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Preface to the third edition

The major change between the second and third edition is the separation
of linear and multilinear algebra into two different volumes as well as
the incorporation of a great deal of new material. However, the essential
character of the book remains the same; in other words, the entire
presentation continues to be based on an axiomatic treatment of vector
spaces.

In this first volume the restriction to finite dimensional vector spaces
has been eliminated except for those results which do not hold in the
infinite dimensional case. The restriction of the coefficient field to the
real and complex numbers has also been removed and except for chapters
VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient
field of characteristic zero. In fact, many of the theorems are valid for
modules over a commutative ring. Finally, a large number of problems of
different degree of difficulty has been added.

Chapter I deals with the general properties of a vector space. The
topology of a real vector space of finite dimension is axiomatically
characterized in an additional paragraph.

In chapter II the sections on exact sequences, direct decompositions
and duality have been greatly expanded. Oriented vector spaces have been
incorporated into chapter IV and so chapter V of the second edition has
disappeared. Chapter V (algebras) and VI (gradations and homology)
are completely new and introduce the reader to the basic concepts
associated with these fields. The second volume will depend heavily on
some of the material developed in these two chapters.

Chapters X (Inner product spaces) XI (Linear mappings of inner
product spaces) XII (Symmetric bilinear functions) XIII (Quadrics) and
XIV (Unitary spaces) of the second edition have been renumbered but
remain otherwise essentially unchanged.

Chapter XII (Polynomial algebra) is again completely new and de-
velopes all the standard material about polynomials in one indeterminate.
Most of this is applied in chapter XIII (Theory of a linear transformation).
This last chapter 1s a very much expanded version of chapter XV of the
second edition. Of particular importance is the generalization of the
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results in the second edition to vector spaces over an arbitrary coefficient
field of characteristic zero. This has been accomplished without reversion
to the cumbersome calculations of the first edition. Furthermore the
concept of a semisimple transformation is introduced and treated in
some depth.

One additional change has been made: some of the paragraphs or
sections have been starred. The rest of the book can be read without
reference to this material.

Last but certainly not least, I have to express my sincerest thanks
to everyone who has helped in the preparation of this edition. First of
all I am particularly indebted to Mr. S. HALPERIN who made a great
number of valuable suggestions for improvements. Large parts of the
book, in particular chapters XII and XIII are his own work. My warm
thanks also go to Mr. L. YONKER, Mr. G. PEDERZOLI and Mr. J. SCHERK
who did the proofreading. Furthermore I am grateful to Mrs. V. PEDERZOLI
and to Miss M. PETTINGER for their assistance in the preparation of the
manuscript. Finally I would like to express my thanks to professor
K. BLEULER for providing an agreeable milieu in which to work and to
the publishers for their patience and cooperation.

Toronto, December 1966 WERNER H. GREUB



Preface to the second edition

Besides the very obvious change from German to English, the second
edition of this book contains many additions as well as a great many
other changes. It might even be called a new book altogether were it not
for the fact that the essential character of the book has remained the
same; in other words, the entire presentation continues to be based on
an axiomatic treatment of linear spaces.

In this second edition, the thorough-going restriction to linear spaces
of finite dimension has been removed. Another complete change 1s the
restriction to linear spaces with real or complex coefficients, thereby
removing a number of relatively involved discussions which did not
really contribute substantially to the subject. On p. 6 there 1s a list of
those chapters in which the presentation can be transferred directly to
spaces over an arbitrary coefficient field.

Chapter I deals with the general properties of a linear space. Those
concepts which are only valid for finitely many dimensions are discussed
in a special paragraph.

Chapter II now covers only linear transformations while the treat-
ment of matrices has been delegated to a new chapter, chapter III. The
discussion of dual spaces has been changed; dual spaces are now intro-
duced abstractly and the connection with the space of linear functions is
not established until later.

Chapters IV and V, dealing with determinants and orientation re-
spectively, do not contain substantial changes. Brief reference should
be made here to the new paragraph in chapter IV on the trace of an
endomorphism — a concept which is used quite consistently throughout
the book from that time on.

Special emphasize is given to tensors. The original chapter on Multi-
linear Algebra is now spread over four chapters: Multilinear Mappings
(Ch. VI), Tensor Algebra (Ch. VII), Exterior Algebra (Ch. VIII) and
Duality in Exterior Algebra (Ch. IX). The chapter on multilinear
mappings consists now primarily of an introduction to the theory of the
tensor-product. In chapter VII the notion of vector-valued tensors has
been introduced and used to define the contraction. Furthermore, a
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treatment of the transformation of tensors under linear mappings has been
added. In Chapter VIII the antisymmetry-operator i1s studied in greater
detail and the concept of the skew-symmetric power is introduced. The
dual product (Ch. IX) is generalized to mixed tensors. A special paragraph
in this chapter covers the skew-symmetric powers of the unit tensor and
shows their significance in the characteristic polynomial. The paragraph
“Adjoint Tensors” provides a number of applications of the duality theory
to certain tensors arising from an endomorphism of the underlying space.

There are no essential changes in Chapter X (Inner product spaces)
except for the addition of a short new paragraph on normed linear spaces.
In the next chapter, on linear mappings of inner product spaces, the
orthogonal projections (§ 3) and the skew mappings (§ 4) are discussed
in greater detail. Furthermore, a paragraph on differentiable families of
automorphisms has been added here.

Chapter XII (Symmetric Bilinear Functions) contains a new paragraph
dealing with Lorentz-transformations.

Whereas the discussion of quadrics in the first edition was limited to
quadrics with centers, the second edition covers this topic in full.

The chapter on unitary spaces has been changed to include a more
thorough-going presentation of unitary transformations of the complex
plane and their relation to the algebra of quaternions.

The restriction to linear spaces with complex or real coefficients has
of course greatly simplified the construction of irreducible subspaces in
chapter XV. Another essential simplification of this construction was
achieved by the simultaneous consideration of the dual mapping. A final
paragraph with applications to Lorentz-transformation has been added
to this concluding chapter.

Many other minor changes have been incorporated — not least of which
are the many additional problems now accompanying each paragraph.

Last, but certainly not least, I have to express my sincerest thanks
to everyone who has helped me in the preparation of this second edition.
First of all, I am particularly indebted to CORNELIE J. RHEINBOLDT
who assisted in the entire translating and editing work and to Dr.
WERNER C. RHEINBOLDT who cooperated in this task and who also
made a number of valuable suggestions for improvements, especially in
the chapters on linear transformations and matrices. My warm thanks
also go to Dr. H. BOLDER of the Royal Dutch/Shell Laboratory at
Amsterdam for his criticism on the chapter on tensor-products and to
Dr. H. H. KELLER who read the entire manuscript and offered many
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important suggestions. Furthermore, I am grateful to Mr. GIORGIO
PeDERZOLI who helped to read the proofs of the entire work and who
collected a number of new problems and to Mr. KHADJA NESAMUDDIN
KHAN for his assistance in preparing the manuscript.

Finally I would like to express my thanks to the publishers for their
patience and cooperation during the preparation of this edition.

Toronto, April 1963 WERNER H. GREUB
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Chapter O

Prerequisites

0.1. Sets. The reader is expected to be familiar with naive set theory
up to the level of the first half of [11]. In general we shall adopt the no-
tations and definitions of that book; however, we make two exceptions.
First, the word function will in this book have a very restricted meaning,
and what Halmos calls a function, we shall call a mapping or a set map-
ping. Second, we follow Bourbaki and call mappings that are one-to-one
(onto, one-to-one and onto) injective (surjective, bijective).

0.2. Topology. Except for § 5 chap. I, § 8, Chap. IV and parts of chap-
ters VII to IX we make no use at all of topology. For these parts of the
book the reader should be familiar with elementary point set topology
as found in the first part of [16].

0.3. Groups. A group is a set G, together with a binary law of com-
position

u.GxG-G

which satisfies the following axioms (u(x, y) will be denoted by xy):
1. Associativity: (xy)z=x(yz)
2. Identity: There exists an element e, called the identity such that

Xe=¢eX=JX.

3. To each element xeG corresponds a second element x™ ' such that

xx—l —

The identity element of a group is uniquely determined and each ele-
ment has a unique inverse. We also have the relation

1 ..—1

(xy) '=ytx

As an example consider the set S, of all permutations of the set {1...n}
and define the product of two permutations o, T by

(ot)ima(ri) i=1...n.
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In this way S, becomes a group, called the group of permutations of n
objects. The identity element of S, is the identity permutation.
Let G and H be two groups. Then a mapping

.G H
is called a homomorphism if

o(xy)=¢x0y x,y€G.

A homomorphism which is injective (resp. surjective, bijective) is called
a monomorphism (resp. epimorphism, isomorphism). The inverse map-
ping of an isomorphism is clearly again an isomorphism.

A subgroup H of a group G is a subset H such that with any two ele-
ments ye H and ze€ H the product yz is contained in H and that the inverse
of every element of H is again in H. Then the restriction of u to the subset
H x H makes H into a group.

A group G is called commutative or abelian if for each x, yeG xy=yx.
In an abelian group one often writes x+ y instead of xy and calls x+y
the sum of x and y. Then the unit element is denoted by 0. As an example
consider the set Z of integers and define addition in the usual way.

0.4. Factor groups of commutative groups.* Let G be a commutative
group and consider a subgroup H. Then H determines an equivalence
relation in G given by

!

x~x" fandonlyif x—x"eH.

The corresponding equivalence classes are the sets { H+ x} and are called
the cosets of H in G. Every element xeG is contained in precisely one
coset X. The set G/H of these cosets is called the factor set of G by H and
the surjective mapping
n:G— G/H
defined by
X =X, X€EX

is called the canonical projection of G onto G/H. The set G/H can be made
into a group in precisely one way such that the canonical projection be-
comes a homomorphism; i.e.,

n(x+y)=nx+my. (0.1)
To define the addition in G/H let x€ G/H, pe€ G/H be arbitrary and choose

*) This concept can be generalized to non-commutative groups.
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xe G and yeG such that
nx=X and wy=7y.

Then the element 7 (x+y) depends only on X and j. In fact, if x', y" are
two other elements satisfying #x’=x and ny’ =) we have that

xX'—xeH and y —yeH
whence
(x +y) = (x + y)eH

and so n(x'+y")=n(x+y). Hence, it makes sense to define the sum X+
by

f+7=n(x+y) IX=X,Ty=7.

It is easy to verify that the above sum satisfies the group axioms. Relation
(0.1) i1s an immediate consequence of the definition of the sum in G/H.
Finally, since 7 is a surjective map, the addition in G/H is uniquely deter-
mined by (0.1).

The group G/H 1s called the factor group of G with respect to the sub-
group H. Its unit element is the set H.

0.5. Fields. A fieldis a set I' on which two binary laws of composition,
called respectively addition and multiplication, are defined such that

1. I' is a commutative group with respect to the addition.

2. The set I' — {0} is a commutative group with respect to the multi-
plication.

3. Addition and multiplication are connected by the distributive law,

(x+By=ay+ By, ap, yerl.

The rational numbers Q, the real numbers R and the complex numbers
C are fields with respect to the usual operations, as will be assumed with-
out proof.

A homomorphism ¢@:I'->I'" between two fields is a mapping that pre-
serves addition and multiplication.

A subset 4 =T of a field which is closed under addition, multiplication
and the taking of inverses is called a subfield. If A is a subfield of I', I’ is
called an extension field of A.

Given a field I' we define for every positive integer k the element ke (e
unit element of I') by

ke=¢+--+¢

R—-’-}‘M

The field I is said to have characteristic zero if ke+0 for every positive
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integer k. If I' has characteristic zero it follows that kesk’e whenever
k+k'. Hence, a field of characteristic zero 1s an infinite set. Throughout
this book it will be assumed without explicit mention that all fields are of
characteristic zero.

For more details on groups and fields the reader is referred to [29].

0.6. Partial order. Suppose S is a set, and that a relation, denoted by
<, is defined in S satistying the following conditions:

(i) Reflexivity: x<x, xeS

(ii)) Antisymmetry: x<y and y<x implies that x=y

(iii) Transitivity: x<y and y <z implies that x<z
Then S 1s called a partially ordered set. If, in addition for every x, yeS
either x <y or y<x, then S is said to be linearly ordered or to be a chain.

Clearly every subset of a partially ordered set (chain) is again a par-
tially ordered set (chain). However, a subset of a non-linearly partially
ordered set may still be a chain.

If S is a partially ordered set, and 7T is a subset, then an element a€ .S is
called an upper bound for T, if a=x for every xe€T. An element be S is
called a lower bound for T if b< x for every xe T. Now consider the sets
Upp T and Low T of upper and lower bounds for 7. An clement g, €S
is called a least upper bound for T (l.u.b.) if a,e Upp T and g, is a lower
bound for Upp 7. Similarly an element b,€S is called a greatest lower
bound for T (g.1.b.) if byeLow T and b, is an upper bound for Low T. It
is clear that these conditions determine a, and b, uniquely if they exist
and that a, and b, are respectively the g.l.b. and l.u.b. for Upp T and
Low T.

If for every two elements x, yeS the set {x, y} has a g.1l.b. and a L.u.b.
(denoted by x Ay and x v p) then S is called a lattice. It is easily checked
that any finite subset {x,, ..., x,} of a lattice has a g.l.b. and a lLu.b.,
which are denoted respectively by Ax; and V x;.

As an example of a lattice, consider the collection of subsets of a given
set, X, ordered by inclusion. If U, V are any two subsets, then

UAV=Un¥V and UvV=UUYV.

If S, T are two partially ordered sets and ¢:S—7 is a mapping such

that ox <@y whenever x<y, then ¢ is called a homomorphism of par-
tially ordered sets.
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Yector Spaces

§ 1. Vector spaces

1.1. Definition. A vector (linear) space, E, over the field I' is a set of
elements x, y, ... called vectors with the following algebraic structure:

I. Eis an additive group; that is, there is a fixed mapping Ex E—»E
denoted by

(x,y)>x+y (1.1)

and satisfying the following axioms:
L1. (x+y)+z=x+(y+z) (associative law)
[.2. x+y=y+x (commutative law)
[.3. there exists a zero-vector O; i.e., a vector such that x+0=
0+ x=x for every xeF.
I.4. To every vector x there is a vector —x such that x+(—x)=0.

II. There is a fixed mapping I' x E— E denoted by

(A, x) > Ax (1.2)

and satisfying the axioms:
I1.1. (Ap)x=A(ux) (associative law)
I1.2. (A+u)x=2Ax+ux
A(x+y)=Ax+ Ay (distributive laws)
I.3. 1:x=x (1 unit element of I')

(The reader should note that in the left hand side of the first distributive
law, + denotes the addition in I while in the right hand side, + denotes
the addition in E. In the sequel, the name addition and the symbol + will
continue to be used for both operations, but it will always be clear from
the context which one is meant). I' is called the coefficient field of the
vector space E, and the elements of I" are called scalars. Thus the mapping
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(1.2) defines a multiplication of vectors by scalars, and so it is called
scalar multiplication.

If the coefficient field I' is the field R of real numbers (the field C of
complex numbers), then E is called a real (complex) vector space. For the
rest of this paragraph all vector spaces are defined over a fixed, but arbi-
trarily chosen field I' of characteristic 0.

If {x,, ..., x,} is a finite family of vectors in E, the sum x; +--- + x, will

often be denoted by ) x,.
i=1

Now we shall establish some elementary properties of vector spaces.
It follows from an easy induction argument on n that the distributive laws
hold for any finite number of terms,

(z Ai)-x = Y i
i=1 i=1
=)
i=1

A«'Z X; Axi
i=1

Proposition I: The equation
Ax=0
holds if and only if
A=0 or x=0.

Proof: Substitution of u=0 in the first distributive law yields
Ax=4Ax+4+0x
whence 0x =0. Similarly, the second distributive law shows that

AQ =0,

Conversely, suppose that Ax=0 and assume that A40. Then the as-
sociative law II.1 gives that

1'x=(A"1")x=4""1Ax)=4"10=0

and hence axiom II.3 implies that x=0.
The first distributive law gives for u=— A1

Ax+(—A)x=A-A)x=0x=0
whence
(—A)x=—41x.
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In the same way the formula

AM—x)=—A1x
is proved.
1.2. Examples. 1. Consider the set I'"=I"x--- xI' of n-tuples

n

x=(&,...,&), Eerl

and define addition and scalar multiplication by

(EY LY+ () =(E 0t L E 4 T
and

L(EL, .., E = (AEL, ..., AEm).

Then the associativity and commutativity of addition follows at once
from the associativity and commutativity of addition in I'. The zero vec-
tor is the. n-tuple (0, ..., 0) and the inverse of (&%, ..., €") is the n-tuple
(=&, ..., —&"). Consequently, addition as defined above makes the set
I'" into an additive group. The scalar multiplication satisfies II.1, II.2,
and II.3, as is equally easily checked, and so these two operations make
I'" into a vector space. This vector space is called the n-space over I'. In
particular, I' 1s a vector space over itself in which scalar multiplication
coincides with the field multiplication.

2. Let C be the set of all continuous real-valued functions, f, in the
interval [:0=¢ <1,

f:I-R.

If f, g are two continuous functions, then the function f+ g defined by

(f +8)()=f()+g()

is again continuous. Moreover, for any real number A, the function Af
defined by

(A1) = 4-f (1)

is continuous as well. It is clear that the mappings

(f.g)»f+g and (A f)—Af

satisfy the systems of axioms I. and II. and so C becomes a real vector
space. The zero vector is the function 0 defined by

0(t)=0
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and the vector —f is the function given by

(=)@ ==5().

Instead of the continuous functions we could equally well have con-
sidered the set of k-times differentiable functions, or the set of analytic
functions.

3. Let S be an arbitrary set and E be a vector space. Consider all map-
pings f: S— E and define the sum of two mappings f and g as the mapping

(f +2)(s)=f(s)+g(s) seS

and the mapping Af by
(1)) =21f(s)  seS.

Under these operations the set of all mappings f: S— E becomes a vector
space, which will be denoted by (S; E). The zero vector of (S; E) is the
function f defined by f(s)=0, seS.

1.3. Linear combinations. Suppose E is a vector space and x4, ..., X,
are vectors in E. Then a vector xe E is called a linear combination of the
vectors x; if it can be written in the form

x=Y Ax;, Nerl.

More generally, if (x,),. 4 is any family of vectors in E, a vector xe E will
be called a linear combination of the vectors x, if there are scalars 1%, only
finitely many of which being different from zero, such that

D Ax,. some 4, F+ 0

X =< ixxQ

0 every 4, =0

We shall simply write
x= ) A*x,
e A
and it is to be understood that only finitely many A* are different from
zero. In particular, by setting 4, =0 for each a we obtain that the O-vector
is a linear combination of every family. It is clear from the definition that
if x is a linear combination of the family x, then x is a linear combination
of a finite subfamily.
Suppose now that x is a linear combination of vectors x,, ac A
x= Y A"x,, Ael

aeA

and assume further that each x, is a linear combination of vectors y,g,
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peB,,
xa=;uaﬂyaﬂa Juaﬂer'

Then the second distributive law yields
x=zlaxn:= Zﬂﬂ'uuaﬁyaﬂ — Zﬂ@aﬂyaﬂ: Qaﬂ=lauaﬂ

and hence x is a linear combination of the vectors y,.

A subset S < E is called a system of generators for E if every vector xe E
is a linear combination of vectors of S. The whole space E is clearly a
system of generators. Now suppose that S is a system of generators for
E and that every vector of S'is a linear combination of vectors of a subset
T<S. Then it follows from the above discussion that 7 is also a system
of generators for E.

1.4. Linear dependence. Let (x,),. 4 be a given family of vectors. Then
a non-trivial linear combination of the vectors x, is a linear combination
Y A*x, where at least one scalar A° is different from zero. The family {x,}

is called linearly dependent if there exists a non-trivial linear combination
of the x,; that is, if there exists a system of scalars A* such that

Y A%x, =0 (1.3)

and at least one 4*+0. It follows from the above definition that if a sub-
family of the family {x,} is linearly dependent, then so is the full family.
An equation of the form (1.3) is called a non-trivial linear relation.

A family consisting of one vector x is linearly dependent if and only if

x=0. In fact, the relation
1-:0=0

shows that the zero vector is linearly dependent. Conversely, if the vector
x is linearly dependent we have that Ax=0 where A40. Then Proposition
I implies that x=0.

It follows from the above remarks that every family containing the zero
vector is linearly dependent.

Proposition II: A family of vectors (x,),.4 is linearly dependent if and
only if for some fe A, xg is a linear combination of the vectors x,, a+ f.
Proof: Suppose that for some e A,
Xﬂ — Z Aa xa .

g*ua



10 Chapter I. Vector spaces

Then setting A= —1 we obtain that
Y A%x, =0

and hence the vectors x, are linearly dependent.
Conversely, assume that

Y A*x,=0

and that A#+0 for some fe A. Then multiplying by (4#)~! we obtain in
view of I1.1 and I1.2

0=x, + ) (¥)7"¥x,

a+f

xg=— Y ()1 Ax,.

a+f

1.e.

Corollary: Two vectors x, y are linearly dependent if and only if y=4x
(or x=A1y) for some A€er.

1.5. Linear independence. A family of vectors (x,),. 4 is called linearly
independent if it is not linearly dependent; i.e., the vectors x, are linearly
independent if and only if the equation

Y A*x, =0

implies that A*=0 for each a e A. It is clear that every subfamily of a line-
arly independent family of vectors is again linearly independent. If
(X,).c 4 1S a linearly independent family, then for any two distinct indices
o, e A, x, ¥+ x5, and so the map a— x, is injective.

Proposition III: A family (x,),£4 of vectors is linearly independent if
and only if every vector x can be written in at most one way as a linear
combination of the x, 1.e., if and only if for each linear combination

x =) Ax, (1.4)

the scalars A* are uniquely determined by x.
Proof: Suppose first that the scalars A* in (1.4) are uniquely determined
by x. Then in particular for x=0, the only scalars A* such that

Y A*x, =0

are the scalars A*=0. Hence, the vectors x, are linearly independent. Con-



§ 1. Vector spaces 11

versely, suppose that the x, are linearly independent and consider the
relations

x=YAx,, x=) u*x,.
Then
Z(Au — ua)xa =0

whence in view of the linear independence of the x,

A — " =0, € A
1.e., A*=u"
1.6. Basis. A family of vectors (x,),.4 in Eis called a basis of E if it is
simultaneously a system of generators and linearly independent.
In view of Proposition I1I and the definition of a system of generators,
we have that (x,), 4 is a basis if and only if every vector xe E can be
written in precisely one way as

x=) &x,, &erl.

The scalars &* are called the components of x with respect to the basis

(xa)a e A

Proposition IV: Suppose S=(x,...x,,) is a finite system of generators
for E, and assume that the vectors x,, ..., x, are linearly independent.
Then there exists a basis of £ which contains the vectors x,(¢=1...r) and
is contained in S.

Proof: Consider the collection 7(S) of all linearly independent subsets
of S containing the vectors x, (¢=1...r). Let Te I(S) be a subset such
that the number, n, of elements in 7 1s maximized (clearly, rEn<m). We
shall show that T is a basis for E. Without loss of generality we may as-
sume that T consists of the vectors x;...x,. Then these vectors generate E.

In fact, for every i>n, the (n+ 1) vectors x,...x,, x; are linearly depend-
ent; hence there exists a non-trivial relation

ZIA”xv+ Ax;=0. (1.5)

In particular, A*<£0, because A'=0 would imply that
Y A'x,=0
v=1

whence A'=0(v=1, -, n) and hence all coefficients in (1.5) would be
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zero. Now multiplication of (1.5) by (4')~! yields
x;=— % () Ax,.
v=1

This relation shows that every vector x; (i=n+1, ..., m) is a linear
combination of the vectors x,(v=1, ..., n). It follows from sec. 1.3 that
the vectors x,(v=1, ..., n) form a system of generators for E. Since they
are linearly independent, they form a basis.

With the aid of Zorn’s lemma we can generalize the above proposition
to an arbitrary system of generators.

Theorem I: Let E be a non-trivial vector space. Suppose S is a system
of generators for E and that R is a linearly independent subset of S. Then
there exists a basis, 7, of E such that RcT<S.

Proof: Consider the collection 7 (S) of all linearly independent subsets
of S which contain R and order them by inclusion. Clearly Re(S). If
{S,} is a chain of such subsets, then

U S,eI(S). (1.6)
In fact, it is clear that R<|_) S,. Now suppose that
Y ¥x;=0, Ael, x;elS,.
i=1 a

Then for each i, x;eS,, for some «;. Since {S,} is a chain, we may assume

that
S..<S,, (i=1...n)
whence
X, €S

I X1

(i=1...n).

Since the vectors of S,, are linearly independent, it follows that A'=0
(i=1...n) and hence the set |_JS, is linearly independent, which proves
(1.6). *

Now Zorn’s lemma can be applied to yield a maximal element T in
1(S). Since TeI(S)it follows that the set T is linearly independent. To
prove that T is a system of generators for E let xe S be an arbitrary vector
such that x¢ 7. Then the set x U 7 is linearly dependent because otherwise
we would have that xU T'eI (S) which contradicts the maximality of T.
Since x U T is linearly dependent there exists a non-trivial relation

Ax+¥YAx;=0 AAel, xeT. (1.7)
i
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In particular, 140, because A=0 would imply that A'=0 for every i.
Hence, multiplying (1.7) by A~ we obtain

x=—3 A" 2x,.

This equation shows that T generates S. Since S generates E it follows
that T generates E. Consequently, T is a basis for E. Finally, since
Tel(S) we have

RcTcS.

Corollary I: Every system of generators contains a basis.

Proof: Since Eis non-trivial and S'is a system of generators, there exists
a non-zero vector x€S. Applying the theorem for R={x} we see that
there exists a basis 7 of E such that T<S.

Corollary II: Every linearly independent set, R, in E can be extended
to a basis of E.
Proof: Set S=FE and apply the theorem.

Corollary ITI: Every non-trivial vector space has a basis.
1.7. Example 4: Consider the space I'" defined in example 1 of sec.
1.2. Then the vectors
x; =(0...0,1,0...0)

R WP

i

form a basis of I'”", as is easily verified.
Example 5: Let S be an arbitrary set and consider the set C(S) of all
mappings f: S— I such that f(s)=0 for all but finitely many seS. Then

if fand g are two such mappings, and A is any scalar, the mappings f+ g
and Af defined by

(f +28)(s5)=f(s) +5(s)
(Af)(s) =21 (s)

and

are again contained in C(S). As in Example 3 of sec. 1.2 we make the set
C(S) into a vector space.
Now for each ae S denote by f, the mapping given by

2O P
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Then the vectors f, are a basis of C(S). In fact, if fe C(S) is any vector,
let a,...a, be the finitely many distinct elements of S such that f(a,)=+0.
Setting f (a;)=A' we obtain that

f=3 4.

and so the f, form a system of generators for C(S).
On the other hand, assume a relation

Y Af,=0, AXerl.
i=1
Then for each j we have

0= (% #1) (@)= T #fula) =¥

whence A/ =0. It follows that the f, are linearly independent, and hence
they form a basis of C(S).
Finally, consider the set mapping S—{f,} given by

a-—f,.

This is clearly a bijection, and so we may identify a with the mapping f,.
With this identification S becomes a basis of C(S). C(S) is called the free
vector space over the set S.

Problems

1. Show that axiom II.3 can be replaced by the following one: The
equation Ax=0 holds only if A=0 or x=0.

2. Given a system of linearly independent vectors (x;, ..., x,), prove
that the system (x,, ...x;+4x;, ...x,), i%j with arbitrary 4 is again line-
arly independent.

3. Show that the set of all solutions of the homogeneous linear differ-
ential equation

d’y  dy
T4+ p-  +qgy=0
dt? P dt 4

where p and ¢ are fixed functions of ¢, is a vector space.
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4. Which of the following sets of functions are linearly dependent in
the vector space of Example 2?

a) fi=3t; fr=t+5;, fi=2t% fo=(+1)
b)) fi=@+1) fLb=t2=1; fa=20"+2t-3

c) f1=1; fa=¢€; fz=e"

d) f; =t*; J2=1; fa=1

e) fi=1—t;, f,=t(1—=1); f3=1-—1t%.

5. Let E be a real linear space. Consider the set E x E of ordered pairs
(x, y) with xe E and yeE. Show that the set Ex E becomes a complex
vector space under the operations:

(x1aJ’1) + (%3, ¥2) = (%1 + x5, y1 + .Vz)
and

(«+iB)(x,y)=(ax—By,ay + Bx) («, B real numbers).

6. Which of the following sets of vectors in R* are linearly independent,
(a generating set, a basis)?

a) (1,1,1, 1), (1,0,0,0), (0, 1,0, 0), (0,0, 1, 0), (0, 0, 0, 1)
b) (1,0, 0, 0), (2, 0, 0, 0)

o) (17, 39, 25, 10), (13, 12, 99, 4), (16, 1, 0, 0)

d) (1,40,0),(0,0,1,1), (0,4, 3, 1), (3, 0,0, )

Extend the linearly independent sets to bases.

7. Are the vectors x;=(1,0, 1); x,=(i, 1,0), x3=(i, 2, 1 +i) linearly
independent in C°? Express x=(1, 2, 3)and y=(i, i, i) as linear combi-
binations of x, x,, x;.

8. Recall that an n-tuple (4,...4,) is defined by a map f:{l...n}—>TI
given by

f@=4 (i=1..n).

Show that the vector spaces C{1...n} and I'" are equal. Show further that
the basis f; defined in Example 5 coincides with the basis f; defined in
Example 4.

9. Let S be any set and consider the set of maps
f:85->I"

such that f(x)=0 for all but finitely many xeS. In a manner similar to
that of Example 5, make this set into a vector space (denoted by C(S, I'")).
Construct a basis for this vector space.
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10. Let (x,),4 be a basis for a vector space E and consider a vector
a=)yE&x,.

Suppose that for some fe 4, &# 40. Show that the vectors (x,),+ 4, a form
again a basis for E.

11. Prove the following exchange theorem of Steinitz: Let (x,),c4 be a
basis of E and q;(i=1...p) be a system of linearly independent vectors.
Then it is possible to exchange certain p of the vectors x, by the vectors
a; such that the new system is again a basis of E. Hint: Use problem 10.

12. Consider the set of polynomial functions f: R— R,

f(x)= i=io o X",

Make this set into a vector space as in Example 3, and construct a natural
basis.

§ 2. Linear mappings

In this paragraph, all vector spaces are defined over a fixed but arbi-
trarily chosen field I' of characteristic zero.

1.8. Definition. Suppose that E and F are vector spaces, and let
¢:E— F be a set mapping. Then ¢ will be called a linear mapping 1f

e(x+y)=¢x+o¢y x,yeE (1.8)
and
p(Ax)=Ad¢px Ael,xeE (1.9)

(Recall that condition (1.8) states that ¢ is a homomorphism between
abelian groups). If F=TI then ¢ is called a linear function 1n E.
Conditions (1.8) and (1.9) are clearly equivalent to the condition

‘P(;lix:) = ?/:,Ai P X

and so a linear mapping is a mapping which preserves linear combinations.
From (1.8) we obtain that for every linear mapping, ¢,

90=0(0+0)=¢(0)+ ¢(0)
whence ¢ (0)=0. Suppose now that
Y Aix, =0 (1.10)
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is a linear relation among the vectors x;. Then we have

quoxi == (p(ZAixE) =¢0=0
whence
YAex,=0. (1.11)

Conversely, assume that ¢: E—F is a set map such that (1.11) holds
whenever (1.10) holds. Then for any x, yeE and Ael set

u=x+y and v=A4x.
Since
u—x—y=0 and v—4Ax=0
it follows that

e(x+y)—ox—@y=0
and

e(Ax)—Aex=0

and hence ¢ is a linear mapping. This shows that linear mappings are
precisely the set mappings which preserve linear relations.

In particular, it follows that if x,...x, are linearly dependent, then so
are the vectors ¢x,...¢x,. If x,...x, are linearly independent, it does not,
however, follow that the vectors ¢@x,...¢x, are linearly independent. In
fact, the zero mapping defined by ¢ox=0, xe E is clearly a linear mapping
which maps every family of vectors into the linearly dependent set (0).

A bijective linear mapping ¢: E— F is called a linear isomorphism and
will be denoted by ¢: E = F. Given a linear isomorphism ¢ : E 5 F consider
the set mapping ¢ ~': E«F. It is easy to verify that ¢ ~! again satisfies the
conditions (1.8) and (1.9) and so it is a linear mapping. ¢~ ' is bijective
and hence a linear isomorphism. It is called the inverse isomorphism of .
Two vector spaces E and F are called isomorphic if there exists a linear
isomorphism of E onto F.

A linear mapping ¢:E-FE is called a linear transformation of E. A
bijective linear transformation will be called a linear automorphism of E.

1.9. Examples: 1. Let E=TI"" and define ¢: E— E by

@ (¢, ... & = (& +&%,8%...,8.

Then ¢ satisfies the conditions (1.8) and (1.9) and hence it is a linear
transformation of £.
2. Given a set S and a vector space E consider the vector space (S; F)
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defined in Example 3, sec. 1.2. Let ¢:(S; E)— E be the mapping given by
of =f(a) fe(S;E)

where ae S is a fixed element. Then ¢ is a linear mapping.

3. Let ¢:E—FE be the mapping defined by ¢ox=Ax, where Ael is a
fixed element. Then ¢ is a linear transformation. In particular, the iden-
tity map 1: E—E, 1x=x, is a linear transformation.

1.10. Composition. Let ¢: E—F and : F—» G be two linear mappings.
Then the composition of ¢ and

Yo E—G
is defined by

(Wo@)x =y(px) xeE.

Voo (X Aix) =y (LAox)
= Z)“ill’ﬂqoxi

shows that ¥ - ¢ is a linear mapping of Einto G. Y- ¢ will often be denoted
simply by ¥ o. If ¢ is a linear transformation in E, then we denote ¢ ¢ by

¢%. More generally, the linear transformation ¢..... ¢ is denoted by ¢*.

\,\ﬁ—v
We extend the definition to the case k=0 by setting ¢° =1. A linear trans-

formation, ¢, satisfying o*=1 is called an involution in E.

1.11. Generators and basis.

Proposition I: Suppose S is a system of generators for £ and ¢4:S—F
is a set map (F a second vector space). Then ¢, can be extended in at most
one way to a linear mapping

o.:E—->F

The relation

A necessary and sufficient condition for the existence of such an extension
is that

Y X oox; =0 (1.12)
whenever

YAx;=0.

Proof: If ¢ is an extension of ¢, we have for each finite set of vectors
x;e S that

Cozfxi = Zfﬁoxi = Zf%xf-
i i i

Since the set S generates E it follows from this relation that ¢ is uniquely
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determined by ¢,. Moreover, if

Zlixi=0 xiES

it follows that
Y X0ox; =Y Fox; =Y Vx;=¢0=0

and so condition (1.12) is necessary.
Conversely, assume that (1.12) is satisfied. Then define ¢ by

@Zlixizzjuiqooxi, xiES. (1.13)
To prove that ¢ is a well defined map assume that

YAx;=Yu'y;,  xeS, yeS.
i J
Then
Zj'lxi — Zﬂjyj = ()
1 J

whence in view of (1.12)

Ziiqooxi - Zﬂjq?o}’j =0
i J
and so |
S X% = Y4 9o,
1 J

The linearity of ¢ follows immediately from the definition, and it 1s clear
that ¢ extends ¢,.

Proposition II: Let (x,),.4 be a basis of E and ¢,:{x,} = F be a set
map. Then ¢, can be extended in a unique way to a linear mapping
@o.E-F.

Proof: The uﬂiqueness follows from proposition I. To prove the exist-
ence of ¢ consider a relation

Y A*x, =0.

Since the vectors x, are linearly independent it follows that each A*=0,
whence

Zla(poxa = 0.

Now proposition / shows that ¢, can be extended to a linear mapping
p:E-F,
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Corollary: Let S be a linearly independent subset of £ and ¢,:S—F
be a set map. Then ¢, can be extended to a linear mapping ¢: E— F.

Proof: Let T be a basis of E containing S (cf. sec. 1.6). Extend ¢, in an
arbitrary way to a set map yo: T—F. Then s, may be extended to a linear
mapping v : E— F and it is clear that { extends ¢,.

Now let ¢: E—F be a surjective linear map, and suppose that S is a
system of generators for E. Then the set

¢(5) = {px|xeS}

is a system of generators for F. In fact, since ¢ is surjective, every vector
yeF can be written as

y=0x

for some xeE. Since S generates E there are vectors x;eS and scalars
Eel such that

X =Z§ixi .
whence
y=0QXx =Z‘:lqoxi!

This shows that every vector yeF is a linear combination of vectors in
¢(S) and hence ¢(S) is a system of generators for ¢(S).

Next, suppose that ¢: E— F 1s injective and that S is a linearly inde-
pendent subset of E. Then ¢ (S) is a linearly independent subset of F. In
fact, the relation

YAXox;=0, xS

implies that
0> AFx;=0.
Since ¢ is injective we obtain
Zli xi = 0
whence, in view of the linear independence of the vectors x;, A'=0. Hence
¢ (S) is a linearly independent set.

In particular, if ¢:E— F is a linear isomorphism and (x,),. 4 is a basis
for E, then (¢x,),4 1S a basis for F.

Proposition I1I: Let ¢: E—F be a linear mapping and (x,),. 4 be a basis
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of E. Then ¢ is a linear isomorphism if and only if the vectors y,=¢x,

form a basis for F.
Proof: If ¢ is a linear isomorphism then the vectors form a linearly

independent system of generators for F. Hence they are a basis. Converse-
ly, assume that the vectors y, form a basis of F. Then we have for every

yeF
y=210Ve=20" 09X, =03 "X,
and so ¢ is surjective.
Now assume that

PY A X, =@ P'X,.
Then it follows that
0= Zl“qox —Zu ? X,

= Z(l" -~ u’)ya

Since the vectors y, are linearly independent, we obtain that A*=pu* for
each o, and so

Y Ax, = px,.

& &

It follows that ¢ is injective, and hence a linear isomorphism.

Problems

1. Consider the vector space of all real valued continuous functions
defined in the interval a<:<b). Show that the mapping ¢ given by

@:x(t) - tx(t)
is linear.
2. Which of the following mappings of I'* into itself are linear trans-

formations?

a) (£,8%8%,¢e (e -8, 8,8

b) (¢, 8%, 83, &N > (AE%, &% — &1, 83, &%)

c) (&4, 8%, 83,64 = (0,83, &%, + €2 + £ + &%)

3. Let E be a vector space over I', and let f,...f, be linear functions in
E. Show that the mapping ¢: E—~TI'" given by

ox =(f1(x),.... fo(x))

1S linear.
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4. Suppose ¢@: E—TI" is a linear map, and write

P X = (fl (JC), "'ﬂfr(x))'

Show that the mappings f;: E— I are linear functions in E.
5. Let S and T be two arbitrary sets and ¢ be an arbitrary mapping of
S into 7. Prove that ¢ induces a linear mapping

@:C(S)— C(T)
(cf. sec. 1.7, Example 5) defined by
@Y AxSx= 2 AxSyx-

xeS xesS

6. Let E be a vector space over I" and consider the vector space C(E).
Show that there is a unique linear map

ng: C(E)> E suchthat nf,=x,xeE.

7. Let E, F be vector spaces over I', and ¢: E— F be any mapping. Let
@: C(E)— C(F) be the linear mapping of problem 5, and let

ng:C(E)— E and #no:C(F)—> F

be the linear mappings of problem 6. Show that a necessary and sufficient
condition for ¢ to be linear is that the diagram

C(E)% C(F)
nE | | e
E 5 F

be commutative.
8. Let

n
v
P=)> a,t ael
v=20

be a fixed polynomial and let f be any linear function in a vector space E.
Define a function P(f): E—»I by

P(f)x =v§,0avf(x)".

Find necessary and sufficient conditions on P that P(f) be again a linear
function.

§ 3. Subspaces and factor spaces

In this paragraph, all vector spaces are defined over a fixed, but arbitrarily
chosen field I' of characteristic 0.
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1.12. Subspaces. Let E be a vector space over the field I'. A non-empty
subset, E,, of E 1s called a subspace if for each x, ye F; and every scalar

Ael x + yek, | (1.14)

and
AxeE,. (1.15)

Equivalently, a subspace is a subset of £ such that
Ax +puyek,

whenever x, ye E,. In particular, the whole space E and the subset (0)
consisting of the zero vector only are subspaces. Every subspace E,c E
contains the zero vector. In fact, if x, € E, 1s an arbitrary vector we have
that 0=x, —x, € E,. A subspace E; of E inherits the structure of a vector
space from E. -

Now consider the injective map i: E;— E defined by

I1X=Xx, xek,.

In view of the definition of the linear operations in £, 7 is a linear map-
ping, called the canonical injection of E, into E. Since i is injective it fol-
lows from (sec. 1.11) that a family of vectors in E, is linearly independent
(dependent) if and only if it is linearly independent (dependent) in E.

Next let § be any non-empty subset of E and denote by E, the set of
linear combinations of vectors in S. Then any linear combination of vec-
tors in E, is a linear combination of vectors in S (cf. sec. 1.3) and hence
it belongs to E,. Thus E_ is a subspace of E, called the subspace generated
by S, or the linear closure of S.

Clearly, S is a system of generators for E.. In particular, if the set S is
linearly independent, then S is a basis of E,. We notice that E.=.S if and
only if S 1s a subspace itself.

1.13. Intersections and sums. Let E, and E, be subspaces of E and
consider the intersection E,; N E, of the sets £, and E,. Then E; N E, is
again a subspace of E. In fact, since Oe E; and OeE, we have 0eE, N E,
and so E, n E, 1s not empty. Moreover, 1t is clear that the set £, n E,
satisfies again conditions (1.14) and (1.15) and so it is a subspace of E.
E, n E, i1s called the intersection of the subspaces E, and E,. Clearly,
E, N E, is a subspace of E, and a subspace of E,.

The sum of two subspaces E;, and E, is defined as the set of all vectors
of the form

X=Xy 4+ X, x,€E\,x,€E, (1.16)
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and is denoted by E, + F,. Again it is easy to verify that E, + E, is a sub-
space of E. Clearly E, + E, contains E, and E, as subspaces.

A vector x of E, + E, can generally be written in several ways in the
form (1.16). Given two such decompositions

xX=x;+Xx, and x=x] + X,
it follows that
X, — X1 =x,~—X,.
Hence, the vector
zZ=X,— X}

is contained in the intersection E, N E,. Conversely, let x=x, +x,, x, € E,,
x,eE, be a decomposition of E and z be an arbitrary vector of E, n E,.
Then the vectors

Xxy=xy—zeE;, and x,=x,+z€eE,

form again a decomposition of x. It follows from this remark that the
decomposition (1.16) of a vector xe E, + E, is uniquely determined if and
only if E; n E,=0. In this case E, + E, 1s called the (internal) direct sum
of E; and E, and is denoted by E, ® E,.

Now let S, and S, be systems of generators for £, and E,. Then clearly
S, U S, 1s a system of generators for E; + E,. If T, and T, are respectively
bases for E, and E, and the sum is direct, E, N E,=0,then T, U T, is a
basis for E;@E,. To prove that the set T, U T, is linearly independent,
suppose that

ZA‘xi+Zufyj=0, x,€T,y,€T,.
Then | J
D Axy == @ y;eE N E; =0
whence | J
Zlixi=0 and Z,ujyj=0.
; j

Now the x, are linearly independent, and so A'=0. Similarly it follows
that u/ =0.
Suppose that
E=E, ®E, (1.17)

is a decomposition of E as a direct sum of subspaces and let F be an arbi-
trary subspace of E. Then it is not in general true that
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as the example below will show. However, if E;cF, then (1.18) holds.
In fact, 1t 1s clear that
FNE, @FnE,cF. (1.19)

On the other hand, if

y=Xx{+ X, x.€E,x,eE,
is the decomposition of any vector yeF, then

x16E1=FﬂE1, x2=y—x16FﬂE2.
It follows that
FCFn EIG')FO Ez. (1.20)

The relations (1.19) and (1.20) imply (1.18).
Example 1: Let E be a vector space with a basis e, ¢,. Define E,, E,
and F as the subspaces generated by e,, e, and e, + e, respectively. Then

E=E ®E,
while on the other hand
FnNnE =FnE,=0.
Hence
FFFNE ®FNE,.

1.14. ‘Arbitrary families of subspaces. Next consider an arbitrary family
of subspaces E,c E, ac A. Then the intersection () E, is again a subspace

of E. The sum X E, is defined as the set of all vectors which can be written

&

as finite sums, x=Yx,, x,cE, (1.21)

and 1s a subspace of E as well. If for every ae 4

Ean Z Eﬁ=0
B¥a

then each vector. of the sum ) E, can be uniquely represented in the form
(1.21). In this case the space ;,‘Ea is called the (internal) direct sum of the
subspaces E,, and is denotedaby Y E,.

If S, 1s a system of generators ;’or E,, then the set |_JS, is a system of
generators for 2E,. If the sum of the E, is direct and t_l‘, is a basis of E,,

then \JT, is a basis for ) E,.
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Example 2: Let (x,),.4 be a basis of E and E, be the subspace generated
by x,. Then

E=)E,.

Suppose
E=)E, (1.22)

is a direct sum of subspaces. Then we have the canonical injections
i, E,—~E. We define the canonical projections n,: E— E, determined by

where

It is clear that the =, are surjective linear mappings. Moreover, it is easily
verified that the following relations hold:

, I =«
nrxolﬁ={0 B::a

Yi,ngx=x  xekE.
X

1.15. Complementary subspaces. An important property of vector
spaces 1s given in the

Proposition I: 1f E,| is a subspace of E, then there exists a second sub-

space E, such that
E —_ El 6’) Ez .

E, 1s called a complementary subspace for E, in E.

Proof: We may assume that E, + E and E, #(0) since the proposition
is trivial in these cases. Let (x,) be a basis of E, and extend it with vectors
yg to form a basis of E. Let E, be the subspace of E generated by the
vectors yz. Then

E=E ®E,.
In fact, since (x,)U (y,) is a system of generators for E, we have that
E=E, +E,. (1.23)
On the other hand, if xe E; n E,, then we may write

x=YA1x, and x=) u’y,
@ B
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whence
Ziaxa — Zﬂﬁyﬂ — 0.
@ B
Now since the set (x,)U (y,) is linearly independent, we obtain
A=0 and uf=0
whence x=0. It follows that E; n E, =0 and so the decomposition (1.23)
is direct.

As an immediate consequence of the proposition we have

Corollary I. Let E, be a subspace of E and ¢,: E; — F a linear mapping
(F a second vector space). Then ¢, may be extended (in several ways) to a
linear map ¢: E—F.

Proof: Let E, be a complementary subspace for E, in E,

E=E, Q®FE, (1.24)
and define ¢ by
Px =001y
where
X=y+z

is the decomposition of x determined by (1.24). Then
Goz,lixi:q?(ZAin‘FZAizi) X =Y+ 2;
=@y zﬁ:li Vi
= Ei:liqh Yi
= Zf P X;
and so ¢ is linear. It is trivial that ¢ extends ¢;.

As a special example we have:

Corollary II: Let E, be a subspace of E. Then there exists a surjective
linear map
0. E— E,
such that
PX =X xek,.
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Proof: Simply extend the identity map 1: E,—E,; to a linear map
. E—-L,.

1.16. Factor spaces. Suppose E, 1s a subspace of the vector space E.
Two vectors xe E and x" € E are called equivalent mod E, if xX'—xeE,. It
is easy to verify that this relation is reflexive, symmetric and transitive
and hence is indeed an equivalence relation. (The equivalence classes are
the cosets of the additive subgroup E; in E (cf. sec. 0.4)). Let E/E, denote
the set of the equivalence classes so obtained and let

n.:E— E|E,
be the set mapping given by
X =X, xeE

where X is the equivalence class containing x. Clearly n is a surjective
map.

Proposition I1: There exists precisely one linear structure in E/E, such
that n is a linear mapping.

Proof: Assume that E/F; 1s made into a vector space such that 7w 1s a
linear mapping. Then the equations

t(x+y)=nx+mny
and
n(Ax)=Anx

show that the linear operations 1n E/E; are uniquely determined by the
linear operations in E.

It remains to be shown that a linear structure can be defined in E/E,
such that = becomes a linear mapping. Let X and y be two arbitrary ele-
ments of E/E; and choose vectors xe E and ye E such that

X=X, My=Y.

Then the class n(x+ y) depends only on x and j. Assume for instance that
x"eE is another vector such that nx'=x.
Then nx’=nx and hence we may write

x'=x+4+2z, zeE,.
It follows that

X +y=(x+y)+z
whence

n(x' + y)=n(x+y).
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We now define the sum of the elements X€E/E; and ye E/E, by
¥+jy=n(x+y) where *==nx and j==ny. (1.25)

It is easy to verify that E/E; becomes an abelian group under this oper-
ation and that the class 0=E; is the zero-element.

Now let xe E/E; be an arbitrary element and Ael” be a scalar. Choose
x e E such that nx=x%. Then a similar argument shows that the class 7 (Ax)
depends only on X (and not on the choice of the vector x). We now define
the scalar multiplication in E/E; by

A-X=mn(Ax) where X=mnx. (1.26)

Again it is easy to verify that the multiplication satisfies axioms II.1-1I.3
and so E/E, is made into a vector space. It follows immediately from
(1.25) and (1.26) that

n(x+y)=nx+ny x,yeE

n(Ax)=Anx Ael

i.e., # is a linear mapping.

The vector space E/E; obtained in this way is called the factor space
of E with respect to the subspace E,. The linear mapping = is called the
canonical projection of E onto E,. If E, = E, then the factor space reduces
to the vector 0. On the other hand, if E, =0, two vectors xeFE and yeE
are equivalent mod E, if and only if y =x. Thus the elements of E/(0) are
the singleton sets {x} where x is any element of E, and = is the linear
isomorphism x— {x}. Consequently we identify E and E/(0).

1.17. Linear dependence mod a subspace. Let E;, be a subspace of E,
and suppose that (x,) is a family of vectors in E. Then the x, will be called
linearly dependent mod E, if there are scalars A% not all zero, such that

Y A*x,€E;.

If the x, are not linearly dependent mod E; they will be called linearly
independent mod E,.
Now consider the canonical projection

TC:E'—)E/EI.

It follows immediately from the definition that the vectors x, are linearly
dependent (independent) mod £, if and only if the vectors nx, are linearly
dependent (independent) in E/E,,
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1.18. Basis of a factor space. Suppose that (y,) U (z;) is a basis of E
such that the vectors y, form a basis of E;. Then the vectors nz; form a
basis of E/E,. To prove this let E, be the subspace of E generated by the

vectors z;. Then E—E, QE,. (1.27)
Now consider the linear mapping ¢: E,— E/E, defined by
OZ=TZ Z€E E2 .

Then ¢ is surjective. In fact, let Xe E/E, be an arbitrary vector. Since
n: E— E/E; 1s surjective we can write

X=7nX, xeE.
In view of (1.27) the vector x can be decomposed in the form

X=y+z yeE, zeE,. (1.28)
Equation (1.28) yields

X=MX=TMy+nNzZ=Tz=¢2Z
and so ¢ 1s surjective.
To show that ¢ is injective assume that

pz=¢q@z 2,z €E,.
Then
n(z' —z)=¢(z' —2)=0

and hence z' —zeFE,. On the other hand we have that z'—zeE, and thus
Z’— ZEEl N E2=0.

It follows that ¢:E,—E/E, 1s a linear isomorphism and now Propo-
sition III of sec. 1.11 shows that the vectors nz; form a basis of E/E,.

Problems

1. Let (&%, &%, £°) be an arbitrary vector in I' . Which of the following
subsets are subspaces?

a) all vectors with &' =¢£2=¢3

b) all vectors with £&2=0

c) all vectors with &' =¢§%—¢£3

d) all vectors with é' =1

2. Find the subspaces F,, F,, F., F; generated by the sets of problem 1,
and construct bases for these subspaces.
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3. Construct bases for the factor spaces determined by the subspaces
of problem 2.

4. Find complementary spaces for the subspaces of problem 2, and
construct bases for these complementary spaces. Show that there exists

more than one complementary space for each given subspace.
5. Show that

a) F3=Fﬂ+Fb
b) F3=Fb+FC
¢) ''=F,+F.

Find the intersections F,n F,, Fy,n F,, F,n F. and decide in which cases
the sums above are direct.

6. Let .S be an arbitrary subset of F and E, its linear closure. Show that
E is the intersection of all subspaces of E containing S.

7. Assume a direct composition E=E; @ FE,. Show that in each class
of E with respect to E; (i.e. in each coset X E/E,) there 1s exactly one
vector of E,.

8. Let E be a plane and let £, be a straight line through the origin. What
is the geometrical meaning of the equivalence classes respect to E,o Give
a geometrical interpretation of the fact that x~x" and y~y’ implies that
x+y~x"+y.

9. Suppose S'is a set of linearly independent vectors in E, and suppose
T is a basis of E. Prove that there is a subset of 7 which, together with S,
is again a basis of E.

10. Let @ be an involution in E. Show that the sets £, and E_ defined
by

E, ={xeE;ox=x}, E_={xe€E;wx=—x}

are subspaces of E and that
E=E, ®E_.

11. Let E,, E, be subspaces of E. Show that E,+E, is the linear
closure of E; U E,. Prove that

E1 + E2 — El U E2
if and only 1f
E,oE, or E,oE,;.

12. Find subspaces E,, E,, E; of I'® such that
i) EEnE; =0 (i +))

i) E, + E, + Ey =TI

iii) the sum in i) 1s not direct .
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§ 4. Dimension

In this paragraph all vector spaces are defined over a fixed, but arbitrarily
chosen field I' of characteristic 0.

1.19. Finitely generated vector spaces. Suppose E is a finitely generated
vector space, and consider a surjective linear mapping ¢: E—F. Then F
is finitely generated as well. In fact, if x;...x, is a system of generators for
E, then the vectors ¢x,, ..., @x, generate F. In particular, the factor space
of a finitely generated space with respect to any subspace is finitely gener-
ated.

Now consider a subspace E, of E. In view of Cor. II to Proposition I,
sec. 1.15 there exists a surjective linear mapping ¢: E— E,. It follows that
E, 1s finitely generated.

1.20. Dimension. Recall that every system of generators of a non-
trivial vector space contains a basis. It follows that a finitely generated
non-~trivial vector space has a finite basis. In the following it will be shown
that in this case every basis of E consists of the same number of vectors.
This number will be called the dimension of E and will be denoted by
dim E. E will be called a finite-dimensional vector space. We extend the
definition to the case E=(0) by assigning the dimension 0 to the space
(0). If E does not have finite dimension it will be called an infinite-dimen-
sional vector space.

Proposition I: Suppose a vector space has a basis of n vectors. Then
every family of (n+1) vectors is linearly dependent. Consequently, n is
the maximum number of linearly independent vectors in E and hence
every basis of E consists of n vectors.

Proof: We proceed by induction on #n. Consider first the case n=1 and
let a be a basis vector of E. Then if x40 and y 40 are two arbitrary vec-
tors we have that

x=A4a, A+0 and y=pua, u=+0

whence
pux —Ay=90.

Thus the vectors x and y are linearly dependent.

Now assume by induction that the proposition holds for every vector
space having a basis of r<n—1 vectors.

Let E be a vector space, and let a,(u=1...n) be a basis of £ and
Xy...-X,+1 A family of n+ 1 vectors. We may assume that x,, ; #0 because
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otherwise it would follow immediately that the vectors x;...x,,,; were
linearly dependent.

Consider the factor space E, = E/(x,,,) and the canonical projection
n:E— E/(X,41)

where (x,, ;) denotes the subspace generated by x,,,. Since the system
d,, ..., 4, generates E, 1t contains a basis of E, (ct. Cor. I to Theorem I,
sec. 1.6). On the other hand the equation

n
Xn+1 — Z /’lv a,
v=1
implies that
n
Y A'd, =0
v=1

and so the vectors (dy, ..., d,) are linearly dependent. It follows that E,
has a basis consisting of less than n vectors. Hence, by the induction
hypothesis, the vectors X;...X, are linearly dependent. Consequently,
there exists a non-trivial relation

2. &%, =0
v=1

and so
n

1
Z évxv — EH- xn+1 .

v=1

This formula shows that the vectors x,...x,,; are linearly dependent and
closes the induction.

Example: Since the space I'" (cf. Example 1, sec. 1.2) has a basis of n
vectors it follows that
dimI™ =n.

Proposition 1I: Two finite dimensional vector spaces E and F are iso-
morphic if and only if they have the same dimension.

Proof: Let ¢:E—F be an isomorphism. Then it follows from Propo-
sition II1, sec. 1.11 that ¢ maps a basis of E injectively onto a basis of F
and so dim E=dim F. Conversely, assume that dim E=dim F=n and let
x, and y,(u=1...n) be bases of E and Frespectively. According to Propo-
sition II, sec. 1.11 there exists a linear mapping ¢:E—F such that
@x,=y,(u=1...n). Then ¢ maps the basis x, onto the basis y, and hence
it is a linear isomorphism by Proposition III, sec. 1.11.
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1.21. Subspaces and factor spaces. Let E, be a subspace of the n-dimen-
sional vector space E. Then E, is finitely generated and so it has finite
dimension m. Let x,...x, be a basis of E,. Then the vectors x;...x,, are
linearly independent in E and so Cor. II to Theorem I, sec. 1.6 implies
that the vectors x; may be extended to a basis of E. Hence

dimE, < dimE. (1.29)

If equality holds, then the vectors x;...x,, form a basis of E and it fol-
lows that £, =F.
Now it will be shown that

dimE =dimE, + dimE/E; . (1.30)

If E,=(0) or E,=E (1.30) is trivial and so we may assume that E, is a
proper non-trivial subspace of E,

0 < dimE, < dimE.

Let x;...x, be a basis of £; and extend it to a basis x,...x,...x, of E. Then

the vectors X,,;...X, form a basis of E/E, (cf. sec. 1.18) and so (1.30)
follows.

Finally, suppose that E 1s a direct sum of two subspaces E; and E,,

E = El @ Ez .
Then
dimE =dmeE, + dimE,. (1.31)

In fact, if x;...x, is a basis of E; and x,,,...X,4+, 15 a basis of E,, then
Xi...Xp4q 18 @ basis of £ whence (1.31). More generally, if E is the direct
sum of several subspaces,

then
i=1

Formula (1.31) can also be generalized in the following way. Let E,
and E, be arbitrary subspaces of E. Then

dim(E, + E,) + dim(E, n E,) =dimE, + dimE,.  (1.32)

In fact, let z,...z, be a basis of E;n E, and extend it to a basis z,...z,,
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X,+1---X, of E; and to a basis z,...2,, y,.;...y, of E,. Then the vectors

ZieeeZpy XptiseeeXps Vet1eee Vg (1.33)

form a basis of E, +E,. Clearly, the vectors (1.33) generate E, + E,.
To show that they are linearly independent, we comment first that the
vectors x; are linearly independent mod(E; n E,). In fact, the relation

zjj‘xiEEl N E2

implies that
Z Ai xi = Z uk Zk
; k

whence =0 and y*=0. Now assume a relation

;Ckzk T lZfixi + JZ’?jyi =0.
Then
Zfixi = Z_’?’i)’j — ;CkzkEEz
whence | .J
YE&x,eE, nE,.

i

Since the vectors x; are linearly independent mod (E, n E,) it follows that
£'=0. In the same way it is shown that 5/ =0. Now it follows that {*=0
and so the vectors (1.33) are linearly independent. Hence, they form a
basis of E; + E, and we obtain that

dim(E, + E;))=r+(p—r)+(q—71)
=p+qg-—r
=dimE, + dimE, — dim(E,; n E,).

Problems

1. Let (x;, x,) be a basis of a 2-dimensional vector space. Show that
the vectors

Xi=X;+ X5, X3=X;— X,

again form a basis. Let (£', £?) and (&', &) be the components of a vector
x relative to the bases (x,, x,) and (%,, X,) respectively. Express the com-
ponents (£, £%) in terms of the components (¢, £2).

2. Consider an n-dimensional complex vector space E. Since the multi-
plication with real coefficients in particular is defined in E, this space may
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also be considered as a real vector space. Let (z,...z,) be a basis of E.
Prove that the vectors z;...z,, iz;...iz, form a basis of E if F is considered
as a real vector space.

3. Let E be an n-dimensional real vector space and C the complex
linear space as constructed in § 1, Problem 5. If x,(v=1...n) is a basis of
E, prove that the vectors (x,, 0)(v=1...n) form a basis of C.

4. Consider the space I'" of n-tuples of scalars Ael’. Choose as basis
the vectors:

e, =(1,1,...,1,1)
e; =(0,1,...,1,1)

e, = (0,0,...,0,1).

Compute the components 5', 2, ..., 4" of the vector x=(&!, &2, ..., &")
relative to the above basis. For which basis in I'” is the connection be-
tween the components of x and the scalars &, &2, ..., &" particularly sim-
ple?

5. In I'* consider the subspace T of all vectors (&', &2, &3, £*) satisfying
EL 4282 =¢34+ 284 Show that the vectors: x,=(1,0,1,0) and x,=
(0, 1,0, 1) are linearly independent and lie in T'; then extend this set of
two vectors to a basis of 7.

6. Let a4, a,, a3 be fixed real numbers. Show that all vectors (!, 52,
n?, n*) in R* obeying n*=o,n"' +a,n*+a,n° form a subspace V. Show
that V 1s generated by

Xy = (1,0,0,(11); Xy = (O, 1,0, az); Xy = (0,0, 1,0(3).

Verify that x,, x,, x3 form a basis of the subspace V.
7. In the space P of all polynomials of degree <n—1 consider the two
bases p, and g, defined by

p,(t)="1
q,(t)=(t—a)’ (a,constant;v=0,...,n—1).

Express the vectors g, explicitly in terms of the vectors p,.

8. A subspace E; of a vector space E is said to have co-dimension n if
the factor space E/E, has dimension n. Let E; and F; be subspaces of
finite codimension, and let E,, F, be complementary subspaces,

E]_@Ez:E, F1®F2=E.
Show that
dimE, = codimE,, dimF, =codimF,.
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Prove that E; n F; has finite codimension, and that
codim(E, n F,) £ dimE, + dim F,.

9. Under the hypothesis of problem 8, construct a decomposition
E=H,®H, such that H, has finite codimension and

i) H, o E, + F,.

Show that

H,=E,®(E; n H,)
and

H,=F,®(F; n H,).

10. Let (x,)sc4 and (y¥)se 5 be two bases for a vector space E. Establish
a 1 ~1 correspondence between the sets 4 and B.

11. Let E be an n-dimensional real vector space and E, be an (n—1)-
dimensional subspace. Denote by E* the set of all vectors xe E which are
not contained in E,. Define an equivalence relation in E'as follows: Two
vectors xe E! and yeE! are equivalent, if the straight segment

x()=1-)x+ty 0=t=1

is disjoint to E,. Prove that there are precisely two equivalence classes.

§ 5. The topology of a real finite-dimensional vector space

1.22. Real topological vector spaces. Let E be a real vector space in
which a topology i1s defined. Then E 1s called a topological vector space 1f
the linear operations

ExXE—>E and R x E—E defined by

(x,y)>x+y
and
(A, x) > Ax
are continuous.

Example: Consider the space R". Since the set R"” is the Cartesian
product of n copies of R, a topology is induced in R” by the topology in
R. It is easy to verify that the linear operations are continuous with re-
spect to this topology and so R" is a topological vector space. A second
example is given in problem 6.
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In the following it will be shown that a real vector space of finite di-
mension carries a natural topology.

Proposition: Let E be an n-dimensional vector space over R. Then
there exists precisely one topology 1n E satisfying the conditions

T;: E is a topological vector space

T,: Every linear function in E is continuous.

Proof: To provetheexistence of suchatopology let e, (v=1, ...,n) be a
fixed basis of E and consider the linear isomorphism ¢:R"— F given by

(&4 ..., &Y -y E,.

Then define the open sets in E by ¢ (U) where U is an open set in R".
Clearly ¢ becomes a homeomorphism and the linear operations in E are

continuous in this topology. Now let f be a linear function in E. Then we
have for every x,eE, xeE

f(x) = f(x0) =S (x—x0) = ;(5" — o) f (ey).

Given an arbitrary positive number ¢>0 consider the neighbourhood,
U, of x, defined by

|EY — &gl < O v=1,...,n

where 0 >0 is a number such that

0-2.1f (&) <.
Then if xe U we have that

1f(x) = f(xo)l <0 1f (&)l <&

which proves the continuity of f at x=x,.
It remains to be shown that the topology of E is uniquely determined

by T, and T,. In fact, suppose that an arbitrary topology is defined in F
which satisfies T; and T,.

Let e,(v=1, ...,n) be a basis of £ and define mappings ¢:R"—FE and
y:E—R" by

P (&, ..., =Y &%,
and

¥ x = (& (x), ..., E"(x))
X = ;{"(x)e,,

where
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T, implies that ¢ is continuous. On the other hand, the functions x—£" (x)
are linear and hence it follows from T, that ¥ is continuous. Since

Wop=1gn and @o¥ =1g

we obtain that ¢ 1s a homeomorphism of R” onto E. Hence the topology
of E is uniquely determined by T; and T,.

Corollary: The topology of E constructed above is independent of the
basis e,

Let F be a second finite-dimensional real vector space and let ¢: E—>F
be a linear mapping. Then ¢ is continuous. In fact, if y, (u=1, ..., m) is
a basis of F we can write

px =) n*(x)y,
1

where the n* are linear functions in £. Now the continuity of ¢ follows
from T, and T,.

1.23. Complex topological vector spaces. The reader should verify that
the results of sec. 1.22 carry over word for word in the case of complex
spaces.

Problems

1. Let f be a real valued continuous function in the real n-dimensional
linear space E such that

fx+y=fx)+f(y) x,yeE.

Prove that f is linear.

2. Let ¢: E,—E, be a surjective linear mapping of finite dimensional
real vector spaces. Show that ¢ is open and closed (the image of an open
or closed set in E, under ¢ is again open or closed in F,).

3. Let n: E— E/F be the canonical projection, where E is a real finite
dimensional vector space, and F is a subspace. Then the topology in E
determines a topology in E/F (a subset Uc E/F is open if and only if
n~1U is open in E).

a) Prove that this topology coincides with the natural topology in the
vector space E/F.

b) Prove that the subspace topology of F coincides with the natural
topology of F.

4. Show that every subspace of a finite dimensional real vector space
is a closed set.
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5. Construct a topology for finite dimensional real vector spaces that
satisfies T, but not T,, and a topology that satisfies T, but not Tj.

6. Let E be a real vector space. Then every finite dimensional subspace
of E carries a natural topology. Let E; be any finite dimensional subspace
of E, and let U, « E, be an open set. Moreover let E, be a complementary
subspace in E, E=E, ®FE,. Then U, and E, determine a set O given by

O={x+y;xeU,,yeE,}. (1.34)
Suppose that
"={x+ y; xeUj,ueE}}

is a second set of this form. Prove that On O’ is again a set of this form.
Hint: Use problems 8 and 9, § 4.

Conclude that the sets O E of the form (1.34) form a basis for a
topology 1n E.

7. Prove that the topology defined in problem 6 satisfies T; and T,.

8. Prove that the topology of problem 7 is regular. Show that E is not
metrizable if it has infinite dimension.



Chapter 11
Linear Mappings

In this chapter all vector spaces are defined over a fixed but arbitrarily
chosen field, I', of characteristic 0.

§ 1. Basic properties

2.1. Kernel and image space. Suppose E, F are vector spaces and let
¢@.E—-F be a linear mapping. Then the kernel of ¢, denoted by ker ¢, is
the subset of vectors x€ E such that ¢x=0. It follows from (1.8) and (1.9)
that ker ¢ is a subspace of E.

The mapping ¢ is injective if and only if

ker o = (0). (2.1)

In fact, if ¢ is injective there is at most one vector xe E such that ¢x=0.
But ¢0=0 and so it follows that ker ¢ =(0). Conversely, assume that
(2.1) holds. Then if

QX1 = QP Xy

for two vectors x,, x,€F we have

@(x; —x3)=0

whence x; — x, eker ¢. It follows that x, —x,=0 and so x; =x,. Hence
@ 1s injective,

The image space of ¢, denoted by Im ¢, is the set of vectors ye F of the
form y=¢@x for some xeFE. Im ¢ is a subspace of F. It is clear that ¢ 1s
surjective if and only if Im ¢ =F.

Example 1. Let E; be a subspace of £ and consider the canonical
projection

n:E— E[E,.
Then
kern=E, and Imn=E/E,.



42 Chapter II. Linear mappings

2.2. The restriction of a linear mapping. Suppose ¢:E—F 1s a linear
mapping and let £, E, F, = F be subspaces such that

pxeF;, for xeE,.
Then the linear mapping
¢ Ey > Fy
defined by
P1X=@X xeE,

is called the restriction of ¢ to E,, F,. It satisfies the relation

Polp =1lpo(Pq

where iz: E;—E and ip:F; - F are the canonical injections. Equivalently,
the diagram
E SF
E
E, 3 F,
1s commutative,
2.3. The induced mapping in the factor spaces. Let ¢:E—F be a linear
mapping and ¢, : E;—F; be its restriction to subspaces E; c E and F; c F.
Then there exists precisely one linear mapping

@.E/E;, - F|F,
such that
Bomp=Tpop (2.2)
where
ng:E—> E/E;, and ng:F — F/F,

are the canonical projections.
Since nz is surjective, the mapping @ is uniquely determined by (2.2) if
it exists. To define ¢ we notice first that

Tp@P Xy =M@ X, (2.3)

whenever
TpXy = MNgX,. (2.4)
In fact, (2.4) implies that
X, —X,ekern,=E,.
But by the hypothesis
@xXy — @x, =@(x —x,)eF, = kerng

and so

Tp@P Xy =ApPX;.
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It follows from (2.3) and (2.4) that there 1s a set map ¢: E/E,—»E/F,
satisfying (2.2). To prove that ¢ is linear let X, € E/E, and yeE/E, be
arbityrar and choose vectors xe E and y € F such that ngx=x and ngy=y.
Then it follows from (2.2) that

PAX+up)=png(Ax +uy)=nrp(Ax + py)
=AMpQX + UTp Q@Y =AQX + pPJ

and hence ¢ is a linear mapping.
The reader should notice that the relation (2.2) is equivalent to the
requirement that the diagram

E-25 F
el e
E/E, 5 F/F,

be commutative. Setting nyx=X, xe E and ngyy=y, ye F we can rewrite
(2.2) in the form

P X =qpx.
2.4. The factoring of a linear mapping. Let ¢: F— F be a linear mapping
and consider the subspaces E; =ker ¢ and F; =(0). Since ¢x=0, xeE,

a linear mapping
p.Ekerp > F

is induced by ¢ (cf. sec. 2.3) such that

(E ol = @ (2.5)
where n denotes the canonical projection
n:E — Elker¢.

The mapping @ is injective. In fact, if grx=0 we have that ¢x=0. Hence
xeker ¢ and so nx=0. It follows that ¢ is injective. In particular, the
restriction of ¢ to E/ker ¢, Im ¢ (also denoted by ®) is a linear isomorph-
ism

¢: E[ker @ 5 Ime.

Formula (2.5) shows that every linear mapping ¢: E— F can be written
as the composition of a surjective and an injective linear mapping,

ESF
xl /@
E/ker ¢
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As an application it will now be shown that for any two subspaces
E,cE and E,cE there is a natural isomorphism

E\(E; 0N E}) S (Ey + Ey)[E,. (2.6)
Consider the canonical projection
TC:El + E2 —)'(El =+ Ez)/Ez

and let ¢ be the restriction of nto E,,(E, +E,)/E,. Then ¢ is surjective.
In fact, if
x=x1+x2, xleEl,x2EE2

1s any vector of E; + E, we have

X =T(X; + X)) =7X; =@ Xq.
Since
kero =kernn E,=E, n E,

it follows that ¢ induces a linear isomorphism
@:E{/(E, N E,) = (E{ + E,)/E, .
Now consider the special case that
E=E ®E,.
Then E; n E,=0 and hence the relation (2.6) reduces to
E, > EJE,.

As a second example, let f;(i=1...r) be r linear functions in E and
define a subspace FcE by

F = (kerf,.
i=1

Now consider the linear mapping ¢: E—I'" defined by

P X = (fl (JC), "'sfr(x)) y
Then clearly

kero = (Ykerf,=F
i=1

and so ¢ determines a linear isomorphism

@.E[F fplm(p <rI.
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It follows that Im ¢, and hence E/F, has dimension <r,
dimE/F Zr.

Proposition I: Suppose ¢: E— F and {: E— G are linear mappings such
that
ker @ = kery.

Then  can be factored over ¢; that is, there exists a linear mapping
y: F—=G such that

Xo@ =Y.

Proof: Since ¥ maps ker ¢ into 0 it induces a linear mappingy : E/ker ¢
— G such that
Yom=1y
where
n:E — E/ker ¢

is the canonical projection. Let

@:E/ker ¢ S Ime

be the linear isomorphism determined by ¢, and define a linear mapping
Y,:Im ¢—G by
'I1 = 'I o t

Finally, let y: F— G be any linear mapping which extends ;. Then we have

that
——1

P
whence

Xo@=V1090 =YY@ lop=Yon=1y.
Our result is expressed in the commutative diagram
ESF
v| ¥x
G

2.5. Exact sequences. Exact sequences provide a sophisticated method
for describing elementary properties of linear mappings.
A sequence of linear mappings

FAELG (2.7)
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1s called exact ar E if
Imo =kery.

We exhibit the following special cases:

1. F=0. Then the exact sequence (2.7) reads

0%E%G. (2.8)

Since Im ¢ =0 it follows that ker yy=0 i.e., ¥ is injective. Conversely,
suppose EY, F is injective. Then ker =0, and so the sequence (2.8) is
exact at E.

2. G=0. Then the exact sequence (2.7) has the form

FAEY%o. (2.9)
Since ¥ 1s the zero mapping i1t follows that
Imep =kery =E

and so ¢ 1s surjective. Conversely, if the linear mapping ¢: F— E is sur-
jective, then the sequence (2.9) is exact.

A short exact sequence 1s a sequence of the form

*)

0->FSELG-0 (2.10)

which is exact at F, E and G. As an example consider the sequence

where E, is a subspace of E and i, = denote the canonical injection and
projection respectively. Then

Imi=E;=kern

and so (2.11) is exact at E. Moreover, since { and n are respectively injec-
tive and surjective, it follows that (2.11) is exact at £, and E/E; and so
(2.11) 1s a short exact sequence.

The example above is essentially the only example of a short exact
sequence.

*) It is clear that the first and the last mapping in the above diagram are the zero
mappings.
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In fact, suppose
0-FAEL G0 (2.10)

is a short exact sequence. Let
E, =Im¢ = kery
and consider the exact sequence
0-E, SESE/E, -0.

Since the mapping ¢: F— E1s Injective its restriction ¢, to F, E; is a linear
isomorphism, ¢,:F5 E;. On the other hand, v induces a linear iso-

morphism -
V:E|E, > G.

Now it follows easily from the definitions that the diagram

O-F -F - G-0
1| 1= pot | = (2.12)
O-E,-E -EE -0
1S commutative.

2.6. Homomorphisms of exact sequences. A commutative diagram of
the form

0—>F1(p—l>E1'ﬂG1-—>O
le o (2.13)

0-F%3E,%6,-0

where both horizontal sequences are short exact sequences, and ¢, o, 7
are linear mappings, is called a homomorphism of exact sequences. If
0, ¢, T are linear isomorphisms, then (2.13) is called an isomorphism be-
tween the two short exact sequences. In particular, (2.12) is an isomorph-
ism of short exact sequences.

2.7. Split short exact sequences. Suppose that

0-FAELGS0 (2.10)

is a short exact sequence, and assume that there y:E«G is a linear
mapping such that
l,b o X = 1.

Then y is said to split the sequence (2.10) and the sequence
0> FASE® G0

’ 4
is called a split short exact sequence.
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Proposition 11: Every short exact sequence can be split.
Proof: Given a short exact sequence, (2.10) let E, be a complementary
subspace of ker { in E,
E=E, ®kery

and consider the restriction, y,, of y to E,, G. Since ker y,=0, y, is a
linear isomorphism, y,: E; 5 G. Then the mapping y: E,«G defined by

=y  satisfies the relation

Vrz=Yyitz=yYilz=1z zeG

and hence y splits the sequence.

2.8. Stable subspaces. Consider now the case F=E; i.e., let ¢ be
a linear transformation of the vector space E. Then a subspace E, c E
will be called stable under ¢ if

oxekE, for xekE,.

It is easy to verify that the subspaces ker ¢ and Im ¢ are stable. If E, is
a stable subspace, the restriction, ¢,, of ¢ to E,, E, will be called simply
the restriction of ¢ to E,. Clearly, ¢, is a linear transformation of E;. We
also have that the induced map

@:E/E; - E[E,

is a linear transformation of E/E,.

Problems

1. Let C be the space of continuous functions f: R— R and define the
mapping ¢@: C—-C by

(p:f(t)—-»ff(s)ds.

Prove that Im ¢ consists of all continuously differentiable functions while
the kernel of ¢ is 0. Conclude that ¢ is injective but not bijective.

2. Find the image spaces and kernels of the following linear transfor-
mations of I'*:

a) (&', €%, 83, & = (&' - &%, &' + &2, 63, &%)
b) (&, &%, 83, 8% = (&, &, &4, &%)
c) W(ELELELEN =(EHE + &4, + 8, ¢8).
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3. Find the image spaces and kernels of the following linear mappings
of '*into I'>:

a) ¢(£',8%8%,EY) = (58" — 4,80 + &%, 8,84, ¢

b) ¢(£1,§2,£3, 64) — (61 + 62 + 763 + 64: 263 + 64! 61, 62’ 61 _ 62)

C) @(615625639 54) =(£4 _ 62 + 53 + 61363 _ 62: 1751 + 1362’ 1661 +
+ 564, 62 _ 63)

4. Construct bases for the factor spaces I'*/ker y and I'*/ker ¢ of
problems 2 and 3. Determine the action of the induced mappings on these
bases and verify that the induced mappings are injective.

5. Prove that if ¢:E—F and y: E—»G are linear mappings, then the
relation

ker ¢ < kery

i1s necessary for the existence of a linear mapping x:F—G such that
Y =yxo0.

6. Consider the pairs (, @) in parts a, b, c of problems 2 and 3. Decide
in each case if y can be factored over ¢, or if ¢ can be factored over y,
or if both factorings are possible. Whenever iy can be factored over ¢
(or conversely) construct an explicit factoring map.

7. a) Use formula (2.6) to obtain an elegant proof of formula (1.32).

b) Establish a linear isomorphism

(E/F)/(E,|F) — E|E,

where Fc E, c E.
8. Consider the short exact sequence

0—E, >ESEE -0,

Show that the relation yz2Im y defines a 1—1 correspondence between
linear mappings y: E+ E/E, which split the sequence, and complementary
subspaces of E, in E.

9. Show that a short exact sequence 0— F— ELG0is splitif and only
if there exists a linear mapping w: F« E such that w.p=1.
In the process establish a 1—1 correspondence between the split short
exact sequences of the form

0> FSEaG-0

X
and of the form

0n FoESGo0

w
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such that the diagram
0—FeE&LG«0

is again a short exact sequence.
10. Consider a homomorphism of short exact sequences

0-F,SBE SG,-0
o) ol
0-F%E 5G6,-0
a) Show that
i) ¢, (ker ¢)=kero
ii) Yy, (Img)=Im1
b) Use a) to prove that
1) ¢ is surjective if and only if g is injective
11) o is injective if and only if g is surjective.
¢) Construct a linear mapping

a:kert— F,/[Img.

11. Consider a system of linear mappings

0 0 0
l l !

$0 o1
0— Egy —”DEm & Eqg, -
'Iluol llfml lllozl
¢
0-E,, E"OEM - E12 —

lllml l!lul lhzl

P20 P21

l Lol

where all the horizontal and the vertical sequences are exact at each E;;.
Assume that the diagram is commutative. Define spaces H;;(i= 1, j= 1) by

Hij = (ker @;; N ker‘f/ij)/lm(‘//i—u o®P;_1 j-l)'

Construct a linear isomorphism between H; ;. , and H;, ;.
12. Given an exact sequence

EAFLGHH

prove that ¢ is surjective if and only if y is injective.
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§ 2. Operations with linear mappings

2.9. The space L(E; F). Let E and F be vector spaces and consider the
set L(E; F) of linear mappings ¢: E—F. If ¢ and i are two such map-
pings ¢ +y and A@ of F into F are defined by

(p+y¥)x=0x+yx
and

(Ao)x=Apx xeE.

It is easy to verify that ¢ +y and A¢ are again linear mappings, and so
the set L(E; F) becomes a linear space, called the space of linear mappings
of E into F. The zero vector of L(E; F) is the linear mapping 0 defined
by 0 x=0, xeE.

In the case that F=TI (¢ and y are linear functions) L (E; I') is denoted
simply by L(E).

2.10. Composition. Recall (sec. 1.10) that if ¢: E— F and y: F—G are
linear mappings then the mapping - ¢ : E—-G defined by

(o) x = Y (@ x)

is again linear. If H is a fourth linear space and y: G— H is a linear map-
ping, we have for each xeFE

[xc(Wop)lx=x(We@)x=x[¥(0x)]=@-¥)ox=[(x¥)o0]x

Whence Xo(Wog)=(x-¥)o0. (2.14)

Consequently, we can simply write 3oy . @.
If ¢: E-> F is a linear mapping and 1 and 17 are the identity mappings
of E and F we have clearly

Polp=¢@ and ip.Q@=0. (2.15)

Moreover, if ¢ is a linear isomorphism and ¢ ! is the inverse isomorphism
we have the relations

o lop=1; and .o ! =1. (2.16)

Finally, if ¢,: E— F and y;: F-» G are linear mappings, then it is easily
checked that

(EHY)e0 =LA (Wio0)
and (2.17)
wn(gl‘cpa) = Z:AI('J’G%)'
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2.11. Left and right inverses. Let ¢:E—F and y: E« F be linear map-
pings. Then  is called a right inverse of ¢ if Qo =1p.
y is called a left inverse of @ if yo@p=1;.

Proposition I: A linear mapping ¢@: E—F is surjective if and only if it
has a right inverse. It is injective if and only if it has a left inverse.
Proof: Suppose ¢ has a right inverse. Then we have for every ye F

y=0yy

and so yelm ¢; i.e., ¢ is surjective. Conversely, if ¢ 1s surjective, let E,
be a complementary subspace of ker ¢ in E,

E=E ®kero.

Then the restriction ¢, of ¢ to E,, F is a linear isomorphism. Define the
linear mapping ¥:E,«Fby Yy =i ¢, "', where i,: E, > E is the canonical
injection. Then
oYy=¢ 0 'y=y, yeF
.., Qo =1 .
For the proof of the second part of the proposition assume that ¢ has
a left inverse. Then if xeker ¢ we have that

x=yYex=y0=0

whence ker ¢ =0. Consequently ¢ is injective.

Conversely, if ¢ is injective, consider the restriction ¢, of ¢ to E, Im ¢.
Then ¢, 1s a linear isomorphism. Let n: F—Im ¢ be a linear mapping
such that

ny=y for yelmop
(cf. Cor. 11, Proposition I, sec. 1.15) and define : E—~F by

Y = gofl o Tl .
Then we have that

Vox=0'nox =0 ¢X =01 @ X=X

whence - @ =1;. Hence @ has a left inverse. This completes the proof.

Corollary: A linear isomorphism ¢: E— F has a uniquely determined
right (left) inverse, namely, ¢ ~'.
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Proof: Relation (2.16) shows that ¢ ~' is a left (and right) inverse to ¢.
Now let Y be any inverse of ¢,

Yo = 1g.

Then multiplying by ¢ ™! from the right we obtain

Voo t=¢ !

whence y=¢ ~!. In the same way it is shown that the only right inverse
of pis o~ 1.

2.12. Linear automorphisms. Consider the set GL(E) of all linear auto-
morphisms of E. Clearly, GL(E) is closed under the composition
(@, Y)—=y o and it satisfies the following conditions:

1) xo(Wo@)=(xo¥)o@ (associative law)
ii) there exists an element 1 (the identity map) such that @o.i=
1o =¢ for every 9 eGL(E)
iii) to every ¢ e GL(E) there is an element ¢ '€ GL(E) such that
P lop=0o0 =1
In other words, the linear automorphisms of £ form a group.

Problems

1. Show that if E, F are vector spaces, then the inclusions
L(E;F)c C(E; F)c(E; F)

are proper ((E; F) is defined in Example 3, sec. 1.2 and C(E; F) is defined
in problem 9, § 1, chap. I). Under which conditions do any of these spaces
have finite dimension?

2. Suppose

gols'l’lnXl:E"""F and gozﬂlszszjF_,G

are linear mappings. Assume that ¢, @, are injective, ¥, Y, are surjec-
tive and y,, x, are bijective. Prove that

a) @504 15 1njective

b) Y, oy4 1s surjective

C) x,0xy 1S bijective

3. Let ¢: E—F be a linear mapping. a) Consider the space M'(¢p) of
linear mappings ¥/ : E« F such that ¢ o ¢ =0. Prove that M'(¢)=0 if and
only if ¢ 1s surjective.

b) Consider the space M"(¢) of linear mappings y:E« F such that
@ o =0. Prove that M"(¢)=0 if and only if ¢ is injective.
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4. Suppose that ¢:E—F is injective and let M'(¢) be the subspace
defined in problem 3. Show that the set of left inverses of ¢ is a coset in
the factor space L(F; E)/M'(¢), and conclude that the left inverse of ¢
is uniquely determined if and only if ¢ is surjective. Establish a similar
result for surjective linear mappings.

5. Show that the space M'(¢) of problem 3 is the set of linear mappings
Y. E«~F such that Im ¢ —ker . Construct a natural linear isomorphism
between M'(¢) and L(F/Im ¢; E).

b) Construct a natural linear isomorphism between M7 (o) (cf. prob-
lem 3) and L (F; ker ¢).

6. Assume that ¢:E— Eis a linear transformation such that gcyy=y. ¢
for every linear transformation . Prove that ¢ = A1 where A is a scalar.
Hint: Show first that, for every vector xe E there is a scalar A(x) such that
@x=2A(x)x. Then prove that A(x) does not depend on x.

7. Prove that the group GL(E) is not commutative for dim E>1. If
dim E=1, show that GL(E) is isomorphic to the multiplicative group of
the field I.

8. Let E be a vector space and S be a set of linear transformations of
E. A subspace FcE is called stable with respect to S if F is stable under
every @ €S. The space E is called irreducible with respect to S if the only
stable subspaces are F=0 and F=E.

Prove Schur’s Lemma: Let E and F be vector spaces and a: E—F be a
linear mapping. Assume that S¢ and Sg are two sets of linear transfor-
mations of E and F such that

oS = Spa

i.e. to every transformation @ €S, there exists a transformation yeSy
such that aoc@ =y oo and conversely. Prove that «=0 or « is a linear
isomorphism of E onto F.

§ 3. Linear isomorphisms

2.13. It 1s customary to state simply that a linear i1somorphism pre-
serves all linear properties. We shall attempt to make this statement more
precise, by listing without praof (the proofs being all trivial) some of the
important properties which are preserved under an isomorphism @ :E3 F.

Property I: The image under ¢ of a generating set (linearly independent
set, basis) in E is a generating set (linearly independent set, basis) in F.
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Property II: If E, is any subspace in E, and E/E, is the corresponding
factor space, then ¢ determines linear isomorphisms

E, i o E,
and
E/E1j’ ¢oE[pE,.

Property II1: 1If G is a third vector space, then the mappings

V=Y.~ YeL(E;G)
and
V—ooy  YyeL(G;E)
are linear isomorphisms
L(E;G) > L(F;G)
and
L(G;E)> L(G;F)

2.14. Identification: Suppose ¢@:E—F is an injective linear mapping.
Then ¢ determines a linear isomorphism

qoleiImgo.

It may be convenient not to distinguish between £ and Im ¢, but to
regard them as the same vector space. This is called identification, and
while in some sense it is sloppy mathematics, it leads to a great deal of
economy of formulae and a much clearer presentation. Of course we
shall only identify spaces whenever there is no possibility of confusion.

§ 4. Direct sum of vector spaces

2.15. Definition. Let E and F be two vector spaces and consider the set
E x F of all ordered pairs (x, y), xe E, yeF. It is easy to verify that the set
E x F becomes a vector space under the operations

(xl,yl) + (xzsyz) = (x1 + X5, Y1 + yz)
and

A(x,y) = (Ax,4y)

This vector space is called the (external) direct sum of E and F and is
denoted by E@ F. If (x,),¢4 and (), . s are bases of E and F respectively
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then the pairs (x,, 0) and (0, y,;) form a basis of E® F. In particular, if E
and F are finite dimensional we have that

dim(E ® F) = dimE + dim F .

2.16. The canonical injections and projections. Consider the linear map-

pings
11:E-—>E®F 12:F'—)’E®F
defined by

iy x=(x,0) i,y=(0,y)
and the linear mappings

n.E®@F—->E n,, E@QF->F
given by
(%, y)=x 7m(x,y)=1y.

It follows immediately from the definitions that

Tfloil = I TCZDiz:lF (2.18)

Tfloiz = () Tczoil = 0 (2.19)
and

iloﬂ'l +i20ﬂ2=IE@F. (220)

The relations (2.18) imply that the mappings i;(1=1, 2) are injective
and the mappings =n,(A=1,2) are surjective. The mappings i, are called
respectively the canonical injections and n, the canonical projections as-
sociated with the external direct sum E®F. Since i; and i, are injective
we can identify £ with Im i/, and F with Im {,. Then E and F become sub-
spaces of E@F, and E®F is the internal direct sum of E and F.

The reader will have noticed that we have used the same symbol to
denote the external and the internal direct sums of two subspaces of a
vector space. However, it will always be clear from the context whether
the internal or the external direct sum is meant. (If we perform the iden-
tification, then the distinction vanishes). In the discussion of direct sums
of families of subspaces (see sec. 2.17) we adopt different notations.

If F=E we define an injective mapping 4: E—» ED E by

4x =(x,x).

A is called the diagonal mapping. In terms of i; and i, the diagonal map-
ping can be written as
A == il + iz .
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Relations (2.18) and (2.19) imply that
Tclod = ﬂzﬂA —_— IE‘

The following proposition shows that the direct sum of two vector
spaces is characterized by its canonical injections and projections up to
an isomorphism.

Proposition I: Let E, F, G be three vector spaces and suppose that a
system of linear mappings

o :E-G, Yy,:G-E
0, F->G, Yy,.G->F

1s given subject to the conditions

Vic@y =1 Yr00,=1p
Vie@;=0 Y,00,=0
and

ProWy + @0y, = 1.
Then there exists a linear isomorphism 7: E® F5 G such that

Q1 =Toly Y;=mgoT '

and (2.21)

(P2=Toi2 lj/2=n201:_1.

The ¢;, Y; are called (as before) canonical injections and projections,
Proof: Define linear mappings

c.G~~E®F and 1. E®QF-G
by

oz= (Y, 2z,¥,2), zeG
and

(X, y) =@, x+ ¢y, x€E,yeF.
Then for every vector zeG
T6Z=@Q Y12+ @QYz=2

and for every vector (x, y)eE®QF

ot(x,y) = (Wio1x+ Y09, ¥,0,x +Y,0,)) = (x,¥).

These relations show that t and ¢ are inverse isomorphisms. Formulae
(2.21) are immediate consequences of the definition of 7.
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2.17. Direct sum of an arbitrary family of vector spaces. Let (E,),. 4 be
an arbitrary family of vector spaces. To define the direct sum of the family

E, consider all mappings
x:A-~\JE, (2.22)

such that
i) x(z)eE,, aeA
ii) all but finitely many x (o) are zero.
We denote x(a) by x,. Then the mapping (2.22) can be written as

X.0 = X,.
The sum of two mappings x and y is defined by
(x + y)(@) = x: + ¥,
and the mapping Ax is given by
(Ax)(o) = Ax,.

Under these operations the set of all mappings (2.22) is made into a
vector space. This vector space is called the (external) direct sum of the
vector spaces E, and will be denoted by @E The zero vector of G-)E 1S
the mapping x given by

x () =0, (0, zero vector of E,).

For every fixed geA4 we define the canonical injection i,: E,—~ @ E, by

&

. 0, o+«
th:cx--»{x 0= x€E, (2.23)

and the canonical projection n,: ® E,— E, by

&

M, X = X, xXe®@E, (2.24)
It follows from (2.23) and (2.24) that
Mool = Opgl (2.23)
and
Yim,x=x xe®E,. (2.26)
@ o

By ‘abus de langage’ we shall write (2.26) simply as

Yim,=1.
Q
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Proposition II: Suppose that a decomposition of a vector space E as a
direct sum of a family of subspaces E, is given. Then E is isomorphic to
the external direct sum of the vector spaces E,.

Proof: Let @ E,=FE. Then a linear mapping o¢: E— E is defined by

ox=>Yi,x, where x=) x,x,€E,.
4 4

Conversely, a linear mapping t: £— E is given by

TX=) m,X.
4

Relations (2.25) and (2.26) imply that
To0=1 and 6.7 =1

and hence ¢ is an isomorphism of E onto £ and 7 is the inverse isomorph-
ism.

2.18. Direct sum of linear mappings. Suppose@,:E,—»F,and¢,:E,—~F,
are linear mappings. Then a linear mapping ¢, D¢, E,®E,~F,@F, is
defined by

((P1 D (Pz)(xpxz) = (‘P1 X15@P2 xz) .

It follows immediately from the definition that

Im(p, @ ¢,)=1Ime, ®Ime,
and

ker(p, @ ¢@,) = kerp, @ ker ¢,

Now suppose E;, E, are subspaces of E and F,, F, are subspaces of F
such that

E=E1@E2 alld F=F1@F2. (2-27)
If @,: E,—F; are linear maps then ¢, @ ¢, is again a linear map, defined by

1 2J\A1 2} = WY1 X 272
(01D P)(x1 +X2)=0@1x;+ @, %

where x =x; + x, 1s the decomposition of any vector xe E determined by
(2.27). 9, D@, may be characterized as the unique linear map of F into F
which extends ¢, and ¢,.
2.19. Projection operators. A linear transformation ¢:E—E is called
a projection operator in E, if o>=¢. If ¢ is a projection operator in E,
then
E=kero@Imo. (2.28)
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Moreover,
® = lim P (_B Oker Q° (2'29)

To prove (2.28) let xe E be an arbitrary vector. Writing

x=y+¢x (i.e.y=Xx—¢@Xx)
we obtain that

Oy =0x—¢’x=0
whence yeker ¢. It follows that
E=kerp+Ime. (2.30)

To show that the decomposition (2.30) 1s direct let z=@x be an arbi-
trary vector of ker ¢ N Im ¢. Then we have that

O=q)z=q)2x:=(px=z

and thus ker o 0N Im @ =0.

To prove (2.29) we observe that the subspaces Im ¢ and ker ¢ are
stable under ¢ (cf. sec. 2.8) and that the induced transformations are the
identity and the zero mapping respectively.

Conversely, if a direct decomposition

E=E1®E2

is given, then the linear mapping
@ =15, @ O,

1s clearly a projection operator in E,

Proposition I1I: Let g;(i=1...r) be projection operators in E such that
0io0; =0, I (2.31)

ZQi:l.

and

Then
E= ) Imy;.
i=1

Proof: Let xeE be arbitrary. Then the relation

bX lin

X=) g X€
; !

|
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shows that
E= 2 Impy,. (2.32)

To prove that the sum (2.32) is direct suppose that

x€lmg; n 2 Img;.
j¥i

Then x=9;y (some yekE), so that
0, x=0ly=0;y=X. (2.33)

On the other hand, we have that for some vectors y;eE,

x=2,0;);
j¥i
whence, in view of (2.31),
0;x = ) ;i0;y =0. (2.34)

JFi

Relations (2.33) and (2.34) yield x=0 and hence the decomposition (2.32)
is direct.

Suppose now that
E=>E,

¥

is a decomposition of E as a direct sum of subspaces E,. Let n,: E—~FE,
and i,: E,— E denote the canonical projections and injections, and con-
sider the linear mappings ¢,: E— E defined by

Qv = Ly TNy

Then the p, are projection operators satisfying (2.31) as follows from
(2.25) and (2.26). Moreover, Im ¢,= E, and so the decomposition of E
determined by the g, agrees with the original decomposition.

Problems

1. Assume a decomposition
E - El + EZ .

Consider the external direct sum E, @ E, and define a linear mapping
(x4, x2) =Xy + X, x,€E,,x,€E,.
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Prove that the kernel of ¢ 1s the subspace of E consisting of the pairs
(x, — x) where xe E; n E,. Showthat ¢ isa linearisomorphism if and only
if the decomposition E=E, + E, 18 direct.

2. Given two vector spaces E and F, consider subspaces E,cE, F;cF
and the canonical projections

ng:E—->E[E,, ne. F— F|F,.
Define a mapping
op:E@QF->E/E,®F|F,
by
(P(x:y)z(nEx:nFy)'

Show that ¢ induces a linear isomorphism
o (E®QF)/(E,®F)-EE, ®F|F,.

3. Let E=E,@FE, and F=F;®F, be decompositions of E and F as
direct sums of subspaces. Show that the external direct sum, G, of Eand F
can be written as G=G;® G, where G, and G, are subspaces of G and G;,
is the external direct sum of E; and F;(i=1, 2).

4. Prove that from every projection operator n in E an involution w
is obtained by w=2n—1 and that every involution can be written in this
form.

5. Let m;(i=1...r) be projection operators in E such that
Imm,=F (i=1...r)
where F is a fixed subspace of E. Let A'(i=1...r) be scalars. Show that
a) If ) ' # 0 then Im} A'm; = F

b) ¥ A'm, is a non-trivial projection operator in E if and only if Y A'=1.

6. Let E be a vector space with a countable basis. Construct a linear
isomorphism between E and E@E.

§ 5. Dual vector spaces

2.20. Bilinear functions. Let E and F be vector spaces. Then a mapping
¢:. Ex F—1T satisfying

P(AXy + puxz,y) = AP (x1,y) + uP(x2,y) Xy, x€E, yeF  (2.35)
and
D(x, Ay, + uyy)=A®(x,y,) +u®(x,y;) x€E,y,,y,eF  (2.36)
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is called a bilinear function in Ex F. If & is a bilinear function in Ex F

and E,cE, F,cF are subspaces, then ¢ induces a bilinear function @,
in E; X F; defined by

¢l(x:y)=¢(xry) erlsyEFl

@, 1s called the restriction of @ to E, X F;.
Conversely, every bilinear function @, in E;, x F; may be extended (in
several ways) to a bilinear function in Ex F. In fact, let

0:E—-E,, o.F-F,

be surjective linear mappings such that ¢ and ¢ reduce to the identity in
E; and F; respectively (cf. Cor. II, Proposition I, sec. 1.15). Define @ by

d(x,y)=D,(ex,0Y).

Then @ 1s a bilinear function in £ x F and for x,€E,, y,€F,; we have that

D(xy,y1)=P1(0x1,0y1) = Py1(x1,¥1)

Thus @ extends P,.
Now let
E = ZE,‘,‘,I and F = ZFﬂ (2.37)
o B

be decompositions of E and F as direct sums of subspaces. Then every
system of bilinear functions
G E, x Fg—T

can be extended in precisely one way to a bilinear function @ in E X F.
The function @ 1s given by

®(x,y) = Zﬁd’uﬁ (e X, g y)

where n,: E~» E_ and 7g: F—Fj denote the canonical projections associated
with the decompositions (2.37).

2.21. Nullspaces. A bilinear function @ 1n E x F determines two sub-
spaces Ny E and Npyc F defined by

Ng={x|®(x,y) =0} forevery yeF
and
Np={y|®(x,y) =0} forevery xe€E.

It follows immediately from (2.35) and (2.36) that Ny and N; are sub-
spaces of E and F. They are called the nullspaces of @. If No=0and Ny=0
then the bilinear function @ is called non-degenerate.
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Given an arbitrary bilinear function @ consider the canonical projec-
tons ng:E— E/Ng, mp:F— F|N;g.
Then @ induces a non-degenerate bilinear function & in E[/Ng x F/Ng such
that -
P(rpx,mpy) = P(x,y).
To show that @ is well defined, suppose that x’e E and y’ € F are two other
vectors such that ngx=ngx" and npy=mngy’. Then x’ —xeN;and y' —ye Ng
and hence we can write x'=x+u, ue N and y' =y +v, veN;. It follows
that
D(x',y)=D(x +u,y + v)
=@ (x,y)+ &(x,0) + D(u, y) + ¢(u,v)
=@ (x,y).

Clearly @ is bilinear. It remains to be shown that @ is non-degenerate.
In fact, assume that

S(ngx,mpy)=0 (2.38)

for a fixed ngzx and every nzy. Then @(x, y)=0 for every yeF. It follows
that xe Ny whence nyx=0. Similarly, if (2.38) holds for a fixed nzy and
every mzx, then nyy=0. Hence @ is non-degenerate.

A non-degenerate bilinear function @ in £x F will often be denoted by

{, >. Then we write
D(x,y) =<{x,¥) xeE,yeF.

2.22. Dual spaces. Suppose E*, E is a pair of vector spaces, and as-
sume that a fixed non-degenerate bilinear function, {, >, in E*x E 1s
defined. Then E and E* will be called dual with respect to the bilinear
function ¢, ). The scalar {x*, x>, 1s called the scalar product of x* and x,
and the bilinear function ¢, ) is called a scalar product between E* and E.

Examples. 1 Let E=E*=I and define a mapping <, > by
<’lsu>=/1ﬂ /l,uef.

Clearly ¢, > 1s a non-degenerate bilinear function, and hence I' can be re-
garded as a self-dual space.

2. Let E=FE*=TI" and consider the bilinear mapping {, > defined by

n

<x*! x> = ‘Zl ‘:‘ ‘:i
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where

x*=(&,...,& and x=(¢,...,&,).

It 1s easy to verify that the bilinear mapping ¢{, ) is non-degenerate and
hence I'"” is dual to itself.

3. Let E be any vector space and E*=L(E) the space of linear func-
tions in E. Define a bilinear mapping {, > by

{f,x>=f(x), feL(E),xeE.

Since f (x)=0 for each x€E if and only if /=0, it follows that Ny =0.
On the other hand, let ae E be a non-zero vector and E; be the one-

dimensional subspace of E generated by a. Then a linear function g is
defined in E, by
g(x)=4 where x=Ala.

In view of sec. 1.15, g can be extended to a linear function fin E. Then

(f.,a>=f(a)=g(a)=1=*0.

It follows that Ny =0 and hence the bilinear function {, ) is non-degener-
ate.

This example is of particular importance because of the following

Proposition I: et E*, E be any pair of dual vector spaces with respect
to a scalar product ¢{, >. Then there is an injective linear mapping

¢:E* - L(E)
such that
(@ x*)(x) = {x*,x}. (2.39)

The linear mapi)ing @ 1s uniquely determined by (2.39).
Proof: 1t 1s clear that ¢ is uniquely determined by (2.39).

To define ¢ let x*e E* be a fixed vector and consider the linear function
f.» defined by

fo(x) = {x*,x). (2.40)
The bilinearity of {, > implies that the correspondence

x* > f..
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is a linear mapping. Define ¢ by
P x* = fi. (2.41)

Then (2.39) follows from (2.40) and (2.41). To prove that ¢ is injective
suppose that ox* =0 for a vector x*€E*. Then we have that

(x*,x> =0

for every xe E whence x*=0. This proves the injectivity of .

Note: 1t will be shown in sec. 2.33 that ¢ is surjective (and hence a
linear 1isomorphism) if E has finite dimension.

2.23. Orthogonal complements. Two vectors x*eE* and x€FE are
called orthogonal if (x*, x>=0. Now let E, be a subspace of E. Then the
vectors of E* which are orthogonal to E, form a subspace E{ of E*. E;
is called the orthogonal complement of E,. In the same way every subspace
EY¥c E* determines an orthogonal complement (E;*) "< E. The fact that

the bilinear function {, > is non-degenerate can now be expressed by the
relations

E'=0 and (E* =0.
It follows immediately from the definition that for every subspace E, c E
E, c(E})* (2.42)

Suppose next that E*, E are a pair of dual spaces and that F is a sub-
space of E. Then a scalar product is induced in the pair E*/F*, F by

(F*,yy =<{x*,y), X*eE*[F*'
yeF

where x* 1s a representative of the class x*. In fact, let @ be the restriction
of the scalar product {, > to E* x F. Then the nullspaces of @ are given by

Nge=F' and N;=0.

Now our result follows immediately from sec. 2.21.

More generally, suppose F< E and H*< E* are any subspaces.
Then a scalar product in the pair H*/H*n F* F/Fn (H*)", is deter-
mined by

(X*, %) = (x*,x)

as a similar argument will show.
2.24. Dual mappings. Suppose that E, E* and F, F* are two pairs of
dual spaces and ¢: E—~F, ¢*: E*« F* are linear mappings. The mappings
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¢ and ¢@* are called dual if

(¥, 0x)> = {@p* y*, x> y*eF* xeE.

To a given linear mapping ¢ : E— F there exists at most one dual mapping.
If 7 and ¢} are dual to ¢ we have that

G ox)y =Lty x> and (¥ ex) =<3 y* x)
whence

(p¥y* —p¥y* x> =0 xeE,y*eF.

This implies, in view of the duality of E and E*, that ¢} y*=¢¥y* whence
P1=03.

As an example of dual mappings consider the dual pairs E*, E and
E*/E{, E; where E; is a subspace of E (cf. sec. 2.23) and let 7 be the
canonical projection of E* onto E*/E{,

n:E*/E7 « E*.
Then the canonical injection
i:E; -~ E
is dual to =. In fact, if xeE,, and y*€E* are arbitrary, we have
Y, ix) =y x) = {Jx) =<ny*, x)

and thus
T =1i*.

2.25. Operations with dual mappings. Assume that E* FE and F* F
are two pairs of dual vector spaces. Assume further that ¢: E—F and
W : E—~F are linear mappings and that there exist dual mappings ¢@*:
E*—F*and y*: E*« F* Then there are mappings dual to ¢+ and Ag
and these dual mappings are given by

(@ +¥)* = o* + Y* (2.43)
and

(Lo)* = Lo*. (2.44)
(2.43) follows from the relation

{o* + Y*)y*, x> = (p* y*, x> + {Y* y*, x)
={y*,0x) + (Y5 ¥ x) =<{y*(p + ¥)x)

and (2.44) is proved in the same way. Now let G, G* be a third pair of
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dual spaces and let y: F—= G, y*: F*<G* be a pair of dual mappings. Then
the dual mapping of y.¢ exists, and is given by

(10 0)* = @*ox*.

In fact, if z*eG* and xe E are arbitrary vectors we have that

Co* x*z*,x) = (y* 2%, x> = 2%y 9o x> .
For the identity map we have clearly

IE# — (IE)* .

Now assume that ¢: E— F has a left inverse ¢,: F— L,

Pro@ = Ig (2.45)

and that the dual mappings ¢*: E*«—F* and ¢7:F*«E* exist. Then we
obtain from (2.45) that

0*o 0] = (@0100)* = (15)* = 1. (2.46)
In view of sec. 2.11 the relations (2.45) and (2.46) are equivalent to

@ injective, ¢, surjective
and
@T injective, ¢@%* surjective.

In particular, if ¢ and ¢, are inverse linear isomorphisms, then so are
o* and @7.

2.26. Kernel and image space. Let ¢: E—>F and ¢*: E*«F* be a pair
of dual mappings. In this section we shall study the relations between the
subspaces

kerocE, ImopcF
and
ker o* < F*, Imoe*c E*,

First we establish the formulae
ker o* = (Im )" (2.47)
ker ¢ = (Img™)". (2.48)
In fact, for any two vectors y*eker ¢o*, oxelm ¢ we have

e x> =L{p*y*, x> =0
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and hence the subspaces ker ¢* and Im ¢ are orthogonal, ker ¢* c (Im ¢) .
Now let y*e(Im ¢)~ be any vector. Then for every xe E

Co*y*, x> =<L{y*, 0x)=0.

It follows that ¢*y* =0, whence y*eker ¢*. This completes the proof of
(2.47). (2.48) is proved by the same argument.

Now assume that ¢ is surjective. Then Im ¢=F and hence formula
(2.47) implies that ker ¢*=0; 1.e., @* is injective. If ¢ 1s injective we ob-
tain from (2.48) that (Im ¢*)-=0. However, this does not imply that
Im ¢@*=FE* and so we can not conclude that the dual of an injective map-
ping is surjective (cf. problem 9).

2.27. Relations between the induced mappings. Again let ¢: E— F and
o*: E*<F* be a pair of dual mappings. Then it follows from (2.48) and
from the discussion in sec. 2.23 that a scalar product is induced in the pair

Im ¢* Efker ¢, by
(x*, x> =<{x* x> x*elmoe* xcE/kero.

In particular, if ¢ is injective, then the restriction of the scalar product in

E*, E to Im ¢*, E 1s non-degenerate.
The same argument as above shows that the vector spaces F*/ker ¢*
and Im ¢ are dual with respect to the bilinear functions given by

(X*, x> ={xX* x> x*e F*[ker o*, xclmo.
Now consider the surjective linear mapping
o E—>1Imo
induced by ¢ and the injective linear mapping
p*: E* « F*[ker @*

induced by ¢*. The mappings ¢, and @* are dual. In fact, if X*e F'*/ker ¢*
and xeFE are arbitrary vectors, we have that

COP*X*,x) = {Q*x*,x)
= {x*, o x)
- <"x-‘-*: (pl x>'

In the same way it follows that the surjective mapping

o7 :Imp* « F*
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induced by ¢* and the injective mapping
o.Elkero - F
induced by ¢ are dual. Finally, the induced i1somorphisms

E/ker ¢ = Im ¢
and
Im @* « F*/ker ¢*
are dual as well.

2.28. The space of linear functions as a dual space. Let E be a vector
space and L (E) be the space of linear functions in E. Then the spaces E,
L(E) are dual with respect to the scalar product defined in sec. 2.22. For
these spaces we have three important results, which are not valid for
arbitrary pairs of dual spaces.

Proposition II: Let F, F* be arbitrary dual spaces and ¢:E—F be a
linear mapping. Then a dual mapping ¢*:L(E)« F* exists, and is given
by
y*e F* (2.49)

(e*y)(x) = y%ex> | g

Proof: 1t is easy to verify that the correspondence y*—¢*y* defined
by (2.49) determines a linear mapping. Moreover, the relation

{o* y*, x> = (@* y*)(x) = {y*, o x>

shows that ¢* is dual to ¢. If F*=L(F) as well, (2.49) can be written in
the form

o*f = f o0, feL(F). (2.50)

Proposition I1I: Suppose ¢: E— Fis a linear mapping, and consider the
dual mapping

QD* . L(E) — L(F).
Then
Im ¢* = (ker )" . (2.51)

Proof: From (2.42) and (2.48) we obtain that
Ime* = (Im ™)+ = (ker ¢)*. (2.52)
On the other hand, suppose that fe(ker ¢)*. Then
ker f o kerop
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and hence (cf. sec. 2.4) there exists a linear function g in F such that

gop=1.
Now (2.50) yields

p*g=gop=f
and so feIm ¢*. Thus Im ¢* o (ker ¢) ~ which together with (2.52) proves
(2.51).

Corollary I: If ¢ 1s injective, then ¢@* is surjective.
Proof: 1If ker ¢ =0 formula (2.51) yields

Im¢* = (ker ¢)" = (0)" = L(E)

and so @* 1s surjective.

Corollary II: (ker @) " =ker ¢
Proof: Proposition III together with the relation (2.48) yields

(kerp) * = (Im@*)" =kero.

Proposition IV: If E, < E is any subspace, then
Ei-l —_ E1 . (2.53)
Proof: Consider the canonical projection n: E—~E/E,. Then ker n=E|.

Now the result follows immediately from corollary 11.

Corollary I: If ¢: E— Fis a linear mapping and ¢*: L(E)«L(F) is the
dual mapping, then
(ker p*)" = Imo.

Proof: 1t follows from (2.47) and (2.53) that

(kerp*)" = (Im )" =Ime.

Corollary II: The bilinear function
(x*, %> =(x* x> x*eEj,X€E/E,

defines a scalar product in the pair E, E/E,.
2.29. Dual exact sequences. As an application suppose the sequence

FLELG
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1s exact at E. Then the dual sequence
L(F)E L(E)< L(G)
is exact at L(E). In fact, it follows from (2.47) and (2.51) that

ker o* = (Im @) = (kery)" = Imyr*.
In particular, if
0->F3SE A G-0

is a short exact sequence, then the dual sequence
0+ L(F) £L(E) L L(G)«0

is again a short exact sequence.
2.30. Direct decompositions. Proposition V. Suppose

E=E Q®E, (2.54)
1s a decomposition of E as a direct sum of subspaces. Then
L(E)=E;®E;

and the pairs Ej, E, and E 5, E, are dual with respect to the induced
scalar products. Moreover, the induced injections

E; ~ L(E,), E;— L(E,)
are surjective, and hence
L(E) = L(E,)® L(E,).

Finally, (E{) *=E; and (E;)**=E;.

Proof: let n,:E—E, and ©n,: E—E, be the canonical projections as-
sociated with the direct decomposition (2.54). Let fe L(E) be any linear
function, and define functions f;, f, by

fi(x)=f(n,x) and f,(x)=f(n,x).
It follows that f;,e E;* (i=1, 2) and

f=fi+/fs.
Consequently,

L(E)=E; + E;. (2.55)

To show that the decomposition (2.55) is direct, assume that fe E7n E 3.
Then
f(x)=0 xeE, xeE,
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and hence f (x)=0 for every xe E. Thus f=0, and so the decomposition
(2.55) is direct. The rest of the proposition is trivial.

Corollary: If E=E ®---@FE, 1s a decomposition of E as a direct sum
of r subspaces, then
L(Ey=F, ® - ®F;
where
F,=) E;.

JFi

Moreover, the restriction of the scalar product to E,, F; is again non-
degenerate, and

F =~ L(E).
Proposition V has the following converse:

Proposition VI: Let E, cE be any subspace, and let E{f=L(E) be a
subspace dual to E; such that

(E%)** = EY.
Then
E=E, ®(E})" (2.56)
and
L(E)=Ef®Ej7. (2.57)
Proof: We have that
(Ey + EY")" =E; n (Ef") =E;n Ef =0
whence
E=0"=(E,+ Ef")""=E, + E}". (2.58)

On the other hand, since E, and E{ are dual, it follows that
E.nE{ =0

which together with (2.58) proves (2.56). (2.57) follows from Proposition
V and (2.56).

Problems

. Given two pairs of dual spaces E* E and F*, F prove that the
spaces E*@ F* and E@F are dual with respect to the bilinear function

Ax* y*)(x.¥)) = (x*, x> + {y* p).
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2. Consider two subspaces E; and E, of E. Establish the relation
(E, + E,) =E{ n E;.

3. Given a vector space E consider the mapping @: E—-L(L(E)) de-
fined by

d,(f)=f(a) acE,feL(E).

Prove that @ is injective.
4. Suppose n: E—E and n*: E*« E* are dual mappings. Assume that
7 is a projection operator in E. Prove that 7* is a projection operator in
E* and that
Imz* = (kern)", Imn=(kern*)".

Conclude that the subspaces Im n, Im n* and ker n, ker n* are dual pairs.

5. Suppose E, E* is a pair of dual spaces such that every linear func-
tion f: E—~TI induces a dual mapping f*: E*«I'. Show that the natural
injection E*— L (FE) is surjective.

6. Suppose that E is an infinite dimensional vector space. Show that
there exists a dual space E* such that the natural injection E*—L(E) is
not surjective.

7. Consider the vector space E of sequences

(Ags Ay ...) AeTl

and the subspace F consisting of those sequences for which only finitely
many A, are different from zero (addition and scalar multiplication being
defined as in the case of I'"). Show that the mapping Ex F—I given by

(AosAr o) (Hosiy "')'_)Z)“iui

defines a scalar product in F and F. Show further that the induced injec-
tion E— L(F) is surjective.

8. Let S be any set. Construct a scalar product between (S; I') and
C(S) (cf. Example 3, sec. 1.2 and Example 5, sec. 1.7) which determines
a linear isomorphism (S; I').5 L(C(S)).

Hint: See problem 7.

9. Let E be any vector space of infinite dimension. Show that there is
a dual space E* and a second pair of dual spaces F, F* such that there

exist dual mappings
o:E—->F, @* E*<«F*

where ¢ is injective but ¢* is not surjective.
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Prove that E, Im ¢* is again a dual pair of spaces.

10. Let ¢: E— F be a linear mapping with restriction ¢, : E;— F;. Sup-
pose that ¢*: E*« F* is a dual mapping. Prove that ¢* can be restricted
to the pair (F, E 7). Show that the induced mapping

¢*:E/Ey < F[F}

is dual to ¢, with respect to the induced scalar product.

§ 6. Finite dimensional vector spaces

2.31. The space L(E; F). Let E and F be vector spaces of dimension
n and m respectively. Then the space L(E; F) has dimension nm,

dimL(E; F)=dim E-dim F. (2.59)

To prove (2.59) let x,(v=1, ..., n) be a basis of Eand y,(u=1, ..., m) be
a basis of F. Consider the linear mappings ¢2: E— F defined by

Av=1,...,n

A — A sk
PgXy =0y Y, %) c =1 ..m

Now let ¢: E— F be any linear mapping, and define scalars «f by

OX, = ), A y,.
p=1
Then
(P— L oo )xa=205p,— > abdiy,=> a3y, — ) aky,=0
M, Vv (1 Hs v g B
whence
0= ), a5y
vV, it

It follows that the mappings ¢} generate the space L(E; F). A similar
argument shows that the mappings ¢’ are linearly independent and hence
they form a basis of L(E; F). This basis is called the basis induced by the
bases of E and F. Since the basis ¢, consists of nm vectors, formula (2.59)
follows.

2.32. The space L(E). Now consider the case that F=1TI and choose in
I' the basis consisting of the unit element. Then the basis of L (E) induced

A=

*) 07 is the Kronecker symbol defined by 62 - 3 (1) Ay
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by the basis x,(v=1, ..., n) consists of » linear functions f* given by
fr(x,)=0,. (2.60)

The basis f* of L(E) is called the dual of the basis x, of E. In particular,
we have
dimL(E)=dimE.

Since the functions f* form a basis of L(E) every linear function f in
E can be uniquely written in the form

f = Zlufﬂ ,
i’
where the scalars A, are given by
A,=f(x,) wpu=1,..,n.

This formula shows that the components of f with respect to the basis f*
are obtained by evaluating the function f on the basis x,.
2.33. Dual spaces. We shall now prove the assertion quoted in sec. 2.22.
Proposition I: Let E, E* be a pair of dual spaces and assume that E
has finite dimension. Then the injection ¢: E*— L (E) defined by formula
(2.39) is surjective and hence a linear isomorphism. In particular, E* has
finite dimension and
dim E* = dimE. (2.61)

Proof: Since ¢ is injective and dim L(E)=dim E it follows that
dim E* < dmE.

Hence E* has finite dimension. In view of the symmetry between E and
E* we also have that
dimE < dim E*

whence (2.61). On the other hand, dim L(E)=dim E and hence ¢ is
surjective.

Corollary I: Let E, E* be a pair of dual finite dimensional spaces. Then
the results of sec. 2.28, 2.29 and 2.30 hold.

Proof: Each result needs to be verified independently, but the proofs

can all be obtained by using the linear isomorphism E *5 L (E). The actual
verifications are left to the reader.
Corollary II: Let E{ and E; be any two vector spaces dual to E. Then

there exists a unique linear isomorphism ¢: E{— E; such that

(o x*, x> = {(x* x> x*cET, xeE.
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Two bases x, and x*'(v=1...n) of E and E* are called dual if
(X* %, =6,. (2.62)

Given a basis x, (v=1...n) of E there exists precisely one dual basis of E*,
It is clear that the vectors x*” are uniquely determined by (2.62). To prove

the existence of the dual basis let ¥ be the basis of L(E) defined in sec.
2.32 and set

=0 'fY v=1..n
where ¢ is the linear isomorphism of E* onto L(E). Then we have that
x> =LY% =f"(x,)=9,.
Given a pair of dual bases x,, x*'(v=1...n) consider two vectors
x*=Y¢x* and x =) &x,.

It follows from (2.62) that
xFxy =3 8,8

Replacing x* by x** in this relation we obtain the formula

EF = (x**, x)

which shows that the components of a vector xe E with respect to a basis
of E are the scalar products of x with the dual basis vectors.

Proposition II: Let F be a subspace of E and consider the orthogonal
complement F~. Then

dimF + dim F* = dimE. (2.63)

Proof: Consider the factor space E/F. In view of sec. 2.23, E/F is dual
to F* which implies (2.63).

Proposition II1: Let E, E* be a pair of dual vector spaces and consider
a bilinear function @:E* x E—I'. Then there exists precisely one linear
transformation ¢: E— E such that

D (x*,x) = {(x*, @ x) x*cE* xeE.

Proof: Let xeE be a fixed vector and consider the linear function £, in
E* defined by

f:(x‘) = dz’("‘:l.l!'-x)'
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In view of proposition I there is precisely one vector ¢xe E such that

fx (x*) = {Xx¥, (Px> .
The two above equations yield
(x*,0x) = P(x*,x) x*eE*,xeE

and so a mapping ¢: E— E 1s defined. The linearity of ¢ follows immedi-
ately from the bilinearity of @. Suppose now that ¢, and ¢, are two
linear transformations of E such that

D(x*,x)=<(x*,¢;x) and &(x* x)={x* @,x>

Then we have that
X @i x—@yx)=0
whence @, = @,.
Proposition III establishes a canonical linear isomorphism between the

spaces B(E*, E) and L(E; E),
B(E*,E)~ L(E; E).

Here B(E*, E) is the space of bilinear functions @: E* x E—-TI with ad-
dition and scalar multiplication defined by

(D1 + D) (x*, x) = @, (x*,x) + D, (x*, x)
and
(AD)(x*,x) = A-P(x*,x).

2.34. The rank of a linecar mapping. Let ¢: E— F be a linear mapping
of finite dimensional vector spaces. Then ker o < E and Im ¢ < F have
finite dimension as well. We define the rank of ¢ as the dimension of Im ¢

r(¢) =dimIme.

In view of the induced linear isomorphism

E/kero S Ime

we have at once
r(¢) + dimkerp =dimE. (2.64)

@ is called regular if it is injective. (2.64) implies that ¢ is regular if and
only if r (¢)=dim E.

In the special case dim E=dim F (and hence in particular in the case of
a linear transformation) we have that ¢ is regular if and only if it is sur-
jective.
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2.35. Dual mappings. Let E*, E and F*, F be dual pairs and ¢:E-F
be a linear mapping. Since E* is canonically isomorphic to the space L (E)
there exists a dual mapping ¢*: E*« F*, Hence we have the relations

Im ¢ = (ker ¢*)"
and
Im ¢* = (ker)".

The first relation states that the equation

px =y
has a solution for a given ye F if and only if y satisfies the condition
(x*, y>=0 forevery x*ekerop*.

The second relation implies that dual mappings have the same rank. In
fact, from (2.63) we have that

dim Im ¢* = dim (ker )" = dim E — dimker ¢ = dimIm ¢
whence

r(e*) =r(o). (2.65)

Problems

(In problems 1-10 it will be assumed that all vector spaces have finite
dimension).
1. Let E, E* be a pair of dual vector spaces, and let E,, E, be sub-
spaces of E. Prove that
(E; n E;) = E7 + E;.

Hint: Use problem 2, § 5.
2. Given subspaces Uc E and V* < E* prove that

dim(U* n ¥* +dimU = dim(U n V*') + dim V*.

3. Let E, E* be a pair of non-trivial dual vector spaces and let ¢ : E—» E*
be a linear mapping such that ¢ot=(7*)"'.¢ for every linear auto-
morphism 7 of E. Prove that ¢ =0. Conclude that there exists no linear
mapping ¢ : E— E* which transforms every basis of E into its dual basis.

4. Given a pair of dual bases x**, x,(v=1...n) of E, E* show that the

i
bases (x*'+ ) A, x*", x*?, ..., x*") and (x, x,—A,x4, ..., X,—4,X,) are
again dual, *~?



80 Chapter II. Linear mappings

5. Let E, F, G be three vector spaces. Given two linear mappings
¢:E-F and y: F-»G prove that

r(Wop)Sr(e) and r(Yo.0)=ry).

If ¢ is injective show that

r(yo)=r(y).

6. Let E be a vector space of dimension » and consider a system of n
linear transformations o,: E— E such that

0,00, =0;0;; (i,j=1...n).

a) Show that every o, has rank 1
b) If 6;(i=1...n) is a second system with the same property, prove that
there exists a linear automorphism 1 of E such that

-1

G;=T DGiGT-

7. Given two linear mappings ¢: E—F and y: E— F prove that

r(@)—rW)l =r(p+¥)sr(p)+r ().

8. Show that the dimensions of the spaces M'(¢), M"(¢) in problem 3,
§ 2 are given by
dim M'(¢) = (dim F — r(¢))-dim E
dim M"(¢) = dim ker ¢-dim F .

9. Show that the mapping &:¢@— ¢* defines a linear isomorphism,

&:L(E;F)> L(F*;E*).
10. Prove that
@ M'(¢) = M"(¢*)
and
@ M"(¢) = M'(¢*)

where the notation is defined in problems 8 and 9. Hence obtain the
formula

r(e) =r(e*).

11. Let ¢: E—F be a linear mapping (E, F possibly of infinite dimen-
sion). Prove that Im ¢ has finite dimension if and only if ker ¢ has finite
codimension (recall that the codimension of a subspace is the dimension
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of the corresponding factor space), and that in this case
codimker ¢ = dimIm¢.

12. Let E and F be vector spaces of finite dimension and consider a
bilinear function ¢ in E x F. Prove that

dim E — dim Ny = dim F — dim N,

where N; and N, denote the null spaces of &.



Chapter III

Matrices

In this chapter all vector spaces will be defined over a fixed, but arbitrarily
chosen field I' of characteristic 0.

§ 1. Matrices and systems of linear equations

3.1. Definition. A rectangular array

o ... o
a=(: G.1)
ok o

of nm scalars «f is called a matrix of n rows and m columns or, in brief,
an n x m-matrix. The scalars o), are called the entries or the elements of
the matrix A. The rows

a,=(a...00) (v=1...n)

can be considered as vectors of the space I'™ and therefore are called the
row-vectors of A. Similarly, the columns

b =(bi...bf) (u=1...m)

considered as vectors of the space I' ", are called the column-vectors of A.
Interchanging rows and columns we obtain from A the transposed
matrix

oy ... o)
A* = N (3.2)
o0y ..o

In the following, matrices will rarely be written down explicitly as in
(3.1) but rather be abbreviated in the form 4= («}). This notation has the
disadvantage of not identifying which index counts the rows and which
the columns. It has to be mentioned in this connection that it would be
very undesirable — as we shall see — to agree once and for all to always let
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the subscript count the rows, etc. If the above abbreviation is used, it will
be stated explicitly which index indicates the rows.

3.2. The matrix of a linear mapping. Consider two linear spaces E and
F of dimensions n and m and a linear mapping ¢: E—~ F. With the aid of
bases x,(v=1...n) and y,(u=1...m) in E and in F respectively, every
vector @ x, can be written as a linear combination of the vectors y,

(n=1...m),
px,=>oay, (v=1..n). (3.3)

In this way, the mapping ¢ determines an n X m-matrix («f), where v
counts the rows and u counts the columns. This matrix will be denoted
by M (¢, x,, y,) or simply by M (¢) if no ambiguity is possible.

Conversely, every nxm-matrix («}) determines a linear mapping
¢ : E— F by the equations (3.3). Thus, the operator

M:p— M(op)

defines a one-to-one correspondence between all linear mappings ¢: E—~F
and all » x m-matrices.

3.3. The matrix of the dual mapping. Let E* and F* be dual spaces of
E and F, respectively, and ¢: E- F, ¢*: E*« F* a pair of dual mappings.
Consider two pairs of dual bases x*’, x,(v=1...n) and y**, y, (u=1...m)
of E*, E and F*, F, respectively. We shall show that the two correspond-
ing matrices M (¢) and M (¢*) (relative to these bases) are transposed,
i.e., that

M(p*) = M (p)*. (3.4)

The matrices M (¢) and M (¢*) are defined by the representations
ex,=Yaby, and @*y™ =) ai*x*".
. : "

Note here that the subscript v indicates in the first formula the rows of
the matrix o) and in the second the columns of the matrix o). Substituting
x=x, and y=yp** in the relation

% 0x) = {@* y*, x) (3.5)
we obtain

<y*'u:§0xv> = <(P*y*n: xv>' (3'6)
Now

Mex,) = Yary* y D =d (3.7)
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and
(O™ y™, x,» = Y af {x*, x> = art. (3.8)
2

The relations (3.6), (3.7) and (3.8) then yield

¥t = gt

Observing — as stated before — that the subscript v indicates rows of («%)
and columns of («)*) we obtain the desired equation (3.4).

3.4. Rank of a matrix. Consider an n x m-matrix 4. Denote by r, and
by r, the maximal number of linearly independent row-vectors and co-
lumn-vectors, respectively. It will be shown that r; =r,. To prove this let
E and F be two linear spaces of dimensions n and m. Choose a basis
x,(v=1...n)and y,(u=1...m) in E and in Fand define the linear mapping
¢.E->F by

X, =) ay,.
T}

Besides ¢, consider the isomorphism

p:F->I"
defined by
Biy-(n'...nm),
where
y=§n“yu-

Then . ¢ is a linear mapping of E into I'™. From definition of j it follows
that f.¢ maps x, into the v-th row-vector,

Box,=a,.

Consequently, the rank of f.¢ is equal to the maximal number r, of
linearly independent row-vectors. Since f is a linear isomorphism, fo ¢
has the same rank as ¢ and hence r, is equal to the rank r of ¢.

Replacing ¢ by ¢* we see that the maximal number r, of linearly inde-
pendent column-vectors is equal to the rank of ¢*. But ¢* has the same
rank as ¢ and thus r,=r,=r. The number r is called the rank of the
matrix A.

3.5. Systems of linear equations. Matrices play an important role in
the discussion of systems of linear equations in a field. Such a system

St =nt  (u=1..m) (3.9)
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of m equations with » unknowns is called inhomogeneous if at least one
n* is different from zero. Otherwise it is called homogeneous.

From the results of Chapter Il it 1s easy to obtain theorems about the
existence and uniqueness of solutions of the system (3.9). Let E and F be
two linear spaces of dimensions » and m. Choose a basis x,(v=1...n) of
E as well as a basis y,(u=1...m) of F and define the linear mapping
¢:E-F by

Px, =) ahy,.
i

Consider two vectors

x=Y&x, (3.10)
and
y=Xny,. (3.11)
I
Then
px =2 px,=) 0y &y,. (3.12)
v vV, it

Comparing the representations (3.9) and (3.12) we see that the system (3.9)
is equivalent to the vector-equation

pxX=1y.

Consequently, the system (3.9) has a solution if and only if the vector y
is contained in the image-space Im ¢. Moreover, this solution is uniquely
determined if and only if the kernel of ¢ consists only of the zero-vector.

3.6. The homogeneous system. Consider the homogeneous system

YabE =0 (u=1...m). (3.13)
From the foregoing discussion it is immediately clear that (¢'...&") is a
solution of this system if and only if the vector x defined by (3.10) is con-
tained in the kernel ker ¢ of the linear mapping ¢. In sec. 2.34 we have
shown that the dimension of ker ¢ equals n—r where r denotes the rank
of o.

Since the rank of ¢ is equal to the rank of the matrix («%), we therefore
obtain the following theorem:

A homogeneous system of m equations with n unknowns whose coefficient-
matrix is of rank r has exactly n—r linearly independent solutions. In the
special case that the number m of equations is less than the number n of
unknowns we have n—r2n—m 1. Hence the theorem asserts that the
system (3.13) always has non-trivial solutions if m is less than n.
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3.7. The alternative-theorem. Let us assume that the number of equa-
tions is equal to the number of unknowns,

Y& =n"* (u=1...n). (3.14)

Besides (3.14) consider the so-called “corresponding’ homogeneous sys-
tem

Yabé'=0 (u=1...n). (3.15)

The mapping ¢ introduced in sec. 3.5 is now a linear mapping of the »-
dimensional space E into a space of the same dimension. Hence we may
apply the result of sec. 2.34 and obtain the following alternative-theorem:

If the homogeneous system possesses only the trivial solution (0...0), the
inhomogeneous system has a solution (£*...E") for every choice of the right-
hand side. If the homogeneous system has non-trivial solutions, then the
inhomogeneous is not solvable for every choice of the n* (v=1...n).

From the last statement of section 3.5 it follows immediately that in the
first case the solution of (3.14) is uniquely determined while in the second
case the system (3.14) has — if it is solvable at all — infinitely many solu-
tions.

3.8. The main-theorem. We now proceed to the general case of an
arbitrary system

Y& =" (u=1...m) (3.16)

of m linear equations in n unknowns. As stated before, this system has a
solution if and only if the vector

y=21"y,
i
1s contained in the image-space Im ¢. In sec. 2.35 i1t has been shown that
the space Im ¢ 1s the orthogonal complement of the kernel of the dual

mapping ¢*: F*— E*, In other words, the system (3.16) is solvable if and
only if the right-hand side #* (u=1...m) satisfies the conditions

%n"ui’f =0 (3.17)
for all solutions #} (u=1...m) of the system

Yoatg*=0 (v=1...n). (3.18)
T}

We formulate this result in the following



§ 1. Matrices and systems of linear equations 87

Main-theorem: An inhomogeneous system of n equations in m unknowns
has a solution if and only if every solution n, (u=1...m) of the transposed
homogeneous system (3.18) satisfies the orthogonality-relation (3.17).

Problems: 1. Find the matrices corresponding to the following map-
pings:

a) ¢x=0.

b) px=x.

C) pX=AX.

m
d) px= ) &’e, where e,(v=1, ...,n) is a given basis and m=nis a
v=1

given number.
2. Consider a system of two equations in » unknowns

Yad=a Y AE=F

v=1
Find the solutions of the corresponding transposed homogeneous system.

3. Prove the following statement:

The general solution of the inhomogeneous system is equal to the sum
of any particular solution of this system and the general solution of the
corresponding homogeneous system.

4. Let x, and X, be two bases of E and A be the matrix of the basis-
transformation x,—X,. Define the automorphism « of E by ax,=X,.
Prove that A is the matrix of o« as well with respect to the basis x, as with
respect to the basis X,.

5. Show that a necessary and sufficient condition for the n x n-matrix
A= () to have rank =<1 is that there exist elements «,, «,, ..., &, and
B, B2, ..., B" such that

ab=a,p* (v=L12,..,n;u=12,...,n).
If A+0, show that the elements «, and p* are uniquely determined up to

constant factor 4 and p respectively, where Au=1.
6. Given a basis a, of a linear space E, define the mapping ¢: E—E as

pa, =Zan'
p

Find the matrix of the dual mapping relative to the dual basis.
7. Verify that the system of three equations:

¢+n+({=3,
§—n—{=4,
E+3n+3=1
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has no solution. Find a solution of the transposed homogeneous system
which is not orthogonal to the vector (3, 4, 1). Replace the number 1 on
the right-hand side of the third equation in such a way that the resulting
system is solvable.

8. Let an inhomogeneous system of linear equations be given,

Yah&'=n"  (u=1,...,m).

The augmented matrix of the system is defined as the m x (n+ 1)-matrix
obtained from the matrix o, by adding the column (5, ..., #™). Prove that
the above system has a solution if and only if the augmented matrix has
the same rank as the matrix (af).

§ 2. Multiplication of matrices

3.9. The linear space of the n x m matrices. Consider the space L(E; F)
of all linear mappings ¢: E—F and the set M"*™ of all nx m-matrices.
Once bases have been chosen in E and in F there is a 1-1 correspondence
between the mappings ¢: E— F and the n x m-matrices defined by

o - M(p,x,,y,). (3.19)

This correspondence suggests defining a linear structure in the set M"™™
such that the mapping (3.19) becomes an isomorphism.
We define the sum of two n x m-matrices

A= (ay) and B =(f))
as the n x m-matrix
A+ B = (af + )

and the product of a scalar 4 and a matrix A as the matrix
LA =(Ad)).

It is immediately apparent that with these operations the set M"*™ is a
linear space. The zero-vector in this linear space is the matrix which has
only zero-entries.

Furthermore, it follows from the above definitions that

Mo +py)=iM(e)+uM(y) ¢, yeL(E;F)

i.e., that the mapping (3.19) defines an isomorphism between L(E; F) and
the space M"*™,
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3.10. Product of matrices. Assume that
o:E—-F and ¢:F->G

are linear mappings between three linear spaces E, F, G of dimensions
n, m and /, respectively. Then - ¢ is a linear mapping of E into G. Select
a basis x,(v=1...n), y,(p=1...m) and z,(A=1...]) in each of the three
spaces. Then the mappings ¢ and ¥ determine two matrices (o) and (B5)
by the relations

@ X, = Zaf:y,u
i

and

vy u= ; ﬁﬁ Z-
These two equations yield
(Vop)x, = ;Aocf,‘ﬁﬁzi.
Consequently, the matrix of the mapping - ¢ relative to the bases x, and

z, 1s given by yh=Y a2 (3.20)
u

The n x I-matrix (3.20) is called the product of the n x m-matrix A=(a})
and the m x I-matrix B=(f}) and is denoted by 4 B. It follows immedi-
ately from this definition that

M(Ys0) = M(o)M(¥). (3.21)

Note that the matrix M (¥ @) of the product-mapping ¥ - ¢ is the product
of the matrices M (¢) and M () in reversed order of the factors.

It follows immediately from (3.21) and the formulas of sec. 2.16 that
the matrix-multiplication has the following properties:

A(AB, + uB,)=AAB, + uAB,

" (AA; +uA,)B=A1A, B+ uA,B
| (AB)C = A(BC)
(A B)* = B* A*.

3.11. Automorphisms and regular matrices. An »n x n-matrix A is called
regular If it has the maximal rank #n. Let ¢ be an automorphism of the
n-dimensional linear space £ and A= M(¢p) the corresponding » X n-
matrix relative to a basis x, (v=1...n). By the result of section 3.4 the rank
of ¢ 1s equal to the rank of the matrix 4. Consequently, the matrix 4 is
regular. Conversely, every linear transformation ¢: £— E having a regular
matrix is an automorphism.
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To every regular matrix A there exists an inverse matrix, 1.€., a matrix
A~ such that

AA " '=A4"14=1J,
where J denotes the unit matrix whose entries are 8%. In fact, let ¢ be the
automorphism of E such that M(¢)=A and let ¢~ ' be the inverse

automorphism. Then

¢ lop=90op =1,

whence

) M(o)M(@) ' =M(p lo@)=M@)=J

M(p™YM(p)=M(p.0™)=M@)=1J.
These equations show that the matrix
AT =M(p™")

is the inverse of the matrix A.

Problems

1. Verify the following properties:

a) (A + B)* = A* + B*.
b) (AA)* = A A4*.
C) (A-l % =(A*)-1.

2. A square-matrix is called upper (lower) triangular if all the elements
below (above) the main diagonal are zero. Prove that sum and product of
triangular matrices are again triangular.

3. Let ¢ be linear transformation such that ¢?=¢. Show that there
exists a basis in which ¢ is represented by a matrix of the form:

1 0...0)
1
m
1 0...0
O0..vvvnnn. 0
n-—m
C T 0 )



§ 3. Basis-transformation 91

4. Denote by A;; the matrix having the entry 1 at the place (i, ) and
zero elsewhere. Verlfy the formula

Aij'Ajk = Ay.

Prove that the matrices form a basis of the space M" ™",

§ 3. Basis-transformation

3.12. Definition. Consider two bases x, and X,(v=1...n) of the space
E. Then every vector %, (v=1...n) can be written as

X, =Y a'x,. (3.22)
i
Similarly,

X, =) ab%,. (3.23)
H

The two n x n-matrices defined by (3.22) and (3.23) are inverse to each
other. In fact, combining (3.22) and (3.23) we obtain

- T il
This 1s equivalent to
;(Zocﬁ&'j —8))%, =0
u
and hence it implies that

yati =

In a similar way the relations
YU, A __ SA
Y aba, =0,
7]

are proved. Thus, any two bases of E are connected by a pair of inverse
matrices. )

Conversely, given a basis x,(v=1...n) and a regular n x n-matrix (a),
another basis can be obtained by

X, = obx,.
7,

To show that the vectors X, are linearly independent, assume that

YAX, =
Then

Y Aakx, =0

v, M
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and hence, in view of the linear independence of the vectors x,,
YAVabh=0 (u=1..n).
Multiplication with the inverse matrix a3 yields
Y Malar =Y A"65=1"=0 (k=1...n).
v, v
3.13. Transformation of the dual basis. Let £* be a dual space of E,

x*" the dual basis of x, and ¥** the dual of the basis X,(v=1...n). Then

x* =Y Bex*, (3.24)

where B2 is a regular n x n-matrix. Relations (3.23) and (3.24) yield

S BeLx* x> =Y ah(x*, x>, (3.25)

Now
(x*,x,> =067 and (x*, %) =8¢.

Substituting this in (3.25) we obtain
By =it

This shows that the matrix of the basis-transformation x*'—x*¥ is the
inverse of the matrix of the transformation x,—x,. The two basis-trans-

formations
X, = Zoci,‘ x, and ¥ = Z &;x*“ (3.26)
Tt

H

are called contragradient to each other.

The relations (3.26) permit the derivation of the transformation-law
for the components of a vector xeE under the basis-transformation
x,—X,. Decomposing x relative to the bases x, and x, we obtain

x=5Y¢&x, and x=) ¢&"%,.
From the two above equations we obtain in view of (3.26).
E=Yd (x*x>=Yd,E". (3.27)
H H

Comparing (3.27) with the second equation (3.26) we see that the com-
ponents of a vector are transformed exactly in the same way as the vectors
of the dual basis.
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3.14. The transformation of the matrix of a linear mapping. In this sec-
tion it will be investigated how the matrix of a linear mapping ¢: E—- F
is changed under a basis-transformation in £ as well as in F. Let M (¢;

X, Vu)=(75) and M(¢; %,, y,)=(7,) be the nx m-matrices of ¢ relative
to the bases x,,y, and x,,y,(v=1...n, u=1...m), respectively. Then

ex,=) 7y y, and @ x, =>77, (v=1...n). (3.28)
u u

Introducing the matrices
A=() and B=(f)

of the basis-transformations x,— X, and y,—7, and their inverse matrices,
we then have the relations

Zoc X, Xx,= ZEAJEA
Fu= Zﬁ}fyx V= ZB}J"K
Equations (3.28) and (3.29) yield

(3.29)

@ X, —Zcxvqoxl— Z“ ?Ayp Z “i'}’i{ﬁny-x

A, U, K
and we obtain the following relation between the matrices (y4) and (7)):

Z o }’zﬁp (3.30)

Using capital letters for the matrices we can write the transformation
formula (3.30) in the form

M(‘P v!y,u)_AM(q)ﬂxv!y,u)B_

It shows that all possible matrices of the mapping ¢ are obtained from
a particular matrix by left-multiplication with a regular » xn-matrix
and right-multiplication with a regular m x m-matrix.

Problems

1. Let f be a function defined in the set of all #» x n-matrices such that

f(TAT™") = f(4)
for every regular matrix 7. Define the function Fin the space L(E; E) by

F(e) =1 (M(9;:x,x,)
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where E is an n-dimensional linear space and x,(v=1...n) is a basis of E.
Prove that the function F does not depend on the choice of the basis x,.
2. Assume that ¢ is a linear transformation E— E having the same
matrix relative to every basis x,(v=1...n). Prove that ¢ =41 where A is a
scalar.
3. Given the basis transformation

£1=2x1'—x2"-x3

=

2 = — X2
.f3 — 2x2 + x:,;
find all the vectors which have the same components with respect to the

bases x, and X,. (u=1, 2, 3).

§ 4. Elementary transformations

3.15. Definition. Consider a linear mapping ¢: E— F. Then there exists
a basis a,(v=1, ..., n) of E and a basis b,(u=1, ..., n) of F such that the
corresponding matrix of ¢ has the following normal-form:

0""«

(3.31)

0 0

where r is the rank of ¢. In fact, let a,(v=1, ..., n) be a basis of E such
that the vectors a,,,...q, form a basis of the kernel. Then the vectors
b,=¢a,(e=1, ..., r) are linearly independent and hence this system can
be extended to a basis (by, -.., b,) of F. It follows from the construction
of the bases a, and b, that the matrix of ¢ has the form (3.31).

Now let x,(v=1, ...,n) and y,(u=1, ..., m) be two arbitrary bases of
E and F. It will be shown that the corresponding matrix M(¢; x,, ¥,) can
be converted into the normal-form (3.31) by a number of elementary
basis-transformations. These transformations are:
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(I.1.) Interchange of two vectors x; and x;(i=j).

(L.2.) Interchange of two vectors y, and y,(k=+/).
(IL1.) Adding to a vector x; an arbitrary multiple of a vector x;(j+1).
(IL.2.) Adding to a vector y, an arbitrary multiple of a vector y,(I+ k).

It is easy to see that the four above transformations have the following
effect on the matrix M (¢p):

(I.1.) Interchange of the rows i and ;.

(I1.2.) Interchange of the columns &k and /

(II.1.) Replacement of the row-vector a; by a;+ Aa; (j*i).
(IL.2.) Replacement of the column-vector b, by b, + Ab, (I +k).

It remains to be shown that every n x m-matrix can be converted into
the normal form (3.31) by a sequence of these elementary matrix-trans-
formations.

3.16. Transformation into the normal-form. Let (y)) be the given n x m-
matriX. It is no restriction to assume that at least one y. 0, otherwise
the matrix is already in the normal-form. By the operations (I.1.) and
(1.2.) this element can be moved to the place (1.1.). Then y;#0 and it is
no restriction to assume that y; =1. Now, by adding proper multiples of
the first row to the other rows we can obtain a matrix whose first column
consists of zeros except for yi. Next, by adding certain multiples of the
first column to the other columns this matrix can be converted into the

form 1 0..0)
O * =
. (3.32)
0 =x *

If all the elements o, (v=2...n, u=2...m) are zero, (3.32) is the normal-
form. Otherwise there is an element y, +0(2<v<m, 2< u=<m). This can
be moved to the place (2,2) by the operations (I.1. and (I.2.). Hereby the
first row and the first column are not changed. Dividing the second row
by 5 and applying the operations (IL.1.) and (IL.2.) we can obtain a
matrix of the form

1 0 ..0°
O 1 0...0

O * =
kO 0 - *_/

In this way the original matrix is ultimately converted into the form (3.31.).
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3.17. The Gaussian elimination. The technique described in sec. 3.16

can be used to solve a system of linear equations by successive elimination.

Let n
aj E 4 ap EM =9

(3.33)

af &+ ="

be a system of m linear equations in n unknowns. Before starting the
elimination we perform the following reductions:

If all coefficients in a certain row, say in the i~th row, are zero, consider
the corresponding number #' on the right hand-side. If #'+0, the i-th
equation contains a contradiction and the system (3.33) has no solution
If n' =0, the i-th equation is an identity and can be omitted.

Hence, we can assume that at least one coefficient in every equation is
different from zero. Rearranging the unknowns we can achieve that «; # 0.
Multiplying the first equation by —(«;)™*«} and adding it to the other
equations we obtain a system of the form

(3.34)

which is equivalent to the system (3.33).

Now apply the above reduction to the (m— 1) last equations of the sys-
tem (3.34). If one of these equations contains a contradiction, the system
(3.34) has no solutions. Then the equivalent system (3.33) does not have
a solution either. Otherwise eliminate the next unknown, say &2, from the
reduced system.

Continue this process until either a contradiction arises at a certain
step or until no equations are left after the reduction. In the first case,
(3.33) does not have a solution. In the second case we finally obtain a
triangular system

=" ol £0
Br8 + - Bat"=w" B3 %0

(3.35)

K, &+ i, "=0" Kk F0

which is equivalent to the original system *).

*) If no equations are left after the reduction, then every n-tuple (¢! ...&") is a
solution of (3.33).
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The system (3.35) can be solved 1n a step by step manner beginning
with &',

E=— ()" (co - ) x:é"‘). (3.36)
v=r+1

Inserting (3.36) into the first (r— 1) equations we can reduce the system

to a triangular one of r—1 equations. Continuing this way we finally

obtain the solution of (3.33) in the form

g= Y BE+g  (v=1..7)

u=r+1

where the &' (v=r+ 1...n) are arbitrary parameters.

Problems

1. Two nx m-matrices C and C’ are called equivalent if there exists a
regular n x n-matrix 4 and a regular m x m-matrix B such that C'=A4 CB.
Prove that two matrices are equivalent if and only if they have the same
rank.

2. Apply the Gauss elimination to the following systems:

a) ‘:1—'62'{'263:13
2¢! + 28 =1,
El — 382 4 483 =2,

b) n' +2n° + 30 +4n* =5,
20+ P+ 4P+ nt=2,
It +4n’ + P+ 5n* =6,
2nt +3n% + 52 + 2* = 3.

) et+ef+e=1,
3¢t + &% —¢* =0.
2et + g2 =1,
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Determinants

In this chapter, except for the last paragraph, all vector spaces will be
defined over a fixed but arbitrarily chosen field I' of characteristic 0.

§ 1. Determinant-functions

4.1. Definition. Consider a linear space E of dimension n(n=1). A
determinant-function 4 1s a function of n vectors subject to the following
conditions:

1. 4 is linear with respect to every argument,

A(x1 .../‘lxi + uy;...x,,) = ZA(xl ...xi...x") +
+ud(x;...y;...x,) (i=1...n).

2. 4 is skew-symmetric with respect to all arguments. More precisely,
if ¢ is any permutation of the numbers (1...n), then

A(xa.(l) ‘oo xa.(")) — Ead(xl ‘oo x").‘,r
where

+ 1 for an even permutation ¢
£E =
° | =1 for an odd permutation o .

It will be shown in sec. 4.4 that there exist non-trivial determinant-func-
tions in every finite dimensional linear space. First of all, a few conse-
quences of the above conditions will be derived.

Since the interchange of any two numbers (i, j) is an odd permutation,
we obtain from the second condition

A(xg o X X5.0.X)=—A(Xg ... X000 X500 X,,).

In particular, if x;=x;=x,
A(xy...x...x...x,)=0. (4.1)

Thus, a determinant-function assumes zero whenever two arguments
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coincide. More generally, it will be shown that
A(xy...x,)=0

if the arguments are linearly dependent. In fact, assume that

n—1
X, = Y A'x,.
v=1
Then in view of (4.1),
n—1
A(xy...x)= ) AA(xy...%, ... Xy—1,%,) =0.
v=1
As another consequence of (4.1) we note that the value of a determinant-

function is not changed if a multiple of an argument x; is added to another
argument x;(i4/),

Ad(xy .. %+ Ax;..x)=d(x,...x,) (i %£])).

4.2. Representation in a basis. Let ¢,(v=1...n) be a basis of E. Then
every vector x, can be written as

x,=Y¢&¢le (v=1..n).
7

Inserting these linear combinations into 4 we obtain
4 (x, ...x,,)=%511...5:"41(@1...%“) (4.2)

the summation being taken over all systems (1,...4,) (1 =4, <n). It follows
from (4.1) that all terms for which at least two indices 4; and 4; coincide,
are zero. Therefore we can restrict ourselves to those systems (4, ... 4,) for
which any two A; are different. In other words, we have only to sum over
all permutations ¢ of the set (1...n). Hence (4.2) can be written as

Ay ... x,) =Y ETD L ETM A(e,01y - Carmy) - (4.3)

Next we observe that
A(ey(1y -+ Camy) = s 4(ey ... €,)

for every permutation ¢. We thus obtain from (4.3)

A(xy...x)=A4(ey ... )Y e, E{V ... &7,

This equation shows that a determinant-function is identically zero if it
assumes the value zero at a basis of E. In other words, a non-trivial de-
terminant-function is different from zero on every basis of E.
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Altogether we have shown that a non-trivial determinant-function
vanishes for a system of vectors x,(v=1...n) if and only if the vectors x,
are linearly dependent.

4.3. Uniqueness. Let 4 and 4, be two determinant-functions in E and
assume that 4, is non-trivial. Employing a basis e, (v=1...n) we have the
relations

A(xy .. X)) =A(ey...e,)Y e, €1 ... &7 (4.4)
and
Ay(xy ... x)=A,(ey...e)Y e, & ... &3, (4.5)
Since 4, is non-trivial,
4,(e;...e,) *0.
Defining the scalar A as the quotient
Afe; ... e,)
1 =
4.(e;...e,)

we obtain from (4.4) and (4.5)
A(xy...x,) =Ad(x;...X,).

Since this is an identity with respect to all vectors x,...x,, it can be
written as

A:AAI.

This formula shows that every determinant-function 4 is a constant mul-
tiple of a fixed non-trivial determinant-function A4,.

4.4. Existence. To prove that there exist non-trivial determinant-func-
tions in E define the function 4 by

A(xy .. x)-Zs ga) | g (4.6)

It is immediately clear that 4 is linear with respect to every argument.
Furthermore, 4 is not identically zero since

A(el-.-en)= 1.

It remains to be shown that 4 is skew-symmetric with respect to all
arguments.

Consider a fixed permutation t of (1...n). Then

(v)
A(xt(l) t(n)) ZB ‘:f(;) ' :((:))'
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Rearranging the factors in every term so that the subscripts appear in the
natural order we can write

_ -1 1) -1
A(Xyqy oo Xem) = 26,677 D&M
a

Now, if ¢ runs over all the permutations of (1...n), the same holds for the
permutations ¢ =0c 1~ ', Therefore we can introduce ¢ as a new “index of
summation’ and find that

A (xt(l) P xr(n)) — ZEW éi(l) "a e éﬁ(") . (4.7)
Q

Since

et &

we finally obtain from (4.7)

A(Xogyy o Xom) = €. 9.6 E8D L EM =g A(xy ... x,).
Q

Thus the equation (4.6) defines a non-trivial determinant-function.

Problem

Let E*, E be a pair of dual spaces and 4+0 be a determinant-func-
tion in E, Define the function 4* of n vectors in E* as follows:

Ifthevectors x*' (v=1...n)arelinearly dependent, then 4* (x*'...x*")=0.

Ifthe vectors x*¥ (v=1...n)arelinearlyindependent, then 4* (x*!.. . x*")=
A(x,...x,)” ' where x, (v=1...n)is the dual basis. Prove that 4* is a deter-
minant-function in E¥,

§ 2. The determinant of a linear transformation

4.5. Definition. Let ¢ be a linear transformation of the n-dimensional
linear space E. To define the determinant of ¢ choose a non-trivial deter-
minant-function 4. Then the function 4, defined by

dy(Xy... %) =d(@xy... 0 X,)

obviously 1s again a determinant-function. Hence, by the uniqueness-

theorem of section 4.3,
Ad,=ad,

where o 1s a scalar. This scalar does not depend on the choice of 4. In
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fact, if 4" is another non-trivial determinant-function, then 4’=44 and
consequently 4, =24,=rad=ad.
Thus, the scalar « is uniquely determined by the transformation ¢. It is

called the determinant of ¢ and it will be denoted by det ¢. So we have the
following equation of definition:

4,=detp-4,

where 4 is an arbitrary non-trivial determinant-function. In a less con-
densed form this equation reads

Ad(px,...0x,) =detpd(x,...x,). (4.8)
In particular, if ¢=A41, then
4,=1"4
and hence
det (A1) = A",

It follows from the above equation that the determinant of the identity-
map is 1 and the determinant of the zero-map is zero.
4.6. Properties of the determinant. A linear transformation ¢ is regular

if and only if its determinant is different from zero. To prove this, select
a basis e,(v=1...n) of E. Then

A(pe,...0e,)=detpd(e,...e,). (4.9)
If ¢ is regular, the vectors e, (v=1...n) are linearly independent; hence
d(pey...pe,)*0. (4.10)

Relations (4.9) and (4.10) imply that
deto £ 0.

Conversely, assume that det ¢ 0. Then it follows from (4.9) that
Ad(pey...0e,)*0.

Hence the vectors ¢e,(v=1...n) are linearly independent and ¢ is regular.
Consider two linear transformations ¢ and ¥ of E. Then

det (o @) = detyrdet . (4.11)
In fact,

AWox,..¥ox,) =dety4(px,... ¢ x,)
= detydetp4(x,...x,),
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whence (4.11). In particular, if ¢ is a linear automorphism and ¢ ! is the
inverse automorphism, we obtain

det~'det = det: = 1.

4.7. Stable subspaces. Let ¢: E— E be a linear transformation and as-
sume that E i1s the direct sum of two stable subspaces,

E _— El @ E2 .
Then linear transformations

q’l:El_)El and (02:E2—+E2
are induced by ¢. It will be shown that
detp = det @, det,.

Define the transformations ¥,: E—F and {,: E—E by

@InE : inE
'»(’1 = 1 . 1 W, = : '

1 InE, @,InE,
Then

@ =VY,0Y,

detp = detyr, dety, .

and so

Hence it is sufficient to prove that
dety, =detp, and dety, =detep,. (4.12)

Let 4 be a determinant function in E and b,...b, be a basis of E,. Then
the function 4, defined by

Ay(xy...x,)=d(xy...xp,by... b)), x;€E, (4.13)
is a non-trivial determinant function in E,. Hence

Ay (@yXy...0yx,)=deto,; 4,(xy...x,). (4.14)

On the other hand we obtain from (4.13)

A1 (@1 %y .. @1 x) =AWy xy... 9, XpW1by ...y by)
=dety, 4(x,...x,,b,... b))
=dety; 4,(xy...x,). (4.15)
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Relations (4.14) and (4.15) yield
detq)l —_— detlpl .

The second formula (4.12) is proved in the same way.

Problems

1. Consider the linear transformation ¢: E— E defined by
pe,=Ae, (v=1...n)
where e, (v=1...n) is a basis of E. Show that
deto = 4,... 4,.

2. Let ¢: E—~E be a linear transformation and assume that £, is a
stable subspace. Consider the induced transformations ¢,:£,—FE; and
@:E/E,—E/E,. Prove that

det g = det @, det .

3. Let a: E—F be a linear isomorphism and ¢ be a linear transfor-
mation of E. Prove that

det(xo@oa™')=detop.

4. Let E be a vector space of dimension n and consider the space
L(E; E) of linear transformations.
a) Assume that Fis a function in L(E; E) satisfying

F(Yyop)=FY)F(¢)

and
F(1)=1.

Prove that F can be written in the form

F(¢) = f (deto)
where f:I'—1I 1s a mapping such that

fAw)=fA)f W,
b) Suppose that F satisfies the additional condition that
F(A1))=2".
Then, if E is a real vector space,

F(p)=detgp or F(p)=|deto]
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and if E is a complex vector space

F(p) =deto.

Hint for part a): Let e;(i=1...n) be a basis for £ and define the trans-
formations ¥;; and ¢; by

lﬂ e, v 1 i1
..e —_— lJ= -..n
'] " ?
T e+ de; v=i

and
{ev v+ ‘
Q; e, = . i=1...n.
re, v=1I
Show first that
F(‘f’ij)=1

and that F(¢;) is independent of i.

4. Let E be a vector space with a countable basis and assume that a
function Fis given in L(E; E) which satisfies the conditions of problem
3a). Prove that

F(p)=1 peL(E;E).

Hint: Construct an injective mapping ¢ and a surjective mapping ¥
such that

l‘boq') = 0.

§ 3. The determinant of a matrix

4.8. Definition. Let ¢ be alinear transformation of E and («}) the corre-
sponding matrix relative to a basis e, (v=1...n). Then

pe, =) obe,.
1
Substituting x,='e, in (4.8) we obtain
A(pey,...0e,)=detpd(e,...e,).
The left-hand side of this equation can be written as
d(pes,...0e,)= 4 (% e, ...y odhe,)
7]
=Y g, ai'P . al™ A(ey...e,).

We thus obtain
detop =Y g, o' .. al™. (4.16)
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This formula shows how the determinant of ¢ is expressed in terms of the
corresponding matrix.
We now define the determinant of an nx n-matrix A= () by

detA =Yg a{V...al™, (4.17)

Then equation (4.16) can be written as
det o = det M (o). (4.18)
Now let A and B be two n X n-matrices. Then
det(A B) = det A detB. (4.19)

In fact, let E be an n-dimensional vector space and define the linear trans-
formations ¢ and y of E such that (with respect to a given basis)

M(p)=A and M(y)=B.
Then
det(AB) =det M (@) M () = det M (Y - @) = det (¥ - @)
= det @-detyy = det M (p)det M (if) = det A-det B.

Formula (4.22) yields for two inverse matrices

det A-det(4™ ') =detJ =1 (J unit-matrix)
showing that
det(A™")=(detA)™'.

We finally note that an n x n-matrix A4 is regular if and only if det A 0.
This follows from (4.18) and from the corresponding property of the
determinant of ¢.

4.9. The determinant considered as a function of its rows. If the rows
a,=(al...a)) of the matrix 4 are considered as vectors of the space I'"
the determinant det 4 appears as a function of the n vectors a,(v=1...n).
To investigate this function define a linear transformation ¢ of I'”

1...n)

pe,=a, (v
where the vectors e, are the n-tuples

e,=(0...1...0) (v=1..n).

Sl

v

Then A is the matrix of ¢ relative to the basis e,. Now let 4 be the deter-
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minant-functionin I"'” which assumes the value one at the basis e, (v=1...n),

A(el ...e,,) = 1.
Then
d(ay...a,) =4(pe,...pe,) =detpd(e,...e,) = deto

and hence
detA =4d(a,...a,). (4.20)

This formula shows that the determinant of A considered as a function
of the row-vectors has the following properties:

1. The determinant is linear with respect to every row-vector.

2. If two row-vectors are interchanged the determinant changes the
sign.

3. The determinant does not change if to a row-vector a multiple of

another row-vector is added.
4. The determinant is different from zero if and only if the row-vectors

are linearly independent.
An argument similar to the one above shows that

det A = 4 (b1, ... b")

where the b¥ are the column-vectors of A. It follows that the properties
1-4 remain true if the determinant of A is considered as a function of the
column-vectors.

Problems
1. Let A=(a%) be a matrix such that «f =0 if v<u. Prove that
detd = ay...a".
2. Prove that the determinant of the n x n-matrix

- al =1 — oF
is equal to (n—1)(—1)""L.
Hint: Consider the mapping ¢: E— FE defined by

pe,=Ye,—e, (v=1..n).
i

3. Given an n X n-matrix A=(a) define the matrix B=(f%) by

Br=(—1)**ab.
Prove that
detB =detA.
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4. Given n complex numbers o, prove that

(ot Oy lyy O,
Oy Oly...0 o nn—1)

det| .2 277" : =(—-1) 2 B,...8,
\au Ay oo Oy an—-l_/

where the numbers f, are defined by
2n k 2n k

Be=Y eia, g =cos— +isin— (k=1...n).

v n n

Hint: Multiply the above matrix by the matrix

rsl . 8"\
2
£d...6
n n

\81 . Bn_)

§ 4. Dual determinant functions

4.10. Let E* E be a pair of dual vector spaces and 4*+0, 4+0 be
determinant-functions in E* and E. It will be shown that

A* (x*' .. x*) A (x, ... x,) = adet({x*,x,>), x*eE* x;eE, (421)

where ael’ 1S a constant scalar. Consider the function 2 of 2n vectors
defined by

Q(x*' ... x*"; x; ... x,) = det ({x*, x,>).

Then it follows from the properties of the determinant of a matrix that Q
is linear with respect to each argument. Moreover, £ 1s skew symmetric
with respect to the vectors x** and with respect to the vectors x;(i=1...n).
Hence the uniqueness theorem (sec. 4.3) implies that Q can be written as

Q(x*, .. x*;x ... x,) =Q(x* ... x*) 4 (x, ... X,) (4.22)

where @ depends only on the vectors x**. Replacing the x; in (4.21) by a
basis ¢; of E we obtain

Q(x*, .. . x*; e, ...e,) =P(x* ... x*)d(e;...e,).

This relation shows that @ is linear with respect to every argument and
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skew symmetric. Applying the uniqueness theorem again we find that
@ (x* . x*¥) = pa*(x* ... x*"), PBer. (4.23)
Combining (4.22) and (4.23) we obtain
Q(x* L x*¥xy..x,)=BA*(x* . x4 (x, ... x,).  (4.24)
Now let e*, ¢;(i=1...n) be a pair of dual bases. Then (4.24) yields
1= BA*(e*'...e*) A(e, ... e,) (4.25)

and so f+0. Multiplying (4.24) by ="' we obtain the relation (4.21).
The determinant-functions 4* and 4 are called dual if the factor « in
(4.21) is equal to 1; i.e.,

A* (x*' . x*) A4 (x, ... x,) = det ((x*, x;)). (4.26)

To every determinant-function 4 40 in E there exists precisely one dual
determinant-function 4* in E*. In fact, let 4340 be an arbitrary deter-
minant-function in E* and set A*=a"'A45 where a is the scalar in (4.21).
Then 4* and 4 are dual. To prove the uniqueness, assume that AT and
A3 are dual determinant-function to 4. Then we have that

[AT(x* ... x*™) = A (x* . x*™)]A(x;...x,)=0  x*eE* x;eE

whence AT =43.
4.11. The determinant of dual transformations. Let ¢:F—-E and
@*. E*« E* be two dual linear transformations. Then

det o* = det . (4.27)

To prove this, let 4*, 4 be a pair of dual determinant-functions in E*
and E. Then we have in view of (4.21)

A* (x*1, . x*¥*)A(x, ... x,) = det ({x*), x,)).
This relation yields

A* (p* x* L o*x*) A (X, ... x,) = det({p* x*, x ;)
and

A*(x*' L x*)A(p xy ... o x,) = det((x*, 0 x,)).
Since

Cp* x*, x}) = <x“!¢x}> (‘1., =1... n)
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it follows that

A*(@* x*1, ... o*x*)A(x, ... x,) = A*(x*' ... x*) 4 (px,...0Xx,).
(4.28)
But

A* (@* x*1 ... * x*") = det p*- A4*(x*! ... x*")
and
d(px;...0x,)=detpd(x,;...x,)

and so we obtain from (4.28) that
(deto* — det @) A4* (x*' ... x*)4(xy...x,) =0

whence (4.27)

The above result implies that transposed » x n-matrices have the same
determinant. In fact, let 4 be an # x n-matrix and let ¢ be a linear trans-
formation of an n-dimensional vector space such that (with respect to a
given basis) M (¢)=A. Then it follows that

det A* = det M (¢)* = det M (¢*) =
= detp* =detp = det M (p) =det 4.

Problems

1. Show that the determinant-functions, 4, 4* of § 1, problem 1 are
dual.
2. Using the expansion formula (4.17) prove that,

det A* =det A.

§ 5. Cofactors

4.12. Definition. Consider an n x n-matrix A=(a!). Replacing the ele-
ment o] by 1 and all other elements of row i and column j by zero, we
obtain the matrix
al od7P 0 LT L]

al_y...alt 0 ofFL.dl_,
Cl=| 0 .. 0 1 0 ..0

n
Xitq «oe X1




§ 5. Cofactors 111

The determinant of C/ is called the cofactor of the element «f and will be
denoted by cof «/. The n x n-matrix () defined by the determinants

B; = cof o

is called the adjoint matrix of A*). In other words, the adjoint of a matrix

is the transpose of the matrix formed by the cofactors. Applying formula
(4.20) to C! we obtain

cofo! =A(ay...a;_1,€;, 8541 ... Gy).
Multiplication by «] (1 £k <n) and summation over j yields

Za,{ﬁ} = A(a, ... ai_l,Za,{ej,aHl .o a,)
J

=A(ay ... Gi—1, 04,8141 ... Q).

If k+1i, the vector g, appears twice on the right hand-side whence

Yealpi=0 if i%*k. (4.29)
J

Now assume that k=1i. Then

A(ay...a;_4,8;,8;44...a,) =det 4
and we thus obtain

Yalpi=detd (i
J

1...n). (4.30)

Relations (4.29) and (4.30) can be combined in the formula
Salpi=0-detA  (i,k=1...n). (4.31)
j
Denoting the adjoint matrix by ad A we can write the equation (4.31) as
Aad A = J-detA.

4.13. The inverse matrix. Assume that det 440. Then the equations
(4.31) can be divided by det A4 yielding

(detd)™ " Y oif; =0 (i,k=1...n).
J

This equation shows that the matrix

ah = (detA)™' g’ (4.32)
is the inverse of (a}).

*) In the above equation / counts the row and / counts the column,
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Applying the relation (4.31) to a system of » linear equations with »
unknowns we obtain the Cramer’s solution formula. Let

;a£§k=n‘f (j=1...n) (4.33)

be the given system and assume that the determinant of the matrix (o) is
different from zero. Multiplying the j** equation by ﬁ'} and summing with
respect to j we obtain in view of (4.31)

Edetd =Y piy’
J

whence
E = (detA)™' Y By’ = (detd)™ Y. det Ciy’. (4.34)
J J

In this formula the solution of the system (4.33) is expressed in terms
of the scalars (#'...5") and the cofactors of the matrix A.

4.14. The submatrices S;. Denote by S/ the (n—1) x (n—1)-matrix ob-
tained from A by deleting the row { and the column j. It will be shown

that
cofo! = (— 1) "/ det S/ . (4.35)

Assume first that i=1 and j=1. Then, by (4.17)
detS; = Y g, a8* ... 2™ (4.36)
e
where the summation is taken over all the permutations of the numbers

(2...n). The elements of C; are given by =464 and Bi=af—584al
(v=2...n). Hence, the expansion-formula (4.17) yields

cofa] = Y g, (a3® — 87Pa3)... (7™ — 55 o). (4.37)

In this sum all terms are zero for which o (1)+ 1. Consequently, (4.37)

can be written as
cofa; = Y g a5 ... al™
(4]

where the summation is taken over all permutations leaving the number 1
fixed. Every such permutation ¢ induces a permutation ¢ of the numbers
(2...n). Since ¢ and 7 have the same parity, it follows that

cofa; = Y g,a5® ... 8™ (4.38)
@

where ¢ runs over all the permutations of (2...n). Equations (4.36) and
(4.38) yield (4.35) for the case i=1, j=1,
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Now we proceed to the general case. Interchanging the row i with all
the preceding rows, and the column j with all the preceding columns, the
matrix C] is converted into the matrix

1 0....0"
0

B = S}
\.0 /

The determinants of B and C/ are obviously related by
detB=(—1)""’detC!. - (4.39)

Now S/ is obtained from B by deleting the first row and the first column
and hence, as it has been shown above,

det B = det S/ . (4.40)

Equations (4.39) and (4.40) yield (4.35).
4.15. Expansion by cofactors. From the relations (4.35) and (4.30) we
obtain the expansion-formula of the determinant with respect to the i

row,
detA =Y (-1 aldetS! (i=1...n). (4.41)
J

By this formula the evaluation of the determinant of # rows is reduced to
the evaluation of n determinants of n— 1 rows.
In the same way the expansion-formula with respect to the j** column

is proved: |
detd =Y (—-1)"a/detS] (j=1...n). (4.42)

4.16. Minors. Let A=(a}) be a given n x m-matrix. For every system
of indices

1fi,<i,<-<ig=n and 1=5j,<j,<<j, =Em

denote by A/!/x the submatrix of A, consisting of the rows i,...i; and the

ila.-ik

columns j,...j,. The determinant of A/'~/* is called a minor of order k of

11...1';‘

the matrix 4. It will be shown that in 4 matrix of rank r there is always a
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minor of order r which is different from zero, whereas all minors of order
k>r are zero. Let A{I{'j_'gi“ be a minor of order k> r. Then the row-vectors
a;,...a; of A are linearly dependent. This implies that the rows of the
matrix A/!;/* are also linearly dependent and thus the determinant must
be zero.

It remains to be shown that there is a minor of order r which is different
from zero. Since A4 has rank r, there are r linearly independent row-
vectors ;. ...q; . The submatrix consisting of these row-vectors has again
the rank r. Therefore it must contain r linearly independent column-
vectors b’'...b"". Consider the matrix A;’j;’ Its column-vectors are line-
arly independent, whence

det AJtr + 0.

l-l---lr“

If 4 1s a square-matrix, the minors
det Ait

B1...0K

are called the principal minors of order k.

Problems

1. Compute the inverse of the following matrices.

1 1 1 1
1 1 -1 -1

A=2y 1 1 -1
1 -1 -1 1,
A1
B = (4 * 0)
|
. A
2. Show that
a) (xaa..a
axa..a
det| - =[x+ (n—-1)a](x—a)"""
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and that
b) (1 1 .1
Ay Ay ... A,
dEt )»% l% v j.: — n (j’l - A’J)'
i>j
\/1’{'1 A1 /1,’:'1_)
(Vandermonde determinant.)
3. Define
GEETEN h
—1 X2 1
-1 x; 1
4, = det
X,—1 1

_ -1 Xn

Show that 4,=x,4,_,+4,_, (n>2)
A1=x1; A2=xle+1.

4. Verify the following formula for a quasi-triangular determinant:

(X11...%1, 0....0° 4 )
: » " : xp+1p+1 -a-uxp..l.lu
X n1 X 0 ..0 ~ :
D pp
x11 xlp\ .
det xp+11 ....... xp_.l. in =det E E 'det .
) \Kp1 " Xpp
' Xpq oovnnnnns X
\xnl ---------- x"" ./ \ -/

5. Prove that the operation A—ad A has the following properties pro-
vided that the matrix A is regular*)

a) ad (AB)=ad A-ad B

b) det ad A=(det 4)"™".

¢) ad ad A=(det 4)""*- A.

d) detad ad A =(det A)" 1",

*) It will be shown in sec. 19.24 (Multilincar Algebra) that these relations are also
valid for a nonregular matrix.
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§ 6. The characteristic polynomial

4.17. Eigenvectors. Consider a linear transformation ¢ of an n-dimen-
sional linear space E. A vector a$0 of E is called an eigenvector of ¢ if

pa=Aa.

The scalar A is called the corresponding eigenvalue. A linear transforma-
tion @ need not have eigenvectors. As an example let £ be a real linear
space of two dimensions and define ¢ by

PX1=X3 PXy=—"X4

where the vectors x, and x, form a basis of E. This mapping does not
have eigenvectors. In fact, assume that

a = él xl —+ 62 xZ
is an eigenvector. Then ¢a=Aa and hence

£1=l¢'2, §2=—/1§1-
These equations yield
(61)2 + (62)2 =0
whence ¢! =0 and £*=0.
4.18. The characteristic equation. Assume that a is an eigenvector of
@ and that A is the corresponding eigenvalue. Then

pa=JAa, a+0.
This equation can be written as
(p —A1)a=0 (4.43)
showing that ¢ — A1 is not regular. This implies that
det(p — A1) =0. (4.44)

Hence, every eigenvalue of ¢ satisfies the equation (4.44). Conversely,
assume that A is a solution of the equation (4.44). Then ¢@—A: is not
regular. Consequently there is a vector a0 such that

(p —A1)a=0,

whence pa=Aa.
Thus, the eigenvalues of ¢ are the solutions of the equation (4.44). This
equation is called the characteristic equation of the linear transformation ¢.



§ 6. The characteristic polynomial 117

4.19. The characteristic polynomial. To obtain a more explicit expres-
sion for the characteristic equation choose a determinant-function 440

in E. Then
A(@x; —AXy...0x,— Ax,)=det(p — A1) 4(x; ... x,)
x,eE(v=1...n). (4.45)

Expanding the left hand-side we obtain a sum of 2" terms of the form

A(zy...2,),

where every argument is either ¢ x, or —Ax,. Denote by S,(0<p=<n) the
sum of all terms in which p arguments are equal to ¢ x, and n—p argu-
ments are equal to —Ax,. Collect in each term of S, the indices v,...v,
(vi<:-<v,) such that

Zy = QXy i Zy = QX
and the indices v, ,,...v,(v,,, <:-- <v,) such that

z =—AX e Zy = — AX, .

Vp+1 Vp+1

Introducing the permutation ¢ by

o(i)=v, (i=1...n)
we can write

A(zg ... 2,) = .. A(Zg(yy --- z,_,,(n))
= de(qo’xd‘(l) oo @ xcr(p)a o j'xa'(p+ 1) ¢ )"xa(u))
= (= A" " Pe, A(P X1y -+ P Xaipy Xa(p+1) - Xa(n)) -
Thus,
S, =(— A" 6, A(P Xg(1y -+ PXopy Xa(pt1) -+ Xaqm)  (4.46)

where the sum is extended over all permutations ¢ subject to the con-
ditions ~
o(1)<---<o(p) and o(p+1)<---<a(n).

Observing the skew symmetry of 4 we obtain from (4.46)
(—4)"° Y e, d(px Xg(pys X Xg(m) (4.47)
T pl(n— pyt & e T\ e PRy Ta(pr 1) e Ratm -

where the sum on the right hand-side 1s taken over all permutations. Let
@, be the function defined by

S

D

Pp(xy...X,) = Z%A(‘ch(l)--- ¢x6(p)!xa(p+l)"‘x6(n)) 0=p=n)
g
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and 7 be an arbitrary permutation of (1...n). Then

D, (X:(1y--- Xe(n)) = Z e, 4 (@ Xza(1) +++ P Xro(p)r Xta(p+1) -+ xw(,,))
g
= Brzsta‘ A ((0 xrrr(l) e @ xra'(p)a xrcr(p+ 1) -~ xrrr(n))
g

= 8.0, 8 A(P Xo1) -+ @ Xo(py Xo(p+ 1) -+ Xom)
g

=&, ®,(x;...%,).

This equation shows that @, is skew-symmetric with respect to all argu-
ments. This implies that

¢,=(—1)""?pl(n—p)la, 4 (4.48)
where o, is a scalar. Inserting (4.48) into (4.47) we obtain
S,=a,A"" 74,
Hence, the left hand-side of (4.45) can be written as

A(@xy —AX1y . @X, — AX,) =4(x;...X,) Y, o, A" 7. (4.49)
p=0
Now equations (4.45) and (4.49) yield

det(p — A1) = ) a,A""
p=0
showing that the determinant of ¢ — A1 is a polynomial of degree » in A.
This polynomial is called the characteristic polynomial of the linear trans-
formation ¢. The coefficients of the characteristic polynomial are deter-
mined by equation (4.48), and are called the characteristic coefficients.
These relations yield for p=0 and p=n

do=(—1)" and o,=detg
respectively.

4.20. Existence of eigenvalues. Combining the results of sec. 4.18 and
4.19, we see that the eigenvalues of ¢ are the roots of the characteristic
polynomial

f(A) =) o, 4",
v=0
This shows that a linear transformation of an n-dimensional linear space
has at most n different eigenvalues.
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Assume that E'i1s a complex linear space. Then, according to the funda-
mental theorem of algebra, the polynomial f has at least one zero. Con-
sequently, every linear transformation of a complex linear space has at
least one eigenvalue.

If Eis a real linear space, this does not generally hold, as it has been
shown in the beginning of this paragraph.

Now assume that the dimension of E is odd. Then

lim f())=—oc0 and lim f(1)=+c0

A= 0 A — O

and thus the polynomial /(1) must have at least one zero. This proves
that a linear transformation of an odd-dimensional real linear space has at
least one eigenvalue. Observing that

f(0) =a, =detg

we see that a linear transformation of positive determinant has at least
one positive eigenvalue and a linear transformation of negative deter-
minant has at least one negative eigenvalue, provided that F has odd
dimension.

If the dimension of E is even we have the relations

lim f(A) =c0 and lim f(1)=o0

A0 A= — O

and hence nothing can be said if det ¢ >0. However, if det ¢ <0, there
exists at least one positive and one negative eigenvalue.

4.21. The characteristic polynomial of the inverse mapping. It follows
from (4.27) that the characteristic polynomial of the dual transformation
@* coincides with the characteristic polynomial of ¢.

Suppose now that E=FE, @ FE, where E, and E, are stable subspaces.
Then the result of sec. 4.7 implies that the characteristic polynomial of ¢
is the product of the characteristic polynomials of the induced transfor-
mations ¢:E,—FE, and ¢,: E,—E,.

Finally, let ¢ : E— E be a regular linear transformation and consider the

inverse transformation ¢~ '. The characteristic polynomial of ¢~ ! is

defined by
F(1) =det(o™ ! = 11).
Now,
¢ ' —hi=@ lu(1=Ao)=—Aeo (9 —1"11),
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whence
det(o™!' — A1) =(— A)'deto ™ ' det(p — A7 11).

This equation shows that the characteristic polynomials of ¢ and of ¢ !

are related by
F(A) = (- l)”detqo'lf(l'l).

Expanding F(4) as
F(A) — Zoﬁviﬂ-v

we obtain the following relations between the coefficients of fand of F:
B,=(—1)ydeto " ta,_, (v=0...n).

4.22. The characteristic polynomial of a matrix. Let ¢,(v=1...n) be a
basis of £ and A=M(¢p) be the matrix of the linear transformation ¢
relative to this basis. Then

M(p—A1)=M(p)—AM(()=A4—AJ
whence
det(p — A1) =detM (¢ — A1) =det(4 — A J).

Thus, the characteristic polynomial of ¢ can be written as
f(A) =det(A — 1J). (4.50)

The polynomial (4.50) is called the characteristic polynomial of the matrix
A. The roots of the polynomial fare called the eigenvalues of the matrix A.

Problems

1. Compute the eigenvalues of the matrix

1 0 3
3 -2 -1
1 -1 1

2. Show that the eigenvalues of the matrix

(g g) are real.
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3. Prove that the characteristic polynomial of a projection n: E— E;
(see Chapter II, sec. 2.19, Problem 1) is given by

fA=(=1y"2""P(1 =4

where n=dim E and p=dim E,.

4. Show that the coefficients of the characteristic polynomial of an

involution satisfy the relations
A, =¢e%,_, &= +1 (p=0...n).

5. Consider a direct decomposition E=FE, @ E,. Given linear transfor-
mations ¢@;: E;— E;(i=1,2) consider the linear transformation ¢ =@, @@,
E— E. Prove that the characteristic polynomial of ¢ is the product of the
characteristic polynomials of ¢, and of ¢,.

6. Let ¢o: E—-FE be a linear transformation and assume that E, 1s
a stable subspace. Consider the induced transformations ¢:E;—E,
and ¢:E/E,—»E/E,. Prove that

X = X1 X1

where y, x4 and ¥ denote the characteristic polynomials of ¢, ¢, and ¢
respectively. In particular show that

x(A)=(—=Ax(4)

where ¢ is the induced transformation of E/ker ¢ and s denotes the di-
mension of ker .

7. A linear transformation, ¢, of E is called nilpotent if ¢*=0
for somek. Prove that ¢ is nilpotent if and only if the characteristic
polynomial has the form

x(4) = (= 4).

Hint: Use problem 6.

8. Giventwo linear transformations ¢ and Y of Eshow thatdet(p —Ay)
is a polynomial in A.

9. Let ¢ and ¥ be two linear transformations. Prove that ¢.y and
W - @ have the same characteristic polynomial.

Hint: Consider first the case that  is regular.
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§ 7. The trace

4.23. The trace of a linear transformation. In a similar way as the deter-
minant, another scalar can be associated with a given linear transforma-
tion @. Let 430 be a determinant-function in E. Consider the sum

_Zld(xl e PX . Xy)

This sum obviously is again a determinant-function and thus it can be
written as

Z A(Xg o @ X %,) =0 A(%q ... X,) (4.51)

where a is a scalar. This scalar which is uniquely determined by ¢ is called
the trace of ¢ and will be denoted by tr ¢. It follows immediately that
the trace depends linearly on o,

tr(Ao + uy) = Atro + utry.
Next we show that

tr (Yo @) =tr(@oy) (4.52)

for any two linear transformations ¢ and . The trace of - ¢ is defined
by the equation

T ACes - (o@)% ) = tr (Yo 9) 4 (51 oo x,) ¥,€E.
Replacing the vectors x, by ¢ x,(v=1...n) we obtain
S AW (Yo@o)x;... Yx,)
= t;‘(ljloqo)d(lllxl Y x)=tr(Yop)dety A(x, ... x,).

(4.53)

The left hand-side of this equation can be written as

Z:A(y[/x1 (Wo@op)x;.. ¥ x,) = detyy ) A(xy ... (Pop)X; ... X,)

=dety-tr(@poy)A(xy... x,)
and thus (4.53) implies that

detytr(@ o) =tr(Yo.p)dety . (4.54)

If s is regular, this equation may be divided by det y yielding (4.52). If
is non-regular, consider the mapping y — A1 where 4 is different from all
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eigenvalues of . Then  — A1 1s regular, whence

tr [ — A1)e 9] = tr[@o(¥ — A1)].

In view of the linearity of the trace-operator this equation yields

tr(Yop)—Atro =tr(poyy) — Atre
whence (4.52).

Finally it will be shown that the coefficient of A"~ ! in the characteristic
polynomial of ¢ can be written as

o, =(—1)"""tro. (4.55)
Formula (4.48) yields for p=1
;sa A(P X1y Xoz) -+ Xomy) = (— 1)l A(xy...x,)  (4.56)
the sum being taken over all permutations o subject to the restrictions
c(2) <---<a(n).
This sum can be written as

Z (— 1)'E'1 A(Q Xy X1 oo Xpouu Xp) = Zlﬁ(xl e X1y P Xy Xy q e Xp)
i—1 i=

We thus obtain from (4.56)
YA 00X %) =(— 1"t  A(x1 ... %,). (4.57)

Comparing the relations (4.57) and (4.51) we find (4.55).
4.24. The trace of a matrix. Let ¢,(v=1...n) be a basis of E. Then ¢
determines an n X n-matrix o, by the equations

pe, =) ale,. (4.58)
n
Inserting x,=e, (v= l...n) in (4.51) we find
Zd(el...qoei...e,,)=trqu(e1...e,,). (4.59)
Equations (4.58) and (4.59) imply that
4e; ... e")ii:l o = A(ey...e,)tr ¢

whence
iro = Zoc:. (4.60)
i
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Observing that
Otf: — <e*ﬂs @ ev> ’

where e*'(v=1...n) is the dual basis of e, we can rewrite equation
(4.60) as

tro =Y (e*,06). (4.61)

Formula (4.60) shows that the trace of a linear transformation is equal
to the sum of all entries in the main-diagonal of the corresponding matrix.
For any n x n-matrix 4= (a}) this sum is called the zrace of A and will be
denoted by tr A4,

trd=> o. (4.62)

Now equation (4.60) can be written in the form
tro = tr M (o).

4.25. The duality of L(E; F) and L(F; E). Now consider two linear

spaces Eand Fand the spaces L(E; F)and L(F; E) of all linear mappings
¢o:FE—F and {: F- E. With the help of the trace a scalar product can be
introduced in these spaces in the following way:

(o, y>=tr(Yyo9) @eL(E;F), yeL(F;E). (4.63)
The function defined by (4.63) is obviously bilinear. Now assume that
(o, ¥>=0 (4.64)

for a fixed mapping peL(E; F) and all linear mappings yeL(F; E). It
has to be shown that this implies that ¢ =0. Assume that ¢=+0. Then
there exists a vector ae E such that ¢ a+0. Extend the vector b;=¢a to
a basis (b,...b,,) of F and define the linear mapping : F— E by

yby=a, Yyb,=0 (u=2...m).
Then

(@le/)bl":bl, (@Gl[/)bﬂ':() (u=2...m),
whence

(o, y> =tr(Yyop)=tr(poy)=1.

This is in contradiction with (4.64). Interchanging F and F we see that
the relation

<@, y> =0
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for a fixed mapping YyeL(F; E) and all mappings ¢ L(E; F) implies
that yy=0. Hence, a scalar-product is defined in L(E; F) and L(F; E)
by (4.63).

Problems

1. Show that the characteristic polynomial of a linear transformation
@ of a 2-dimensional linear space can be written as

f(A) =A% —Atro + deto.
Verify that every such ¢ satisfies its characteristic equation,
¢° —@-tro + 1-detp =0.

2. Given three linear transformations ¢, ¥, ¥ of E show that

tr(xoo@) * tr(yo@oyy)
in general.

3. Show that the trace of a projection operator n: E— E, (see Chapter
II sec. 2.19) is equal to the dimension of Im .

4, Consider two pairs of dual spaces E*, E and F*, F. Prove that the
spaces L(E; F)and L(E*; F*)are dual with respect to the scalar-product
defined by

(o, ¥> =tr(¢*oy) @eL(E;F) yeL(E*; F*).

5. Let f be a linear function in the space L(E; E). Show that fcan be
written as

f (@) =tr(poax)

where « is a fixed linear transformation in E. Prove that a is uniquely
determined by f.

6. Assume that fis a linear function in the space L(E; E) such that
f(o0)=f(0¥).

f9)=2trg

Prove that

where 4 is a scalar.
7. Let ¢ and ¥ be two linear transformations of E. Consider the sum

Y A(x{...@x; . P x;... X,)

i®j

where 440 is a determinant-function in E. This sum is again a deter-
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minant-function and hence it can be written as

Y A(Xy . @x;. Yx;...x,)=B(o,¥)A(x,...x,).

i%j

By the above relation a bilinear function B is defined in the space L(E; E).
Prove:

a) B(o, Y)=trotry—tr(y.o). )
b) $B(¢@, ¢)=(—1)"a, where «, is the coefficient of A"~ in the charac-
teristic polynomial of ¢.

(— 1)
2

[(tr o)’ ~ tr (¢™)].

C) G¢2=

8. Consider two n x n-matrices A and B. Prove the relation
tr(4AB) =tr(BA).

a) by direct computation.

b) using the relation tr ¢ =tr M ().

9. If ¢ and  are two linear transformations of a 2-dimensional linear
space prove the relation

Voo + Qo =otry + yYtro+i1(tr(Y.p) —trotry).

10. Let A:L(E; E)—»L(E; E) be a linear transformation such that

A(p-¥)=A(9)-A(Y)  ¢,¥yeL(E;E)
and
A(l)=1.
Prove that tr 4(¢)=tr .

11. Let E be a 2-dimensional vector space and ¢ be a linear transfor-
mation of E. Prove that ¢ satisfies the equation ¢*=—411, A>0 if and
only if

deto >0 and tro=0.

12. Let p: E,—>E, and ¢,: E,— E, be lincar transformations. Consider

0P=¢0, P, E,DE, - E, QE,.

Prove that tr ¢ =tr ¢, +1tr @,.

13. Let ¢: E— E be a linear transformation and assume that there is a
decomposition E=FE,@---PE, into subspaces such that E;n o E;=0
(i=1...r). Prove that tr ¢ =0.
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§ 8. Oriented vector spaces

In this paragraph E will be a real vector space of dimension n2 1.
4.26. Orientation by a determinant function. Let 4,40 and 4,+0 be
two determinant functions in E. Then 4, =44, where A< 0 is a real num-
ber. Hence we can introduce an equivalence relation in the set of all de-
terminant functions 4+0 as follows:

AINAZ if l>0.

It 1s easy to verify that this is indeed an equivalence. Hence a decompo-
sition of all determinant functions 4 +0 into two equivalence classes is
induced. Each of these classes is called an orientation of E. If (4) is an
orientation and 4 € (4) we shall say that 4 represents the given orientation.
Since there are two equivalence classes of determinant functions the vec-
tor space E can be oriented in two different ways.

A basis e, (v=1...n) of an oriented vector space is called positive if

A(ey...e,) >0

where 4 is a representing determinant function. If (e,...e,) is a positive
basis and ¢ is a permutation of the numbers (1...n) then the basis (e, ...
eq(m) 1S positive if and only if the permutation o is even.

Suppose now that E* is a dual space of E and that an orientation is
defined in E. Then the dual determinant function (cf. sec. 4.10) determines
an orientation 1n E*, It is clear that this orientation depends only on the
orientation of E. Hence, an orientation in E* is induced by the orien-
tation of E.

4.27. Orientation preserving linear mappings. Let £ and F be two
oriented vector spaces of the same dimension » and ¢: E— F be a linear
isomorphism. Given two representing determinant functions A4, and A,
in E and F consider the function 4, defined by

Ad,(xq...%,) = dp(@ x4, ..., 0X,).
Clearly 4, 1s again a determinant function in £ and hence we have that

Aqo — AAE

where A£01s a real number. The sign of A depends only on ¢ and on the
given orientations (and not on the choice of the representing determinant
functions). The linear isomorphism ¢ is called orientation preserving if
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/>0. The above argument shows that, given a linear isomorphsim
¢.:E—F and an orientation in E, then there exists precisely one orien-
tation in F such that ¢ preserves the orientation. This orientation will be
called the orientation induced by .

Now let ¢ be a linear automorphism; i.e., F=E. Then we have 4p=A4
and hence it follows that

!

A=deto.

This relation shows that a linear automorphism ¢: E— E preserves the
orientation if and only if det ¢ > 0.
As an example consider the mapping ¢= —1. Since

det(— 1) = (= 1"

it follows that ¢ preserves the orientation if and only if the dimension of
n 1s even.

4.28. Factor spaces. Let E be an orientated vector space and F be an
oriented subspace. Then an orientation is induced in the factor space
E/F in the following way: Let 4 be a representing determinant function
in E and a,...a, be a positive basis of F. Then the function

A4(@y...apXp4q...%,),  X€E

depends only on the classes X;. In fact, assume for instance that y,,, and
X,+1 are equivalent mod F.
Then

P
yp+1 = xp+1 + levav
and we obtain
A(al oo Gps Vp+1 “'xn) = A(al vor Gpy Xptq '”xn) +

P
+ Y 2d(ay...apa,...%,)=A4(ay ... Qp Xps1 .. Xp) -
v=1

Hence a single valued function 4 of (n—p) vectors in E/F is defined by
A(Xpp1 - X)) =4d(ay...ap%,4q1...%,). (4.65)

It is clear that A is linear with respect to every argument and skew sym-
metric. Hence 4 is a determinant function in E/F. It will now be shown
that the orientation defined in E/F by 4 depends only on the orientations
of E and F. Clearly, if 4" is another representing determinant function in
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E we have that A'=14, A>0 and hence 4'=14. Now let (a]...a,) be
another positive basis of F. Then we have that

a, =) oba,, det(a))>0
H

whence
A(ay...a,,Xp4q .. X)) =det(a)A(ay...a,Xp4 1 .. X,) -

It follows that the function 4" obtained from the basis a}...d), is a positive
multiple of the function 4 obtained from the basis a;...a,,.
4.29. Direct decompositions. Consider a direct decomposition

E —_— El @ E2 (4.66)

and assume that orientations are defined in E; and E,. Then an orien-
tation is induced in E as follows: Let a;(i=1...p) and b;(j=1...q) be
positive bases of E, and E, respectively. Then choose the orientation of
E such that the basis a,...a,, b,...b, is positive. To prove that this orien-
tation depends only on the orientations of E, and E, let 4;(i=1...p) and
b;(j=1...q) be two other positive bases of E, and E,. Consider the linear
transformations ¢: E,—FE, and y: E,— F, defined by

(Pai=di (;=1..-p) aIld l!/bj=51 (j=1”-q).

Then the transformation ¢ @y carries the basis (a,...a,, b,...b,) into the
basis (d;...d,, b;...b,). Since det ¢ >0 and det >0 it follows from sec.4.7
that

det(p @ yY) = detgpdety >0

and hence (d,...d,, b,...b,) is again a positive basis of E.

Suppose now that in the direct decomposition (4.66) orientations are
given in E and E,|. Then an orientation 1s induced in E,. In fact, consider
the projection n: E— E, defined by the decomposition (4.66). It induces
an isomorphisrﬁ-

0:E/E, > E,.

In view of sec. 4.28 an orientation in E/E, is determined by the orien-
tations of £ and E,. Hence an orientation 1s induced in E, by ¢. To
describe this orientation explicitly let 4 be a representing determinant
function in E and a,...a, be a positive basis of E;. Then formula (4.65)
implies that the induced orientation in E, is represented by the deter-
minant function

Ay (Ypsr--Y)=4d(ay...a, Y541 Va), VEE;. (4.67)



130 Chapter IV. Determinants

Now let b, ,...b, be a positive basis of E, with respect to the induced
orientation. Then we have that

A3(byyq...0,)>0
and hence formula (4.67) implies that
4(ay...a,b,,1...5,)>0.

It follows that the basis a,...a,, b, {...b, of E 1s positive. In other words,
the orientation induced in £ by E, and E, coincides with the original
orientation.

The space E, in turn induces an orientation in E,. It will be shown that
this orientation coincides with the original orientation of E, if and only
if p(n—p) is even. The induced orientation of E; is represented by the
determinant-function

Al(xl...xp)=A(8p+1...€,,,x1...xp) (4.68)

where e;(A=p+1,...n) is a positive basis of E,. Substituting x,=e,
(v=1...n) in equation (4.68) we find that

Adi(ey...e)=A(epry...ener...0)=(—1P""PA,(e,.,...0) (4.69)
But e, (A=1...p) is a positive basis of E, whence

dy(ep41...€,)>0. (4.70)
It follows from (4.69) and (4.70) that

>0 if p(n— p)iseven

4.71
<0 if p(n—p)isodd. (371)

1) |

Since the basis (e,...e,) of E; is positive with respect to the original orien-
tation, relation (4.71) shows that the induced orientation coincides with
the original orientation if and only if p(n—p) is even.

4.30. Example. Consider a 2-dimensional linear space E. Given a basis
(e, €,) we choose the orientation of E in which the basis e, e, is positive.
Then the determinant-function A4, defined by

A4 (81382) =1

represents this orientation. Now consider the subspace E;(j=1,2) gener-
ated by e;(j=1,2)with the orientation defined by e;. Then E; induces in
E, the given orientation, but E, induces in E, the inverse orientation.
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In fact, defining the determinant-functions 4, and 4, in E, and in F, by
4,(x)=A4d(e;,x) xeE, and 4,(x)=A4(e;,x) xekE,
we find that
A;(e;) = A4(e,e)=1 and A4,(ey)=A4d(e;,e,)=—1.
4.31. Intersections. Let £, and E, be two subspaces of E such that
E=E, +E, (4.72)

and assume that orientations are given in E,, E, and E. It will be shown
that then an orientation is induced in the intersection E,,=FE,n E,.
Setting

dimE,=p, dimE,=¢q, dimE,, =r

we obtain from (4.72) and (1.32) that

r=p+qg—n.

Now consider the isomorphisms

¢:E[E, jEz/Eu
and
V:E/E, > E\[E,,.

Since orientations are induced in E/E, and E/E, these isomorphisms
determine orientations in E,/E,, and in E,/E,, respectively. Now choose
two positive bases d,,,...d, and b,,,...b, in E,/E,, and E,/E,, respec-
tively and let q;e E; and b;e E, be vectors such that

mya;=4d; and 7, b;=2>b;
where 7, and n 2 denote the canonical projections
n,:E,—~>E,/E,, and n,:E,—> E,[/E,,.
Now define the function 4,, by
A415(zy...2,)=4(2zy ... 2,58, 41 ... Qb1 ... b). (4.73)

In a similar way as in sec. 4.30 it is shown that the orientation defined in
E,, by 4,, depends only on the orientations of E,, E, and E (and not on
the choice of the vectors a,and b,). Hence an orientation is induced in E| ,.
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Interchanging E; and E, in (4.73) we obtain

A21(21 ...Zr) = A(Zl A br+1 cas bq, a,+1 ...ap). (4.74)

Hence it follows that

Ay =(—1)PNE@ g, = (— 1) PE0g, . (475)

.

Now consider the special case of a direct decomposition. Then p+g=n
and E;,=(0). The function 4,, reduces to the scalar

0C12=A(a1...ap,b1...bq). (4.76)

o

It follows from (4.76) that a,, 0. Moreover the number 12 depends
%2

only on the orientations of E,, E, and E. Itis called the intersection number

of the oriented subspaces E, and E,. From (4.76) we obtain the relation

dzy = (— 1" Pay,.

4.32. Basis deformation. Let a, and b,(v=1...n) be two bases of E.
Then the basis a, 1s called deformable into the basis b, if there exist n
continuous mappings

X,it=>x,(1) t,St=<t,

satisfying the conditions

1. x,(ty)=a, and x,(¢,)=0,

2. The vectors x, (f}(v=1...n) are linearly independent for every fixed .
The deformability of two bases is obviously an equivalence relation.
Hence, the set of all bases of E is decomposed into classes of deformable
bases. We shall now prove that there are precisely two such classes. This
is a consequence of the following

Theorem: Two bases a, and b,(v=1...n) are deformable into each
other if and only if the linear transformation ¢: E— E defined by ¢ a,=b,
has positive determinant.

Proof: Let 440 be an arbitrary determinant function. Then formula
4.17 together with the observation that the components &, (i=1...n) are
continuous functions of x, shows that the mapping E x --- x E-» R defined
by 4 is continuous. n

Now assume that t—x,(¢) is a deformation of the basis a, into the
basis b,. Consider the real valued function

®(1)=A(x,(2)... x,(2)).
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The continuity of the function 4 and the mappings 71— x, (¢) implies that
the function @ i1s continuous. Furthermore,

()0 (o =t=Zty)

because the vectors x,(t)(v=1...n) are linearly independent. Thus the
function @ assumes the same sign at r=1¢, and at r=¢,. But

O(t;))=4(by...b,)=4d(pa,...@a,)=detpd(a,...a,)=detop-D(z,)

whence
deto >0

and so the first part of the theorem is proved.

4.33. Conversely, assume that the linear transformation ¢:a,—b, has
positive determinant. To construct a deformation (a,...a,)—(b,...b,)
assume first that the vector n-tuple

(ay...a;,b;,(...b,) (4.77)

is linearly independent for every i(1<i<n—1). Then consider the de-
composition

b,=) fa,.

By the above assumption the vectors (a,...a,_1, b,) are linearly independ-
ent, whence "+0. Define the number ¢, by

_f+1 af B,>0
-1 if B,<0O.

En

It will be shown that the » mappings

{xv(t)=av(v=1...n—1) 0=

%,(t) = (1 — f)a, + t&,b, ’

[IA

1)

define a deformation
(ay...a,)—~(a;...a,-1,8,b,).

Let A0 be a determinant-function in E. Then

Ad(x(t)...x, () =((1 = ?) + &,B,t)4(a; ... a,).
Since ¢, 8,>0, it follows that

l-t+e¢,p8,t>0 0=st<s1)
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whence

A(x,(0)...x,(1) £0 (0=5rZ1).

This implies the linear independence of the vectors x,(¢)(v=1...n) for
every t.
In the same way a deformation

(al vos Qpaqs &y bn) - (al e 8p-2,851 bn—lﬂeu bn)

can be constructed where ¢,_, = + 1. Continuing this way we finally ob-
tain a deformation

(ay...a,)—> (e by...e,b,) &, =21 (v=1...n).
To construct a deformation
(¢4 by...&,b,)—>(by...b,)

consider the linear transformations

p.a,—>¢,b, (v=1...n)
and
Ww:.e,b,— b, (v=1...n).

The product of these linear transformations is given by

lj/n@:av—'}'bv (V=1...ﬂ).

By hypothesis,
det(Y-¢p)>0 (4.78)
and by the result of sec. 4.32
deto > 0. (4.79)
Relations (4.78), and (4.79) imply that
dety > 0.
But
dety =g, ...¢,
whence
€1...8,= + 1.

Thus, the number of ¢, equal to —1 is even. Rearranging the vectors b,
(v=1...n) we can achieve that

-1 (v=1...2p)
&, =
" l+1 (v=2p+1..n).
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Then a deformation

(¢,by...8,b,) > (b;...b,)

is defined by the mappings

xzv_l(t) —_— bzv_lcOSt + bzv Sint

_ (v=1...p) P
xzv(t) =—b2v_1Slnt—b2vCOSt 0=t=ﬂ.
x,(t) =b, (v=2p+1...n)

4.34. The case remains to be considered that not all the vector n-tuples
(4.77) are linearly independent. Eet 4 0 be a determinant-function. The
linear independence of the vectors a,(v=1...n) implies that

A(a,...a,)=

= 0.

Since 4 is a continuous function, there exists a spherical neighborhood

U, of a,(v=1...n) such that

A(x;...x,)*0 if x,elU, (v=1...n).

Choose a vector aj € U,, which is not contained in the (» — 1)-dimensional
subspace generated by the vectors (b,...b,). Then the vectors (a3, b,...b,)

are linearly independent. Next, choose a

vector a, e U,, which is not con-

tained in the (n—1)-dimensional subspace generated by the vectors
(a}, b,...b,). Then the vectors (ai, a3, bs...b,) are linearly independent.
Going on this way we finally obtain a system of n vectors a,(v=1...n)

such that every n-tuple

(ai...a;,b;yq...by)

is linearly independent. Since a,€ U, , it follows that

A(ai ... a;) =

Hence the vectors a,(v=1...n) form a basis of E. The n mappings

x,(1)=(1—1t)a, + ta,

define a deformation
(ay...a,)— (a]

(i=1..n—1)
= 0.
0=t=<1)
..al). (4.80)

In fact, x,(¢)(0S¢=<1) is contained in U, whence

A(xy(t)...x,(1) £ 0

0t 1).

This implies the linear independence of the vectors x, (¢)(v=1...n).
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By the result of sec. 4.33 there exists a deformation
(a...a,)—(b,...b,). (4.81)

The two deformations (4.80) and (4.81) yield a deformation

(ay...a,)—(b;y...b,).

This completes the proof of the theorem in sec. 4.32.

4.35. Basis-deformation in an oriented linear space. If an orientation i1s
given in the linear space E, the theorem of sec. 4.32 can be formulated as
follows: Two bases a, and b, (v=1...n) can be deformed into each other
if and only if they are both positive or both negative with respect to the
given orientation. In fact, the linear transformation

p:a,— b, (v=1...n)

has positive determinant if and only if the bases a, and b,(v=1...n) are
both positive or both negative,

Thus the two classes of deformable bases consist of all positive bases
and all negative bases.

4.36. Complex linear spaces. The existence of two orientations in a
real linear space is based upon the fact that every real number A0
is either positive or negative. Therefore it is not possible to distinguish
two orientations of a complex linear space. In this context the question
arises whether any two bases of a complex linear space can be deformed
into each other. It will be shown that this is indeed always possible.

Consider two bases a, and b,(v=1...n) of the complex linear space E.
As in sec. 4.33 we can assume that the vector n-tuples

(ay -y iy ... by)

are linearly independent for every i(1<i<n—1). It follows from the
above assumption that the coefficient " in the decomposition

bﬂ — Zﬁva?

is different from zero. The complex number 8" can be written as
pfr=re? (r>0,059<2n).
Now choose a continuous function r(¢)(0=<7<1) such that

r0)=1, r(l)=r (4.82)
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and a continuous function 9 (£)(0=<r=<1) such that
3(0)=0, 9(1)=39. (4.83)
Define mappings x,(¢),(0=t<1) by

x,(t)=a, (v=1...n—-1)

and 0<t=<1 (4.84)

n—1
x,()=1Y Ba, +r(t)e?Pa,.
v=1

Then the vectors x,(¢)(v=1...n) are linearly independent for every ¢. In
fact, assume a relation

Y A'x,(1)=0.
v=1
Then
n—1 n—1 .
S Va,+2"tY Ba,+1r()e?Pa,=0
v=1 v=1
whence
A+ A"tfr=0 (v=1...n-1)
and

r(t)e*® =0.

Since r ()0 for 0<t<1, the last equation implies that A"=0. Hence the
first (n—1) equations reduce to A'=0(v=1...n—1).
It follows from (4.84), (4.82) and (4.83) that

x,(0)=a, and x,(1)=0b,.
Thus the mappings (4.84) define a deformation

(a1 a,,_l,an)—> (al v Qp 15 bn).

Continuing this way we obtain after n steps a deformation of the basis
a, into the basis b, (v=1...n).

Problems

1. Let E be an oriented n-dimensional linear space and x,(v=1...n) be
a positive basis; denote by E, the subspace generated by the vectors
(x5 ...%...x,). Prove that the basis (x,...%,...x,) is positive with respect
to the orientation induced in E, by the vector (—1) ™' x,.
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2. Let E be an oriented vector space of dimension 2 and let g, a, be
two linearly independent vectors. Consider the 1-dimensional subspaces
E, and E, generated by a, and a, and define orientations in E; such that
the bases a; are positive (i=1,2). Show that the intersection number of
E; and E, is +1 if and only if the basis a,, a, of E is positive.

3. Let F be a vector space of dimension 4 and assume that e,
(v=1...4) is a basis of E. Consider the following quadruples of vectors:

I. e;+e,, e,+e,+es, €4+e,+e34e,, e,—~e,+€,
Il. e;+2e5, e,+e,, e,—e;+e4, €,
III. e;+e,—e;y, e,+e,, €35+€,, e,—e,
IV. e;+e,—e;, e,—e,, €3+€,, €,—e,

V. e;—3es,e,+e,, e,—€,—e,, e,.

a) Verify that each quadruple is a basis of £ and decide for each pair
of bases if they determine the same orientation of E.

b) If for any pair of bases, the two bases determine the same orien-
tation, construct an explicit deformation.

¢) Consider E as a subspace of a 5-dimensional vector space £ and
assume that e, (v=1, ...5) is a basis of E. Extend each of the bases above
to a basis of E which determines the same orientation as the basis e,
(v=1, ..., 5). Construct the corresponding deformations explicitly.

4. Let E be an oriented vector space and let E,, E, be two oriented
subspaces such that E=E, + E,. Consider the intersection E, n E, to-
gether with the induced orientation. Given a positive basis (¢, ..., ¢,) of
E, n E, extend it to a positive basis (¢y, ..., ¢y @, 41, .-+, @,) Of E; and to
a positive basis (¢y, ..., ¢, br4 15 -..» by) of E,. Prove that then (cy, ..., c,,
Qi1 ooes py Dryys -5 b,) 18 @ positive basis of E.
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Algebras

In paragraphs one and two all vector spaces are defined over a fixed, but
arbitrarily chosen field I' of characteristic 0.

§ 1. Basic properties

S.1. Definition: An algebra, A, is a vector space together with a map-
ping A x A— A such that the conditions (M;) and (M,) below both hold.
The 1mage of two vectors xe A4, ye A, under this mapping is called the
product of x and y and will be denoted by xy.

The mapping A X A— A 1s required to satisfy:

(M) (Axy +pxy)y =A(x1y)+ u(xzy)

(M) X(Ay1+ pyz2) = A(xy1) + u(xy2).

As an immediate consequence of the definition we have that
O:x=x0=0.

Suppose B is a second algebra. Then a linear mapping ¢: 4A— Bis called
a homomorphism (of algebras) if ¢ preserves products; i.e.,

p(xy)=0¢x@y. (5.1)

A homomorphism that is injective (resp. surjective, bijective) is called a
monomorphism (resp. epimorphism, isomorphism). If B=A4, ¢ is called
an endomorphism.

Note: To distinguish between mappings of vector spaces and mappings
of algebras, we reserve the word linear mapping for a mapping between
vector spaces satisfying (1.8), (1.9) and homomorphism for a linear map-
ping between algebras which satisfies (5.1).

Let A be a given algebra and let U, V be two subsets of 4. We denote
by UV, the set

UV:{xed|x=>uv, ueUveV}.
|
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Every vector aeA induces a linear mapping

pla):A— A
defined by
p(a)x =ax (5.2)

p(a) is called the multiplication operator determined by a.

An algebra A is called associative if

x(yz)=(xy)z x,y,zeA
and commutative if

Xy=ypyXx x,yeA.
From every algebra 4 we can obtain a second algebra 4°°? by defining

(x y)°PP = yx

A°P? is called the algebra opposite to A. 1t is clear that if A4 is associative
then so is A°P". If 4 is commutative we have A°"’=A4.

If A4 is an associative algebra, a subset S< A4 is called a system of gener-
ators of A if each vector xe A4 is a linear combination of products of ele-

ments in S,
X=YM"Px, X, , x, €S, A""?el.
(v)
A unit element (or identity) in an algebra is an element e such that for
every x
Xe=ex=X. (5.3)

If A has a unit element, then it is unique. In fact, if e and ¢’ are unit ele-
ments, we obtain from (5.3)

Let 4 be an algebra with unit element e, and ¢ be an epimorphism of
A onto a second algebra B. Then eg=¢e, is the unit element of B. In fact,
if yeB is arbitrary, there exists an element xe A4 such that y=¢x. This
gives

yeg=0x-pes=0¢(xe ) =p(x)=1y.

In the same way it is shown that egy =y.
5.2. Examples: 1. Consider the space L(E; E) of all linear transfor-
mations of a vector space E. Define the product of two transformations

by Yo=yo0.
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The relations (2.17) imply that the mapping (¢, ¥)—y ¢ satisfies (M,)
and (M,) and hence L(E; E) is made into an algebra. L(E; E) together
with this multiplication is called the algebra of linear transformations of E
and is denoted by A(E; E). The identity transformation i acts as unit
element in 4 (E; E). It follows from (2.14) that the algebra A(E; E) is
associative.

However, it is not commutative if dim E=2. In fact, write

E=(x)®(x;) ®F

where (x,) and (x,) are the one-dimensional subspaces generated by two

linearly independent vectors x, and x,, and F 1s a complementary sub-
space. Define linear transformations ¢ and by

ex; =0, @x,=xy; py=0,yeF

and
Ux, =X, Yx,=0; yYyy=0,yeF.
Then
eYx,=¢p0=0
while

Yex, =Yx; =X,

whence @y £ ¢.

Suppose now that A4 1s an associative algebra and consider the linear
mapping
u:A— A(A; A)
defined by

p(a)x =ax. (5.4)
Then we have that

u(ab)x=abx = u(a)u(b)x
whence

u(ab) = pu(a)p(d).

This relation shows that u is a homomorphism of 4 into A4(4; A).

Example 2: Let M" " be the vector space\of (nxn)-matrices for a
given integer n and define the product of two (#\x n)-matrices by formula
(3.20). Then it follows from the results of sec. 3}.10 that the space M" ™"
is made into an associative algebra under this multiplication with the
unit matrix J as unit element. Now consider a vector space E of dimen-
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sion n with a distinguished basis e, (v=1...n). Then every linear transfor-
mation ¢ : E— E determines a matrix M (¢). The correspondence ¢— M (o)
determines a linear isomorphism of 4 (E; E) onto M"*", In view of sec.
3.10 we have that

M (Yo 0) = M(9)M(¥). (3.21)

This relation shows that M is an isomorphism of the algebra A (E; E)
onto the opposite algebra (M"*")°PP,

Example 3: Suppose I'{ = I 1s a subfield. Then I is an algebra over I',.
We show first that I' is a vector space over I';. In fact, consider the map-
ping 'y x '-»TI defined by

(A,x)—=Ax, Aely,xel.

It satisfies the relations
(A+p)x =Ax+ ux
Ax+y)=Ax+ 1y

(Au)x = A(ux)
Ix = x

where A, uel'y, x, yeI'. Thus I is a vector space over I',.
Define the multiplication in I" by

(x,y)— xy (field multiplication).

Then M, and M, follow from the distribution laws for field multiplication.
Hence I' 1s an associative commutative algebra over I'; with 1 as unit
element.

Example 4: Let C" be the vector space of functions of a real variable ¢
which have dertvatives up to order r. Defining the product by

(f&)(®)=f(Dg()

we obtain an associative and commutative algebra in which the function
f(t)=1 acts as unit element.

5.3. Subalgebras and ideals. A subalgebra, A;, of an algebra 4 is a
linear subspace which 1s closed under the multiplication in A4; that is, if
x and y are arbitrary elements of A4, then xye 4,. Thus A, inherits the
structure of an algebra from A. It is clear that a subalgebra of an asso-
ciative (commutative) algebra is itself associative (commutative).

Let S be a subset of 4, and suppose that 4 is associative. Then the sub-
space B= A generated (linearly) by elements of the form

Sy...8 s;€S

r?
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is clearly a subalgebra of A4, called the subalgebra generated by S. It is
easily verified that

B= A4,

where the 4, are all the subalgebras of A4 containing S.

A right (left) ideal in an algebra A is a subspace I such that for every
xel, and every ye A, xyel(yxel). A subspace that is both a right and
left ideal is called a two-sided ideal, or simply an ideal in A. Clearly, every
right (left) ideal is a subalgebra. As an example of an ideal, consider the
subspace 42 (linearly generated by the products x y). A% is clearly an ideal
and is called the derived algebra.

The ideal I generated by a set S is the intersection of all ideals containing
S. If A is associative, I is the subspace of A generated (linearly) by ele-
ments of the form

s,as,sa seS,acA.

In particular every single element a generates an ideal 1,,. I, is called the
principal ideal generated by a.

Example 5: Suppose A is an algebra with unit element e, and let
@.I'— A be the linear mapping defined by

pA= Ae.

Considering I' as an algebra over itself we have that

p(Ap)=(Awe=(Ae)(ue)=o()o(n).

Hence ¢ is a homomorphism. Moreover, if ¢ 4=0, then Ae=0 whence
A=0. It follows that ¢ is a monomorphism. Consequently we may iden-
tify I with its image under ¢. Then I' becomes a subalgebra of A and
scalar multiplication coincides with algebra multiplication. In fact, if A
is any scalar, then

Aa=2Aeca)y=(Ae)-a=¢(4)a.

5.4. Factor algebras. Let A be an algebra and B be an arbitrary sub-
space of A. Consider the canonical projectio

n:A— A/B. |
\
It will be shown that 4/B admits a multiplicatioﬁ such that n 1s a homo-

morphism if and only if B is an ideal in 4. |
Assume first that there exists such a multxpllqatlon in A/B. Then for
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every xe A, ye B, we have

n(xy)=nxny=nx0=0
whence xyeB.
Similarly it follows that yxe B and so B must be an ideal.
Conversely, assume B is an ideal. Then define the multiplication in
A/B by
Xy=n(xy) X,jeAlB (5.5)

where x and y are any representatives of X and y respectively.

It has to be shown that the above product does not depend on the
choice of x and y. Let x’ and y’ be two other elements such that nx'=x
and ny’ = y. Then

x'"—xeB and y' — yeB.

Hence we can write
x=x+b, beB and y'=y+c¢, ceB.

It follows that
x'y)—xy=by+xc+bceB
and so
n(x'y)=mn(xy).
The multiplication in 4/B clearly satisfies (M,) and (M,) as follows
from the linearity of #n. Finally, rewriting (5.5) in the form

n(xy)=nx-my

we see that # is a homomorphism and that the multiplication in A/B is
uniquely determined by the requirements that # be a homomorphism.

The vector space A/B together with the multiplication (5.5) is called the
factor algebra of A with respect to the ideal B. It is clear that if 4 is
associative (commutative) then so 1s A/B. If 4 has a unit element e then
é=ne is the unit element of the algebra A/B.

5.5. Homomorphisms. Suppose 4 and B are algebras and ¢:4—B 1s
a homomorphism. Then the kernel of ¢ is an ideal in 4. In fact, if
xeker ¢ and ye A are arbitrary we have that

¢(xy)=¢x@py=0¢y=0
whence x yeker ¢. In the same way it follows that y xeker ¢. Next con-
sider the subspace Im ¢ < B. Since for every two elements x, ye 4

px @y=¢(xy)elme
it follows that Im ¢ is a subalgebra of B.
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Now let
@:A/kerop - B

be the induced injective linear mapping. Then we have the commutative
diagram

and since n i1s a homomorphism, it follows that

p(nx-my)=pn(xy)
=@ (xy)
= @(x) 9()
=p(nx) @(ny).

This relation shows that ¢ is a homomorphism and hence a monomor-
phism. In particular, the induced mapping

@:.Alker @ 5 Im g
is an isomorphism.
Finally, assume that C i1s a third algebra, and let y: B— C be a homo-
morphism. Then the composition . ¢@: 4— C is again a homomorphism.
In fact, we have

Wop)(xy)=¥(px-@y)
=yYox-yoy
=Wo@)x (Yo0)y.

Let ¢:A— B be any homomorphism of associative algebras and S be
a system of generators for A. Then ¢ determines a set map ¢4:5—B by

PoX = QP X, XES.
The homomorphism ¢ is completely determined by ¢,. In fact, if

x =) A7rrx, ... Xy, s x, €S, A" "Pell
(v)

is an arbitrary element we have that

px=)A"""Pox, ...0x,
(v)

— le...w’ (PO xv| (OOxvp

{v)
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Proposition I: Let ¢,:5— B be an arbitrary set map. Then ¢, can be
can be extended to a homomorphism ¢:4— B if and only if

YA @ox, ... pox, =0 whenever Y AV"Px, ..x, =0. (5.6)
™) ()

Proof: 1t is clear that the above condition is necessary. Conversely,
assume that (5.6) is satisfied. Then define a mapping ¢: A— B by

@Y ErPx, ... Xy, = Y EVTP o, .. @ Xy s x, €S. (5.7)
(v) (v)

To show that ¢ is, in fact, well defined we notice that if

V1.V . fe...4
S, Xy =g ey Ly,
(v) (#)

then

Vi...V ... 0 _
(Z)é Px,,l...xvp——(zgn ety e Yy, =0,
v "

In view of (5.6)

Z)évl...vp(po Xy, -e Qo xvp _ (Z)"ul...#qqoo ym e Qo ynq = ()
(v H

and so
Z éw...vp Do xvl - Qo xvp = an--.ﬂq Po yﬁu Py y,uq .
v u

It follows from (5.7) that
QX = @QyX xXedS

P(Ax+puy)=Aox+puepy
and

e(xy)=9x@y
and hence ¢ is a homomorphism.

Now suppose {e,} is a basis for 4 and let ¢: 4 — B be a linear map such
that

¢ (e.e5) = e, pe

for each a, B. Then ¢ is a homomorphism, as follows from the relation
e(xy) =0 (L) (; n‘f" es)}
= Go(a;ﬂf“ﬂﬁeaeﬁ) = ;ﬂfaﬂ ¢ (e,) ¢ (eg)
= (Z¢"0(e)) (Zﬁl 7" ¢ (ep) = 0(x) 0 ().
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5.6. Derivations. A linear mapping 0: 4— A4 of an algebra into itself is
called a derivation if
O(xy)=0x-y+ x-0y X,yEA. (5.8)

As an example let A be the algebra of C*®-functions f:R—R and
define the mapping 0 by 0:f—f" where f' denotes the derivative of f. Then
the elementary rules of calculus imply that @is a derivation.

If A4 has a unit element e it follows from (5.8) that

Qe=0e + 0e

whence 8e=0. A derivation is completely determined by its action on a
system of generators of A, as follows from an argument similarly to that
used to prove the same result for homomorphisms. Moreover, if 0: 4— A4
is a linear map such that

0(e,e5) = 0(e,) es + e,0(ep)

where {e,} is a basis for A4, then 0 is a derivation in A.
For every derivation 8 we have the Leibniz formula

0" (x y) = Z (f) x-0 "y. (5.9)

r=0

In fact, for n=1, (5.9) coincides with (5.8). Suppose now by induction
that (5.9) holds for some n. Then

0" (x ) = 06" (x )

H n

— Z(?) 9r+1x_9n-—ry + Z (f) er.gn—r-i-l y

r=0 r=0
n

. _L n+1 n n r..gntl-—r n+1 .
= x-0 y+z[(r)+(n—r)]9x9 y+0" " x-y

r=1

n

— x.9n+1y+z (n"l'l) er_en—r-i-iy + 9n+1x_y

r
r=1
n+1
— Z(n + 1) Brx_gn-i-l—ry.
r
r=0

and so the induction is closed.
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The image of a derivation 8 in A 1s of course a subspace of A4, but it is
in general not a subalgebra. Similarly, the kernel is a subalgebra, but it
is not, 1n general an ideal. To see that ker 8 1s a subalgebra, we notice
that for any two elements x, yeker 0

O(xy)=0xy+x-0y=0
whence xyeker 0.
It follows immediately from (5.8) that a linear combination of deri-

vations 0,: A— A is again a derivation in 4. But the product of two deri-
vations 0, 0, satisfies

(010,)(xy)=0,(0,xy + x-0,)
=0,0,xy+0,x0,y+0,x0,y+x-0,0,y (5.10)

and so is, 1n general, not a derivation. However, the commutator
[Qn 92] =0,0,—0,0,

is again a derivation, as follows at once from (5.10).
S.7. ¢p-derivations. Let A and B be algebras and ¢: A— B be a fixed
homomorphism. Then a linear mapping 6: A— B is called a ¢-derivation if

O(xy)=0xoy+ @x-0y x,yeA.

In particular, all derivations in A are i-derivations where 1: A— A denotes
the identity map.

As an example of a ¢-derivation, let 4 be the algebra of C*-functions
/:R—R and let B=R. Define the homomorphism ¢ to be the evaluation
homomorphism

P o:f £ (0)

0:f - f'(0).
Then it follows that
6(fg) =(fg) (0)
= f"(0)g(0) + f(0) g (0)
=0f-og+of-0g
and so 0 1s a ¢-derivation.
More generally, if 6, is any derivation in A4, then 6=¢.0, is a -
derivation. In fact,
0(xy)=@0,(xy)
=@(0xy+x0,y)
=0, x 0y +ox-@0,y
=0x-0y+ox-0y.

and the mapping 8 by

Similarly, if 04 1s a derivation in B, then 0gz0.¢ is a @-derivation.



§ 1. Basic properties 149

5.8. Antiderivations. Recall that an involution in a linear space 1s a
linear transformation whose square 1s the identity. Similarly we define an
involution w in an algebra A to be an endomorphism of A whose square
is the identity map. Clearly the identity map of A4 is an involution. If A4
has a unit element e it follows from sec. 5.1 that we=e.

Now let w be a fixed involution in 4. A linear transformation Q2: A— A
will be called an antiderivation with respect to w 1f 1t satisfies the relation

Qxy)=02xy+wxQy. (5.11)

In particular, a derivation is an antiderivation with respect to the involu-
tion 1. As in the case of a derivation it is easy to show that an antideri-
vation is determined by its action on a system of generators for 4 and
that ker Q is a subalgebra of 4. Moreover, if 4 has a unit element e, then
Qe=0. It also follows easily that any linear combination of antideriva-
tions with respect to a fixed involution w is again an antiderivation with
respect to w.

Suppose next that Q, and Q, are antiderivations in A with respect to
the involutions w, and w, and assume that @, cw, =w, c®,. Then ®, cw,
1s again an involution. The relations

(Ql Qz)(xy) — Ql (sz'y:l‘ C{)zx'sz) = ngzx'y +
+ ?61923‘,*913) + Qw0 x QY + w0, x 2,2,y
and o

(9291)(xy) = 92(9135'3’ T Wy x'Q1.V) =, x*y +
+w, 2, x Qo y+ Q0 x Q1 y+ w0 X2,y
yield

(2,2, +Q2,Q,)(xy) =
=(Q,Q,+ 2,Q)xy+ (0,2, + Q0)xQy y +
+ (20, £ 0,Q)x Q¥+ 00, x (202, £2,0)y. (5.12)

Now consider the following special cases:

l. w,2,=Q,w, and w, 2, =, w, (this 1s trivially true if w; = +1 and
w, = +1). Then the relation shows that Q, 2, —Q, Q, 1s an antiderivation
with respect to the involution w, w,. In particular, if Q2 is an antiderivation
with respect to @ and @ is a derivation such that w8 =0w, then 0Q2—Q0
1s again an antiderivation with respect to w.

2. 0, Q,=—-Q,w,and w, 2, = —Q,w,. Then Q, 2, + Q, 2, is an anti-
derivation with respect to the involution w, w,.



150 Chapter V. Algebras

Now let 2, and 2, be two antiderivations with respect to the same
involution @ such that

wQ=—Qw0 (i=12).

Then it follows that Q, Q, + Q, Q, is a derivation. In particular, if Q is
any antiderivation such that

W =—-Q0w
then Q2 is a derivation. .
Finally, let B be a second algebra, and let ¢: A— B be a homomorphism.
Assume that o, is an involution in 4. Then a ¢-antiderivation with re-
spect to w4 is a linear mapping : A— B satisfying

Qxy)=Qxpy+owx-Qy. (5.13)

If wg is an involution in B such that

Py = 0@

then equation (5.13) can be rewritten in the form

Qxy)=Qx ¢y +wgex-Qy.

Problems

1. Let A be an arbitrary algebra and consider the set C(A4) of elements
ac A that commute with every element in 4. Show that C(A) is a subspace
of A. If A is associative, prove that C(4) is a subalgebra of 4. C(A4) is
called the centre of A.

2. If A is any algebra and 0 is a derivation in A4, prove that C(A4) and
the derived algebra are stable under 6.

3. Construct an explicit example to prove that the sum of two endo-
morphisms 1s in general not an endomorphism.

4. Suppose ¢:A— B i1s a homomorphism of algebras and let A+0, 1 be
an arbitrarily chosen scalar. Prove that A¢ is a homomorphism if and
only if the derived algebra is contained in ker ¢.

5. Let C! and C denote respectively the algebras of continuously differ-
entiable and continuous functions f: R— R (cf. Example 4). Consider the
linear mapping

d:C' > C

given by df=f"' where f' is the derivative of f.
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a) Prove that this is an j-derivation where i:C'— C denotes the ca-
nonical injection.

b) Show that d is surjective and construct a right inverse for 4.

c) Prove that d cannot be extended to a derivation in the algebra C.

6. Suppose A4 is an associative commutative algebra and 0 is a deri-
vation in A. Prove that

Ox?=pxP~10(x).

7. Suppose that 0 is a derivation in an associative commutative algebra
A with identity e and assume that xe A4 is invertible; i.e.; there exists an

element x~ ! such that

xx l=x"1x=e.

Prove that x?(p=1) is invertible and that
()t = (71
Denoting the inverse of x” by x™? show that for every derivation 0
B(x"P)=—px~P710(x).

8. Let L be an algebra in which the product of two elements x, y 1s
denoted by [x, ¥]. Assume that

[x,¥]+[y,x] =0 (skew symmetry)
[[x,y],z] + [[y, 2], x,} +[[z,x],y] =0 (Jacobi identity)

Then L is called a Lie algeb\rg.
Let Ad(a) be the multiplication operator in the Lie algebra L. Prove that
Ad(a) is a derivation.

9. Let A be an associative algebra with product xy. Show that the
multiplication (x, y)—[x, y] where

[x,y]=xy—yx

makes A into a Lie algebra.
10. Let A be any algebra and consider the space D(A) of derivations
in A. Define a multiplication in D (A4) by setting

[91392] = 91 92 = 92 91-

a) Prove that D(A) is a Lie algebra.

b) Assume that A is a Lie algebra itself and consider the mapping
¢:A—-D(A) given by ¢:x—Adx. Show that ¢ is a homomorphism of
Lie algebras. Determine the kernel of ¢.
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11. If L is a Lie algebra and 7 is an ideal in A, prove that the algebra
L/I 1s again a Lie algebra.
12. Let E be a finite dimensional vector space. Show that the mapping

®: A(E; E) > A(E*; EX)P

given by ¢— ¢* 1s an isomorphism of algebras.
13. Let A be any algebra with identity and consider the multiplication

operator 1 A - A(A; A).

Show that u is a monomorphism. If A=L(E; E) show that by a suitable
restriction of ¢ a monomorphism

GL(E)- GL(L(E; E))
can be obtained.
14. Let E be an n-dimensional vector space. Show that each basis e,
(i=1...n) of E determines a basis ¢;;(i, j=1...n) of L(E; E) such that

1) Qij Qi = 5}: Qik
11) ZQ:‘:‘: = 1.

Conversely, given n” linear transformations g;; of E satisfying i) and ii),
prove that they form a basis of L(E; E) and are induced by a basis of E.

Show that two bases ¢; and e; of E determine the same basis of L (E; E)
if and only if e;=A1e;, 1T,

15. Define an equivalence relation in the set of all n*-tuples (¢, ...@,2),
@,eL(E; E), in the following way:

(@1 @) ~ Yy .. Yp2)
if and only if there exists an element yeG L(E) such that

V=201 (A=1...n%
Prove that
(@1,..-02) ~(Apy...Ap,2) Ael.
onlyif A=1.

16. Prove that the bases of L(E; E) defined in problem 14 form an
equivalence class under the equivalence relation of problem 15. Use this
to show that every non-zero endomorphism ¢: A(E; E)>A(E; E) is an
inner automorphism; i.e., there exists a fixed linear automorphism « of E

such that d(p)=apa"! @eA(E;E).

17. Let A be an associative algebra, and let L denote the corresponding
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Lie algebra (cf. problem 9). Show that a linear mapping 8: 4> A4 1s a
derivation in A4 only if it is a derivation in L.

18. Let E be a finite dimensional vector space and consider the map-
ping 0,: A(E; E)—> A(E; E) defined by

0.(¢) =0ca¢ —pu
Prove that 0, is a derivation. Conversely, prove that every derivation in
A(E; E) is of this form.
Hint: Use problem 14.

§ 2. Ideals

5.9. The lattice of ideals. Let 4 be an algebra, and consider the set .#
of ideals in 4. We order this set by inclusion; i.e., if I; and I, are ideals
in A, then we write I, £1, if and only if I, <I,. The relation < is clearly
a partial order in .#. Now let I, be any family of ideals in 4. Then it is

easily checked that Y1, and (I,

are again ideals, and are in fact the least upper bound and the greatest
lower bound for the given family. Hence, the relation < induces in £ the
structure of a lattice.

5.10. Nilpotent ideals. Let 4 be an associative algebra. Then an element
ae A will be called nilpotent if for some k£,

a*=0. (5.14)

The least k for which (5.14) holds is called the degree of nilpotency of a.
An ideal I will be called nilpotent if for some k,

I*=0. (5.15)

The least k for which (5.15) holds is called the degree of nilpotency of I
and will be denoted by deg J.

S.11.* Radicals. Let A be an associative commutative algebra. Thenthe
nilpotent elements of A4 form an ideal. In fact, if x and y are nilpotent of

degree p and g respectively we have that
ptq

(lx 4 uy)p+q — Z (p+Q) liup+4“iyp+q—ixi

I
i=0
pt+q

I . .ptq—i
Y a;x'y
i=0

|

b ptami,  pq—i
=Y a,xyP 7 4+ Y ax' P =0
(=0

i=p+t+1
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and
(xy)P =xPy?=0.

The ideal consisting of the nilpotent elements is called the radical of A
and will be denoted by rad A. (The definition of radical can be generalized
to the non-commutative case; the theory is then much more difficult and
belongs to the theory of rings and algebras. The reader is referred to [14]).
It is clear that

rad (rad 4) =rad A.

The factor algebra A/rad A contains no non-zero nilpotent elements.
To prove this assume that xe A/rad A4 is an element such that ¥=0 for
some k. Then x*erad 4 and hence the definition of rad A yields

Xk = (x*) = 0.

It follows that xerad 4 whence x=0. The above result can be expressed
by the formula
rad(A/rad A) = 0.

Now assume that the algebra 4 has dimension n. Then rad A4 is a nil-
potent ideal, and

deg(rad 4) S dim(radA)+1=n + 1. (5.16)

For the proof, we choose a basis ey, ..., e, of rad A. Then each e; is nil-
potent. Let k=max (deg ¢;), and consider the ideal (rad A)*. An arbitrary

element 1n this ideal is a sum of elements of the form

et .. e
where

kl o oKL o k,. = kr.
In particular, for some i, k;=k and so €'...e =0. This shows that

(rad 4)" =0
and so rad A is nilpotent.
Now let s be the degree of nilpotency of rad 4, and suppose that for
some m <,

(rad A)" = (rad A)"*'. (5.17)
Then we obtain by induction that

(rad A)" = (rad A)"*! = (rad 4)"** =-.. = (rad 4’ = 0
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which is a contradiction. Hence (5.17) is false and so in particular
dim (rad A)" > dim (rad )"*', m<s.

It follows at once that s — 1 cannot be greater than the dimension of rad A,
which proves (5.16).

As a corollary, we notice that for any nilpotent element xe A4, its degree
of nilpotency 1s less than or equal to n+1,

degx<n+1.

5.12.* Simple algebras. An algebra A4 is called simple if it has no proper
non-trivial ideals and if A*%0. As an example consider a field I as an
algebra over a subfield I',. Let 740 be an ideal in I'. If x is a non-zero
element of I, then

and it follows that
I'=r-1<i|

whence I'=1. Since I'?%0, I' is simple.

As a second example consider the algebra 4 (E; E) where E is a vector
space of dimension #. Suppose I is a non-trivial ideal in A4 (E; E) and let
@ +0 be an arbitrary element of I. Then there exists a vector ae E such
that ¢a$0. Now define the linear transformations ¢; by

¢, =0,a i,k=1..n

where ¢;(i=1---n) is a basis of E. Choose linear transformations ; such
that

')[/i(pa=ei i=1...n.

Let ye A(E; E) be arbitrary and o let be the matrix of Y with respect to
the basis ¢;. Then

Ve, = foiie; = Z“J{‘f/j‘i’a = (_Zaiil//jq’ﬁoi)ek
J J Iy J

whence

Y = Z_a{l!/j(»oq)i'
I, J

It follows that yel and so I=A(E; E). Since, (clearly) A(E; E)*+0,
A(E; E) is a simple algebra. The following theorem (without proof) is
offered to the reader and it is suggested that he treat it as a difficult
€Xercise.
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Theorem I: 1f A is a simple commutative assoclative algebra over I
then A is an extension field for I".

5.13.* Totally reducible algebras. An algebra A is called rotally reduc-
ible if to every ideal I there is a complementary ideal I',

A=1®TI.

Every ideal I in a totally reducible algebra is itself a totally reducible
algebra. In fact, let I’ be a complementary ideal. Then

I''<cInl=0.
Consequently, if J 1s an ideal in I, we have

JIcJ and J I'<cIl'I'=0
whence
J A< J.

It follows that J is an ideal in A. Let J' be a complementary ideal in A,
A=JDJ.
Intersecting with I and observing that J< I we obtain
I=J®InJ.

It follows that 7 is again totally reducible.

An algebra, A, is called irreducible if it cannot be written as the direct
sum of two non-trivial ideals.

5.14.* Semisimple algebras. In this section A will denote a finite-dimen-
sional associative commutative algebra. 4 will be called semisimple 1f it
is totally reducible and if for every non-zero ideal 1 30.

Proposition I: If A is totally reducible, then A is the direct sum of its
radical and a semisimple ideal. The square of the radical 1s zero.

Proof: Let B denote a complementary ideal for rad A4,

A=radA PB.

Since B= A/rad A it follows that B contains no non-zero nilpotent ele-
ments and so, B*+0. It follows from sec. (5.13) that B is totally reducible
and hence B is semisimple.

To show that the square of rad A4 is zero, let £ be the degree of nil-
potency of rad A, (rad 4)*=0. Then (rad 4)*"! is an ideal in rad A4, and
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so there exists a complementary ideal J,
(rad A} ' @®J =rad A.

Now we have the relations

(rad 4*"1)? =rad 4* =0 (5.18)
J-(rad A1 =0 (5.19)
Js"lc(rad4)~ 1 nJ=0. (5.20)

From (5.18), (5.19) and (5.20) we obtain that

(radA)max (2,k—1) _ 0.
But (rad A~ '+ 0 and so

(rad 4)* = 0.

Corollary: A is semisimple if and only if A4 is totally reducible and
rad A=0.

Proof: It A 1s totally reducible and rad A=0, then A4 is semisimple, as
follows at once from Proposition I.

Conversely, suppose that 4 is semisimple. Then clearly, A4 is totally
reducible. Moreover, if rad A0, let k£ be the degree of nilpotency of
rad A. Then (rad A)*! is a non-trivial ideal in 4 whose square is zero,
which contradicts the semisimplicity of 4. Hence rad A =0.

Since A has finite dimension, a minimality argument shows that if A
is a semisimple, then A is the direct sum of simple algebras. The following
two theorems are reasonably non-trivial, but are not needed in the rest
of the book. Thus we do not supply proofs, but leave them as exercises
to the interested readers, remarking only that theorem II follows from
theorem I. |

Theorem II: If A is semisimple, then A has an identity.

Theorem III: A is semisimple if and only if rad 4=0.

Problems
1. Suppose that I, I, are 1deals 1n an algebra A. Prove that
(I, + ,)/I, = L/(I,nL,).

2. Show that the algebra C' defined in Example 4, § 1, has no nilpotent
elements.
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3. Consider the set S of step functions f: [0,1 ] — R. Show that the oper-
ations
(f+8)®)=1()+2()
(2f)(1) = Af (1)
(f8)(1) = f()g()

make S into a commutative associative algebra with identity. (A function
f:[0,1]>R is called a step function if there exists a decomposition of the
unit interval,

O=t, <t; <<, =1

such that f is constant in every interval ¢;,_, <t<t;(i=1...n).

4. Show that the algebra constructed in problem 3 has zero divisors,
but no non-zero nilpotent elements.

5. Show that the algebra S of problem 3 has ideals which are not
principal. Let (a, b)<[0,1] be any open interval, and let f be a step func-
tion such that f(¢)=0 if and only if a<t<b. Prove that the ideal gener-
ated by f is precisely the subset of functions g such that g(¢)=0 for
a<t<b.

6. Let I be any principal ideal in § (cf. problem 3). Show that there
exists a complementary principal ideal I,. Conversely, if S=I®I, is a
decomposition of S into ideals, prove that I and I, are principal.

7. Let E be an algebra with identity. Show that if E'is totally reducible,
then every ideal is principal.

8. Let E be an infinite dimensional vector space. Show that the linear
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