, G]
defmmes a functor Grp— Ab, the factor-commutator functor. Observe,
however, that the center Z(G) of G (all ae G with ax = x a for all x) does
not naturally define a functor Grp— Grp, because a homomorphism
G— H may carry an element in the center of G to one not in the center of H.

A functor which simply “forgets” some or all.of the structure of an
algebraic object is commonly called a forgetful functor (or, an underlying
functor). Thus the forgetful functor U : Grp—Set assigns to each group G
the set UG of its elements (“forgetting” the multiplication and hence the
group structure), and assigns to each morphism f: G— G’ of groups the
same function f, regarded just as a function between sets. The forgetful
functor U : Rng— Ab assigns to each ring R the additive abelian group
of R and to each morphism f: R— R’ of rings the same function, regarded
just as a morphism of addition.

Functors may be composed. Explicitly, given functors

CLBSA
between categories A, B, and C. the composite functions

cS{Tc) [f=S(Tf)

on objects ¢ and arrows f of C define a functor §+ T: C— A. call§d }he
composite (in that order) of § with T. This composition is associative.
For each category B there is an identity functor Iz: B— B. which acts as
an identity for this composition, Thus we may consider the metacategory
of all categories: its objects are all categories, its arrows are all functors
with the composition above. Similarly, we may form the category
Cat of all small categories — but not the category of all categories.

An isomorphism T:C— B of categories is a functor T from C to B
which is a bijection, both on objects and on arrows. Alternativgly. but
equivalently, a functor T: C— B is an isomorphism if and only if there
is a functor S: B—C for which both composites S T and T § are
identity functors; then S is the two-sided inverse S=T "'

Certain properties much weaker than isomorphism will be useful.

A functor T:C— B is full when to every pair c. ¢’ of objects of C
and to every arrow ¢: Tc— T¢' of B, there is an arrow [:c—¢ of €
with g = T /. Clearly the composite of two full functors is a full functor.
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A functor T: C— B is faithful (or an embedding) when to every pair
¢, ¢’ of objects of C and to every pair f;, f,:c—c of parallel arrows of
Ctheequality Tf, = Tf, : Tc — Tc implies f; = f,. Again, composites of
faithful functors are faith{ul. For example, the forgetful functor Grp— Set
is faithful but not full and not a bijection on objects.

These two properties may be visualized in terms of hom-sets (see (2.5)).
Given a pair of objects ¢, ¢’ € C, the arrow function of T: C— B assigns
to each f:c— ¢ an arrow Tf:Tce—Tc¢ and so defines a function

T. . :hom(c c)-hom(Tc,. Ty, [f—TJ.

Then T is full when every such function is surjective, and faithful when
every such function is injective. For a functor which is both full and
faithful, every such function is a bijection, but this need not mean that
the functor itself is an isomorphism of categories, for there may be objects
of B not in the image of T.

A subcategory S of a category C is a collection of some of the objects
and some of the arrows of C. which includes with each arrow { both the
object dom fand the object cod f, with each object s its identity arrow
1, and with each pair of composable arrows s— s'—s” their composite.
These conditions insure that these collections of objects and
arrows themselves constitute a category S. Moreover. the injection
(inclusion} map §— C which sends each object and each arrow of § to
itself (1in C) 1s a functor, the inclusion functor. This inclusion functor is
automatically faithful. We say that S is a full subcategory of C when the
inclusion functor S—C is full. A full subcategory. given C, is thus
determined by giving just the set of its objects. since the arrows between
any two of these objects s, s’ are all morphisms s— s’ inf C. For example,
the category Set, of all finite sets is a full subcategory of the category Set.

\
N

Exercises

I. Show how each of the following constructions can be regarded as a functor:
The field of quotients of an integral domain: the Lie algebra of a Lie group.

2. Show that functors 1—C, 2— C, and 3-+C correspond respectively to objects.
arrows. and composable pairs of arrows in C.

3. Interpret “functor™ in the following special types of categories: (a) A functor
between two preorders is a function T which is monotonic (i.e. p<p’ implies
Tp < Tp').(b)A functor between two groups (one-object categories) is a morphism

of groups. (c) If G is a group. a functor G—Set is a permutation representation
of G. while G— Matr, is a2 matrix representation of G.

4. Prove that there is no functor Grp— Ab sending each group G to its center

(ConsiderS,— S;—S,. the symmetric groups).

5. Find two different functors T: Grp— Grp with object function 7(G)=G the

identity for every group G.




16 Categories, Functors, and Natural Transformaiions

4. Natural Transformations

Given two functors S, T:C—B, a natural transformation 7.S5-T
is a function which assigns to each objectcof C an arrow 1. =1¢:Sc—Tc
of B in such a way that every arrow f:¢—c¢ in C yields a diagram

¢ Se —=T¢
[f Sfl 1 TS (1)
¢, Se—= 5 T¢

which is commutative. When this holds, we also say that t.: S¢c—Tc
is natural in c. If we think of the functor S as giving a picture in B of
(all the objects and arrows of) C, then a natural transformation 7 is a
set of arrows mapping (or, translating) the picture S to the picture T,
with all squares (and parallelograms!) like that above commutative:

a . S a\ b »Ta r
\ Sy \
h b Sh Sh £o »Th
+ / Vv A b /
¢ Sc — T'cC 7
e
We call 7a, th, tc. .... the components of the natural transformation .

A natural transformation is often called a morphism of functors;
a natural transformation t with every component tc invertible in B
is called a natural equivalence or better a natural isomorphism; in symbols,
t: S =T In this case, the inverses (1¢)”! in B are the components of a
natural isomorphism 17! : T-S. |

The determinant is a natural transformation. To be explicit, let
dety M be the determinant of the nxn matrix M with entries in the
commutative ring K, while K* denotes the group of units (invertible
elements) of K. Thus M is non-singular when det, M is a unit, and detg
is a morphism GL, K— K* of groups (an arrow in Grp). Because the
determinant is defined by the same formula for all rings X, cach morphism
f:K—K' of commutative rings leads to a commutative diagram

GL, K %X K*
GL.,fl | lf‘ (2)
GL K=k K'*

This states that the transformation det: GL,—( )* is natural between

two functors CRng— Grp.
For each group G the projection pgs: G—G/[G, G} to the factor-

commutator group defines a transformation p from the identity functor
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on Grp to the factor-commutator functor Grp— Ab— Grp. Moreover,
pis natural, because_ cach group homomorphism f: G— H defines the
evident homomorphism f” for which the following diagram commutes:

! [ lf' 3)

H—H—H/[H,H].

The double character group vyields a suggestive example in the
category Ab of all abelian groups G. Let D(G) denote the character
group of G, SO that DG = hom(G, R/Z) is the set of all homomorphisms
t: G—R/Z with the familiar group structure, where R/Z is the additive
group of real numbers modulo 1. Each arrow f: G'— G in Ab determines
an arrow Df:DG—DG (opposite direction!) in Ab, with
Dfit=tf:GC—R/Z for each ¢t for composable arrows
D(g- f )=l? foDg. Because of this reversal, D is not a functor (it 1s :;
f‘contravarlant“ functor on Ab to Ab, see §11.2): however, the twice
iterated character group G— D(DG) and the identity I(G)= G are both
functors Ab— Ab. For each group G there is a homomorphism

1¢: G—D(DG)

obtained in a familiar way: To each g€ G assign the function
169 : DG'—-+ R/Z given for any character f € DG by t—tg;thus (t1og)t = t(g)
One verifies at once that 7 is a natural transformation t: I-=» D D: thié
statemen_t _is Just a precise expression for the elementary observatim; that
the df:ﬁmtlon of z depends on no artificial choices of bascs, generators, or
the like. In case G is finite, T¢ 1S an isomorphism; thus, if we restrict
._':lll functors to the category Ab s of finite abelian groups, 7 is a matural
isomorphism. | |
On_ the other hand, for each finite abelian group G there is an isdi

morphism 6¢: G= DG of G to its character group, but this isomorphism
depends on a representation of G as a direct product of cyclic groups
and_ so cannot be natural. More explicitly, we can make D into a co-
variant functor D’: Ab, i—Ab,; on the category Ab., with objects
all' finite abelian groups and arrows all isomorphisms f between such
groups, setting D'G=DG and D' f=Df~!. Then o.:G—D'G is a
map o : I— D’ of functors Ab, ,— Ab . ,, but it is not natural in the sense
of our definition,

A parallel example is the familiar natural isomorphism of a finite-
_dlmznsiol?al vector space to its double dual.

nother example of naturality arises when we com :

Finord of all finite ordinal numbers n with the categorypasr:t ,tl:ff 3lteﬁgl?ilt'§
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4. For functors S, T: C— P where C is a category and P a preorder, show that
there is a natural transformation S—»7 (which is then unique) if and only if
Sc 5 Tc for every object ce C.

5. Show that every natural transformation  : S-= T defines a function (also called 1)
which sends each arrow f: c—c of Ctoan arrow tf:Sc—T¢ of B in such a
way that Tg-tf =1(g f) =149 - S ffor each composable pair (g, /). Conversely,
show that every such function t comes from a unique natural transformation
with 7, =1(1_). (This gives an “arrows only” description of a natural transfor-
mation.)

6. Let F be a field. Show that the category of all finite-dimensional vector spaces

over F (with morphisms all linear transformations) is equivalent to the category
Matr, described in § 2.

S. Monics, Epis, and Zeros

In categorical treatments many properties ordinarily formulated by
means of elements (elements of a set or of a group) are instead formulated
1n terms of arrows. For example instead of saying that a set X has just
one element, one can say that for any other set Y there is exactly one
function Y— X. We now formulate a few more instances of such methods
of “doing without elements”. '

An arrow e:a—b is invertible in C if there is an arrow e’ : b—sg
in C with €e=1, and ee’=1,. If such an ¢’ exists, it is unique, and is
written as ¢ =e™'. By the usual proof, (¢, e;)" ! =e; e !, provided the
composite e, e, is defined and both e, and e, are invertible. Two objects
a and b are isomorphic in the category C if there is an invertible arrow
(an isomorphism) e : a—b; we write az=b. The relation of isomorphism
is manifestly reflexive, symmetric, and transitive.

An arrow m:a—b is monic in C when for any two parallel arrows
J1» f2:d—a the equality mo f; = mo f, implies f, = f,; in other words,
m 1s monic if it can always be cancelled on the left (is left cancellable).
In Set and in Grp the monic arrows are precisely the injections (mono-
morphisms) in the usual sense; i.e., the functions which are one-one into.

An arrow h:a—b is epi in C when for any two arrows 91,92 :b—c
the equality g, - h= g, - himplies g, = g, ; in other words, h is epi when it is
right cancellable. In Set the epi arrows are precisely the surjections

“(epimorphisms) in the usual sense; i.e., the functions onto.

For an arrow h:a—b, a right inverse is an arrow r:b—a with
hr=1,. A right inverse (which is usually not unique) is also called a
section of h. If h has a right inverse, it is evidently epi; the converse holds
in Set, but fails in Grp. Similarly, a left inverse for h is called a retraction
for h, and any arrow with a left inverse is necessarily monic. If gh=1_,
then g is a split epi, h a split monic, and the composite f = hg is defined
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and is an idempotent. Generally, an arrow ‘f :b—b 18 callec! idempotent
when 2= f; an idempotent 1s salid to split when there exist arrows g
h that f =hg and gh= 1. |
and:nsz;ject t isf temi‘nal in C if to each object a in‘C thqre 1S .exactly
one arrow a—t. If t is terminal, the only arrow t—t 1S theﬁ 1dent_1t3{, ?gd
any two terminal objects of C are 1somorphic 1n C. An object s is initial
in C if to each object a there is exactly one arrow s—a. For examgle,
in the category Set, the empty set is an initial o_bject and any onf:-pomt
set is a termindl object. In Grp, the group with one element is both

initial and terminal. o o |
A null object z in C is an object which is both initial and terminal.

If C has a null object, that object is unique up 'to isomorphism, while flc:r
any two objects a and b of C there is a unique arrow a—z—b (the
composite through z), called the zero arrow from a to b. Any com_posug
with a zero arrow is itself a zero arrow. For example, the categories A
and R-Mod have null objects (namely 0!), as does Set, (namely the one-
pou:;i?z.:poid is a category in which every arrow 18 invertible. A typlc;l
groupoid is the fundamental groupoid a(X) of a topologtca}. s;};l{cxjS 3;
An object of n(X) is a point x of X, and an arrow x—Xx 0 n(_ ) 1 :
homotopy class of paths f from x to x'. (Such a p-ath fisa contllmfur
function I— X, I the closed interval I = [Q, 1], with f (P)=x1:; £ )t-- J;c,
while two paths f, g with the same end-points x and x' are omi op:
when there is a continuous function F:IxI — X 'Wlth F(t,0)= f (_t),
F(t, 1)= g(f), and F(0, s) = x, F(1, s)=x for all s apd t‘n}il .) The co:gos: e
of paths g: x'— x" and f: x—X’ is the path h which is “f followed by g,
given explicitly by

h(t) = f(21), 0<t<1/2, W

ition applies also to homotopy classeg, and makes n(X) a
Sa(::;?r;land a gr%upoid (the inverse of any path is the same path traced
' ite direction). - |
B ﬂS“iengpefc:ltae :;:ow in)a groupoid G is‘ invertible, each objec; x in
G determines a group homg(x, x), consisting of all ?:fc—aJﬁ. If t erfi:l if
an arrow [ : x— X', the groups homg(x, x). and homg(x', x _) are 130{1(1101;2 b;
under g+ fgf~! (ie. under conjugation). A grqupmd_ is sa(i) >
connected if there is an arrow joining any two ?f its objects. One - n};
readily show that a connected groupoid is determined up to 1?m::pof Sall
by a group (one of the groups homg(x, x)) j:.md by a set (ihecs o
objects). In this way, the fundamental gro I:lpou.:l n(X) of a pa -do e
space X is determined by the set of points in the space and a group

hom (X, x} - the fundamental group of X.
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Exercises

1. Find a category with an arrow which is both epi and monic, but not invertible

(e.g., dense subset of a topological space).

Prove that the composite of monics is monic, and likewise for epis.

If a composite g < f is monic, so is f. Is this true of g?

Show that the inclusion Z— Q is epi in the category Rng.

In Grp prove that every epi is surjective (Hint. If ¢ : G— H has image M not H,

use the factor group H/M if M has index 2. Otherwise, let Perm H be the group

of all permutations of the set H, choose three different cosets M, Mu and M v

of M, define 0 € PermH by a(xu) = xv, o(xv)=xu for xe M, and ¢ otherwise

the identity. Let y : H— Perm H send each h to left multiplication y, by h, while

wi=0""y,0. Then o =y’ but p*y).

In Set, show that all idempotents split.

7. An arrow f :a—b in a category C is regular when there exists an arrow g : b—a
such that fg f = f. Show that f is regular if it has either a left or a right inverse,
and prove that every arrow in Set is regular.

8. Consider the category with objects { X, ¢, t), where X isaset,eec X,and¢: X — X,
and with arrows f:(X,e,t>—(X', ¢, t'") the functions f on X to X' with
fe=¢ and ft="t'f. Prove that this category has an initial object in which X
is the set of natural numbers, e =0, and ¢ is the successor function.

9. If the functor T:C - B is faithful and Tf is monic, prove f monic.

YA W

o

6. Foundations

One of the main objectives of category theory is to discuss properties
of totalities of Mathematical objects such as the “set” of all groups or
the “set” of all homomorphisms between any two groups. Now it is the
custom to regard a group as a set with certain added structure, so we
are here proposing to consider a set of all sets with some given structure.
This amounts to applying a comprehension principle: Given a property
@(x) of sets x, form the set {x|¢(x)} of all sets x with this property.
However such a principle cannot be adopted in this generality, since it
would lead to some of the famous paradoxical sets, such as the set of all
sets not members of themselves.

For this reason, the standard practise in naive set theory, with the
usual membership relatione, is torestrict the application of the comprehen-
stion principle. One allows the formation from given sets u, v of the set
{u,v} (the set with exactly u and v as elements), of the ordered pair

(u,v), of an infinite set (the set w={0,1,2,...} of all finite ordinals),
and of

The Cartesian Product uxv={{x,y)}|xeu and yev},
The Power Set Pu={v|vCu},

The Union (of a set x of sets) Ux={y|yez for some zex}.
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Finally, given a property ¢(x) (technically, a property expresse_d in
terms of x, the membership relation, and the usual logical connectives,
including “for all sets t” and “there exists a set 1””) and given a set u one

allows
Comprehension for elements of u: {x|xeu and ¢(x)}.

In words: One aliows the set of all those x with a given property ¢

which are members of an already given set u. _q |
To this practise, we add one more assumption: The existence of a

untverse. A universe is defined to be a set U with the following (somewhat
redundant) properties:

(i) xeue U implies xe U,

() ueU and ve U imply {u, v}, (y,v), and uxvelU.

(i) x e U implies xe U and uxeU, |

(iv) we U (here w={0,1,2,...} is the set of all finite ordinals),

(v) if f: a—bis a surjective function withae Uand bC U, thenbe U.

These closure properties for U insure that any of the standard opera-
tions of set theory applied to elements of U will always produce elements
of U; in particular, w € U provides that U also contains all the usual
sets of real numbers and related infinite sets. We can then regard
“ordinary” Mathematics as carried out exclusively within U (i.e., on
elements of U) while U itself and sets formed from U are to be used for
the construction of the desired large categories. °

Now hold the universe U fixed, and call a set u € U a small set. Thus
the universe U is the set of all small sets. Similarly, call a function f:u—v
small when u and v are small sets. This implies that f itself can be regarded
as a small set — say, as the ordered' triple {u, G, v), with G,Cu.x v
the usual set of all {x, y> with xeu, y = fx. The limited comprehenSI_on
principie thus allows the construction of the set 4 of all those sets which
are small functions, since these functions are all elements of U. W? can
now define the category Set of all small sets to be that category in which U
(the set of all small sets) is the set of objects and A (the set of all sma.ll
functions) is the set of arrows. Henceforth Set will always denote this
category. o

A small group is similarly a small set with a group structure; Le., is
an ordered pair (u, m), where u is a small set and m: u X U—ru a'functlon
(binary operation on u) satisfying the usual group axioms. Since any
small group is an element of U, we may form the set of all small groups
and the set of all homomorphisms between two small groups. They

constitute the category Grp of all small groups.

The same process will construct the category of all small Mathematical |

objects of other types. For example, a category is smal! if the set of its
arrows and the set of its objects are both small sets; we will soon form the
category Cat of all small categories. Observe, however, that Set is not

-
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a small category, because the set U of its objects is not a small set (other-
wise U € U, and this is contrary to the axiom of regularity, which asserts
that there are no infinite chains ... Xn € Xp—_1 € X, .3 € € Xg). Similarly,
Grp is not small.

This description of the foundations may be put in axiomatic form.
We are assuming the standard Zermelo-Fraenkel axioms for set theory,
plus the existence of a set U which is a universe. The Zermelo-Fraenkel
axioms {on a membership relation €) are: Extensionality (sets with the
same elements are equal), existence of the null set, existence of the sets
{u, v}, u, vd, Pu, and Ux for all sets u, v, and x, the axiom of infinity,
the axiom of choice, the axiom of regularity, and the replacement axiom:

Replacement. Let a be a set and o(x, y) a property which is functional
for x in a, in the sense that ¢(x, y) and ¢(x, y') for xea imply y=y/,
and that for each x € a there exists a y with ¢(x, y). Then there exists a
set consisting of all those y such that ¢(x, y) holds for x e a.

Briefly speaking, the replacement axiom states that the image of a set
a under a “function” ¢ is a set. It can be shown that the replacement
axiom implies the comprehension axiom, as stated above. Moreover,
our conditions defining a universe U imply that all the seéts x e U (all
the small sets) do satisfy the Zermelo-Fraenkel axioms — for example,
condition (v) in the definition of a universe corresponds to replacement.
We shall see that our assumption of one universe suffices for the purposes
of category theory.

Some authors assume instead sets and “classes”, using, for these
concepts, the Godel-Bernays axioms. To explain this, define a class C
to be any subset CC U of the universe. Since xeue U implies xe U,
every element of U is also a subset of U, therefore every small set is also a
class; but conversely, some classes (such as U itself) are not small sets.
These latter are called the proper classes. Together, the small sets and the
classes satisfy the standard Gdédel-Bernays axioms (see Godel [19407]).

A large category is one in which both the set of objects and the set of.
arrows are classes (proper or otherwise). Using only small sets and all
classes one can describe many of the needed categories — in particular,
our categories Set, Grp, etc. are proper classes, hence are large categories
1n this sense. Initially, category theory was restricted to the study of small
and large categories (and based on the Godel-Bernays axioms). However,
we will have many occasions to form categories which are not classes.
One such is the category Cls of all classes: Its objects are all classes;
its arrows all functions f': C— C’ between classes. Then the set of objects
of Cls is the set 2(U) of all subsets of U: it is not a class; in fact, its cardinal
number is larger than the cardinal of the universe U. Another useful
category i1s Cat’, the category of all large categories. It is not a class.

In the sequel we shall drop the notation U for the chosen universe

and speak simply of small sets, of classes, and of sets, observing that thg
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“sets” include the small sets and the classes, as well as many other sets
such as Z(U), 22(U), {U}. and the like. Note, in particular, that {L'}
1s a set which has only one element (namely, the universe U). It is thus
intuitively very “small”, but it is not a small set in our sense: {UteU
would imply U e U, a contradiction to the axiom of regularity. Thus
“small set” for us means a member of the universe, and nor a set with a
small cardinal number. | ) o

Our foundation by means of one universe does provide, within set
theory, an accurate way of discussing the category of all small Sets and all
small groups, but it does not provide sets to represent certain meta-
categories, such as the metacategory of all sets or that of all groups.
Grothendieck uses an alternative device. He assumes that for every set X
there is a universe U with X € U. This stronger assumption evidently
provides for each universe U a category of all those groups which are
members of U. However, this does not provide any category of all
groups. For this reason, there has been considerable di_scu,ssion of a
foundation for category theory (and for all of Mathematics) not based
on set theory. This is why we initially gave the definition of a category C
in a set-free form, simply by regarding the axioms as first-order axioms

on undefined terms “object of C”, “arrow of C”, “composite”, “identity",
“domain”, and “codomain”. In this style, Lawvere [1964] has given
axioms for the elementary (i.e., first-order) theory of the category of all

sets, as an alternative to the usual axioms on membership.

Exercises

1. Given a universe U and a function f : I—b with domain I € U and with every
value f; an element of U, for i e I, prove that the usual cartesian product I7, f; is

an clement of U. | |
2. (a) Given a universe U and a function f : I—b with domain [ e U, show that

the usual union u, f, is a set of U. _ N
(b) Show that this one closure property of U may replace condition (v) and the

condition x € U implies Ux e U in the definition of a universe,

7. Large Categories

In many relevant examples, a category consists of all (sma'll) Matpe-
matical objects with a given structure, with arrows all the functions which
preserve that structure. We list useful such examples. |

Ab, the category of all small abelian groups, has objects all small
(additive) abelian groups A4, B,... and arrows all homomorphisms

/. A— B of abelian groups, with the usual composition. In this category,

an arrow is monic if and only if it 1s a monomorphism (one-one into).
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Also, an epimorphism (a homomorphism onto) is clearly epi. Conversely,
a homomorphism f: 4A—B which is epl as an arrow must be onto
as a function. For, otherwise, the quotient group B/fA4 is nonzero, so
there are then two different morphisms B— B/f A, the projection p
and the zero morphism 0, which have p S =0=0f, a contradiction to the
assumption that f is epi. In Ab, the zero group 1s both initial and terminal.

A small ring R is a small set with binary operations of addition and
multiplication which satisfy the usual axioms for a ring — including the
existence of a two-sided identity (= unit) 1 for multiplication. Rng
will denote the category of all small rings; the objects are the small
rings R, the arrows f: R—S the (homo)morphisms of rings ~ where
a morphism of rings is assumed to carry the unit of R to that of S. In
this category the zero ring is terminal, and the ring Z of integers is
initial since Z— R is the unique arrow carrying 1 € Z to the unit of the
ring R. The monic arrows are precisely the monomorphisms of rings.
Every epimorphism of rings is epi as an arrow, but the inclusion Z—Q
of Z in the field Q of rational numbers is ep1, but not an epimorphism.

If R is any small ring, the category R-Mod has objects all small
left R-modules A4, B,... and arrows J:A—B all morphisms of R-
modules (R-linear maps). In this category monics are monémorphisms,
epics are epimorphisms, and the zero module is initial and terminal.
If F is a field the category F-Mod, also written Vet,, is that of all vector
spaces (linear spaces) over F. By Mod-R we denote the category of all
small right R-modules. If R and S are two rings, R-Mod-§ is the category
of all small R-S-bimodules (left R-, right S-modules A4 with r(as)=(ra)s
for all re R, ae A, and se S). One may similarly construct categories of
small algebraic objects of any given type. -

The category Top of topological spaces has as objects all small
topological spaces X,Y,... and as morphisms all continuous maps
J: X—Y. Again, the monics are the injections and the epis the surjections.
The one-point space is terminal, and the empty space is initial. Similarly,
one may form the category of all small HausdorlF spaces or of all smalt
compact Hausdorff spaces.

The category Toph has as objects all small topological spaces X, Y, ...,
while a morphism «: X— Y is a homotopy class of continuous maps
f: X—Y; in other words, two homotopic maps f~g: X — Y determine
the same morphism from X to Y. The composition of morphisms is the
usual composition of homotopy classes of maps. In this category, the
homotopy class of an injection need not be a monic, as One may see, for
example, for the injection of a circle into a disc (as the bounding circle
of that disc). This category Toph, which arises naturally in homotopy
theory, shows that an arrow in a category need not be the same thing
as a functton. There are a number of other categories which are useful
m homotopy theory: For example, the categories of C W-complexes,
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of simplicial sets, of compactly generated spaces (see § VIL8). and of
Kan complexes.

Set, will denote the category of small pointed sets (often called "based™
sets). By a pointed set 1s meant a nonvoid set P with a selected element,
written * or *, and called the “base point” of P. A map f:P—Q of
- pointed sets i1s a function on the set P to the set Q which carries base
point to base point: 1.e., which satisfies f(*p) = *,. The pointed sets with
these maps as morphisms constitute the category Set,. In this category
the set {#} with just one point (the base point) is both an initial and a
terminal object. A morphism f is monic in Set if and only if it has a left
inverse, ept if and only If it has a right inverse, and invertible if and only
if it 1s both monic and epic.

Similarly, Top, denotes the category of small pointed topological
spaces: the objects are spaces X with a designated base point *; the mor-
phisms are continuous maps f: X— Y which send the base point of X
to that of Y. Again, Toph,, is the category with objects pointed spaces and
morphisms homotopy classes of continuous base-point-preserving maps
(where also the homotopies are to preserve base points). Both categories
arise in homotopy theory, where the choice of a base point i1s always
needed in defining the fundamental group or higher homotopy groups
of a space.

Binary relations can be regarded as the arrows of a category Rel.
The objects are all small sets X, Y, ..., and the arrows R: X —Y are the
binary relations on X to Y; that is, the subsets RCX xY. If S: Y—2

is another such relation, the composite relation S-R: X —Z is defined
to be

S:R={(x,z)|forsome ye¥, {(x,y>€eR and {y,z)€S}.

The identity arrow X — X is the identity relation on X, consisting of all
{x, x> for x € X. The axioms for a category evidently hold. This category
Rel contains Set as a subcategory on the same objects, where each func-
tion f: X — Y is interpreted as the relation consisting of all pairs {x, fx)>
for x € X. But Rel has added structure: For each R: X—Y there 1s a
converse relation R : Y— X consisting of all pairs {y, x) with {x, y) e R.

A concrete category is a pair (C, U)> where C is a category and U
a faithful functor U : C—Set. Since U is faithful, we may identify each

arrow f of C with the function U f. In these terms, a concrete category
may be described as a category C in which cach object ¢ comes equipped
with an “underlying” set Uc, each arrow f:b—c is an actual function
U b— U c, and composition of arrows is composition of functions. Many
of the explicit large categories described above are concrete categories
in this sense, relative to the evident forgetful functor U, but this is not
so for Toph or for Rel. For the applications, the notion of category is

simpler (and more “abstract™) than that of concrete category.
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8. Hom-sets

For objects a and b in the category C the hom-set
homc(a,b)={f|f 1isan arrow f:a—b in C}

consists of all arrows of the category with domain a and codomain b.
The notation for this set is frequently and variously abbreviated as

hom(a, b) = C(a, b) = hom(a, b) = (a, b) =(a, b). .

A category may be defined in terms of hom-sets as follows. A category
is given by the following data:

(1) A set of objects a, b, ¢, ...,

(i) A function which assigns to each ordered pair {a, b) of objects a
set hom(a, b).

(iii) For each ordered triple {a, b, ¢) of objects a function

hom (b, ¢) x hom(a, b)— hom(a, ¢),

called composition, and written (g, f)+>ge-f for gehom(b,c),
fehom(a, b).

(iv) Foreach object b,an element 1, € hom (b, b), called the identity of b.

These data are required to satisfy the familiar associativity and unit
axioms (1.1) and (1.2), plus an added “disjointness” axiom:

(v) If <a,b) +<a,b"), then hom(a, b)nhom(a’, b’)=@, where @ is
the empty set. ' -

In particular, the associativity axiom may be restated as the require-
ment that the following diagram, with each arrow given in the evident
way by composition, be a commutative diagram:

hom(c, d) x hom(b, ¢) x hom(a, b)—hom(b, d) x hom(a, b)

|

hom(c, d) x hom(a, ¢) +~hom{a, d) .

This definition of a category is equivalent to the original definition
of §2. Axiom (v) above requires that “distinct” hom-sets be disjoint;
it is included to insure that each arrow have a definite domain and a
definite codomain. Should this axiom fail in an example, it can be readily
reinstated by adjusting the hom-sets so that they do become disjoint.
For example, we can replace each original set hom(a, b) by the set
{a} x hom(a, b) x {b}; this amounts to “labelling” each fehom(a,b)
with its domain a and codomain b. Some authors omit this axiom (v).
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A functor T: C— B may be described in terms of hom-sets as the
(usual) object function T together with a collection of functions

T..:C(c, )= B(Tc, TC')

(namely, the functions f— T/, for fe C(c, ¢')) such thateach T, 1. = 1.
and such that every diagram

C(c, ")y x C(c, c) »C{(c, ¢")

1 Tc‘,c“ X Tt:.r.-' J Tc.r”

B(Tc', Tc"yxB(Te, Tc')—B(Tc¢, Tc"),

with horizontal arrows the composition in B and C, is commutative.
We leave the reader to describe a natural transformation 7: ST

in terms of functions C(c,c)—B(Sc, T<').

In many relevant examples, the hom-sets of a category themselves
have some structure; for instance, in the category of vectorspaces V, W, ...
over a fixed field, each hom(V, W) is itself a vector space (of qll
linear transformations V— W). The simplest such case is that 1n
which the hom-sets are abelian groups. Formally, define an Ab-category

(also called a preadditive category) to be a category A in which .egch
hom-set A(a, b) is an additive abelian group and for which composition

is bilinear: For arrows f, f':a-—b and g,¢ : b—c,
g+9)(f+Sf)=gS+g-f+gf+g°f".

Thus Ab, R-Med, Mod-R and the like are all 4 b-categories.
Because the composition (g, f>+>g- f 18 bilinear,

A(b, c) x A(a, b)— A(a, c},
it can also be written (using the tensor. product @ = @,) as a linear map
A(b, )@ A(a, b)— A(a, c),

and the Ab-category A may be described completely in these terms
(without assuming ahefid of time that it is a category). Thus an Ab-
category is given by the data

(i) A set of objects a,b,c, ...; | |

(ii) A function which assigns to each ordered pair of objects (b, ¢)

an abelian group A(b, c);
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(111) For each ordered triple of objects <a, b, ¢> a morphism
A(b, c)® A(a, b)— A(a, c)

of abelian groups called composition, and written gRf+>gof;

(iv) For each object, a morphism Z— A(g, a). (Here Z is the additive
abelian group of integers; this morphism is completely determined by
the image of 1 € Z, which may be written as 1,.)

These data are required to satisfy the associative and unit laws
for composition, stated asin (1.1) and (1.2), or by diagrams. The definition
of Ab-category is just like the definition of category by hom-sets: Set is
replaced by Ab, cartesian product x of sets by tensor product in Ab,
and the one-point set « is replaced by Z. There is an evident generalization
to categories A which have hom-objects A(b, c) in a category like Ab
which is equipped with a multiplication like ® and a unit like Z for this
multiplication.

If A and B are Ab-categories, a functor T: A— B is said to be additive
when every function T:A(q, a)—B(Ta, Tda) is a homomorphism of
abelian groups; thatis, when T(f + f)=T f + TS’ for all parallel pairs f
and f*. Clearly, the composite of additive functors is additive. Ab-cat
will denote the category of all small Ab-categories, with arrows additive
functors.

Notes.

These notes, like those at the end of later chapters, are informal remarks
on the background and prospects of our subject, with references to the biblio-
graphy (for example, H. Pétard [1980b] refers to the second article by Pétard listed
for the year 1980).

The fundamental idea of representing a function by an arrow first appeared
in topology about 1940, probably in papers or lectures by W. Hurewicz on relative
homotopy groups; c.f. [1941]. ,

His initiative immediately attracted the attention of R. H. Fox (see Fox [1943])
and N. E. Steenrod, whose [1941] paper used arrows and (implicitly) functors;
see also Hurewicz-Steenrod [1941]). The arrow J : X—Y rapidly displaced the
occasional notation f(X)C Y for a function. It expressed well a central interest of
topology. Thus a notation (the arrow) led to a concept (category).

Commutative diagrams were probably also first used by Hurewicz.

Categories, functors, and natural transformations themselves were discovered
by Eilenberg-Mac Lane [1942] in their study of limits (via natural transformations)
for universal coefficient theorems in Cech cohomology. In this paper commutative
diagrams appeared in print (probably for the first time). Thus Ext was one of the
first functors considered. A direct treatment of categories in their own right appeared
in Eilenberg-Mac Lane [1945]. Now the discovery of ideas as general as these is
chiefly the willingness to make a brash or speculative abstraction, in this case sup-
ported by the pleasure of purloining words from the philosophers: “Category™
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from Aristotle and Kant, “Functor” from Carnap ( Logische Syntax der Sprache),
and “natural transformation™ from then current informal parlance. Initially,
categories were used chiefly as a language, notably and effectively in the Eilenberg-
Steenrod axioms for homology and cohomology theories. With recent increasing
use, the question of proper foundations has come to the fore. Here experts are still
not in agreement; our present assumption of “one universe” is an adequate stopgap,

not a forecast of the future.
Category theory asks of every type of Mathematical object: “What are the mor-

phisms?”; it suggests that these morphisms should be described at the same time
as the objects. Categorists, however, ordinarily name their large categories by the
common name of the objects; thus Set, Cat. Only Ehresmann [1965] and his school
have the courage to name each category by the common name of its arrows:
our Cat is their category of functors.

I1. Constructions on Categories

1. Duality

Categorical duality is the process “Reverse all arrows”. An exact de-
scription of this process will be made on an axiomatic basis in this section
and on a set-theoretical basis in the next section. Hence for this section
a category will not be described by sets (of objects and of arrows) and -
functions (domain, codomain, composition) but by axioms as in §1.1.

The elementary theory of an abstract category (ETAC) consists of
certain statements 2 which involve letters a, b, c, ... for objects and
letters f, g, h, ... for arrows. These statements are the ones built up from
the atomic statements which involve the usual undefined terms of category
theory; thus, atomic statements are “a is the domain of f”, “b is the
codomain of /7, “i is the identity arrow of a”’, and “g can be composed
with f and h 1s the composite”, “a=>5" and *“f =g”. These atomic state-
ments can also be written as equations in the familiar way: “a= dom f”,
“h=g-f" Astatement X is defined to be any phrase (well formed formula)
built up from the types of atomic statements listed above in the usual
fashion by means of the ordinary propositional connectives (and, or, not,
implies, ifand only if) and the usual quantifiers (“for all a”,“for all f”,*there
exists an a...”, “there exists an f ...”). Thus “f:a-»b” is the abbrevia-
tion we have adopted for the statement, “a is the domain of f and b is
the codomain of . ,

-

A sentence is a statement with all variables quantified (i.e., all variables
are “bound”, none being “free”). For example, “for all f there exist a
and b with f:a—b” is a sentence (one which 1n fact is an axiom, true
in every category). The axioms of ETAC (as given in §1.1) are certain
such sentences.

The dual of any statement X of ETAC is formed by making the
following replacements throughout in 2: “domain” by “codomain”,
“codomain” by “domain” and “h is the composite of g with f” by “h is
the composite of f with g”; arrows and composites are reversed. Logic
(and, or, ...)is unchanged. This gives the following table (a more extensive
table appears in Exercise IV.3.1).
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Statement X Dual statement 2'*
f:a—b f:b—a
a=domf a=codf
i=1, | i=1,
h=g:f h=f-g
f is monic f 1s epi
u is a right inverse of h u 1s a left inverse of h
f is invertible f is invertible
t 1S a terminal object t 1s an initial object .

Note that the dual of the dual is the original statement (X**=1X). If a
statement involves a diagram, the dual statement involves that diagram
with all arrows reversed. |

The dual of each of the axioms for a category is also an axiom. Hence
in any proof of a theorem about an arbitrary category from the axioms,
replacing each statement by its dual gives a valid proof (of the dual
conclusion). This is the duality principle: If a statement X of the elementary
theory of an abstract category is a consequence of the axioms, so is the
dual statement Z*. For example, we noted the (elementary) theorem that
a terminal object of a category, if it exists, is unique up to isomorphism.
Therefore we have the dual theorem: An initial object, if it exists, is unique
up to isomorphism. For more complicated theorems, the duality principle
1s @ handy way to have (at once) the dual theorem. No proof of the dual
theorem need be given. We usually leave even the formulation of the
dual theorem to the reader.

The duality principle also applies to statements involving several
categories and functors between them. The simplest (and typical) case is
the elementary theory of oné functor; i.e., of two categories C and B
and a functor T: C— B. For this theory, the atomic statements are those
listed above for the category C, a corresponding list for the category B,
as well as the statements “Tc=b" or “Tf =h”, giving the values of the
object and arrow functions of T on objects ¢ and arrows f of C. The
axioms include the axioms for a category for C and for B and also the
statements T(gf)=(Tg)(Tf) and T(1,)=1,, which assert that T is
a functor. The dual of a statement is formed by simultaneously dualizing
the atomic parts referring to C and to B (i.e., reversing arrows in C
and in B). Since the statement that T is a functor is self-dual, the duality

principle above is still true.’

We emphasize that duality for a statement involving several categories
and functors between them reverses the arrows in each category but does

not reverse the functors.
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2, Contravariance and Opposites

To each category C we also associate the opposite category C°P. The
objects of C°P are the objects of C, the arrows of C°® are arrows f°°,
In one-one correspondence S f°" with the arrows f of C. For each
arrow fra—b of C, the domain and codomain of the corresponding
S°P are as in f°P:b—a (the direction is reversed). The composite
S g% = (g £)°? is defined in C°° exactly when the composite g f is defined
in C. This clearly makes C° a category. Moreover, the domain of feor
i1s the codomain of £, £°° is monic if and only if f is epi, and so on. Indeed,
this process translates any statement £ about C into the dual statement
2* about C°. In detail, an evident induction on the construction of X
fromatomic statements proves that if ¥ is any statement with free variables
Js g, ... in the elementary theory of an abstract category, then X is true
for arrows f, g, ... of a category C if and only if the dual statement Z*
1S true for the arrows f°F, g°°, ... of the opposite category C°, In particular,
a sentence & 1s true in C* if and only if the dual sentence Z* is true in C.

- This observation allows us to interpret the dual of a property X as the

original property applied to the opposite category (some authors call
C°? the “dual” category, and write it C° = C*). :

If T: C— B is a functor, its object function ¢ Tc¢ and its mapping
function f—Tf, rewritten as f°°(Tf)°F, together define a functor
from C° to B°®, which we denote as T°°: C°°— B®. The assignments
CrHC and T+ T define a (covariant!) functor Cat— Cat.

Consider a functor §:C°"—B. By the definition of a functor, it
assigns to each object ce C® an object Sc of B and to each arrow
S°®:b—aof C°? an arrow Sf°°: Sb—s Sa of B, with S(f°Pg°P)=(S f °F)(Sg°?)
whenever f°Pg°® is defined. The functor S so described may be expressed
directly in terms of the original category C if we write Sf for S f°F:
then § is a contravariant functor on C to B, which assigns to each object
¢e C an object Sce B and to each arrow f:a-+b an arrow 3 /: Sh— Sa
(in the opposite direction), all in such a way that :

S-(Ic): 15';:! §(fg)=(§g) (§f)! (1)

the latter whenever the composite f g 1s defined in C. Note that the arrow
function § of a contravariant functor inverts the order of composition.

Specificexamples of contravariant functors may be conveniently presented
in this form; ie, as functions § inverting composition. An example is
the contravariant power-set functor P on Set to Set: For each set X :
PX ={§|ScC X} is the set of all subsets of X : for each function f: X—Y,
Pf:PY—PX sends each subset TC Y to its inverse image f~!TcC X.
Another example is the familiar process which assigns to each vector
space V' its dual (conjugate) vector space V* and to each linear trans-
formation f: V— W its dual f*: W*— V*, these assignments describe a
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contravariant functor on the category of all vector spaces (over a fixed

field) to itself. f

To contrast, a functor T: C— B as previously defined, in §L3, is
called a covariant functor on C to B. For general discussions it i1s much
more convenient to represent a contravariant functor S on C to B as a
covariant functor S:C°®— B, or sometimes as a covariant functor
$°P - C— B°?. In this book an arrow between (symbols for) categories will
always denote a covariant functor T: C—B or §: C°*— B between the

designated categories. |
Hom-sets provide an important example of co- and contravariant

functors. Suppose that C is a category with small hom-sets, so that each
hom(a, b) = { f|f: a—bin C} isa small set, hence an object of the category
Set of all small sets. Thus we have for each object ae C the covariant

hom- functor
C(a, —) = hom(a, —): C—Set; (2)

its object function sends each object b to the set hom(a, b); its arrow
function sends each arrow k: b—b' to the function

hom(a, k) : hom(a, b})— hom(a, b’) (3)

defined by the assignment fi—kof for each f:a— b. To simplify the
notation, this function hom(a, k) is sometimes written k, and called

“composition with k on the left”, or “the map induced by k’j. |
The contravariant hom- functor, for each object b e C, will be written

covariantly, as
C(—,b)=hom(—, b): C®—Set; (4)

it sends each object a to the set hom(a, b), and each arrow g:a—a’
of C to the function -

hom (g, b) : hom(a’, b)— hom(a, b) (5)

defined by f— fog. Omitting the object b, this fuz;lc_tion pom(g, b) is
sometimes written simply as g* and called "composition with g on the

right”. Thus, for each f:d' —b,
k*f=kof’ : g"‘f:fng_

For two arrows g:a—a’ and k; b—Db’ the diagram

hom(d', b) —L—hom(a, b)

hom(a’, b') ¢ hom(a, b’

in Set is commutative, because both paths send f € hom(a’, b) to kfg.

k.l lk. (6)
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These hom-functors have been defined only for a category C with
small hom-sets. The familiar large categories Grp, Set, Top, etc. do have
this property. To include categories without this property, we can proceed
as follows: Given a category C, take a set V large enough to include all
subsets of the set of arrows of C (for example, V could be the power set
of the set of arrows of C). Let Ens =Set, be the category with objects
all sets X e V, arrows all functions f: X — Y between two such sets and
composition the usual composition of functions. Then each hom-set

C(a, b) = hom(q, b)isanobject of this category Ens, so the above procedure
defines two hom-functors

Cla, —):C—Ens, C(—,b):C*—Ens. (7)

In particular, when Vis the universe of all small sets, Ens =Set; in general,
Ens 1s a (variable) category of sets which acts as a recetving category for
the hom-functors of a category or categories of interest.

There are many other examples of contravariant functors. For X a
topological space, the set Open(X) of all open subsets U of X, when
ordered by inclusion, is a partial order and hence a category; there is an
arrow V— U precisely when V C U. Let C(U) denote the set of all conti-
nuous real-valued functions h: U — R; the assignment h—h | Vrestricting
each h to the subset V is a function C(U)— C(V) for each V C U. This
makes C a contravariant functor on Open (X) to Set. This functor is
called the sheaf of germs of continuous functions on X. On a smooth

manifold, the sheaf of germs of C*-differentiable functions is constructed
in similar fashion.

Moed-R is a contravariant functor from rings R to categories. Spe-
cifically, if g : R— § 1s any morphism of (small) rings, each right S-module
B becomes a right R-module Bp=(Modg)B by “pull-back™ along
o:EachreR actson be Bby b-r=»b-(pr). Clearly Modp 1s a functer
Mod-S—Mod-R, and Mod(g, 0,) = (Modg,)(Modp,), so Mod itself
can be regarded as a contravariant functor on Rng to Cat’, the category
of all large categories.

One may also form the category Mod of all (right) modules over all
rings. An object of Mod is a pair (R, A), where R is a small ring and 4
a small right R-module. A morphism (R, A>—{S, B) is a pair {p, [,
where o : R— S isa morphism of rings and f: A—(Mod p) B is a morphism
of right R-modules. With the evident composition, this yields a category
Mod. A projection functor Mod-— Rng is given by (R, A>+— R. Further
study of the relation of this functor to the previous functor Rng— Cat’

leads to the theory of fibered categories. (Mod is fibered over Rng,
the fiber over each R being the category Mod-R.))
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3. Products of Categories

From two given categories B and C we construct a new category
B x C. called the product of B and C, as follows. An object of BxC
is a pair ¢b, ¢) of objects b of B and ¢ of C; an arrow {b,c>— b, ¢
of Bx C is a pair {f.g) of arrows f:b—b"and g: c—¢’, and the com-
posite of two such arrows -

<b, C> f.9) +<b', C’) S 9'>*<b~, C’”)

is defined in terms of the composites in B and C by

Sgyfogy=Sf"f. 9. (1)
Functors -
BLEBxC4C,
called the projections of the product, are defined on(objects and)arrows by

P{figp=1f Qfigr=9.

They have the following property: Given any category D and two functors

BADLC,

there is a unique functor F: D—BxC with PF =R, QF.= T; explicitly,
these two conditions require that Fh, for any arrow h 1n D, must be
(Rh, Th); conversely, this value for Fh does make F a functor with the

required properties. The construction of F may be visualized by the
following commutative diagram of functors:

D
/ 5F\ 2)

B—-BxC-2-C.

This property of the product category states that the proje:ctions P
and Q are “universal” among pairs of functors to B and 'C . Tt is exactly
like a similar property of the projections from the (cartegxan) product of
two sets, two groups, or two spaces. The general properties of such pro-

ducts in any category will be considered 1n Chapter 111

Two functors U:B—B and V:C—C ‘have a .product
UxV:BxC— B xC whichr may be defined explicitly on obiects and

arrows as
(U V) cy ={Ub Vey  (UxV){fig>=<UL Vg,
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Alternatively, this functor U x V may be described as the unique functor
(as in the diagram above) which makes the following diagram commuta-
tive:

B—ft _BxC—2C

Ul EUKP‘ "V (3)

<+
Bef B xC—<C'.

The product x is thusa pair of functions: To each pair { B, C) of categories,
a new category B x C; to each pair of functors (U, V) a new functor
U x V. Moreover, when the composites U'e U and V'~ V are defined one
clearly has (U’ x V')o (U x V)= U'U x V' V. Hence the operation x itself
is a functor; more exactly, on restricting to small categories, it is a functor

x : Cat x Cat—Cat.

There are similar functors Grp x Grp— Grp, Top xTop—Top, etc.

Our definition of product categories has included in (2) the descrip-
tion of functors F: D— B x C to a product category. On the other hand,
functors S: Bx C—D from a product category are called bifunctors
(on B and C) or functors of two variable objects (in B and in C). Such
bifunctors occur frequently; for instance, the cartesian product X x Y
of two sets X and Y is (the object function of) a bifunctor Set x Set— Set.
Thus our definition of product category gives an automatic definition
of “functor of two variables” — just as the definition of the product X x.Y
of two topological spaces gives an automatic definition of “continuous
function of two variables”. . b

Fix one argument in a bifunctor S; the result is an ordinary functor
of the remaining argument. The whole bifunctor S is determined by these
two arrays of one-variable functors in the following elementary way.

Proposition 1. Let B, C, and D be categories. For all objects ce C
and be B, let

L:B—D, M,:C—D

be functors such that M,(c)=L.(b) for all b and c. Then there exists
a bifunctor S:BxC—D with S(—,c)=L_ for all ¢ and S(b, —)=M,
for all b if and only if for every pair of arrows f: b— b’ and g : c—» ¢’ one has

! Mb'gnch=Lc'fn Mbg (4)

These equal arrows (4) in D are then the value S(f,g) of the arrow
Junction of §.

Proof. If we write b and c for the corresponding identity arrows,
the definition (1) of the composite in B x C shows that

b,g>{f,e>=Lbf,gc) =L/, 9> =LSb.c'g)=C{[,c>4(b,g).
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Applying the functor S to this equation gives

S(b', 9) S(f, ) = S(£,¢) S(b, )
as a commutative diagram :

S(b, 0) 229, §(b, ')
S(f. o | “18(“')

S, )L (b, ).

This is just condition (4) rewritten, so that condition (4) is necessary.
Conversely, given all L, and M,, this condition defines S(f, g) for every
pair f,g; it may be verified that this definition does yield a bifunctor S
with the required properties.

One may also form products of three or more categories, or cembine
the construction of product categories and opposite categories. There
is an evident-isomorphism (B x C)°® = B°? x C°?, A functor B* x C—D
is often called a bifunctor, contravariant in B and covariant in C, with
values in D. For example, if C is a category with small hom-sets, the
hom-sets define such a bifunctor =~

hom : C°° x C—Set. -

Indeed, the commutative diagram (6) of §2 shows_exactly that the co-
and contravariant hom-functors . *
hom(—,c): C?—8Set, hom(b, —):C—Set

———

do sétisfy the condition (4) of the theorem, necessary to make hom

a bifunctor.
Next consider natural transformations between bifunctors
S,S:Bx C—D. Let a be a function which assigns to each pair of objects

be B, ceC an arrow -
a(b,c): S(b, c)— S'(b, ¢) . (5)

in D. Call a natural in b if for each c € C the components a(b, c) for all b

define * _
| a(—,c):8(—,)=>S5(—,0),

a natural transformation of functors B— D. The reader may readily
prove the useful result:

Proposition 2. For bifunctors S, S, the function o displayed in (5)
is a natural transformation o : S-S’ (i.e., of bifunctors) if and only if a(b, ¢)
is natural in b for each ¢ € C and natural in ¢ for each b e B.

Such natural transformations appear in the fundamental definition of
adjoint functors (Chapter IV). A functor F: X—C is the left adjoint
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of a functor G: C— X (opposite direction) when there is a bijection
hom¢(F x, ¢) = hom,(x, G¢)

natural in xe X and ce C. Here hom/(F —, —) is a bifunctor, the com-
posite

an X C FoPx1d . Cop % C homc J’Set ,

and homy(—, G—) similarly (at least when X and C have small hom-
sets).

The product category can be visualized in the case C x 2, where 2
1s the category with one non-identity arrow 0—1; explicitly Cx 2
consists of two copies C x0 and C x 1 of C with arrows joining the first
to the second, as in the figure (“diagonal” arrows omitted) for C=3:

™\

i
i
]
—*
i
1
¥

i

N
/

Cx0 —

Here the functors T, T, : C— C x 2 (“bottom™ and “top”, respectively)

are defined for-each arrow f of C by Ty f=(f,0) and T, f =/, Y
If | denotes the unique non-identity arrow 0— 1 of 2, then we may define
a transformation between Ty, T, : C—C x 2 by

u:To=-T,, wuc=<c >,

for any object c. It maps “bottom” to “top” and is clearly natural. We
call u the universal natural transformation from C for the following
reason. Given any natural transformation z: S-» T between S, T: C— B.
there is a unique functor F: C x2— B with Fuc=1c for any object c.
Specifically, F is, when [ : c—c’,

FLO =SS, FLD=Tf, F{f, I)=Tforc=1c-Sf. (6)

It may be readily verified that these assignments do define a bifunctor
F:Cx2--B, and that Fu=1.

EXxercises

1. Show that the product of categories includes the following known special cases:
The product of monoids (categories with one object), of groups, of sets (discrete
categories).

2. Show that the product of two preorders is a preorder.
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3. If {C.liel} is a family of categories indexed by a set I, d§scribe the product
C=11.C,, its projections P;: C—C,. and establish the universal property of
these projections.

4. Describe the opposite of the category Matry of § 12 |
Show that the ring of continuous real-valued functions on a topological space

is the object function of a contravariant functor on Tep to Rng.

h

4. Functor Categories

Given categories C and B, we consider all functors R".S‘ T. ... :'C — B.
If 6: R=S and t:S--»T are two natural transformations, their com-
ponents for each ce C define compositg arrows (t°o)c=1tc oc which
are the components of a transformation t-cr:R_-» T. To show -0
natural, take any f:c—c¢ in C and consider the diagram

—Re—2L R —

(t-o)¢ Sc Sf +Sc (t-a)¢

L Te—— s T

Since ¢ and t are natural, both small squares are commutative. Hence

the rectangle commutes, so 7° 0 1S natural.

' it ' ' iative: moreover it has
sition of transformations 1s associative, )
e fonchon on 14: T— T with

Hence, given the categories B and C, we may
B¢ = Funct(C, B) with objects

the functors T:C— B and morphisms the natural transformations

for each functor T an identity, the natural transformati

components 17¢=lr..
construct formally a functor category

hetween two such functors. It is often suggestive to write

Nat(S, T) = B°(S, T)={t | t: ST natural} (1)

for the “hom-set” of this category. It need not be a small set.
Functor categories will be used extensive

namely, the famihar “function-set” consisting of all functions
In particular, for B=

' - : 2
B! is isomorphic to B, while B .
its objects are arrows f:a—b of B, and it

ly. For example, if Band C

' ' identiti hen B is also a set;
are sets (categories with all arrows identities), t b

{0,1} a two-point set, {0, 1}€ is (isomorphic to)

“ ” tegory B,

all subsets of C (the “power set” 2 (). For any ca .
sy is called the category of arrows of B
s arrows f— f' are those pairs
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(h, k> of arrows in B for which the square

a h Iaf

"l l" (2)

b k bf

commutes. If M is a monoid (category with one object) Set” is the
category with objects the actions of M (on some set) and arrows the
morphisms of such actions. An object of the functor category Grp™ is a
group with operators M.

If K is a commutative ring and G a group, then the functor category
(K-Mod)¢ is the category of (K-linear) representations of G. Spe-
cifically, each functor T: G— K-Mod is determined by a K-module V
(the image of the single object of the category G) and a morphism
T. G— Aut(V) of groups (a representation of G by linear transformations
V—V). If T' is a second such representation, a natural transformation
o: T-T' is given by a single arrow a: V— V' (its component at the
single object of G) such that the diagram

| S 7

Tﬂl lT'g .(3)

V_._._q_; V"

commutes for every g € G. In representation theory, such a ¢ is called
an intertwining operator. Thus (K-Mod)¢ is the category with objects
the representations of G and morphisms the intertwining operators.

Next we consider the “size” of functor categories. Since every category
B or Cis (essentially) a set of morphisms, within our set theory one can
always form the set of all functors C— B and the set of all natural trans-
formations between two such functors. Hence the functor category BE .
always exists, but it can be “larger” than B and C. Recall that a small
set 1s an element of the (fixed) universe, and a large set (a class) is a sub-
set of the universe. We will show:

If B and C are both small categories, so is B°: |
If the category B is a class and C is small, B€ is large; |
If B has small hom-sets and C is small, B¢ has small hom-sets.

The first is evident. Next consider the second. Since B and C are
fixed, each functor T:C—B is determined by its arrow function
T: Arr C— Arr B. But C is small, so ArrC is a small set, as is therefore the
image of Arr C under T and therefore the representation of T as a set of
ardered pairs. With each functor T represented by a small set in this way,
one may form the set of all these small sets. This set (the set of objects
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of B®) will be a subset of the universe, hence a class. Similarly, the set of
all arrows in B is a class. Therefore B¢ is large, as asserted.

Consider the third assertion. Given S and T, each natural trans-
formation 7:S-= T is determined by the usual function c+— 1,

1:ObjC—| | B(Sc. Tc).

where the union 1s taken over the small set of all objects ce C. But B
has small hom-sets, so each B(—, —) 1s small, as is their union. Therefore
the set of all these functions t is a small set, so B¢ has small hom-sets.

When the category C is large, the functor category B need not be a
subset of the universe. For example, if B= {0, 1} is the set with just two
elements, while C is the set U, then a functor U— B is just a function on
U to a set with two elements. The possible such functions correspond
(as characteristic functions) to the possible subsets of U. Therefore the
set of objects in {0, 1}Y is equivalent to the set 2(U) of all subsets of U,
and this set has a larger cardinal number than U.

Exercises

1. For R a ring, describe R-Mod as a full subcategory of the functor category Ab®,

2. Describe B*, for X a finite set (a finite discrete category). |

3. Let N be the discrete category of natural numbers. Describe the functor category
AbN (commonly known as the category of graded abelian groups).

4. If P and Q are preorders, describe the functor category QF and show that it is
a preorder.

5. If Fin is the category of all finite sets and G is a finite group, describe Fin® (the
category of all permutation representations of G).

6. Let M be the infinite cyclic monoid (elements 1, m, m?, . ..). In the functor categories
(Matr,)? and (Matrg™ show that objects are matrices and isomorphic objects
(matrices) are exactly equivalent and similar matrices, respectively, in the usual
sense of linear algebra. |

7. Given categories B, C, and the functor category B?, show that each functor
H: C— B? determines two functors S, T: C— B and a natural transformation
7:S-+ T, and show that this assignment H— (S, T, ) 1s a bijection.

8. Relate the functor H of Exercise 7 to F of (3.6).

5. The Category of All Categories

We have defined a “vertical” composite 7 - g,

of two natural transformations. There is another “horizontal” composi-
tion for natural transformations. Given functors and natural trans-
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formations
S S
C 11_1-:3 }"r':A (1)

oneé may form first the composite functors S-S and T"-T: C— A and
then construct a square

SSc—3 ,T'S¢

S'tcl JT'rc

S Te— T Te

which is commutative because of the naturality of 7’ for the arrows ¢
of B. Now define (7' 7)c to be the diagonal of this square:

(T°T)c=T'tcotv'Sc=1Tc-S 1c, (2)
To show 7o t: 8’ S-» T' T natural, form

S' S »S' Te—2X T Tc c

R

SJSbWS'TbWT'Tb, b

for any arrow f of C. Horizontally, the composites by definition are
(t>7)c and (¢'° 1) b; the left-hand square commutes because T 1S natural
and S’ is a functor, while the right-hand square commutes because 7’ is
natural and Tf: Tc— Tb is an arrow. The commutativity of the outside
of the fiiagram states that 7’o 7 is natural.
This composition (', 1d—1'01 is readily shown to be associative.

It moreover has identities. If Iz B— B is the identity functor for the

category B and 1,: I+ I, the identity natural transformation of, that
functor to itself, one has 1, t =1 and 1’0 lg=1". Thus 1, is the identity

for the composition o; it is also the identity for the composition -, It is*
convenient to let the symbol S for a functor also denote the identity

transformation 5-++§. With this notation in the situation above we have
composite natural transformations

§c1:5808T, 1eT:S TTH-T.

The de_ﬁ.nition (2) can then be rewritten, using also the vertical
composition, as

tot=(T'o1) (o 8)=(1-T) - (S°1). (3)

Th_e_re Is a2 more general rule. Given three categories and four trans-
formations

T,
C— B4, (4)

-'-'H'I—-*—_-}
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the “vertical” composites under * and the “horizontal” composites under s
are related by the identity (interchange law)

(T d)o(t-0)=(r">1) (0" 0). (5)

The reader may enjoy writing down the evident diagrams needed to prove
this fact. - -

These results may be summarized as {ollows (considering only small
categories):

Theorem L. The collection of all natural transformations is the set
of arrows of two different categories under two different operations of
composition, + and o, which satisfy the interchange law (J). M c?reovgr, any
arrow (transformation) which is an identity for the composition < is also
an identity for the composition *,

Notethat the objects for the horizontal composition-arethe categories,
for the vertical composition, the functors. In using these compositions,
the symbol o for the “horizontal” composjtion 1s often Omlt.tEd (as 1t Is
usually in writing composition of arrows in a category), while the sphd
dot designating “vertical” composition is retained. Observe that objects
and arrows of C may be written as functors c¢: 1—>C.or f 2——+C; tk}en
symbols such as g°c=o0c have their accepted meaning in a situation
such as

1—>C lﬂ B.
Yy

By a double category (Ehresmann) is meant a set whif:h (like the set qf
all natural transformations) is the set of arrows for two dlffereqt composi-
tions which together satisfy (5). A 2-category (short' for two-dimensional
category) is a double category in which every identlty' arrow for the first
composition is also an identity for the seconFl composition. For example,
the category of all commutative squares in Set 1s a f:louble category
(under the evident horizontal and vertical. compositions) but not a
2-category. There are also n-categories fo.r higher n. | |

Two (partially defined) binary operations * and - are §a1d to sgtlsfy
the interchange law when (5) holds wherever the composites on either
side are defined. Here some other examples. If C is a category afxd
.« Cx C—C is a functor (for example, a tensor product), while 0,0', 7
and 7’ are arrows of C such that the composites ¢’c ¢ and 7' t are Fleﬁned,
then the interchange law (5) holds; indeed, it is precisely the requirement
that the functor - preserve composition . If 6, ¢, 7, and 1" are rectangular
matrices such that the usual matrix products ¢'c ¢ and 7o 7 are defined,
while 7+ ¢ denotes the matrix

t 0
b

with blocks  and o along the diagonal. zeroes elsewhere, then (5) holds.
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The functor category B is itself a functor of the categories B and C,
covariant in B and contravariant in C. Specifically, if we consider only
the category Cat of all small categories, it is a functor Cat®® x Cat— Cat:
the object function sends a pair of categories (C, B) to the functor

category B, and the arrow function sends a pair of functors F: B— B’
and G: C'— C to the functor

FS . B¢ ., B¢

defined on objects S€ B¢ as FSS=Fo-S-G and on arrows 7:S-o T in
Bt as FSt = Fo1G. Note, for example, that FC is just “compose with
F on the left” while B® is “compose with G on the right”. This functor
1s an exact analogue to the hom-functor Set°® x Set— Set.

Exercises

1. For small categories 4, B, and C establish a bijection
Cat(A x B, C) = Cat(A, C?),

and show it natural in A4, B, and C. Hence show that — x B : Cat— Cat has a
right adjoint.

2. For categories A, B, and C establish natural isomorphisms
(AxBFfxAx B¢, CA*8x(CP).

Compare the second isomorphism with the bijection of Exercise 1.
3. Use Theorem 1 to show that horizontal composition is a functor,

o: 48 x BC— A

4. Let G be a topological group with identity element e, while o, ¢, 1, 7, are con-
tinuous paths in G starting and ending at e (thus, if I is the unit interval, g : =G
is continuous with g(0) = ¢ = o(1)). Define 1< ¢ to be the path ¢ followed by the
path 7, as in (1.5.1). Define 7o to be the pointwise product of t and g, so that
(teo)t=(zt)(ct) for 0 <t <1. Prove that the interchange law (5) holds.

3. (Hilton-Eckmann). Let S be a set with two (everywhere defined) binary operations
*:§xX§—§, o: §XS§—S which both have the same (two-sided) unit element e

and which satisfy the interchange identity (5). Prove that - and o are equal, and
that each is commutative.

6. Combine Exercises 4 and 5 to prove that the fundamental group of a topological
group is abelian.

1. If T: A—> D is a functor, show that its arrow functions Tos: A(a, b)— D(Ta, Tb)
define a natural transformation between functors 4°° x 4 —Set.
8. For the identity functor I. of any category, the natural transformations

@ Ic- I form a commutative monoid. Find this monoid in the cases C = Grp,
Ab, and Set.
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6. Comma Categories

There 1s another general construction of a category whose objects
are certain arrows, as in the following several special cases.

. If b 1s an object of the category C, the category of objects under b
1s the category (b | C) with objects all pairs {f, ¢>, where ¢ is an object
of C and f:b—c an arrow of C, and with arrows h:{f,c>—{f', ">
thase arrows h:c—c¢ of C for which A f= f" Thus an object of (b | C)
is just an arrow in C from b and an arrow of (b | C) is a commutative
triangle with top vertex b. In displayed form:

b b
objects {f,c): lf; arrows {f,cd-B{ S ¢ %\f (1)
C C—ts ¢’

The composition of arrows in (b | C)is then given by the compositionin C
of the base arrows h of these triangles.

For example, if * denotes any one-point set, while X is any set, each
function *— X is just a selection of a point in the set X ; hence (x | Set)
is just the category of pointed sets. Similarly, (Z | Ab) is the category of
abelian groups, each with a selected element.

If a is an object of C, the category (C | a) of objects over a has

c c—- ¢
objects: lf; arrows: f\ /f : (2)
a a

the triangle commutative. For example, * is terminal in Set so there 1s
always a unique X — =, therefore (Set | *) isomorphic to Set. Or again,
Z 1s a ring, and the category (Rng | Z) is the category whose objects are
rings equipped with a morphism ¢: R—Z (called a ring R with an
“augmentation” ¢) and whose morphisms are morphisms of rings preserv-

ing the augmentation. |
If b is an object of C and S: D— C a functor, the category (b} S)

of objects S-under b has as objects all pairs {f,d> with de ObjD and
f:b—Sd and as arrows h: {f,d>—{S", d'> all those arrows h:d—d’
in D for which f'=Sh-f. In pictures,

b b
objects: Jf ,  arrows h: ‘J/ y (3)
Sd ' Sd——Sd (commutative).

Again, composition is given by composition of the arrows h in D. Note
especially that equality of arrows in (b | S) means their equality as
arrows of D. ’ :
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For example, let U: Grp—Set be the forgetful functor. Then for
each set x an object of (x | U) is a function x—s Ug from x into the
underlying set of some group g; for example, the function mapping x
into t}w underlying set of the free group generated by the elements of the
S€t X 1s one such object. This category (x | U) — and others like it — will
be used extensively in the treatment of adjoint functors.

Again,ifae Cand T: E— Cisa functor, one may construct a category
(T'| a) of objects T-over a.

Here is the general construction. Given categories and functors

the comma category (T | ), also written (T, S), has as objects all triples
Ce,d,f>, with deObjD, e €ObjE, and f:Te—Sd, and as arrows
Ce,d, f>—<e,d, [ all pairs {k, h) of arrows k e—e', h:d—d such
that f'> Tk = Shef. In pictures,

Te Te— . T¢
Objects (e, d, f): lf; arrows <k, h> : Jf | lf' (4)
Sd Sd—"5§d,

with the square commutative. The composite <k’ IS o Y ]
Ck'ek,h'> h), when defined. P ey s
This general description of the comma category (T | S) does include
all the cases listed. Indeed, an object b of C may be regarded as a functor
b:1—C.Taking T = b in this sense, the comma category (T |- S) becomes
th; category (b | S) of objects S-underb. If S = Cis the identity functor of C
tl-_us.becornes In particular the category (b | C) of objects of C under bt
Slm%larly, one may take § to be a functor 1—C; i.e. an object a of C.
Again, take S= T = the identity functor of C. Then (C |C) is exactly
the category C? of all arrows of C. Or take S and T to be objects a and b
of C; then (T | 8§)=(b | a) is the category with objects all arrows f: b—a
and morphisms only the identity arrow for each object; in other words
(b | a) is the set (the discrete category) homg(b, a). This case is the reason
for the choice of the name “comma category” and the notation (T, S) —
a notation which we avoid because the comma is already ov<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>