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Preface

This book has evolved from my experience over the past decade 1n
teaching and doing research in functional analysis and certain of its appli-
cations. These applications are to optimization theory in general and to
best approximation theory in particular. The geometric nature of the
subjects has greatly influenced the approach to functional analysis presented
herein, especially its basis on the unifying concept of convexity. Most of
the major theorems either concern or depend on properties of convex sets;
the others generally pertain to conjugate spaces or compactness properties,
both of which topics are important for the proper setting and resolution of
optimization problems. In consequence, and in contrast to most other
treatments of functional analysis, there 1s no discussion of spectral theory,
and only the most basic and general properties of linear operators are
established.

Some of the theoretical highlights of the book are the Banach space
theorems associated with the names of Dixmier, Krein, James, Smulian,
Bishop-Phelps, Brondsted-Rockatellar, and Bessaga-Pelczynski. Prior to
these (and others) we establish to two most important principles of geometric
functional analysis: the extended Krein-Milman theorem and the Hahn-
Banach principle, the latter appearing in ten different but equivalent formula-
tions (some of which are optimality criteria for convex programs). In
addition, a good deal of attention 1s paid to properties and characterizations
of conjugate spaces, especially reflexive spaces. On the other hand, the
following (incomplete) list provides a sample of the type of applications
discussed :

Systems of linear equations and inequalities;
Existence and uniqueness of best approximations;
Simultaneous approximation and interpolation;
Lyapunov convexity theorem;

Bang-bang principle of control theory;
Solutions of convex programs;

Moment problems;

Error estimation in numerical analysis;

Splines;

Michael selection theorem;

Complementarity problems;

Variational inequalities;

Uniqueness of Hahn-Banach extensions.

Also, “geometric”’ proofs of the Borsuk-Dugundj1 extension theorem, the
Stone-Weierstrass density theorem, the Dieudonne separation theorem,
and the fixed point theorems of Schauder and Fan-Kakutani are given as
further applications of the theory.
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Over 200 problems appear at the ends of the various chapters. Some
are intended to be of a rather routine nature, such as supplying the details
to a deliberately sketchy or omitted argument in the text. Many others,
however, constitute significant further results, converses, or counter-
examples. The problems of this type are usually non-trivial and I have
taken some pains to include substantial hints. (The design of such hints
1S an interesting exercise for an author: he hopes to keep the student on
course without completely giving everything away in the process.) In any
event, readers are strongly urged to at least peruse all the problems. Other-
wise, I fear, a good deal of the total value of the book may be lost.

The presentation 1s intended to be accessible to students whose mathe-
matical background includes basic courses in linear algebra, measure
theory, and general topology. The requisite linear algebra 1s reviewed 1n §1,
while the measure theory i1s needed mainly for examples. Thus the most
essential background is the topological one, and it 1s freely assumed. Hence,
with the exception of a few results concerning dispersed topological spaces
(such as the Cantor-Bendixson lemma) needed 1n §25, no purely topological
theorems are proved in this book. Such exclusions are warranted, I feel,
because of the availability of many excellent texts on general topology.
In particular, the union of the well-known books by J. Dugundji and J. Kelley
contains all the necessary topological prerequisites (along with much
additional material). Actually the present book can probably be read
concurrently with courses 1n topology and measure theory, since Chapter I,
which might be considered a brief second course on linear algebra with
convexity, employs no topological concepts beyond standard properties
of Euclidean spaces (the single exception to this assertion being the use of
Ascoli’s theorem 1n 7C).

This book owes a great deal to numerous mathematicians who have
produced over the last few years substantial simplifications ot the proofs
of virtually all the major results presented herein. Indeed, most of the proofs
we give have now reached a stage of such conciseness and elegance that
I consider their collective availability to be an important justification for a
new book on functional analysis. But as has already been indicated, my
primary intent has been to produce a source of functional analytic informa-
tion for workers in the broad areas of modern optimization and approxima-
tion theory. However, it 1s also my hope that the book may serve the needs
of students who intend to specialize in the very active and exciting ongoing
research in Banach space theory.

I am grateful to Professor Paul Halmos for his invitation to contribute
the book to this series, and for his interest and encouragement along the
way to its completion. Also my thanks go to Professors Philip Smith and
Joseph Ward for reading the manuscript and providing numerous correc-
tions. As usual, Nancy Eberle and Judy Snider provided expert clerical
assistance in the preparation of the manuscript.
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Chapter 1

Convexity in Linear Spaces

Our purpose 1n this first chapter 1s to establish the basic terminology
and properties of convex sets and functions, and of the associated geometry.
All concepts are “primitive”, in the sense that no topological notions are
involved beyond the natural (Euclidean) topology of the scalar field. The
latter will always be either the real number field R, or the complex number
field C. The most important result 1s the “basic separation theorem”, which
asserts that under certain conditions two disjoint convex sets lie on opposite
sides of a hyperplane. Such a result, providing both an analytic and a
geometric description of a common underlying phenomenon, 1s absolutely
indispensible for the further development of the subject. It depends implicitly
on the axiom of choice which 1s invoked in the form of Zorn’s lemma to
prove the key lemma of Stone. Several other equally fundamental results
(the “support theorem”, the “subdifferentiability theorem”, and two extension
theorems) are established as equivalent formulations of the basic separation
theorem. After indicating a few applications of these ideas we conclude the
chapter with an introduction to the important notion of extremal sets (in
particular extreme points) of convex sets.

Q1. Linear Spaces

In this section we review briefly and without proofs some elementary
results from linear algebra, with which the reader 1s assumed to be familiar.
The main purpose 1s to establish some terminology and notation.

A. Let X be a linear space over the real or complex number field. The
zero-vector in X is always denoted by 6. If {x;} is a subset of X, a linear
combination of {x;} is a vector x € X expressible as x = 21;x;, for certain
scalars A;, only finitely many of which are non-zero. A subset of X 1s a (linear)
subspace 1f 1t contains every possible linear combination of its members. The
linear hull (span) of a subset S of X, consists of all linear combinations of its
members, and thus span(S) is the smallest subspace of X that contains S.
The subset S is linearly independent if no vector in S lies 1n the linear hull of
the remaining vectors in S. Finally, the subset S 1s a (Hamel) basis for X 1if
S 1s linearly independent and span(S) = X.

Lemma. S isabasisfor X if and only if § is a maximal linearly independent
subset of S.

Theorem. Any non-trivial linear space has a basis; in fact, each non-empty
linearly independent subset is contained in a basis.
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B. As the preceding theorem suggests, there 1s no unique choice of
basis possible for a linear space. Nevertheless, all 1s not chaos: it 1s a re-
markable fact that all bases for a given linear space contain the same number
of elements.

Theorem. Any two bases for a linear space have the same cardinality.

It 1s thus consistent to define the (Hamel) dimension dim(X) of a linear
space X as the cardinal number of an arbitrary basis for X. Let us now
recall that if X and Y are linear spaces over the same field then a map
T:X — Y 1s linear provided that

T(x + z) = T(x) + T(2), x,z€e X,
T(ax) = aT(x), xe X, o scalar.

o

It follows that X and Y have the same dimension exactly when they are
isomorphic, that 1s, when there exists a bijective linear map between X and Y.

C. We next review some constructions which yield new linear spaces
from given ones. First, let {X,} be a family of linear spaces over the same
scalar field. Then the Cartesian product I1,X, becomes a linear space (the
product of the spaces X,) if addition and scalar multiplication are defined
component-wise. On the other hand, let M,,..., M, be subspaces of a
linear space X and suppose they are independent in the sense that each is
disjoint from the span of the others. Then their linear hull (in X ) 1s called
the direct sum of the subspaces M,, ..., M, and written M L @@ M,or

simply (—B M;. The point of this definition is that if M = (—D M,, then each

x € M can be uniquely expressed as x = Z m;, where m, e M, i = , 1.

Now let M be a subspace of X. For ﬁxed x € X, the subset x + M =
{x + y:ye M} is called an affine subspace (flat) parallel to M. Clearly,
x; + M =x, + Mifand only if x; — x, € M, so that the affine subspaces
parallel to M are exactly the equivalence classes for the equivalence relation
“~y defined by x; ~, x, if and only if x;, — x, € M. Now, if we define

x+M+(y+M=(x+y + M,
ox + M) = ax + M, o scalar

then the collection of all affine subspaces parallel to M becomes a linear
space X/M called the quotient space of X by M.

Theorem. Let M be a subspace of the linear space X. Then there exist
subspaces N such that M @ N = X, and any such subspace is isomorphic to
the quotient space X /M.

Any subspace N for which M @ N = X 1s called a complementary
subspace (complement) of M in X. Its dimension is by definition the co-
dimension of M in X. The theorem also allows us to state that symbolically

codimy(M) = dim(X /M),
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where the subscript may be dropped provided the ambient linear space X
1s clearly specified. In fact, this theorem seems to suggest that there is not a
great need for the construct X/M, and this 1s so in the purely algebraic case.
However, later when we must deal with Banach spaces X and closed sub-
spaces M, we shall see that generally there will be no closed complementary
subspace. In this case the quotient space X/M becomes a Banach space and
serves as a valuable substitute for the missing complement.

Now let M be a subspace of X, and choose a complementary subspace
N:M @ N = X. Thenwecandefinea linearmap P: X - MbyPim + n) =
m, me M, ne N. P is called the projection of X on M (along N). We have
similarly that I — P 1s the projection of X on N (along M), where I i1s the
identity map on X. The existence of such projections allows us the luxury
of extending linear maps defined initially on a subspace of X:if T'M — Y
is linear, then T = To P is a linear map from X to Y that agrees with T on
M. Such a map T is an extension of T.

D. Let X be a linear space over the scalar field [F. The set of all linear

maps ¢: X — I becomes a new linear space X’ with linear space operations
defined by

(@ + ¥)(x) = d(X) + Y(x),
(d)(x) = ad(x), oae K, x e X.

X' 18 called the algebraic conjugate (dual) space of X and 1ts elements are
called linear functionals on X. Observe that if dim(X) = n (a cardinal
number) then X' 1s iIsomorphic to the product of n copies of the scalar field.
As we shall see many times, i1t 1s often convenient to write

P(x) = <x, ¢,

for x € X, ¢ € X'. The reason for this is that often the vector x and/or the
linear functional ¢ may be given 1n a notation already containing parentheses
or other complications.

Since X' 1s a linear space in a natural fashion, we can construct its
algebraic conjugate space (X'), which we write simply as X”'. We call X" the

second algebraic conjugate space of X. We then have a map Jy: X —» X"
defined by

(P, Ix(x)) =<x,¢), xeX, ¢ekX

This map is clearly linear; it 1s called the canonical embedding of X into X".
This terminology 1s justified by the next theorem.

Theorem. The map Jy just defined is always injective, and is surjective
exactly when dim(X) is finite.

Thus, under the canonical embedding J,, the linear space X 1s isomorphic
to a subspace of i1ts second algebraic dual space, and this subspace 1s proper
(not all of X”’) unless X is of finite dimension. In either case, we see that if 1t
suits our purposes, we can consider that a given linear space consists of
linear functionals acting on some other linear space (namely, X’).
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E. The proper affine subspaces of a linear space X can be partially
ordered by inclusion. Any maximal element of this partially ordered set 1s
a hyperplane in X.

Lemma. An affine subspace V in X is a hyperplane if and only if there
isanon-zero ¢ € X' and a scalar a suchthat V = {xe X:¢(x) = a} = [ ¢; a.

Thus the hyperplanes in X correspond to the level sets of non-zero linear
functionals on X. We can alternatively say that the hyperplanes in X consist
of the elements of all possible quotient spaces X/ker(¢), where ¢ e X',
¢ # 0, and ker(¢p) = [¢p; 0], the kernel (null-space) of ¢. The hyperplanes in
X which contain the zero-vector are in particular seen to coincide with the
subspaces of codimension one. More generally, the subspaces of codimension
n (n a positive integer) are exactly the kernels of linear maps on X of rank n
(that 1s, with n-dimensional 1image).

F. Suppose that X 1s a complex linear space. Then in particular X 1s a
real linear space 1f we admit only multiplication by real scalars. This under-
lying real vector space X i1s called the real restriction of X. Suppose that

¢ € X'. Then the maps
X > re ¢(x),

X > 1m ¢(x), xe X,

are clearly linear functionals on X, that 1s, they belong to X . On the other
hand, since ¢(ix) = ig(x), x € X, we see that

im ¢(x) = —re @(ix)

so that ¢ 1s completely determined by its real part. Similarly, if we start
with y € X%, and define

P(x) = Y(x) — iy(ix),

we find that ¢ € X'. To sum up, the correspondence y — ¢ just defined i1s
an 1Isomorphism between X% = (Xy) and (X')x.

This correspondence will be important in our later work with convex
sets and functions. The separation, support, subdifferentiability, etc. results
all concern various inequalities involving linear functionals; 1t 1s thus
necessary that these linear functionals assume only real values. Consequently,
in the sequel, linear spaces will often be assumed real. The preceding remarks
then allow the results under discussion to be applied to complex linear
spaces also, by passage to the real restriction, the associated linear functionals
being simply the real parts of the complex linear functionals.

G. We give next a primitive version of the “quotient theorem”, which
allows us intuitively to “divide” one linear map by another. The more
substantial result involving continuity questions appears in Chapter III.

Let X, Y, Z be linear spacesand let S: X — Y, T: X — Z be linear maps.
We ask whether there exists a linear map R:Y — Z such that T = R o §.
An obvious necessary condition for this to occur is that ker(S) = ker(T); 1t
is more useful to note that this condition is also sufficient.
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Theorem. Let the linear maps S and T be prescribed as above, and assume
that ker(S) < ker(T). Then there exists a linear map R, uniquely specified on
range(S), such that T = R o §S.

One consequence of this theorem, important for later work on weak
topologies, 1s the following.

Corollary. Let X be a linear space and let ¢,,...,d,, Yy € X'. Then
Ve span{¢,,..., ¢,} if and only if

'91 ker(¢;) = ker(y).

H. Let M be a subspace of the linear space X. The annihilator M° of
M consists of those linear functionals in X’ that vanish at each point of M.
It 1s clearly a subspace of X'. Similarly, if N 1s a subspace of X', its pre-
annihilator °N consists of all vectors in X at which every functional in N

vanishes. Thus:
MO

[1 ker(Jx(x)),

xeM

°N = Jy *(range(Jy) N N°).

Let T:X — Y be a linear map. The transpose T’ 1s the linear map from
Y' to X' defined by

x, T'W)) = <KT(x), ¥, xeX, yYeY’

It may be recalled that when X and Y are (real) finite dimensional Euclidean
spaces, and T 1s represented by a matrix (with respect to the standard unit
vector bases 1n X and Y), then T’ 1s represented by the transposed matrix,
whence the above terminology.

Lemma. Let T:X — Y be a linear map. Then ker(T’) = range(T)° and
range(T’) = ker(T)°.

Thus we see that T 1s surjective (resp., injective) if and only if 7" 1s injective
(resp., surjective). The various constructs in the preceding sub-sections can
now all be tied together 1n the following way. Let us say that the linear spaces
X and Y are canonically isomorphic, written X = Y, if an 1somorphism
between them can be constructed without the use of bases in either space.
For example, we clearly have X = J,(X). On the other hand, it may be
recalled that none of the usual iIsomorphisms between a finite dimensional
space and 1ts algebraic conjugate space 1s canonical.

Theorem. Let M be a subspace of the linear space X. Then

a) M° = (X/M)’;

b M' = X'/M°.

The proof of a) follows from an application of the lemma to the quotient
map Q,:X — X/M, defined by Q,(x) = x + M. Since Q,, 1s clearly sur-
jective, its transpose Qy:(X/M) — X' 1s an isomorphism onto its range,
which 1s (ker(Q,,))° = M°. The proof of b) proceeds similarly by applying
the lemma to the identity injection of M into X.
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§2. Convex Sets

In this section we establish the most basic properties of convex sets In
linear spaces, and prove the crucial lemma of Stone. This lemma is, in effect,
the cornerstone of our entire subject, as we shall see shortly. Throughout
this section, X 1s an arbitrary linear space.

A. Let x, ye X with x # y. The line segment joining x and y 1s the set
1%, y] = {ax + (1 — «)y:0 < o < 1}. Similarly we put [x, y) = [x, y]\{y},
and (x, y) = [x, y)\{x}. If 4 < X, then A is star-shaped with respect to
pe Aif|p,x] < A, for all xe A4, and A is convex if it is star-shaped with
respect to each of its elements. Clearly a translate of a convex set is convex,
hence each affine subspace of X i1s convex.

Since the intersection of a family of convex sets 1s again convex, we can
define, for any A < X, the convex hull of A, written co(A4), to be the inter-
section of all convex sets in X that contain S. Thus co(A4) i1s the smallest

convex set in X that contains 4. This set admits an alternative description,
namely

CO(A) —_— {Zaixi:o S OC,- S 1, Zai — 1, xieA}9

the set of all convex combinations of points in 4. (We emphasize again that
all linear combinations of vectors involve only finitely many non-zero terms.)
We have, for instance, that co({x, y}) = [x, y]. More generally, if we define
the join of two sets A and B in X to be U {[x, y]:xe€ A4, y e B}, then

(2.1) co(4A v B) = join(co(A4), co(B)),

so that if A and B are convex, then their join is convex and 1s, in fact, the
convex hull of their union.

Let us define addition and scalar multiplication on the family P(X) of
non-empty subsets of X by

aA + BB = {aa + Bb:ae A, b e B},

where A, B ¢ X and «, § are scalars. This definition does not define a linear

space structure on P(X); nevertheless, 1t proves to be quite convenient. For
Instance, we can state

(2.2) co(aA + pB) = a co(A4) + p co(B).

A set A = X is balanced (equilibrated) if xA = A whenever |«| < 1. The
balanced hull of A, bal(A4), is the intersection of all balanced subsets of X
that contain A, and 1s therefore the smallest balanced set in X that contains
A. Alternatively:

bal(4A) = u{ad:|a| < 1}.

Finally, a set which is both convex and balanced is called absolutely
convex. The smallest such set containing a given set A is the absolute convex
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hull of A, written aco(A). For example, aco({x}) = [ —x, x|, if X is a real
linear space. In general, we have

aco(A) = co(bal(A4))

= {Zax;: Zloy| < 1, x;€ A},

the set of all absolute convex combinations of points in 4. In particular, we
see that A4 is absolutely convex if and only if a, be A and |o| + |f]| < 1
implies aa + Bb e A.

B. We come now to the celebrated result of Stone. Two non-empty
convex sets C and D in X are complementary if they form a partition of X,
that 1s, Cn D = ¢, C u D = X. An evident example of a pair of com-

plementary convex sets occurs when X i1s real: choose a non-zero ¢ € X'
and put C = {xe X:¢(x) = 0}, D = X\C.

Lemma. Let A and B be disjoint convex subsets of X. Then there exist
complementary convex sets C and D in X such that A < C, B c D.

Proof. Let & be the class of all convex sets in X disjoint from B and
containing A; certainly A € €. After partially ordering 4 by inclusion, we
apply Zorn’s lemma to obtain a maximal element C € €. It now suflices to
put D = X\C and prove that D is convex. If D were not convex, there would
be x, ze D and y e (x, z) n C. Because C 1s a maximal element of €, there
must be points p, g € C such that both (p, x) and (g, z) intersect B, say at
points u, v, resp. (Reason by contradiction; if the last statement were false,
then the following assertion (*) would hold: for all pairs {p, g} = C, either
(p,x) "B= or(g,z)n B=C. Nowif(g,z)n B =, for all ge C,
then C < co({z, C}) and C is not maximal. Consequently, there is some
g € C for which (g, z) n B # ¢J. But then, 1f there were a point p € C such
that (p, x) n B # J, the pair {p, g} would violate (*). Thus, for all pe C,
(p, X) " B #. &, C <= co({x, C}), and C is not maximal.) Now, however, we
find that [u, v] N co({p, q, y}) # &, which contradicts the disjointness of
B and C. []

C. Let A and B be subsets of X. The core of A relative to B, written
corg(A), consists of all points a € 4 such that for each b € B\{a} there exists
x € (a, b) for which [a, x] = A. Intuitively, it is possible to move from each
a € corg(A) towards any point of B while staying in A. The core of A relative
to X 1s called simply the core (algebraic interior) of A and written cor(A4).
Sets A — X for which A = cor(A) are called algebraically open, while points
neither in cor(4) nor in cor(X\A) are called bounding points of A; they
constitute the algebraic boundary of A. It 1s easy to see that the core of any
(absolutely) convex set 1s again (absolutely) convex.

A second immportant mstance of the relative core concept occurs when
B 1s the smallest affine subspace that contains 4. This subspace, afi(A4) (the
affine hull of A), can be described as {Za;x;:Xa; = 1, x; € A} or, equivalently,
as x + span(4 — A), for any fixed x € A. Now the set cor g, (4) 1s called
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the intrinsic core of A and written icr(A4). In particular, when A4 1s convex,
a eicr(4) if and only if for each x e A\{a}, there exists y e A such that
a € (x, y); intuitively, given a € icr(A4), 1t 1s possible to move linearly from
any point in A past a and remain in A.

In general, icr(A4) will be empty; but in a variety of special cases we can
show 1cr(A) and even cor(A4) are not empty. For example, it should be clear
that 1f X 1s a finite dimensional Euclidean space and A < X i1s convex, then
cor(A) 1s just the topological interior of 4. But this last assertion fails 1n the
infinite dimensional case as we shall see later, after introducing the necessary
topological notions. We now work towards a sufficient condition for a convex
set to have non-empty intrinsic core.

A finite set {xq, X1, ..., X,} = X is affinely independent (in general position)
if the set {x; — Xq,...,X, — Xo} 18 linearly independent. The convex hull
of such a set is called an n-simplex with vertices x,, X4, . .., X,. In this case,

each point 1n the n-simplex can be uniquely expressed as a convex com-
bination of the vertices; the coefficients in this convex combination are the
barycentric coordinates of the point.

Lemma. Let A be an n-simplex in X. Then icr(A) consists of all points
in A each of whose barycentric coordinates is positive. In particular,

iIcr(A) # .

Proof. Let the vertices of A be {xq, xq,..., X,}. Let a = Zo;x; and
b = Xf,x; be points of A with all «; > 0. To show a € icr(A4), 1t 1s sufficient
to show that b + A(a — b)e A for some A > 1. If we put A = 1 + ¢, the
condition on ¢ becomes

ai+8(ai—ﬁi)>0, i=0,1,...,n,

Zn: o; + &lo; — B;) = 1.

Since ) (¢ — f;) =1 — 1 = 0, the second condition always holds, and
i=0

since all o; > 0, the first condition holds for all sufficiently small positive
¢. Conversely, let a = Xa;x; have a zero coefficient, say o, = 0. Then we
claim that x, + A(a — x;) ¢ A, for any A > 1. For otherwise, for some 4 > 1
we would have

It would follow that

+ A —1
a—‘-‘-‘-’wﬁk Xe + ) ViXis

A {7k

for certain coefficients y,. But in this representation of a, the x,-coefficient 1s
clearly positive (since B, = 0). This leads us to a contradiction, since the
barycentric coordinates of a are uniquely determined, and the x;-coethicient
of a was assumed to vanish. ]
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The dimension of an affine subspace x + M of X is by definition the
dimension of the subspace M. The dimension of an arbitrary convex set 4 in
X 1s the dimension of aff(A). A nice way of writing this definition symbolically
1S

dim(A4) = dim(span(4 — A)).

It follows from the preceding lemma that every non-empty finite dimensional
convex set 4 has a non-empty intrinsic core. Indeed, if dim(4) = » (finite),
then A must contain an affinely independent set {x,, x4, ..., X, and hence
the n-simplex co({xq, X1, ..., X, }).

Theorem. Let A be a convex subset of the finite dimensional linear space
X. Then cor(A) # & if and only if aff(4) = X.

Proof. 1Ifaff(4) = X, the last remark shows that cor(4) = icr(4) # .
Conversely, if p e cor(4A), and x € X, there is some positive ¢ for which

Ip,p + &(x — p)] = A. Then with A = (¢ — 1)/¢, we have
X =Ap + (1 — A)(p + &(x — p)) € aff(A). []

Remark. The conclusion of this theorem fails in any infinite dimen-
sional space. More precisely, in any such space X we can find a convex
set 4 with empty core such that aff(4) = X. To do this we simply let 4
consist of all vectors in X whose coordinates wrt some given basis for X
are non-negative. Clearly A — 4 = X, while cor(4) = .

D. Let A = X. A point xe X 1s linearly accessible from A 1if there
exists a € A, a # x, such that (a, x) = 4. We write lina(A) for the set of all
such x, and put lin(4) = A U lina(A4). For example, when A 1s the open
unit disc 1n the Euclidean plane, and B 1s its boundary the unit circle, we
have that lina(B) = ¢ while lin(4) = lina(4A) = A U B. In general, one sus-
pects (correctly) that when X 1s a finite dimensional Euclidean space, and
A < X 1s convex then lin(A) 1s the topological closure of 4. But we have
to go a bit further to be able to prove this.

The “lin” operation can be used to characterize finite dimensional spaces.
We give one such result next and another 1n the exercises. Let us say that
a subset of 4 of X 1s ubiquitous if in(4) = X.

Theorem. The linear space X is infinite dimensional if and only if X
contains a proper convex ubiquitous subset.

Proof. Assume first that X 1s finite dimensional, and let A be a convex
ubiquitous set in X. Now clearly 4 cannot belong to any proper affine
subspace of X. Hence aff(4) = X and thus, by 2C, cor(A4) is non-empty.
Without loss of generality, we can suppose that 0 e cor(4). Now, given
any x € X, there 1s some y € X such that | y, 2x) = A4, and there 1s a posi-
tive number ¢t such that #(2x — y)e A. It is easy to see that the half-line
{Ax + (1 — A)t(2x — y):4 = 0} will intersect the segment [ y, 2x); but this
of course means that x 1s a convex combination of two points in A4, hence
x € A also.
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Conversely, assume that X is infinite dimensional. We can select a well-
ordered basis for X (since any set can be well-ordered, according to Zermelo’s
theorem). Now we define A4 to be the set of all vectors in X whose last co-
ordinate (wrt this basis) 1s positive. 4 1s evidently a proper convex subset
of X, and we claim that 1t 1s ubiquitous. Indeed, given any x € X, we can
choose a basis vector y “beyond” any of the finitely many basis vectors

used to represent x. But then, if t > 0, we have x + ty e 4; 1n particular,
x € lina(A4). ]

E. We give one further result involving the notions of core and “lina”
which will be needed shortly to establish the basic separation theorem of 4B.
It 1s convenient to first 1solate a special case as a lemma.

Lemma. Let A be a convex subset of the linear space X, and let p &
cor(A). For any x € A, we have | p, x) < cor(A), and hence

cor(A) = L{[p, x):x e A}.

Proof. Chooseanyye|p,x),sayy = tx + (1 — t)p, where0 < t < 1.
Then given any z e X, there 1s some A > 0 so that p + Aze A. Hence
y+ (1 —=0ilz=(1 — t)(p + Az) + tx € A, proving that y € cor(A). Finally,
given any g € cor(A), g # p, there exists some 0 > 0 such that x = q +
(g — p) e A. It follows that g = (op + x)/(1 + 6) €| p, x). ]

Theorem. Let A be a convex subset of the linear space X, and p € cor(A).
Then for any x € lina(A) we have | p, x) < cor(A).

Proof. We can assume that p = 6. Since x € lina(A4), there 1s some
z € A such that |z, x) © A, and since 0 € cor(A4), there is some é > 0 such
that —o0z e 4. Arguing as in 2D, given any point tx, 0 < t < 1, the line
{Atx + (1 — A)(—9z):4 = 0} will intersect the segment [z, x) if ¢ is taken
sufficiently small. Consequently, the segment | 0, x) lies in 4. But now the
preceding lemma allows us to conclude that in fact | 6, x) lies in cor(A4). []

3. Convex Functions

In this section we introduce the notion of convex function and its most
important special case, the “sublinear” function. With such functions we can
associate in a natural fashion certain convex sets. The geometric analysis of
such sets developed 1n subsequent sections makes possible many non-trivial
conclusions about the given functions.

A. Intuitively, a real-valued function defined on an interval 1s convex
if 1ts graph never “dents inward” or, more precisely, if the chord joining any
two points on the graph always lies on or above the graph. In general, we
say that if A is a convex set in a linear space X then a real-valued function f
defined on A is convex on A if the subset of X x R"' defined as {(x, t):x € 4,
f(x) < t} 1s convex. This set is called the epigraph of f, written epi( f).
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An equivalent analytic formulation of this definition 1s easily obtained:
f 1s convex on A provided that

Jix + (1 — t)y) < tf(x) + (1 — )f(y),

forall x, ye 4,0 < t < 1. Obviously the linear functionals in X’ are convex
on X, and 1t i1s not hard to see that the squares of linear functionals are also
convex on X. Indeed, if ¢ € X’ and f = ¢()% and if x, y € X, then setting
a = Pp(x), B = ¢d(y), we find for 0 <t < 1

tf(x) + (1 — f(y) — ftx + (1 — t)y)
= to? + (1 — )% — (to + (1 — 1)B)?
= (1 — t)(a — B)* = 0.

Further examples of convex functions follow from the use of elementary
calculus. Let f be a continuously differentiable function defined on an open
interval I. Then f 1s convex on I if and only if f’ is a non-decreasing function
on I. Consequently, if f 1s twice continuously differentiable on I, then f is
convex on I i1f and only if f” 1s non-negative on I. To obtain a third charac-
terization of smooth convex functions, and to extend the preceding charac-
terizations to higher dimensions, we consider that f 1s now a continuously
differentiable function defined on an open convex set 4 in Euclidean n-space.
Let Vf(x) be 1ts gradient at x € A. The function

E(x,y) = f(y) — f(x) — V(%) - (y — x)

measures the discrepancy between the value of f at y and the value of the
tangent approximation to f over x at y. (Here the dot denotes the usual dot
product on R".) Intuitively, if f 1s convex, this discrepancy will be non-
negative at all points x, y € A. To generalize the one-dimensional notion of

non-decreasing derivative, let us say that the map x - Vf(x) 1s monotone
on A if

(VI(y) = Vf(x))-(y —x) =2 0
for all x, y € A.

Theorem. Let f be a continuously differentiable function defined on the
open convex set A in R". The following assertions are equivalent :

a) E(x,y) =2 0,x,ye A;

b) the map x — Vf(x) is monotone on A;

c) [ is convex on A.

Proof. If E(x, y) = 0 throughout A x A, we have
(VI(y) = V(%) - (y = x) = Vf(y) - (y — x) = Vf(x) (y — x)
= (f(y) — f(x)) = (f(y) — f(x)) =0

Next, 1f Vf(-) defines a monotone map on A, fix x, ye A and put g(t) =
f(x + t(y — x)). We want to see that g is convex on [0, 1] or that g’ is
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non-decreasing there. Choose 0 < a < f < 1. Then
g(p) — g = (Vf(x + By — x)) — Vflx + ey — x))) - (y — X)
1
=2 (Vf(t) = V/() (0 —u) =0,

where we have put u = x + a(y — x) and v = x + B(y — x), both 1n A.
Thus b) implies ¢). Finally, let f be convex on 4 and fix x, y € A. Define

h(t) = (1 — Of(x) + tf(y) — f((1 = B)x + ty),

so that h is a non-negative smooth function on [0, 1] and h attains its
minimum at ¢t = 0. Therefore, h'(0) = 0. Since E(x, y) = h'(0), the proof 1s
complete. |

Many further examples of convex functions will appear in due course.

B. Here we record, for future reference, some elementary properties of
the class Conv(A4) of all convex functions defined on a convex set A in some
linear space. First, Conv(A4) i1s closed under positive linear combinations;

that is, if {f},...,f,} < Conv(4) and o; = 0, i =1,...,n, then ) o;f; €
1
Conv(A). Also, if { f,} = Conv(A), and sup, f,(x) < oo for each x € A4, then

this supremum defines a function in Conv(A). Indeed,
epi(sup f,) = [] epi(f).

The set Conv(A) is of course partially ordered by f < g if and only 1if
f(x) < g(x),xe A. Now let { f,} = Conv(A4) with each f, non-negative on A4,
and suppose that the family {f,} is “directed downwards”, that 1s, given
f» fg there exists f, such that f(x) < min{ f(x), f5(x)}, x € A. For example,
{ f.} could be a decreasing sequence. Then inf, f, € Conv(A).

We indicate one more procedure for forming new convex functions
from old. Given f,,..., f,€ Conv(4) we define their infimal convolution

fiO---0O fa by
(fl r——l S r——l ﬂz)(x) = inf{fl(xl) + 0+ ﬁi(xn):xie Aai'xi = X}.

This terminology is motivated by the case where n = 2, since we can then
write

(fO9(x) = inf{f(y) + g(x — y):y e A},

and be reminded of the formula for integral convolution of two functions.
In practice, the functions involved 1n an infimal convolution will be bounded
below (usually non-negative), so that the resulting function 1s well-defined.
The convexity of the infimal convolution of convex functions i1s an easy
consequence of the next lemma. This result i1s of general interest; 1t allows
us to construct convex functions on a linear space X by prescribing their
graphs in the product space X x R!.
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Lemma. Let X be a linear space and K a convex set in X x R'. Then
the function

f(x) = inf{z:(x, t) e K}

is convex on the projection of K on X.

The proof follows from the analytic definition of convexity in 3A. To
apply the lemma to the convexity of f, []--- f, for f,e Conv(A4), A
convex mn X, let K = epi(f;) + - + epi(f,). K 1s certainly convex 1n
X x R! and (x, t) € K exactly when there are x; € A and t, € R! such that

filx;) < t,, t =) t;, x =) x;. Thus applying the procedure of the lemma
1 1

yields f; [ - - - O f, which 1s thereby convex.

Finally, note that if f € Conv(A) then the “sub-level sets” defined by
{xe A:f(x) < A} and {x e A:f(x) < A} are convex for any real A. However,
there will be non-convex functions on A that also have this property.

C. We come now to the most important type of non-linear convex
functions. Let X be a linear space. A real-valued function f on X is positively
homogeneous it f(tx) = tf(x) whenever x € X and t = 0. Such a function i1s
convex 1f and only if f(x + y) < f(x) + f(y) for all x, ye X. We call such
convex functions sublinear. In addition to the linear functions, many other
examples of sublinear functions lie close at hand. Thus if X = R", we can

n 1/p
choose a number p > 1 and let f(x) = (}: |éi|f’) for x = (&,,...,&)eR™
1

f(x) 1s called the p-norm of x. Or, we can let X = C(T), the linear space of
all continuous real-valued functions on a compact Hausdorffspace T.If Qi1s a
closed subset of T we let f(x) = max{x(t):t € Q}; this f is clearly a sublinear
function on X.

Sublinear functions on linear spaces arise frequently from the following
geometrical considerations. Let A be a subset of a linear space X such that
0 € cor(A). Such sets A are called absorbing: sufficiently small positive
multiples of every vector in X belong to 4. We define the gauge (Minkowski
function) of A by

p4(x) = inf{t > 0:xetAd}.

For example, if ¢ € X' and a > 0, let 4 be the “slab” {x € X:|p(x)| < o};
then p, = |¢(-)|/a. Or, let X = R" and p > 1; then the p-norm introduced
above is the gauge defined by the unit p-ball

{x il (STRRR én)ERn:; [€IES 1}-

The primary importance of gauges in a linear space X is that they can
be used to define topologies on X. This is certainly apparent in the case of
the p-norms on R"; every one of them defines the usual Euclidean topology
on R” if the distance between two points in R” is taken to be the p-norm of
their difference. (The resulting metric spaces are of course not the same.)
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This example leads us to the general attempt to define a metric d, by

da(x, y) = pa(x — y),

if p, 1s the gauge of some given absorbing set A. Thus we are saying that
two points are close if their difference lies in a small positive multiple of A.
However, 1t 1s immediately apparent that more information about A4 1s
needed 1n order to prove that d 4 1s really a metric. Some of this information
1s given now and the topic will be continued in the next chapter.

Lemma. Let A be an absorbing set in a linear space X.

a) the gauge p 4 is positively homogeneous;

b) if A is convex then p, is sublinear;

c) if A is balanced then p ,(Ax) = |Alp4(x) for all scalars A and all x € X.

Proof. a) Clear. b) Let x, ye X and choose t > p (x) + p,(y). Then
there exist o > py(x), B > p4(y) such that t = a + . Now since A4 is
convex, we have z € A whenever p,(z) < 1; in particular x/oc and y/f are in
A. Consequently, (x + y)/t = (x + y)/(a + p) = (alx/e) + B(y/b))/( + p)
1s also 1n 4 so that p (x + y) < t. ¢) Assume that A # 0 and choose t >
p4(x). Then x € A for some s, p,4(x) < s < t and hence Ax € |4|sA4 because A
is balanced. Thus p4(4x) < |A|s and therefore p,(Ax) < |[A|p4(x). The reverse
inequality follows after replacing x by Ax and A by 1/4 in this argument. []

D. The gauge of an absolutely convex absorbing set 4 1s called a
semi-norm. Thus a semi-norm p, has the properties that it 1s sublinear and
that p,(Ax) = |A|p4(x), for all scalars A and vectors x. Conversely, any real-
valued function p having these two properties i1s a semi-norm in the sense
that there 1s an absolutely convex absorbing set 4 such that p = p,. Indeed,
we can take A = {xe X:p(x) < 1}. Since x € t4 < p(x) < t it follows that
P = Pa-

If p=p, 1s a semi-norm on X then ker(p) = {xe X:p(x) = 0} is a
subspace of X; in fact, it is the largest subspace contained in 4. When
ker(p) = {0}, we say that p is a norm on X. Thus p is a norm if and only if
p(x) = 0= x = 0. The p-norms on R" are clearly examples of norms,
which justifies the use of that earlier terminology.

Q4. Basic Separation Theorems

In this section we establish two elementary separation theorems for
convex subsets of a linear space, making use of Stone’s lemma in 2B. Many
of the major subsequent results 1n this book will depend in some degree on
the use of an appropriate separation theorem.

A. We begin with a lemma that draws upon the results of §2. Through-
out, X 1s a real linear space.

Lemma. Let C and D be non-void complementary convex sets in X, and
put M = lin(C) n lin(D). Then either M = X or else M is a hyperplane in X.
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 Proof. Since C and D are convex so are lin(C) and lin(D), and hence
so 1s M. We claim that M 1s in fact an affine subspace of X. To see this,
first note that lin(C) = X\cor(D) and lin(D) = X\cor(C), whence M =
(X\cor(C)) n (X\cor(D)). Now let x, y e M and suppose that z 1s a point on
the line through x and y. If z ¢ M then z € cor(C) u cor(D); we may suppose
that z € cor(C) and that y € (x, z). This entails x € lina(C) and hence y € cor(C)
by 2E. This contradiction proves that ze M and consequently M 1s an
affine subspace. There 1s now no loss of generality in assuming that M 1s
actually a linear subspace. Suppose that M # X; then there 1s a vector
pe X\M, say p e cor(C). Now —p e cor(C) u cor(D), but it —p e cor(C)
then 0 € cor(C) also, since cor(C) is convex. This 1s not possible so 1t must
be that — p € cor(D). Now it follows that for any xe C,| —p, x| n M # &,
and, for any ye D, | p, y| n M # (. But this means that the linear hull of
p and M is all of X, since X = C u D. By definition then, M 1s a hyper-

plane. |

B. Let H = [¢;a] be a hyperplane in X defined by ¢ € X' and the
(real) scalar «. The hyperplane H determines two half-spaces, namely,
{xe X:¢p(x) = a} and {x e X:¢(x) < a}. Two subsets 4 and B of X are
separated by H 1f they lie in opposite half-spaces determined by H. This
does not a priori preclude the possibility that A n B # ¢ nor that A and/or
B actually lie in H. Generally, the important question is not whether 4 and
B can be separated by a particular H, but rather by any hyperplane at all.
Simple sketches suggest that an affirmative answer to this question is unlikely
unless both sets are convex. Following 1s the “basic separation theorem”.

Theorem. Let A and B be disjoint non-empty convex sets in X. Assume
that either X is finite dimensional or else that cor(A) u cor(B) # . Then
A and B can be separated by a hyperplane.

Proof. By 2B there are complementary convex sets C and D 1n X such
that A <« C and B < D. We let M = lin(C) n lin(D), as in the preceding
lemma. If M 1s a hyperplane then 1t does the job of separating A and B. The
lemma asserts that M can fail to be a hyperplane only if X = lin(C) = hin(D),
thatis, only if both C and D are ubiquitous (2D). But, if X 1s finite dimensional,
neither C nor D can be ubiquitous since they are proper (2D again). On the
other hand, if A (resp. B) has a non-empty core, then D (resp. C) 1s not
ubiquitous. [

We can in turn use this theorem to establish a stronger and more definitive
separation principle, under the hypothesis that one of the sets to be separated
has non-empty core.

Corollary. Let A and B be non-empty convex subsets of X, and assume
that cor(A) # . Then A and B can be separated if and only if cor(A) N B =

.

Proof. If A and B are separated by a hyperplane | ¢; a |, then the set
¢d(cor(A)) 1s an open interval of reals, disjoint from the interval ¢(B). Thus
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cor(4A) and B must be disjoint. Conversely, assuming they are disjoint, they
can be separated by a hyperplane [ ¢; a] (since cor(A4) is convex and alge-
braically open (2C)). But clearly if ¢(x) < «, say, for x e cor(A4), then also
d(x) < a for all xe A 2E). Thus [¢; o] separates A and B. []

C. In some cases, stronger types of separation are both available and
useful. Let us say that the sets 4 and B are strictly separated by a hyperplane
H = | ¢; a] if they are separated by H and both 4 and B are disjoint from
H, and that they are strongly separated by H if they lie on opposite sides of
the slab {x e X:|¢(x) — o < ¢} for some ¢ > 0. Analytically, these two
conditions can be expressed as ¢(x) < a < ¢(y), (respectively, as ¢d(x) <
a—¢e<a+ e @(y)), for all xe 4, y e B (after possibly interchanging
the labels “A” and “B”). Simple examples in the plane show that convex sets
A and B can be strictly separated without being strongly separated.

Some types of separation can be conveniently characterized in terms of
the separation of the origin 0 from the difference set A-B.

Lemma. The convex sets A and B can be (strongly) separated if and only
if 0 can be (strongly) separated from A—B.

The prootf 1s straightforward. The assertion is not true for strict separa-
tion, however. A slightly less obvious condition for strong separation will
be given next, and called the “basic strong separation theorem”.

Theorem. Two disjoint convex sets A and Bin X can be strongly separated
if and only if there is a convex absorbing set V in X such that(A + V)N B =

.

Proof. 1If such a V exists then A + V has non-empty core and so can
be separated from B. Thus there exists ¢ € X’ such that ¢(a + v — b) = 0
for all ae A, be B, ve V. Now the interval ¢(V) contains a neighborhood
of 0, so there 1s vy € V with ¢(vy) < 0. Hence ¢(a) = ¢(b) — &(v,) for all
ac A, beV, whence inf{¢(a):ae A} > sup{¢p(b):b € B}. Thus A and B are
strongly separated. Conversely, assume that A and B can be strongly sepa-
rated. Then there are ¢ € X’ and reals «, ¢, with ¢ > 0, such that inf{¢(a):
aeA} = o+ ¢e>a—¢=sup{pb):beB}.IlfweputV = {xe X:|p(x)| <
e} we find V is convex and absorbing and that (4 + V)~ B = (. []

A particular consequence of this theorem is that two disjoint closed
convex subsets of R” can be strongly separated, provided that one of them
1s bounded (hence compact). The boundedness hypothesis cannot be omitted
as is shown by simple examples in R2.

5. Cones and Orderings

In this section, we study a special type of convex set, the “wedge”. Such
sets are intimately connected with the notions of ordering in linear spaces,
and positivity of linear functionals. This added structure in linear space
theory 1s important because of its occurrence in practice, for example in
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function spaces and operator algebras. Wedges associated with a given
convex set (support and normal wedges, recession wedges) are introduced
in later sections, and play important roles in certain applications.

A. A wedge P 1n a real linear space X 1s a convex set closed under
multiplication by non-negative scalars. Any such set defines a reflexive and
transitive partial ordering on X by

X< y<=sy—xel.

This ordering has the further properties that x < yentaills x + z < y + z
for any ze X, and Ax < Ay whenever A = 0. For short, we call such a
partial ordering a vector ordering and X so equipped an ordered linear space.
Conversely, if we start with an ordered linear space (X, <) and put P =
{xe X:x > 0}, then P is a wedge in X (the positive wedge) which induces
the given vector ordering.

A wedge Pis a coneif P n (—P) = {0}; in this case 0 is called the vertex
of P. Since P n (— P) is the largest subspace contained in P, this condition
1S equivalent to the assertion that P contains no non-trivial subspace. It 1s
further easy to see that a wedge 1s a cone exactly when the induced vector
ordering 1s anti-symmetric, in the sense that x < y, y < x < x = ).

The span of a wedge P is simply P — P. When P — P = X, the wedge
1s said to be reproducing, and X 1s positively generated by P. It 1s not hard
to show that this situation obtains in particular whenever cor(P) # . In
terms of the associated vector ordering on X, we can state that X 1s positively
generated by P if and only if the ordering directs X, in the sense that any
two elements of X have an upper bound. Precisely, this means that given
x, y € X, there exists ze X such that x < zand y < z.

The simplest examples of ordered linear spaces are function spaces with
the natural pointwise vector ordering. If X 1s a linear space of functions
defined on a set T, and the linear space operations are the usual pointwise
ones, then it is natural to let P = {xe X:x(t) = 0, t e T}. The induced
vector ordering i1s then defined by

x < y<x(t) < Y1), te T.

Let us now further specialize to the case where X = C[0, 1], the space of
all (real-valued) continuous functions on the interval [0, 1]. Clearly the
pointwise vector ordering on X directs X and so the cone of non-negative
functions is reproducing. On the other hand, let us consider in X the cone
O of all non-negative and non-decreasing functions in X. Now we have that
0 — O i1s the subspace of all functions in X that are of bounded variation
on [0, 1]. Consequently, Q is not reproducing in X.

Another interesting cone is the set Conv(X) (3B) in the linear space of
all real-valued functions on X.

B. Let X be an ordered linear space with positive wedge P. A linear
functional f e X' is positive if f(x) = 0 whenever x € P. Clearly a positive
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linear functional f 1s monotone in the sense that x < y = f(x) < f(y). The
set of all positive linear functionals forms a wedge P™ in X' called the dual
wedge; the induced vector ordering on X' 1s the dual ordering, and the
subspace P™ — P™ is the order dual of X. The dual wedge is actually a
cone exactly when P 1s reproducing.

It 1s not a prion clear whether or not there are any non-zero positive
linear functionals on a given ordered linear space, and indeed there may be
none. We now use the separation theory of §4 to give a useful sufficient
condition for P* # {0}.

Theorem. If the wedge P is a proper subset of X and has non-empty
core, then P™ contains non-zero elements.

Proof. We choose an x € X\P and apply 4B to separate x and P by a
hyperplane | ¢; o, say ¢(x) < a < ¢(y), y € P. Now any linear functional
that is bounded below on a wedge must be non-negative there. Thus ¢ € P

and ¢ # 0. ]

C. We consider briefly some conditions sufficient to guarantee that a
wedge P in a linear space X is actually a cone. A linear functional ¢ € P~
1s strictly positive if x € P (x # 0) = ¢(x) > 0. A base for P is a non-empty
convex subset B of P with 0 ¢ P such that every x € P (x # 0) has a unique
representation of the form Ab, where be Band A > 0. If ¢ € P™ is strictly
positive and we set B = [¢; 1] n P then B is a base for P. The converse
assertion 1s equally valid: given a base B for P, there 1s by Zorn’s lemma a
maximal element H in the class of affine subspaces which contains B but
not 6. H 1s seen to be a hyperplane defined by a strictly positive linear
functional.

Theorem. Consider the following properties that a wedge P in X may
pOoSssess:

a) P isa cone;

b) P has a base;

c) cor(P™) # .
Then ¢) = b) = a); if X is some Euclidean space, and P is closed in X, then
all three properties are equivalent.

Proof. It 1s clear that the existence of a base for P implies that P is a
cone, so that b) = a). Now assume that ¢ € cor(P™); it will suffice to show
that ¢ 1s strictly positive. If not, there exists x € P(x # 6) such that ¢(x) = O.
But since x # 0, there must be some y € X' for which y(x) < 0. As ¢ €
cor(P™), there is A > 0 such that ¢ + Ay € P™; however ¢(x) + Ay(x) =
AY(x) < 0, a contradiction. Thus ¢) = b). Finally, assume that X = R" for
some n, and that P 1s closed in X. We show a) = ¢). Now according to 2C,
cor(P™) # ¢ < P™ is reproducing. If P is not reproducing then its linear
hull P* — P™ is a proper subspace of R” (here we are tacitly utilizing the
usual self-duality of R" with itself: (R") = R"). There is thus a non-zero
linear functional @ € (R")” = R” such that & vanishes on P™ — P™ (1C).
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The proof 1s concluded by showing that + @& € P, so that P is not a cone.
If, for example, @ € P, there is a Euclidean ball V centered at 6 in R" such
that (@ + V) n P = J; this follows because P is assumed closed. But now
by 4C we can strongly separate ¢ and P. As in SB, the separating hyperplane
must be defined by an element ¢ € P™ with (¢, &) < 0; this however is a
contradiction since @ vanishes on P™. ]

Without further hypotheses, the other conceivable implications between
a), b), and c) are not valid.

6. Alternate Formulations of the Separation Principle

In this section we establish four new basic principles involving convex
sets and linear functionals, which, along with the basic separation theorems
of §4, will be used repeatedly in the sequel. Of special interest here is that
these new principles are in fact only different manifestations of our earlier
separation principle 4B: they are all equivalent to it and hence to each other.
(In 6B 1t 1s further noted that the existence theorem of 5B is also equivalent
to the basic separation theorem.)

A. We begin with the extension principles. In 1C 1t was noted that,
rather trivially, a linear map defined on a subspace of a linear space admits
a (linear) extension to the whole space. For the time being, all linear maps
to be extended will be linear functionals, defined on a proper subspace M
of a linear space X. What will make our extension theorems interesting (and
useful) 1s the presence of various “side-conditions” which must be preserved
by the extension. If f and g are real-valued functions with common domain
D, we shall write f < g 1n case f(x) < g(x) for every x € D. Our first result
1s the “Hahn-Banach theorem”.

Theorem. Let ge Conv(X) where X is a real linear space, and suppose
that ¢ € M’ satisfies ¢ < g|M. Then there exists an extension ¢ € X' of ¢
such that ¢ < g.

Proof. Let A be the epigraph (3A) of g and B the graph of ¢ in the space
Y = X x R'. By hypothesis, B = {(x, ¢(x)):x e M} is a subspace of Y
disjoint from the convex set 4. Now A is algebraically open. To see this,
choose (xy, tg) € Aand (x,t)e Y. Thenfor 0 < 1 < 1,
g(xO -+ AX) — (to -+ /’lt)
= g(Axg + xX) + (1 — A)xg) — to — At
< Ag(xg + xX) + (1 — A)g(xg) — tog — At

= Mg(xo + x) —to — 1) — (1 — Ao — g(xo)).

Since the second term here is positive, the entire expression will be negative

for sufficiently small A, proving that (x,, t,) € cor(4). Thus we can separate
A and Bby ahyperplane | @; o] = Y. Since the linear functional @ is bounded
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on the subspace B, « = 0; we assume that & i1s non-negative (necessarily
positive, in fact) on A. Since (0, t) € A for sufficiently large t, ¢ = (6, 1) > O.
Now to define the desired extension ¢ € X’ we note that @(x, 0) + @6, t) =
®@(x, t) whenever (x, t) e A. That is, setting ¢ = (—1/c)®(-, 0), we see that
g(x) < timplies ¢(x) < talso,sothatd < gon X.And since ¢p(m, p(m)) = 0
for m e M, we see that ¢(m) = ¢p(m), m € M, so that ¢ is the desired extension
of ¢. []

We indicate one direct and important consequence of the Hahn-Banach
theorem; its derivation 1s outlined 1n exercise 1.21.

Corollary. Let p be a semi-norm (3D) on the linear space X, and M a
subspace of X. If ¢ € M’ satisfies |¢(-)| < p|M, then there is an extension

¢ € X' of ¢ such that |§(-)| < p.

B. Our second extension principle concerns positive linear functionals.
Let X be an ordered linear space with positive wedge P (5A), and let M be
a subspace of X. M will be considered as an ordered linear space under the
vector ordering induced by the wedge P n M. The next result, the “Krein-
Rutman theorem”, provides a sufficient condition for a positive linear func-
tional (5B) on M to admit a positive extension to all of X.

Theorem. With M, P, X as just defined, assume that P n M contains a
core point of P. Then any positive linear functional ¢ on M admits a positive
extension to all of X.

Proof. It will suffice to construct a positive extension on the span of
P and M ; we can then extend to all of X 1n the trivial manner of 1C. For
x 1n this span we define

g(x) = mnf{p(y):y = x,ye M }.

Now g is convex (actually sublinear; the proof 1s quite analogous to that of
the lemma in 3C), and we have ¢ < g|M on account of the monotonicity
of  on M. Thus we can apply the Hahn-Banach theorem (6A) and obtain
an extension ¢ (to the span of P and M) of ¢ so that ¢ < g. To see that this
¢ is positive, choose y, € P n M and x € P; we shall show that ¢(—x) < 0.
Now for all t > 0, yo + txe P. Thus y,/te M and y,/t = —x, so that
d(—x) < g(—x) < Pd(yo/t) = d(yo)/t; to conclude, let t - + oo. []

In order to show that both the preceding extension theorems are equiv-
alent to the basic separation theorem, it clearly suffices to prove that the
latter 1s a consequence of the Krein-Rutman theorem. In turn, recalling 4C,
1t suffices to show that if A 1s a convex set in a linear space X with non-empty
core, and 0 ¢ A, then we can separate 0 from A by a hyperplane; or, in other
words, we can find a non-zero linear functional in X' that assumes only
non-negative values on A. Let us define P = {tA:t > 0}. Then P is a wedge
(actually a cone) in X and cor(P) # . It now follows from 5B that P~
contains a non-zero element, which is what we wanted. Although the proof
of SB utilized the basic separation theorem, it i1s clear that SB is also a simple
consequence of the Krein-Rutman theorem.
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C. Let H=|¢;a] be a hyperplane and A a convex set in the real
linear space X. We say that H supports A if A lies in one of the two half-spaces
(4B) determined by H and A n H # ¢J. A point in A that lies 1n some such
supporting hyperplane 1s called a support point of A; a support point of
A 1s proper if 1t lies 1n a supporting hyperplane which does not completely
contain A. There 1s a more general notion of supporting affine subspace
(not necessarily a hyperplane) which 1s introduced in exercise 1.37.

The next result, the “support theorem”, completely 1dentifies the proper
support points of convex sets with non-empty intrinsic core (2C).

Theorem. Let A be a convex subset of a real linear space X such that
icr(A) # . If x ¢ icr(A), there exists ¢ € X' such that ¢p(x) > ¢(y), for all
y € 1cr(A).

Proof. We may assume that the origin 6 belongs to icr(A4). Let M =
span(A). It x ¢ M, we can certainly construct ¢ € M° with ¢(x) > 0.If x e M,
the basic separation theorem allows us to construct ¢, e M’ such that
do(x) = Po(y) for all y e 1cr(A). It 1s clear from the linearity of ¢, and the
definition of core that equality can never hold here. Now any extension
¢ of ¢, to all of X will serve our purpose. |

Corollary. The proper support points of a convex set A withicr(A) # &
are exactly those in A\icr(A). In particular, if cor(A) # J, the proper support
points of A are the bounding points (2C) of A that belong to A.

Since all finite dimensional convex sets have non-empty intrinsic core
(2C), their support points are fully located by this corollary. Naturally, the
situation 1s a little more complicated in the general infinite-dimensional
case. Let us consider, for example, the case of the real linear space £?(d),
where 1 < p < oo and d 1s a cardinal number, finite or infinite. This 1s the
usual space of real-valued functions on a set S of cardinality d which are p-th
power integrable wrt the counting measure on S (the counting measure 1s
by definition defined on all subsets of S; its value at a particular subset 1s
the cardinality of this subset if finite, and otherwise is + o0). Less formally,
if x:S — R and we 1dentify x with the “d-tuple” of its values, x = (x(s):s € S),
then x € ¢7(d) if and only if ) (s [%(s)[? < oo. Now £7(d) is clearly ordered by
the natural pointwise vector ordering (5A), and the positive wedge P =
{xe £P(d):x(s) = 0, se S} is a reproducing cone in £?(d). However, this
wedge has no core when d = X, and hence no intrinsic core, so that the
support theorem does not apply.

Since no hyperplane can contain P, each support point of P (if there are
any) must be proper. In the case where d > ¥X,, we claim that every point
in P 1s a support point. This 1s so because each such point must vanish at
some point in S. The characteristic function of this point in § then gives
rise to a linear functional on ¢P(d) that defines a supporting hyperplane to
P through the given point in P. For contrast, consider now the case where
d=Npand S = {1,2,...}. If x = (&) e P and some & = O then the pre-
ceding argument shows that x 1s a support point of P. But now it 1s possible
that no ¢, = 0 and 1n this case x 1s not a support point of P.
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Thus we see that in the absence of core, a particular bounding point of
a convex set may or may not be a support point. More surprising, perhaps,
1s the possibility that a given convex set may have no support points at all. An
example 1illustrating such a “supportless” convex set 1s given 1n exercise 1.20.

It 1s clear from 4C that the present support theorem implies the basic
separation theorem.

D. Let f be a convex function defined on a convex set 4 in some real
linear space X. A linear functional ¢ € X' 1s a subgradient of f at a point
Xo€ A 1f

P(x — xo) < f(x) — f(xo), x € A.

This definition 1s motivated by the result in 3A for the case where X = R",
and f 1s differentiable at x,. In this case, the gradient vector Vf(x,) was
shown to satisfy the above condition (when viewed as a linear functional on
R" in the usual way). Thus a subgradient 1s a particular kind of substitute
for the gradient of a convex function, in case the latter does not exist (or
1s not defined).

Consider, for example, the case where 4 = X = R! and f, although
necessarily continuous on R! (since it is convex), is not differentiable at
some Xx,. In this case, as 1s well known, f has a left hand derivative f_(x,) and
a right hand derivative ', (xy) at the point x,, and f_(x,) < f'1(xg). Now
we claim that any number ¢, f_(x,) < f'.(x,), defines a subgradient of f at
Xo. This is so because the difference quotients whose limits define these one-
sided derivatives converge monotonically:

J(x) — f(xo) L (xo), x | xq
X — Xp
and
f(x) — f(xo) t 1 (x0), x 1 Xq.
X — Xg
Thus
JH(Xo)(x — x0) < f(x) — f(x0), Xo < X
and

J-(xo)(x — x¢) < f(x) — f(x0), X < Xp.

Other examples of subgradients are given in the exercises and in later sections.
Let us consider next the geometrical interpretation of subgradients. First
we recall that when X is a real linear space, (X x R!) is isomorphic to

X' x R!.Indeed, such an isomorphism occurs by associating (¢, s)e X' x R*
with Y € (X x R'), where

U(x, t) = d(x) + st, xe X, te R

Now the basic geometric interpretation to follow is that subgradients cor-
respond to certain supporting hyperplanes of the set epi( f) (3A)in X x R*.

Lemma. Let A be a convex subset of X and let f € Conv(A).
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a) ¢ € X' is a subgradient of f at xy € A if and only if the graph of the
affine function h(x) = f(xo) + d(x — Xx) is a supporting hyperplane to epi( f)
at the point (x,, f(X)).

b) Conversely, assume that Yy € (X x R'Y and that H = [y;a] is a
supporting hyperplane to epi(f) at (xq, f(Xo)); say o = inf y(epi(f)). Let
correspond to (¢, s) e X' x R! as above. Then, if s # 0 (intuitively, if H is
“non-vertical™), we have s > 0 and — ¢/s is a subgradient of f at x,.

Proof. a) By definition, ¢ is a subgradient of f at x, if and only if
h|A < f. If we define € (X x RYY by y(x,t) = —p(x) + ¢t, and let a =
f(x0) — ¢(x,), then the inequality hl4 < f is equivalent to inf ¥(epi(f)) =
W(xo, f(xo)) = a. Thus the hyperplane [y/; o] supports epi(f) at (xq, f(xo));
it is clear that graph(h) = [¢; a].

b) We have ¢(xy) + sf(xg) < d(x) + st, for all xe 4 and all t > f(x).
From this the two assertions of b) are evident. i

If there exists a subgradient ¢ of f at x, we say that f is subdifferentiable
at xo. The set of all such ¢ is the subdifferential of f at x,, written of(x,);
it 1s clearly a convex subset of X'. Since the subdifferentiability of f at a
given point depends, as we have just seen, on a support property of epi( f),
we might suspect from the results of the previous section that in general
0f (x,) will be empty. This is certainly the case as simple examples show. An
existence theorem 1s thus required; the following “subdifferentiability
theorem” fills this order.

Theorem. Let A be a convex subset of the real linear space X and f €
Conv(A). Then f is subdifferentiable at all points in 1cr(A).

Proof. Let xy,€1cr(A), M = span(4A — A) (M 1s-the subspace parallel
to aff(4)),and B = A — x,. Define g € Conv(B) by g(x) = f(x + x,). Then
any subgradient in dg(6) will, upon extension from M’ to X', also belong to
0f (x,). In other words, there 1s no loss of generality in assuming that 6 =
Xy € cor(A); it is further harmless to take f(0) = 0. But now, in X x R,
any point of the form (6, ¢t,), t, > 0, belongs to cor(epi( f)). To see this, pick
(x,t)e X x R'; we must show that (0, t,) + A(x, t) € epi( f) for sufficiently
small A > 0O, or that f(ix) < t, + At for small A. But the convex function
g(A) = f(Ax) defined on (0, o0) satisfies

g(A)/Adg:0), 410,
so that certainly
J(Ax)/A = gA)JA < to/A + ¢

for small A. Now since cor(epi(f)) # &J, by 6C the bounding point (6, 0) 1s
a support point of epi( ). The corresponding hyperplane cannot be “vertical”,
since 0 € cor(A4). Thus, by part b) of the preceding lemma, there 1s a sub-
gradient of f at 6. []

To complete our circle of equivalent formulations of the basic separation
principle, let us show that the subdifferentiability theorem entails this
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principle. From 4B and 4C we see that it is sufficient to prove that an alge-
braically open convex set 4 in X can be separated from any point x, ¢ A.
As usual, after a translation, we may assume that 6 € A. Thus A 1s absorbing,
1ts gauge p, belongs to Conv(X) (3C), and p (x,) = 1. By the subdifferen-
tiability theorem, there exists ¢ € 0p 4(xo): P(x — Xo) < p4(X) — p4(Xp), X €
X. Letting x = 0 and x = 2x,, and recalling that p, 1s positively homoge-
neous, we see that

P(xo) = palxo) = o
P(x) < pu(x), xeX.

Consequently, the hyperplane | ¢; « | separates x, and A (since x € A implies
p4(x) < 1sothat ¢p(x) < pyu(x) <1 < a).

E. In summary, we have now established the mutual equivalence of
siIX propositions, each of which asserts the existence of a linear functional
with certain properties. These propositions are

1) the basic separation theorem (4B);

2) the existence of positive functionals (SB);
3) the Hahn-Banach theorem (6A);

4) the Krein-Rutman theorem (6B);

5) the support theorem (6C);

6) the subdifferentiability theorem (6D).

An important meta-principle is suggested by these results: 1f one wishes to
establish the existence of a solution to a given problem, and one has some
control over the choice of the linear space in which the solution 1s to be
sought, then it will generally behoove one to choose the ambient linear space
to be a conjugate space if possible. This 1s of course automatic in the finite
dimensional case (1D), but does represent a restriction in the general case.
We shall see many applications of this idea 1n subsequent sections.

7. Some Applications

In this section we give a few elementary applications of the preceding
existence theorems. Most of these results will play a role in later work.
More substantial applications require the topological considerations to be
developed 1n the next chapter. Throughout this section, X denotes a real
linear space.

A. We first consider a criterion (“Helly’s condition”) for the consistency
of a finite system of linear equations, subject to a convex constraint. The
most important special cases of this result are obtained by letting the set A4
below be the unit ball of a semi-norm p, that is, the set {x € X:p(x) < 1}
(when p 1s 1dentically zero, this definition yields simply A = X).

Theorem. Let A be an absolutely convex subset of X. Let {¢1, . . ., ¢,} <
X' and {cy,...,c,} = R. Then, a necessary and sufficient condition that for
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every 0 > 0 there exists x; € (1 + 0)A satisfying

¢1(x5) = Cy,
qbn(x&) = Cy,
is that for every set {oy, ..., o, < R,
), 0G| < SUp{ Y oi(x)|:x € A}.
i=1 i=1

Proof. The stated condition is clearly necessary for the consistency of
the given system. Let us prove its sufficiency. Suppose that for some 0 > O
whenever x € (1 + 0)A, we have ¢,(x) # c; for some i. If we define a linear

map 7:X — R” by
I(x) = (¢1(X), . . ., Pu(X)),

our assumption becomes
c = (Cy,...,¢)¢ T((1 + 0)A).

By 4B these two sets can be separated: there 1s a non-zero linear functional
A on R" such that

Mc) = sup{A(v):ve T((1 + 6)A)} = sup{|AUv)|:ve T((1 + 5)A)}
= sup {|U(T(x))|:xe (1 + 6)A}.

(The absolute values are permissible because A4 is a balanced set.) Now 1f A

is given by A(v) = ) o;, forv = (vy, ..., v,) € R", we obtain
1
Z oC; = sup{ Z o;;(x) :xe (1 + 5)A}
i=1 i=1
= (1 + 0) sup{ Y odi(x)|:x € A},
i=1
in contradiction to Helly’s condition. i

B. Next, we consider a criterion (“Fan’s condition”) for the consistency
of a finite system of linear inequalities. Such systems are of considerable
importance in the theory of linear programming and related optimization
models.

Theorem. Let {¢y,...,¢,} < X' and {cy,...,c,} = R. A necessary
and sufficient condition that there exists x € X satisfying

¢1(X) = C1,

Pu(X) = Cp,
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is that for every set {a,, ..., d,} of non-negative numbers for which

n

Z o;p; = 0,

i= 1
it follows that

n
Y o < 0.
1=1

Proof. Again the necessity of the condition i1s clear, and we proceed to
establish 1ts sufficiency. Since a more general result will be established later,
we merely outline the main steps and 1nvite the reader to fill in the details.
Let T:X — R"” and ¢ be as in the previous section, and let P be the usual
positive wedge (5A) in R”. If the given system of inequalities 1s inconsistent
then, in R”, the affine subspace T(X) — cis disjoint from P. Let {b,, ..., b}
be a basis for the annihilator (1H) of the subspace T(X), and define a linear
map S:R"” - R*

S(v) = Bu,

where B i1s the k x n matrix whose rows are the vectors b,, ..., b,. Then
S(P) is a closed wedge in R* and, since our inequality system is inconsistent,
—3(c) € S(P). Hence, by 4C, we can strongly separate the point — S(c) from
the wedge S(P) by a hyperplane H in R*. H is a level set of a linear functional
A defined by a vector u in R*. We set

a = S(A)=uB = (ay,..., %),
where S’ is the transpose (1H) of S. The numbers «, . . ., a, satisfy ) o;c; > 0
1

and ) o;¢; = 6, and consequently Fan’s condition is violated. i
1

C. To illustrate the remark made in 6E we consider one more type of
system of linear inequalities. Now, however, we admit more complex systems
than were covered above: infinitely many inequalities are allowed, together
with an accompanying non-linear constraint. The problem will be formulated
In a conjugate space, as recommended in 6E.

We will need a result from general topology concerning compactness 1n
function spaces. Let Y be a discrete topological space and Z a metrizable
space (we are primarily interested in the special case Z = R.) Let G be a
subset of the product space Z* endowed with its product topology. Con-
ditions for the compactness of G in Z¥ are contained in the following result,
a special case of the “Ascoli theorem”.

Lemma. The closed set G is compact in Z" if (and only if)

a) G is equicontinuous; and

b) foreachye Y, {f(y):fe G} has compact closure in Z.

Now let g be a sublinear function (for example, a gauge p ,) defined on our
real linear space X. Let J be an arbitrary index set. Given sets {x;:;jeJ} < X



§7. Some Applications 27

and {c;:je J} = R we consider the problem: find ¢ € X’ such that
(7'1) ¢(xj) = cja je Ja
g = ¢.
We have the following criterion (the “Mazur-Orlicz condition™) for the

consistency of this system.

Theorem. The system (7.1) has a solution ¢ € X' if and only if for every
finite set {ji, ..., ju} < J and every set {a,, ..., a,} of non-negative numbers
we have

(7°2) Z Xk C i, <9 ( Z Othjk).
k=1 k=1

Proof. As usual we need only be concerned with the sufficiency. Let us

first show that for each finite set {j;,...,j,} < J the system
(7.3) o(x;,) = ¢, k=1,...,n
g = ¢
has a solution ¢. Let ¢ = (¢;,...,c;)eR" and let P be usual positive

wedge there. The set B = {¢(x;,), ..., ¢(x; ):dp e X', ¢ < g} i1s a compact
convex set in R” (the compactness of B follows from the compactness of the
set G = {¢peX':¢p < g} in R* which in turn is a consequence of the
Ascoli theorem). Now if the system (7.3) had no solution we would have
B n (P + ¢) = g, and consequently these two sets could be strictly sepa-
rated by a hyperplane. Thus there would be numbers «,, ..., o, and p such
that

n

Z o P(x; ) < P, ¢ € G,

k=1
and

n

Y o(pe +¢;)>p, ifp =0

k=1
The first inequality here implies that g (Z 0 X jk) < P and the second that
1

n
Y oyc; > B and also that each oy, > 0. This is a contradiction of condition
1

(7.2).
At this point we have proved that for each finite subset K < J, the set

Gy = {peG:p(x,) = ¢, ke K}

1s non-empty. These sets Gy are closed subsets of G and, again from what
we have just shown, they have the finite intersection property. Hence, since
G i1s compact, all the sets Gx have a non-empty intersection; any element of
this intersection 1s clearly a solution of (7.1). ]



28 Convexity 1n Linear Spaces

D. Let g be a real-valued function defined on X. The directional
(Gateaux) derivative of g at x, in the direction x 1s

[ —_
(7.4) g(x,; x) = lim g&&_—_l'__z;_)____g_(f?)_
tlo

Replacing t by —t 1n (7.4) we see that

: g(xo + tX) o g(xo) o / :
lim - t = —g'(x,; —x).
tTo

As a preliminary to our next application, and to later work, we study this
notion 1n the case where g 1s convex.

Lemma. Let ge Conv(X). For any x,, x € X, the function

(7 5) IR g_(i:o + DC) o g(xo)
' t

is non-decreasing fort > 0.

Proof. Observe first that if h e Conv(X) satisfies h(0) = 0, then f(¢) =
h(tx)/t 1s non-decreasing for t > 0. Because, 1f 0 < s < ¢,

[ —
— h(o),

h(sx) < % h(tx) +

so that f(s) < f(t). Now apply this argument to the function h(y) =
g(xo + y) o g(xo)' I:l

Theorem. Let g e Conv(X). Given any x, € X, the directional derivative
g'(x,; x) exists for all x € X and is a sublinear function of x.

Proof. Given xe X, we can establish the existence of g'(x,; x) by
showing that the difference quotient (7.5) 1s bounded below for t > 0 and
then applying the lemma. In the convexity inequality

(7.6) g(su + (1 — sv) < sg(u) + (1 — s)g(v)
let us replace u by x, + tx, v by x, — x, and s by 1/(1 + ¢t). This yields

g(x,) = g( : (X, + tx) + t (Xo — x))

1 + ¢ ] + ¢
< : (x, + tx) + : (x X)
> xo 0__ ?
1+tg 1+tg

whence

< _g_(_x_g + _t_');) __g(xo),

t > 0.

g(xo) T g(xo o x)

Now the function g'(x,; -) 1s clearly positively homogeneous (whether or
not g 1s convex). To establish i1ts sublinearity when g € Conv(X), we return
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to inequality (7.6) and replace u by x, + 2tx and v by x, + 2ty for x, y € X.
Setting s = 3, we obtain

g(x, + t(x + y)) < 3(9(x, + 2tx) + g(x, + 2ty)),
and so

g(x, + Ux + y)) — g(x)) _ g(xo + 2tx) — g(x,) L9 + 2ty) — g(%,)

[ 2t 2t

Thus, when ¢t | 0, we see that

g'(x,; X + ) < g(x55 %) + g'(x,; ) [ ]

Corollary. Let ge Conv(X) and x,e€ X. Then —g'(x,; —x) < g'(x,; X),
for all x e X. Consequently, if ¢ = g'(x,; ") is linear (that is, if ¢ € X') then

(7.7) B(x) = lim I + &) — g(%,)

xe X;
t—0 t

that is, the two-sided limit as t — 0 exists for all x € X. Conversely, if this
two-sided limit exists for all x € X, then the functional ¢ defined by (7.7) is

linear.
When the two sided limit 1n (7.7) exists for all x € X, the resulting ¢ € X’

1s called the gradient of g at x,, and 1s written ¢ = Vg(x,). By way of illus-
tration it 1s interesting to mention that when g € Conv(4), where A4 1s an
open convex set in R”, then g has a gradient at almost every point in 4 and
the map x - Vg(x) 1s continuous on its domain in 4. The proofs of these
facts are not trivial and will be omitted, as the results play no role in the
sequel.

E. Itwasobservedin 6D that when f € Conv(R) fails to be differentiable
at x, € Rthen df(x,) = | f'-(x,), f'+(x,)]. Guided by this special situation, we
consider its analogue in a more general setting, and draw some interesting
conclusions relating the notions of gradient, sub-gradient, and directional

derivative.
First of all, the results of 7D allows us to assert that the subgradients of

g € Conv(X) at a point x, € X are exactly the linear minorants of the direc-
tional derivative at x,. That is,

ag(x,) = {ye X < g'(x,; )}

Since ¥ 1s linear we can re-write this formula as
(7.8)  Jg(x,) = {Ye X':—g'(x,; —x) < Y(x) < g'(x,; x), xe X}.

Theorem. Let ge Conv(X) and x, € X.

a) For any x € X, the two-sided limit in (7.7) exists and has the value o if
and only if the function Y > Y(x) is constantly equal to o for all Yy € 0g(x,).

b) The gradient Vg(x,) exists in X' if and only if 0g(x,) consists of a single
element, namely Vg(x,).
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Proof. a) is clear from (7.8) and the fact that the limit in (7.7) exists 1f
and only if g'(x,; —x) = —g'(x,; x). To establish b), assume first that Vg(x,)
exists in X'. Then given any ¥ € 0g(x,) we see from (7.8) that

U < g'(%; ) = Vglx,),

so that ¥ = Vg(x,) and hence dg(x,) = {Vg(x,)}. Conversely, if the gradient
Vg(x,) fails to exist, it i1s because —g'(x,; —X) < g'(x,; X) for some X € X.
Let M = span {X} and choose any « in the interval [ —g'(x,; X), g'(x,; —X)].
We define a functional € M’ by setting Y(tX) = at, for t € R. Then by our
choice of a, Y(x) < ¢g'(x,; x) for all x e M. Now the Hahn-Banach theorem
(6A) provides us with an extension ¥ of ¥ for which ¢ < ¢'(x,; -). We obtain
distinct such y’s by varying « 1n the indicated interval and by (7.8) all the

’s belong to dg(x,). [ ]

F. Let A be a convex absorbing set in X. It i1s of interest to apply the
preceding results about general convex functions to the study of the gauge
p4 of A. This will yield the insight that the linear functionals defining sup-
porting hyperplanes to A at some bounding point in A are exactly the sub-
gradients of p, at that point. Given the geometric interpretation (6D) of
subgradients and the fact the p, 1s sublinear, this relationship should not

be completely unexpected.
We say that the map 7,:X x X — R defined by

Ta(X, V) = pa(x; y):

1s the tangent function of A. From 7D it is clear that the tangent function
obeys the following rules:

a) t,4(x,-)1s sublinear on X;

b) T4(x, ) < pA(V);

C) t4(x, tx) = tp,(x),t e R;and
d) T40x, ) = T4(x,°), 00 > 0.

Theorem. Let A be a convex absorbing set in X with gauge p,. Given
x, € X with p,x,) > 0, the following assertions are equivalent for ¢ € X':

a) ¢ = apA(xo);
b) ¢ ‘g TA(xoa )9
C) P(x,) = pa(x,) and sup{p(x):xe A} = 1.

Proof. The equivalence of a) and b) 1s a consequence of equation (7.8).
To see the equivalence of a) and c), we recall that

¢ € apA(xo) < ¢ < P4 and ¢(xo) = pA(xo)'

(These implications depend only on the sublinearity of p,.) Since also it 1s
clear that

¢ < pg<=>supid(x):xe A} = 1,
the proof is complete. | |
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By virtue of the support theorem (6C) we know that every bounding
point x, of 4 belonging to A4 1s a (proper) support point of A. The theorem
above tells us that 7,(x,, ) # 0 in this case, and furthermore, that there 1s
a unique hyperplane of support at x, exactly when 7 ,(x,, -) 1s linear. (If this
functional 1s linear, then the unique supporting hyperplane to A at x, 1s
[74(x0 *); 1] = [Vpu(x,); 1].) When these conditions for uniqueness are
satisfied we say that x, 1s a smooth point of A, or that A 1s smooth at x,. This
terminology 1s chosen to suggest that (intuitively) the surface of A does not
come together “sharply” at x,. We have shown that smoothness of A at its
bounding point x, 1s equivalent to the existence of Vp ,(x,) in X'.

To illustrate these i1deas, let X = R”, let p = 1, and let A be the unit
p-ball (3C) in R"”. We know that p, is then the p-norm on R":

n 1/p
pA(x) — (Zl lézlp) > X = (61, e v ooy }én) e R".

i:.

By direct differentiation we compute that, for x # 6 and p > 1,

Z ’7i|§i|p-1 sgn ¢;
(7.9) Tax, y) =

: y=M...,n,) €R"

pa(x)P~!
Here the sigmum function sgn £ 1s defined for real or complex &, by
. 0O if ¢=0
Sgn ¢ = I—% if & £ 0.

Suppose that x 1s a bounding point of A4, so that p ,(x) = 1. Then equation
(7.9) shows that the tangent function 1s linear in y. Consequently, the unit
p-ball 1s smooth at all 1ts bounding points and, for such points x,

(7.10) Vpa(x) = (|E4|P 7 sgn &y, ..., |EP7 ! sgn &)).

Now consider the situation when p = 1. A simple sketch (when n = 2
or 3) suggests, and (7.9) confirms, that 7 ,(x, ) 1s still linear provided no
E; = 0, that 1s, provided that x lies in no coordinate hyperplane in R". Thus
the unit 1-ball 1s smooth at such points and formula (7.10) remains valid.
On the other hand, let us suppose that some components of x are zero; say
&, =0foriel, S {1,2,...,n} Then we compute that

(7.11) a5 y) =Y msgn& + Y |nif

i¢l, iel,

From (7.11) we see that 7 4(x, ‘) 1s not linear and, in fact, that —74(x, —y) <
74(X, y) whenever n; # 0 for some i e I,. It follows that the unit 1-ball 1s not
smooth at any such x. In fact, we see that any hyperplane of the form [ ¢; 1]
supports the unit 1-ball at x if ¢ 1s determined by ({,, ..., {,) and

Ci = 5gI ’g’ia l¢ Io
|C;| < 1, = IO.
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8. Extremal Sets

In this section we introduce the last of our “primitive” linear space
concepts: extremal subsets and points of convex sets. The fundamental 1dea
here 1s that a given convex set can be “reconstructed” from knowledge of
certain bounding subsets by use of the operation of taking convex com-
binations (and perhaps also closures, as we shall see later). There 1s a faint
analogy with the reconstruction of a linear space from the elements of a
basis and the operation of taking linear combinations, although the more
complicated behavior of general convex sets permits further classifications
of extremal sets and points.

A. Let E be a subset of a convex set A in the real linear space X. E 1s
a semi-extremal subset of A 1if A\E 1s convex, and E 1s an extremal subset of
Aif x,yeAandtx + (1 — t)ye Eforsomet (0 <t < 1) entails x, y € E.
We often write “E 1s A-semi-extremal” or “E 1s 4A-extremal”. It 1s clear that
each extremal subset of A is semi-extremal; the simplest examples in R?
show that the converse is generally false. However, when E = {x,} is a
singleton subset of A, the two notions do coincide; when this happens, x,
1s said to be an extreme point of A and we write x, € ext(A). Thus the extreme
points of 4 are just those points which can be removed from A4 so as to
leave a convex set. Any such point is necessarily a bounding point of A.

The prototypical example 1s an n-simplex (2C): 1t 1s (by definition) the
convex hull of its vertices which are the extreme points in this case. More
generally, the convex hull of any subset of the vertices 1s an extremal subset of
the n-simplex. Other possibilities can occur: on the one hand, every bound-
ing point of the unit p-ball (p > 1) in R" is an extreme point, and there are no
other (proper) extremal subsets; on the other hand, an affine subspace of
positive dimension contains no (proper) extremal subsets at all. Examples
of A-semi-extremal subsets are obtained as the intersection of 4 with any
half-space (4B) in X, or more generally, as the intersection of any 4-extremal
set with a half-space. Any subset of ext(4) i1s A-semi-extremal.

The following lemma collects a variety of elementary but useful properties
of (semi-) extremal sets; its proof is left as an exercise. It should be noted
that the assertions below involving A-extremal sets do not require the
convexity of A.

Lemma. Let A be a convex subset of X.

a) The union of a family of (semi-) extremal subsets of A is A-(semi-)
extremal;

b) The intersection of any (nested) family of A-(semi-) extremal sets is
A-(semi-) extremal.

c) Let E <« B < A with B an extremal subset of A. If E is B-(semi-)

extremal, then E is also A-(semi-) extremal.
d) If E is A-extremal then ext(E) = ext(4A) n E.
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B. Let us now consider how the extremal subsets or extreme points of
a given convex set A can be used to describe the set. Here we shall only
consider the case where A4 1s of finite dimension (2C). Thus we may as well
assume that A < R" for some n; we shall also assume that A4 1s closed.

Lemma. Each closed convex subset A of R" contains an A-extremal
affine subspace, and any two such affine subspaces are parallel.

Proof. To prove the existence of such extremal flats in 4 we proceed
by induction on the dimension of A. We may assume that existence has been
established for sets of dimension less than dim(A4), which we take to equal n.
We may also assume that 4 has a bounding point p, for otherwise A = R”
and A 1s an extremal flat in 1tself. Now if H 1s a hyperplane supporting A at
p (6C), the set A N H contains an extremal flat K by the induction hypothesis.
However, since A N H 1s necessarily an extremal subset of A, it follows from
the preceding lemma that K 1s also A-extremal.

Now suppose that K, = p, + L, and K, = p, + L, are two A-extremal
flats parallel to the subspaces L, and L, (1C). We want to see that L, = L,.
If L, 1s not contained in L, then

8.1) K,SL, + K, < A.

(The second inclusion of (8.1) can be shown as follows: let [, € L; and
p, + Le K,;thenfort > 1, p, + tl; € A and hence

(8.2) (1 — -tl—) (p, + 1) + %—(pl + tl,) € A.
As t - + oo, the left side of (8.2) converges to I, + p, + |, and this must
belong to A since A 1s closed.) Now (8.1) contradicts the assumption that
K, 1s A-extremal, so that we must have L, < L,. Analogously, L, < L,,
whence L, = L,. ]

It follows that the extremal affine subspaces of A are all parallel to a
particular subspace L, called the lineality space of A. The dimension of L,
1s the lineality of A and an affine subspace of A 1s 4-extremal exactly when
it is of maximal dimension (with respect to all the affine subspaces of 4), this
dimension being just the lineality of A. It 1s easy to see that

(8.3) L,={xeRux + 4= A4

A is said to be line-free exactly when L, = {#}. We now have sufficient
information to state the basic existence theorem for extreme points.

Theorem. The closed convex set A in R" has an extreme point if and
only if A is line-free.

Proof. If A 1s not line-free then there 1s a non-zero x satisfying (8.3) so
that no point of A can be extreme. On the other hand, if 4 1s line-free, the
only flats contained in 4 are of zero dimension, hence points. The lemma
now guarantees the existence of an extreme point. ]

::A%

x
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This result allows us to obtain a preliminary decomposition of the closed
convex set A. Let L, be the orthogonal complement of the subspace L,
that 1s, the set of all vectors in R” that are orthogonal to L,. Then we can
write

(8.4) A=L,+ (An LY;

the “section” A N L, of A 1s clearly line-free and hence has an extreme point.
It 1s not hard to show that this is the only way to express A4 as the orthogonal
sum of a subspace and a closed line-free convex set.

C. To obtain a more complete decomposition of the closed convex set
A in R”, we introduce the recession cone'*) (asymptotic cone) Cg of a convex
set B 1n a real linear space X :

Cs = {xe X:x + B < B}.

Note the analogy with formula (8.3); clearly Ly <« Cgz, when B < R";
indeed, Ly = Cz3 n (—Cp) (5A). We shall want to consider the set Cpg
especially in the case where B is line-free (L = {6}); in terms of our original

convex set A under investigation, we shall be interested in Cg,, where
B, = An L}

Lemma. Let B be a convex subset of the real linear space X.

a) The recession cone Cg is a wedge in X ;

b) Cg = {xe X:b + txe B forallt > 0 and all b € B};

c) if X = R" and B is closed then Cyg is closed and Cyz = {x e R":x =
lim, t,x,, where x, € Band t, | 0}.

Proof. a)LetxeCgsothatx + B< B.Then2x + B=x + (x + B)
x + B < B, and more generally, nx + B < B for every positive integer n.
Since B 1s convex, this means that tx + B < Bforallt > 0, that s, tx € Cy,
t =2 0. Next,if x,ye Czand 0 < t < 1, we have

(1 —tx+ty)y + B=({1 —t)(x + B) + t(y + B)
c(l — t)B + tB = B,
using the convexity of B. This proves that Cz 1s a wedge.
b) The inclusion from right to left here is trivial, and the reverse inclusion

follows from the proof of a).
¢) From part b) we see that given any b € B

8.5) Cy = N{t(B — b):t > 0

(whether or not X = R"). Since B 1s closed, (8.5) exhibits Cz as an inter-
section of closed sets, so that Cg 1s closed. Next, let x € Cg; for any fixed

(1) The term “recession cone” is used in conformity with established terminology. To be

consistent we should say “recession wedge”, since this set 1s generally not a cone as defined
In SA.
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beB, b + nx = x,e B and hence x = lim,, t,x,, where x,e€ B and ¢, | 0.
We claim that b, + tx € B for any fixed b, € B and any t > 0. If this were
not the case then for some t, > 0, b, + t,x ¢ B and we could apply the
strong separation theorem to find ¢ € R"™ and « € R such that

(8.6) sup{¢p(b):be B} < a < ¢(b, + t,x).
However, ¢(x) = lim, ¢(t,x,) and ¢(t,x,) < t,a, so that ¢(x) < O; this entails
o(b, + t,x) < ¢(b,) < a, in contradiction to (8.6). []

The formula in part b) provides the motivation for the term “recession
cone”. Note that the wedge Cz 1s a cone exactly when B i1s line-free. A pro-
cedure for computing both L, and C, for a given closed convex set A < R”
1s 1ndicated 1n exercise 1.35.

We come now to the main decomposition formula for a closed convex
set A < R", the “Klee-Minkowski-Hirsch-Hoffman-Goldman-Tucker theo-
rem’. Associated with A we have its lineality space L , and the corresponding
line-free section B, = A n L.

Theorem. Let A be a closed convex subset of R". Then

(8.7) A =L, + Cg, + co(ext(B,)).
Proof. 1t will suffice (in view of (8.4)) to show that
(8.8) B < Cg + co(ext(B))

for any closed line-free convex set B <« R". We proceed (as in (8B)) via
induction on the dimension of B and assume that (8.8) 1s valid for subsets B
of dimension <n. Let p be an arbitrary point in B and let L be any line
containing p. The set B n L 1s then either a closed half-line or a compact
line segment, since B 1s line-free. In the former case we can write

BnL = {x+ Ay:A = 0}.

The end-point x of this half-line i1s a bounding point of B and hence 1s con-
tained in a hyperplane H of support to B. Applying the induction hypothesis
to B n H, we have

xe Cy n + co(ext(Bc H))

c Cg + co(ext(B)),
using (8A). Since y must lie in Cz and since p = x + Ay for some 4 > 0, it
follows that -
p=Xx + Ay e (co(ext(B)) + Cg) + Cg
cco(ext(B)) + Cs.
In the other case, B n L 1s a compact line segment and by analogous rea-

soning both 1ts end-points belong to Cz + co(ext(B)); since this latter set 1s
convex, 1t contains the entire line segment and, in particular, the point p.  []

D. Some important consequences of the preceding theorem will now
be given. The first of these, “Minkowsk1’s theorem”, follows from 8C and
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the observation that a convex set A < R” is bounded if and only if C,
(hence L,) = {0}.

Corollary. A compact convex set in R" is the convex hull of its extreme
points.

Consider next the case where our closed convex set A < R”is unbounded
but line-free: L, = {#}. An extreme ray of A is an A-extremal half-line; we
write the set of all extreme rays of A4 as rext(A4). The idea now is that 4 can
be recovered (via convex combinations) from its extreme points and its
extreme rays.

Lemma. Let C be a closed (convex) cone in R". Then C = co(rext(C)).

Proof. From S5C we know that our cone C has a base K given by
K =|¢;1] n C, where ¢ is a linear functional that is strictly positive on
C\{6}. The base K is clearly closed and we claim also that it is bounded.
For otherwise, there would exist a sequence {x,} = K with ||x,||, > + o0
(here ||x,||, is the 2-norm (3C) of x,). Let z be a limit point of the sequence
X,/ ||Xal|25 since ||z||, = 1, z # 6, and since C is closed, z € C, whence ¢(z) >
0. But also

b(2) = lim (x,/|x[l2) = lim (1/]}x,[2) = O,

a contradiction; thus K must be bounded hence compact. Now an easy
argument shows that if p is an extreme point of K then the ray {tp:t > 0}
1s an extremal ray of C. The conclusion of the lemma is thus seen to be a
consequence of Minkowski’s theorem. []

The following result, “Klee’s theorem”, provides a substantial general-

1zation of Minkowsk1’s theorem; its proof follows directly from the lemma
and 8C.

Theorem. A closed line-free convex set A in R" is the convex hull of its
extreme rays and extreme points:

A = co(ext(A) u rext(A)).

E. Animportant application of these structure theorems 1s to problems
of optimization. An optimization (or variational) problem occurs when we
are given a pair (A4, /) (a variational pair) consisting of a set A and a real-
valued function f on A; f i1s called the objective (or cost) function. The
problem is to determine the number inf{ f(x):x € 4}, called the value of the
optimization problem, and a point in 4 (if any) where f attains its infimum;
any such point is a solution of the problem. It 1s traditional to also refer to
such an optimization problem as an abstract mathematical program. It should
be noted that by the simple expedient of changing the sign of the objective
function, problems originally requiring the maximization of some function
can be converted into the present format.

Let us consider a special case of the preceding: a finite dimensional
concave program (A, f), where A 1s a convex set in R" for some n and f is
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a concave function on A, that is, —f € Conv(A). In practice, such a problem
might arise as a linear program, that 1s, f(x) = ¢(x) + ¢, where ¢ is a linear
functional on R" and c i1s a constant, or, after a change of sign, as the problem
of maximizing the utility of some risk-seeking investor.

Theorem. Let (A, f) be a finite dimensional concave program as just
defined; assume that A is line-free and closed, and that f is lower semicontinuous
on A. If a solution exists in A, then there is a solution in ext(A4). Conversely,

any solution to the program (ext(A), f) is also a solution to the original program
(A, 1), provided that f is bounded below on A.

Proof. The subset F of A where f attains its infimum over A4 is non-
empty (by hypothesis) and 1s 1n addition closed and convex. Therefore, by
8B, F has an extreme point. Since F 1s also easily seen to be 4-extremal it
follows from 8A that this extreme point belongs to ext(A4). For the converse,
suppose that inf{ f(x):x € ext(4)} is attained at p e ext(A). If x = Zt,e; €
co(ext(A)), then

f(x) = f(2te;) = 2t f(e;)) = 2t f(p) = f(p)

Now from 8C, A = C, + co(ext(A4)), since A is line-free (so that L, = {6}).
Choose any ce C,and any t > 1. Then for x € co(ext(A4)) we have tc + xe A4
and

t — 1 1
C + X = , x+-;(tc+x),

so that

t — 1 1

fc + x) = , f(x) + -t—f(tc + X)
t — 1 1.
> , f(p) -l--t—lnf{f(y):yeA}.

Letting t - oo, we conclude that f(c + x) = f(p). ]

The effect of this theorem 1s of course to reduce the search for solutions
of the finite dimensional concave program (A, f) to the extreme points of A.
In particular, when f 1s bounded below on A, and ext(A) 1s a finite set, then
we are assured of the existence of a solution 1n ext(A). For example, if A4 1s
the strip {(x,, x,) € R*:r < x;, a < x, < b} and the concave function f is
bounded below on A, then at least one of the points (r, a), (r, b) 1s a solution
of the concave program (A4, f).

F. The preceding results have dealt with finite dimensional convex sets
and their extremal properties. To conclude this section we now want to give
a famous example concerning the extreme points of certain infinite dimen-
sional convex sets.

Let A be an algebra of real or complex-valued functions defined on some
set 2; we assume that A contains the function e identically equal to one on
Q. A 1s of course an ordered linear space with the natural pointwise vector
ordering (5A); we let P be the positive wedge in A and P™ the dual wedge
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in A. In A" we consider the convex sets Ko = {¢p€ P":¢p(e) < 1} and
K, = {¢p € Ky:¢p(e) = 1}. The question now is: what are the extreme points
of K,and K, ?

Let Ax = {f € A:f is real-valued} and suppose that Ap consists only of
bounded functions on Q2. Then we can derive a necessary algebraic condition
for an element of K, or K, to be extreme. Note that since K, 1s K,-extremal,
it suffices to work only with K,; indeed, ext(K,) = ext(K;) u {6}.

Theorem. An extreme point of K, must be an algebra homomorphism of
A.

Proof. Let ¢ eext(K,); if ¢ = 0 we are done. Otherwise we must
show that

(8.9) o(f9) = ¢(f)e(9)

for all f, ge A. Let us first prove this when g = e. Let Yy = (1 — ¢(e))o.
Since ¢ € K, y € P* whence ¢ + Y € P™; similarly,  — ¥ € P™. Further,

e, ¢ + ¥ = dle) + ¢le)(1 — ¢ple))
< ¢le) + (1 — ¢le)) = 1,

and {e, d — Yy)> = ¢(e)* < 1. Therefore, ¢ + ¥ € K, and so ¥y = 0, since
¢ € ext(K,). Next we prove (8.9) assuming that g 1s real-valued. For this we
may also assume that 0 < g < e; because, since g 1s bounded (by hypothesis),
there are s, t > Osuchthat 0 < sg + te < e, and, i1f it 1s true that { f(sg + te),

¢> = ¢(f)P(sg + te), then s¢(fg) + tPp(f) = sp(t)p(g) + tp(f)p(e). Now,

with0 < g < e lety(f) = ¢(fg) — o(f)P(g);then {e, ¢ + ¥) = ¢le) < L.
Further, if f € P,

Sod + ¥ = d(f) + d(f9) — (f)g)
= ¢(f)1 — ¢(g)) + (fg) > O,

and similarly,

Lo — ) = o(f) — o(fg) + o(f)(g)
= {fle — 9), ¢) + ¢(f)Plg) = 0.

Again we have shown that ¢ + Y € K, and hence ¢ = 6. Finally, for
arbitrary f, g € A, define Y(g) = ¢(fg) — ¢(f)p(g). It g € P then by what
we have just shown, Y¥(g) = 0; thus once more ¢ + Yy € K, and y = 0,
completing the proof of (8.9). [ ]

The algebra A was not assumed to be self-adjoint (that is, to contain f
whenever it contains f). However, if ext(K,) # &, then the self-adjointness
of A follows; thus the theorem really concerns algebras of bounded functions
(exercise 1.39).

Let us also remark that the same proof applies to a more general situation.
Namely, let 4 # be a second algebra of functions defined on some set 2 3
with positive wedge P # and containing the identically-one function e .
Let Ky(A, A3) consist of all positive linear maps T:4 — A # such that
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T(e) < e # (T 1s positive if T(P) < P3). Similarly we let K (A, A3) =
{T e Ko(A, A#):T(e) = ed}. Then the preceding theorem is true for
K,(A, A#)and K,(A4, A F).

Before treating the converse of the theorem, let us note a useful fact: if
f € Ag and ¢ € K, then

(8.10) o(f*) < o(f)>

The proof of this follows upon consideration of the discriminant of the non-
negative quadratic form t — {(tf + e)?, ¢).

Now assume that our algebra A4 1s self-adjoint and that ¢ 1s a homo-
morphism of A belonging to K. Then we can prove that ¢ € ext(K,). To do
so, suppose that ¢ = 3(d,; + ¢,) where @, @, € K,. Now, if f e A,

301 + 302(f)° < 3(d1(f?) + ¢2(f?))
= ¢(f?) = ¢(f)? = 20:(f)* + 30:()d2f) + 3d2()°

where the first inequality 1s a consequence of (8.10). This argument shows
that (¢,(f) — @d,(f))* < 0, whence ¢, and ¢, agree on Ag. Since A4 is
self-adjoint this means that ¢, = ¢, and so ¢ € ext(K,) as claimed. Again,
this proof generalizes to the case Ky(A, A ).

To sum up, in the case where A 1s a self-adjoint algebra of bounded
functions, we have obtained both an algebraic characterization of the
extreme points of the sets K, and K; and a geometrical interpretation of
certain algebra homomorphisms of 4 (for many common algebras A, every
homomorphism of A belongs to K ; this is true in particular when A = C(Q),
the space of all continuous functions on the compact Hausdorff space Q).
Now at present we don’t know whether extreme points or (non-zero) homo-
morphisms exist, but we have at least arrived at the point where knowledge
of one has implications for the other. Existence proofs for either extreme
points or homomorphisms involve the Axiom of Choice, usually in the guise
of Zorn’s lemma. We might, for example, try to utilize the latter to produce
a proper maximal ideal M in A; we would then expect M to be the kernel of
a homomorphism. However, in conformity with our geometric approach,
we will adopt the opposite course and try to develop methods for proving
the existence of extreme points for certain infinite dimensional convex sets.
The eventual results bear some analogy to the finite dimensional case treated
earlier in this section, but the methods are quite different. Interestingly
enough, these methods require topological considerations (interesting
because the notion of extreme point i1s purely algebraic). We turn to such
considerations next.

Exercises

1.1. a) Show that the sequence of monomials {t":n =0,1,2,...} is a

inearly independent subset of the linear space of all real-valued
functions defined on the interval [0, 1].
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1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

Convexity in Linear Spaces

b) Show that the family of complex exponentials {¢'*: — o0 < A < o0}

1s a linearly independent subset of the linear space of all continuous
bounded complex-valued functions defined on R.

¢) What is the dimension of the space in b)?

Let n be an arbitrary cardinal number. Construct a (real or complex)

linear space of dimension n.

a) Let X be the linear subspace of exercise 1.1a),let0<t, <t, < - <
t. < 1, and let {c,, ¢, ..., c,} = R. Show that the set {xe X:
x(t;) = ¢;,i = 1,...,m} 1s an affine subspace of X.

b) Let X be an arbitrary linear space. If ¢4, ..., ¢,, € X', show that

m
[] ker ¢, is a subspace of codimension <m.
1

a) Let X be an infinite dimensional linear space over the field F. Prove
that dim(X’) = 29™%)_ (First show that dim(X’) = 2™ by considering
a linear independent sequence {e,} = X and the set {¢,:1e F} <
X' defined by ¢,(e,) = A". Then verify

20m X — card(X’) = 2% dim(X’) = max(2™, dim(X’)) = dim(X").)

b) Prove that two linear spaces over I are isomorphic if (and only if)
their algebraic conjugate spaces are iIsomorphic. (In the case where
the spaces are of infinite dimension use part a) and the generalized
continuum hypothesis.)

Let T:X — Y be a linear map between linear spaces X and Y.

a) Show that T’ = (T'): X" — Y"” is an extension of T.

b) If X = Y, show that T is always the transpose of some linear map
exactly when X 1s finite dimensional.

Let X and Y be linear spaces. A map T:X — Y 1s affine if the map

x = T(x) — T(0) 1s linear. Show that if T 1s affine the image T(A)

of a convex set A — X is convex, and the inverse image T~ *(B) of a

convex set B < Y 1s convex.

Let A be an absolutely convex set in a linear space. Show that span(A4) =

o0

|} n4 and that cor(A) is again absolutely convex.
1

Let A < R", for some n.

a) If A 1s convex show that the core of A is the (topological) interior
of A, and that lin(A4) is the closure of A.

b) Show by example in R? that when A is not convex, there can be
points in cor(A4) which are not interior points of A.

c) If A 1s open show that co(A) 1s also open.

d) Find an example of a closed 4 such that co(A4) 1s open (yet not

all of R™).
¢) Show that each x € co(A) lies in some m-simplex with vertices 1n

A and m < n. (“Caratheodory’s theorem”. Express x as ) a;X;
0
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1.9.

1.10.

1.11.
1.12.

1.13.

1.14.

1.135.

1.16.

1.17.

m
where x; € A, o; = 0, and ) «; = 1 and assume that this represen-
o

tation of x involves the minimum possible number of points in A.
It 1s to be shown that m < n. Proceed by contradiction, assuming
that m = n + 1, the points x,, x4, ..., X,, are then not 1n general
position.)
f) Use the result of €) to show that co(A4) 1s compact whenever A
1S compact.
Taking into account exercise 1.8a) show that a linear space X has finite
dimension 1f and only 1if for all convex A < X we have lin(lin(4)) =
lin(A). (If X 1s infinite dimensional and x € X, define s(x) to be the sum
of the coefficients involved in the expression of x relative to a fixed
basis for X, and define n(x) to be the number of these coefficients that
are not zero. Let 4 be the set of x with non-negative coefficients such
that n(x) > 0and n(x)s(x) > 1. Then A4 1s convex but 0 € lin(lin (A4) )\A4.)
A real-valued function f defined on a linear space X 1is quasi-convex
if its sublevel sets {x € X :f(x) < A} are convex for each real 4. Show
that f 1s quasi-convex if and only if f(tx + (1 — t)y) < max{f(x),
f(y)} for x, ye X and 0 < t < 1. Thus every convex function is quasi-
convex but the converse fails even in R*.
Prove the lemma 1n 3C.
Let A be a convex absorbing set in a linear space X. The gauge p,
determines A analytically as follows:
a) cor(A) = {xe A:p (x) < 1};
b) the algebraic boundary of 4 is {x € X:p (x) = 1};
c) if {x:p x) < 1} @ B < {x:p4(x) < 1}, then p, = pp.
It follows that an absorbing non-convex set may still have a sublinear
gauge.
Let A,,..., A, be convex absorbing sets in the linear space X. Express

the gauge of [] A4; in terms of the gauges p,,,..., pa.-
1

Establish the following variant of the basic separation theorem: let A
and B be convex subsets of a linear space such that both 1cr(A4) and
icr(B) are non-empty; then 4 and B can be separated by a hyperplane
if and only 1if icr(4A) N 1cr(B) = & (we exclude the trivial case that
A v B already lies 1n a hyperplane).

Show by example in R? that the lemma in 4C is not valid for strict
separation.

Let A = R" The polar of A is the convex set A° = {x e R":(a, x) < 1,
a € A}, where (-, -) is the usual inner product on R”. If now A4 is convex
and absorbing with gauge p ,, show that

p4(x) = supy(x, y):ye A%},  xeR"

Sometimes it 1s of interest to know when two disjoint convex sets can
be (strongly) separated by a given hyperplane. The simplest case 1s
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the following: we are given points a, b, p,, p,, . . ., p, In R" with the p;
in general position. Let H be the hyperplane aff({p,, . . ., p,})- Assuming
that neither a nor b lies in H, show that H strongly separates a and b

if and only if the determinants det(d@, 7, . . ., §,) and det(b, Py, . . ., D,)
have opposite signs, where for x = (&,,..., &,), X = the column vector
(&4, ..., &, DI (Consider the condition for the line segment (a, b) to

intersect H.)

1.18. Show that a wedge P in a real linear space 1s reproducing if and only
if the dual wedge P™ is a cone. Show that this happens in particular
when P has non-empty core.

1.19. a) Let X be the space C(T) (resp. C,(T)) of continuous real-valued
functions (resp. that vanish at infinity) on the compact (resp. locally
compact) Hausdorff space T. Determine in each case the core of
the positive wedge in X (the natural pointwise vector ordering 1s
assumed.)

b) Let X be the space of real n x n symmetric matrices and let P
be the wedge of positive semi-definite matrices in X. Show that P
1s reproducing and determine its core.

1.20. Let X be the linear space of (the usual equivalence classes of) real-
valued measurable functions on the interval [0, 1], and let P be the
wedge of ae non-negative functions in X. Show that P* = {0}. It
follows that every non-trivial linear functional in X’ maps P onto
all of R; consequently P cannot be separated from any set in X, and
in particular, P contains no support points. (Suppose ¢ € P™ but
d # 0. If yr 1s the characteristic function of the measurable set E <
[0, 1], then <{y0. 1y ¢> = « > 0 for otherwise ¢ would annull all
bounded functions in X and hence ¢ would be the zero functional.
Then one of (y;0, 1), ¢ and (1. 1), @) 1s at least «/2, say the former,
so that <4y, 1) ¢) = 20. Repeating this argument, an increasing
sequence of functions in X can be constructed such that ¢ cannot be
defined on the (measurable) limit of this sequence.)

1.21. Let A be a convex absorbing subset of the real linear space X, M a
subspace of X, and ¢ € M'. If sup {¢(x):xe A n M} < 1, then there
is an extension ¢ of ¢ in X' such that sup{@(x):x e A} < 1. (Note
that the inequality on ¢ is equivalent to ¢ < p,4|M.) Use this result
in the case where A4 i1s absolutely convex to prove the corollary in 6A.

1.22. Where is the hypothesis that cor(P) n (P n M) # J used in the proof
of the theorem 1n 6B?

1.23. Let X = £P(d)where1 < p < oo and d1s a cardinal number =¥, (6C).
Show that the positive wedge P in X has no core, and give the details
for the assertions made in the text regarding the support points of P.

1.24. Let M be a subspace of the linear space X, ¢ € M’, and let f, g be two
convex functions on X. Then there is an extension ¢ of ¢ in X’ such
that —g < ¢ < f if and only if for all pairs x, ye X withx — ye M
we have ¢p(x — y) < f(x) + g(p). In particular, the case M = {0} gives
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1.25.

1.26.

1.27.

1.28.

a condition for the existence of a linear functional in X' interposed
pointwise between —g and f. (Letg (x)=g(—x)andseth=f [1g~
(3B); then the condition ¢(x — y) < f(x) + g(y) for x — ye M 1s
equivalent to ¢ < h|M.)

a) Let f be the p-norm (3B) on R" (1 < p < o0). Find all subgradients
of f at the origin. Same problem if f(x) = (QOx, x), where Q 1s a
symmetric positive semi-definite n X n matrix.

b) Let f be a continuous convex function defined on R" (continuity
1s actually automatic as we shall learn later). Identifying R” with
R™ in the usual way, show that df(x,) is a non-empty compact
convex set in R”, for all x, e R".

c) Let f be the convex function on the interval | —1, 1| defined by
f(x) = —+/1 — x2. Show that f is not subdifferentiable at the points
+1

Let X be a real linear space.
a) The equality system

¢1(x) = ¢,

PmlX) = Cp

for given ¢; € X' and c; € R 1s consistent if and only if for any set
{0y, ..., 0} = R, Y a;¢; = 0 whenever ) a;¢; = 0. Write the
1 1

matrix version of this assertion when X = R".
b) In 7C, prove that there 1s ¢ € X' satistying

¢(xi) — cja je Ja
g = ¢

1f and only if the Mazur-Orlicz condition (7.2) holds with no sign
restriction on oy, . . ., o,
Suppose that the inequality system in 7B 1s inconsistent. Show that
there 1s some ¢ > 0 such that for every choice of 0,, ..., 0, with each
0; = —e¢ the system

¢1(X) -’>’ Cq + 519

¢n(x) -">’ cn + 5"

1S Inconsistent.

Let X be a real ordered linear space whose positive wedge has non-
empty core. Given an index set J and sets {x;:;je J} < X, {c;:;je J} <
R, suppose that for some j, € J, x; € cor(P) and ¢; > 0. The “moment
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problem” is to find ¢ € P™ such that ¢(x;) = c;. Show that this problem
is consistent if and only if for every finite set {j,, .. ., j,} = J such that

Z oc;, = 0 for {ay,...,a,} =R, the vector Z o X;, is not in cor(P).

Interpret this result in the case where X = C( [0 1]) and for j = 0, 1,

2,...,Xxi(t) = t.

1.29. In the course of proving the theorem in 7C we needed to know that
sup {¥(x):y € G} = g(x), for various x € X. Prove this and show that
the “sup” 1s actually a “max”.

1.30. Let f € Conv(R"). If the n (two-sided) partial derivatives of f exist
at x, € R" then f has a gradient at x,.

1.31. Given a convex absorbing set A in a real linear space X, x, € A with
p4x,) =1, xe X, and o € R such that —7,(x,, —x) < a < 74(x,, X),
show that there exists ¢ € X' with ¢(x) = « such that the hyperplane
| ¢; 1] supports A at x,.

1.32. Let A be the “unit max-ball” in R” that 1s, 4 = {(&,,..., &) e R":
& < 1,i=1,...,n}. Compute p,, determine the smooth points of
A, and find a formula for Vp, at such points.

1.33. Let A be a convex subset of the linear space X.

a) If pe X, then p € ext(A) if and only 1f the condition p + x e A4 for
x € X implies x = 0.

b) If F 1s a finite subset of 4 and x € ext(4) N co(F), then x e F.

¢) The intersection of an A-extremal set with a half-space 1n X 1s
A-semi-extremal.

d) If A1sa wedge in X then 1t 1s actually a cone if and only 1f 6 € ext(A).

1.34. Let A be a compact convex set in R" and let E < A.

a) Then E 1s semi-extremal if and only if for all compact sets B < A\E
we have co(B) < A\E.

b) If E1s a closed semi-extremal subset of 4, then E contains an extreme
point of A. (This assertion 1s certainly true if E 1s convex; in general
consider a maximal convex subset of E.)

1.35. Let A be a closed convex subset of R"”. To compute the lineality space
L, and the recession cone C, we express 4 as {xe R":¢;(x) = ¢,
j € J} for suitable linear functionals ¢;, reals c¢; and (countable) index

set J. (Use 4C.) Then

= {xeR":¢p;(x) = 0,je J}
and
Cy=1{xeR"¢ix) = 0,jeJ}.

1.36. Let B be a closed convex set in R” with Cz = {0}. Show that B must
be bounded.

1.37. A basis B = {u,,...,u,} for R" is orthonormal if (u;, u;) = 6;; for
1 <i,j <nThe assomated lexicographic order < z1nR"1s then deﬁned
by x <gyifthereis k < nsuchthatl, =n;fori<k — 1and & < g
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(here x =(&y,...,¢,)and y = (4, ...,n,)). Now given a compact set

A < R" we define
A, = {xe€ A:(uy, x) = max (uy, y)},

yeA
Ay ...w, =4{x€A, .. .0_ (U, x)= max (u,))}
YEAL, -
inductively for k = 2,..., n. Show thatdim(4,,...,) < n — kso that

A, ..., 1S asingleton set, whose unique element 1s denoted by e(4, p).
Show that e(A4, p) 1s the lexicographic maximum of 4 with respect to
the basis f, that e(A4, f) 1s an extreme point of 4, and that every extreme
point of A arises in this manner for some (not necessarily unique)
basis p.

1.38. Let X be a real linear space, 4 a convex subset of X, and V an affine
subspace of X. We say that V supports A if A n V 1s a non-empty
extremal subset of 4. (This reduces to the definition in 6C when V
1s a hyperplane.)

a) Let E be a convex A-extremal set. Show that the affine subspace
aff (E) supports A.

b) If X 1s partially ordered with positive wedge P, a subspace M < X
1S an order ideal if the order interval {x:y < x < z} lies in M
whenever y, z € M. Show that M i1s an order 1deal if and only 1if
M supports P.

1.39. Let 4 be a convex subset of the real linear space X.

a) Show that x € icr(A4) if and only 1f x lies 1n no proper 4-extremal set.

b) For x € A, the A-extremal hull E(x) of x 1s the intersection of all
extremal sets containing x and the A-facet F(x) of x 1s the largest
convex subset of A containing x in 1ts intrinsic core. Prove that
E(x) = F(x).

1.40. Let Aand K, —« A’ bedefined as in 8F. Suppose that ext(K ) 1s non-void.
Show that the algebra 4 must be self-adjoint, that i1s, f € A implies
f e A where f(w) = f(w), w e Q. (A criterion for the self-adjointness
of Aisthat A = Ap + iAy.)

1.41. Let X be a linear space and {¢,, . . ., ¢,} a linearly independent subset
of X'. Prove the existence of a subset {x,, ..., x,} of X such that
¢i(xj) = 5ij

forl <i,j < n.



Chapter I

Convexity in Linear Topological Spaces

We have made good progress in developing the algebraic aspects of our
subject but the needs and applications of functional analysis require more
powerful methods based on topological concepts. Thus, as our next step, we
consider the result of imposing on a given linear space a “compatible topol-
ogy”. This is hardly a novel 1dea ; indeed, several excellent books already exist
which are devoted to a detailed investigation of the many ramifications of
this notion. However, our treatment 1s less ambitious and more pragmatic,
being shaped primarily by the necessities of our intended applications. These
necessities require an understanding of the properties of topologies defined
by one or more semi-norms on a linear space. They also require a well-
rounded duality theory and 1t 1s interesting to discover that the maximal class
of linear topologies which yields the requisite duality theory 1s precisely the
class of topologies defined by a family of semi-norms.

§9. Linear Topological Spaces

In this section we give the definition and fundamental properties of
“linear topologies”. This notion 1s too general for our purposes and it will
shortly be specialized by the introduction of a geometrical constraint on
the basic neighborhoods.

A. Let X be a linear space over the (real or complex) scalar field IF. We
recall that a topology on X 1s a family Z of subsets of X, closed under the
formation of finite intersections and arbitrary unions, and containing in
particular the empty set ¢ and the whole space X. 7 1s a linear topology
on X if it is compatible with the linear space structure on X ; that 1s, i1f both
the linear space operations

(X, y) > x + ), X, ye X

9.1
G-l (o, X) > ax, x e lf, xe X

are continuous on their respective domains X X X and ¥ x X. Here these
product spaces are given the usual product topologies determined by 4 and
the natural topology on F. In this case the pair (X, ) is a linear topological
space. However, once 7 1s clearly understood, it 1s convenient to just say
that X 1s a linear topological space.

For any non-zero scalar oy € I and vector x, € X the map x t— xy + %X
1s a homeomorphism of X with itself, so that, in particular, a linear topological
space 1S homogeneous. Consequently, the topological structure of X about
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any point 1s determined by a base of neighborhoods about the origin 6.
For if 7 1s a base of 68-neighborhoods, then the sets x + U (U € %) constitute
a base of x-neighborhoods. For short, we say that a base of 6-neighborhoods
1s a local base iIn X. The next result summarizes the fundamental working
properties of a local base.

Lemma. Let X be a linear topological space and U a local base in X.
Then

a) every U e 9 is absorbing;

b) if U e % there exists a balanced 0-neighborhood V such that V + V < U;
c) if A = X then A, the closure of A in X, equals n{A + U:Ue U};
d) the topology on X is Hausdorff if and only if n{U:Ue U} = {0}.

Proof. Parts a) and b) follow directly from the assumed continuity of
the linear space operations (9.1). Thus, given x e X and U € %, we have
that Ox = 0, so there must exist an interval (—0, 0) for which txe U if
—0 < t < 0; this proves a). Next, since 8 + 8 = 6 and addition 1s con-
tinuous, there 1s certainly some W e % for which W + W< U. To complete
the proof of b) it will suffice to find a balanced 6-neighborhood V < W.
But the map («, x) — ax 1s continuous at (0, 8) so therei1so > 0 and N € %
such that aN = Wif x| < 6. Now we can put V = u{aN:|a| < 6} and this
V meets the requirements of b).

c) Let A= XandletB = n{4 + U:Ue%}.If xe Aand U € % then,
choosing V as in b), we see that the x-neighborhood x + V intersects 4 and
so xXeA -V =A4A+ Vc A+ U. Thus xe B and we have shown that
A < B. However, if x € B a completely similar argument shows that every
x-neighborhood intersects A and so x € A. Therefore, B = A.

d) If the topology i1s 1n fact Hausdorff and we choose any x # 0 in X,
there 1s some 6-neighborhood V such that x ¢ V'; consequently there 1s some
U e % such that x ¢ U. This proves that x ¢ n{U:U € %}. Conversely, if
this intersection contains only the zero vector 0 and 1f we choose x # y In
X, then there 1s some U € % for which x — y ¢ U. Selecting V as in b) we
then see that x + V and y + V are disjoint neighborhoods of x and y, thus
proving that our topology 1s Hausdorf. ]

Theorem. A linear topological space X has a local base consisting of
closed balanced sets.

Proof. First we note that the closure of any balanced set 4 < X 1s
again balanced. That is, if |A| < 1 then 14 = A4. To see this, choose any
such A and any x € A4; 1f N 1s any neighborhood of Ax we wish to show that
N 1ntersects A. By continuity there i1s an x-neighborhood Vsuch that AV < N.
Since x € A, there exists ae A n V. Consequently, \ae A 1 N, and so A4 is
balanced if A4 1s.

Now let W be any 6-neighborhood in X. Applying the lemma we can
choose 6-neighborhoods U and V such that U is balanced and U < V <
Ve W. . Then U «c V <« W and U is balanced. ]
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At this point we have obtained a few elementary properties of linear
topologies. Many more connections between the algebraic and topological
structure are collected together in exercise 2.1; they will be used freely as
we go on. Let us also take note of a kind of converse to some of these facts.
Suppose that in a linear space X we are given a family % of balanced ab-
sorbing sets such that whenever U € % there exists Ve # with V + V < U
and whenever U, Ve % there exists We % with W <« U n V. Then % 1s a
local base for a unique linear topology 4 on X. Indeed, . consists of those
sets V' < X such that, for every xe V, there exists Ue % with x + U < V.

Clearly, real or complex Euclidean n-space is a linear topological space
for every n. Other more substantial (infinite dimensional) examples will
follow shortly, as we learn systematic procedures for constructing linear
topologies.

B. Most of our subsequent interest in linear topological spaces will
tend to emphasize the effects of the topology on the linear structure. This
may be expected in view of our previous developments in Chapter I. However,
momentarily it i1s of interest to adopt the opposing view: what kinds of
topological spaces are obtained via the imposition of a linear topology on
a given linear space? Our main point 1s that such topological spaces must
be very “smooth”.

We have already noted that a linear topological space X must be
homogeneous, that 1s, given x,, x, € X, there exists a homeomorphism
h:X — X such that h(x,) = x,. (Indeed, we can take h to be the translation
Xk x + (x, — x,).) Further, 1f the linear topology on X 1s Hausdorfi then
X must be regular (even completely regular; see exercise 2.6 for an important
special case.) This follows from 9A using that X contains a local base of
closed sets.

Let us recall that a topological space X is contractible if the identity map
on X 1s nullhomotopic. This means intuitively that X can be continuously
shrunk to a point, and precisely that there 1s a continuous function (a
homotopy) h:[{0,1] x X — X such that h(0, x) = x (x € X) and h(1, x) is
constant. Similarly, X is said to be locally contractible 1if every point x € X
has a neighborhood base consisting of sets contractible to x. These conditions
entail very strong connectivity properties of X. Thus if X 1s (locally) con-
tractible then X 1s (locally) path connected and (locally) simply connected.
It 1s clear that a linear topological space 1s both contractible and locally
contractible, since the map («, x) — ax 1s continuous by definition.

Finally, some linear topological spaces of considerable importance in
our subject (conjugate spaces with the “weak-star” topology; defined later)
turn out to be expressible as a countable union of compact subsets. Such
spaces then have the Lindelof covering property (every covering by open
subsets admits a countable subcovering). It 1s known that any regular
Lindelof space must be paracompact (every open covering has an open
neighborhood-finite refinement), and 1n particular normal. The paracom-
pactness property 1s a weak substitute for metrizability, which may or may
not be available depending on the nature of a particular linear topology.
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C. Although we have as yet established no results of any substance
concerning linear topological spaces, it 1s nevertheless already possible to
give an interesting application and we digress briefly to do so. The result to
be established concerns simultaneous approximation and interpolation in
abstract setting; upon suitable specialization it yields a variety of refinements
of known classical approximation principles such as the Stone-Weierstrass
theorem.

The main difficulty in the proof may be localized to the following lemma.
We consider a convex subset 4 of a real linear topological space X.

Lemma. Let ¢ be a continuous linear functional in X'. If A is dense in
X then A N ker(¢) is dense in ker(¢).

Proof. The hyperplane H = ker(¢) 1s closed (since ¢ 1s continuous)
and the half-spaces H™ = {xe X:¢(x) > 0}, H™ = {xe X:¢(x) < 0} are
open. Let % be a local base in X consisting of balanced sets (9A). Fix xe H
and U € %. Now the dense set 4 intersects the sets (x + U) n H™ at points
p*. Since d(p~) < 0 < ¢(p™), there exists t, 0 < t < 1, such that tp~ +
(1 — t)p™ € H. We now have

tp” + (1 —t)p"edn Hn (x + 2U).

This argument shows that 4 n H intersects every neighborhood of x. []
Now we come to the main result, known as the “Singer-Yamabe theorem”™.
The 1dea 1s that if it 1s possible to approximate points in X from the convex
set A (that 1s, if A is dense in X)), then it 1s also possible to approximate while
simultaneously satisfying a number of linear interpolatory conditions.

Theorem. Let A be a dense convex subset of X and let ¢4, ..., ¢, be
continuous linear functionals in X'. Given any xo€ X and any x,-neighborhood
V, there exists a point ze A such that ze V and ¢,(z2) = ¢;(xo), 1 = 1,...,n.

Proof. After replacing A by its translate A — x, we may assume that
xo =0. Let M; = {xe X:¢y(x) =+ = ¢;(x) = 0}. Then My = X >
M, > M, >---> M, and either M;,;, = M; or else M;,, 1s a closed
hyperplane in M;, for each j. Now, A n M; is convex, and if it 1s dense
in M; then by the lemma A n M;,, is dense in M;,,. Thus n repeated
applications of the lemma establish the desired result. i

Let us consider a particular instance of this theorem. Let X = (L),
the usual space of real-valued continuous functions defined on the compact
space 2. We define a linear topology (the topology of uniform convergence
on 2) by taking as a local base the sets

9.2) U, = {x e C(Q):sup |x(t)| < 1/n},
tes2
forn = 1, 2,.... This topology takes its name from the fact that a sequence

of continuous functions coverges in this topology exactly when it converges
uniformly on Q in the usual sense. Now if u 1s a finite signed measure on the
Borel sets in 2, 1t defines a linear functional ¢ € X’ by the rule

P(x) = |gxdu, xeC(Q).
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Such functionals are continuous with respect to the topology of uniform
convergence on {2 since

B(x) — d()| = |Jalx — y)dyl
< sup |x(t) — y()] |u(Q),

te(2
where [u|(Q) is the total variation of y on Q.
Now suppose that A4 i1s a subalgebra of C(€2) that contains the constant
functions and that u,, ..., u, are Borel measures on Q as above. Then the
following assertions are equivalent:

1) for each x, € C(2) and each ¢ > 0, there exists y € 4 such that
sug xo(t) — W(B)| < ¢
e
and

jondﬂi=nydﬂi, i =1,...,n;

11) A separates the points of Q.

The equivalence here follows directly from the Singer-Yamabe theorem and
the Stone-Weierstrass theorem (22E) which asserts that 4 1s dense in C(Q)
(1n the topology of uniform convergence) exactly when A separates the points
of Q.

Note in particular that if each y; 1s a positive Borel measure concentrated
at a point t; € Q then |, x dy; = a;x(t;), for some a; > 0 (for details, see 22E).
Thus if 4 1s a separating subalgebra of C(£2) containing the constant functions
we can uniformly approximate any given function x in C(Q2) by a function
in A that agrees with x at a finite number of points 1n Q.

If we take instead our space X to consist of all complex-valued continuous
functions on a compact space €2, then the preceding extension of the Stone-
Weierstrass theorem remains valid, provided that the algebra A i1s also

self-adjoint (8F).

D. We now establish some facts about products, sums, and quotients
of linear topological spaces. These facts allow us to systematically construct
new spaces from given ones; they represent a continuation of the development
begun 1n 1C.

First, let {X,:a€ I} be a family of linear topological spaces over the
same field and let X be the product space [ |, X,. Following the classical
Tychonov construction of the product topology we can define a local base
in X. To do so, let %, be a local base in X,. For each finite subset J < I
we choose a neighborhood V, e %, for a € J and define

(9.3) U, ={xeXx,eV,ael}.

Then the collection of all such U, 1s a local base for the product topology on
X. It 1s easy to see from the characterization of Hausdorff linear topologies
in 9A that the product topology on X 1s Hausdorff exactly when the given
linear topology on each space X, 1s Hausdorf.
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When X, = Y for each « the resulting product space is denoted Y”; by
definition, it consists of all Y-valued functions defined on the set I. In this
case the product topology 1s often called the topology of pointwise conver-
gence on I, because a net {f;:5 € D} of functions in Y' converges in the
product topology to f € Y' exactly when lim { fy():0 € D} = f(«), for every
o € 1.

Consider next the situation where a linear topological space X i1s the
algebraic direct sum of subspaces M and N: X =M @ N.If P: X - M 1s
the associated (linear) projection along N then P is an open map, that is, 1if
@ 1s an open subset of X then P(0) is open 1n M. (Because, @ + N 1s open
and P(O) = P(O + N) = (0 + N) n M.) We say that X 1s the topological
direct sum of M and N if the map (m, n)+—» m + n from the product space
M x N to X 1s a homeomorphism (it i1s clearly a continuous 1Isomorphism
1in all cases). For this to happen it 1s necessary and sufficient that the pro-
jection P be continuous. In turn, for P to be continuous it 1s evidently
necessary (but not sufficient!) that the subspaces M and N be closed in X.

Finally, let M be a subspace of the linear topological space X and let
Oy:X — X/M be the quotient map (1H). The quotient topology on X/M 1s
the strongest topology on X/M for which Q,, 1s continuous. This means
that a set A = X/M 1s considered to be open exactly when its inverse image
0..'(A) is open in X. The quotient topology is a linear topology on X/M:
indeed, a local base for 1t i1s the Q,,-image of a given local base in X. When
X /M 1s given the quotient topology, the quotient map Q,, 1s both continuous
and open.

Theorem. Let M be a subspace of X. The quotient topology on X/M is
Hausdorff if and only if M is closed in X.

Proof. If X/M 1s Hausdorff the zero-vector in X/M 1s a closed set and

its Q,,~-inverse image must be closed. But Q,,'(8) = M. Conversely, assume
that M 1s closed. We will show that given a non-zero vector x + M 1in X/M
there 1s a closed neighborhood of x + M that does not contain 6, and this
will prove that the quotient topology 1s Hausdorff. Now, since x + M # 0,
x ¢ M, so that X\M 1s an open x-neighborhood in X. Since Q,, 1s an open
map, Q,(X\M) 1s an open (x + M )-neighborhood that does not contain 6.
Since the quotient topology is a linear topology, we conclude by 9A that

there 1s a closed (x + M)-neighborhood within Q,,(X\M). ]

E. We turn next to some finite dimensional considerations. Let us say
that two topological linear spaces over the same field are isomorphic (linearly
homeomorphic) if there exists an algebraic isomorphism between them which
1s at the same time a homeomorphism. Such spaces cannot be distinguished
from one another by examination of their algebraic-topological structure.

Now let |F be either the real field R or the complex field C. For each
n=12...,F"1s an n-dimensional Hausdorff topological linear space
over F 1n 1ts natural (product) topology (9D). We claim that 1t 1s the only
such space.
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Theorem. Let X be an n-dimensional Hausdorff topological linear space
over the field F. If {x,,...,x,} is a basis for X then the map T-F" - X
defined by

T(Ays - s A) = ), X
i=1

is an isomorphism between F" and X.

Proof. T 1s well known to be an algebraic isomorphism and an obvious
induction, based on the axioms (9A) for a linear topological space, shows
that T 1s also continuous. Let B be the unit 2-ball (3C) in F”; that 1s, B =

n

(v =1(&,..., &) e F"]||z = ) |&|* < 1}. In order to show that T is an

1
open map (and hence a homeomorphism) 1t suffices to show that T(B) con-

tains a f-neighborhood in X. Now the boundary S = {ve F":||[v||, = 1} of
B1s compact in " and so T(S) 1s a compact set in X that does not contain 6.
Hence X\T(S) 1s a 0-neighborhood in X and so contains a balanced 6-
neighborhood U. We claim that U < T(B). Because, if x ¢ T(B), then
T~ '(x)||, > 1, whence

X/\T™Hx)||2 = T(T™(x)/|| T~ (x)||.) € T(S),

and so x cannot belong to U. ]

This theorem admits several corollaries two of which follow below and
two of which appear as exercises. First note this implication: if M 1s any
finite dimensional subspace of a Hausdorff linear topological space X, then
M 1s closed in X. This 1s because M 1s topologically complete, being homeo-
morphic to the complete metric space F”.

Corollary 1. Let M and N be closed subspaces of the Hausdorff linear
topological space X with N of finite dimension. Then M + N is a closed
subspace of X.

Proof. Let Q,:X — X/M be the quotient map. The subspace Q,(N)
1s a finite dimensional subspace of X /M, hence closed in X/M. Consequently,

its inverse image Q. (0:(N)) = M + N is closed. []

Corollary 2. Let X and Y be linear topological spaces with X Hausdorff
and finite dimensional. Then any linear map R: X — Y is necessarily continuous.

Proof. LetT:IF" - X beanisomorphism. ThenthemapRo T:F" - Y
must be of the form (44,...,4,) = A,y; + - -+ + A,y, for suitable vectors
Vi,---, Yy € Y. Such a map 1s surely continuous (as noted in the proof of
the theorem). Consequently, R = (R o T) o T~ ! is continuous. []

F. We continue our finite dimensional considerations by establishing
a characterization of finite dimensional linear topological spaces. We precede
this result by some new terminology which also 1s needed for later work.

Let X be a linear topological space over the field F with local base %.
A sequence {x,} < X is bounded if A,x, — 6 whenever 1, — 0 in F. A set
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A < X 1s bounded 1if every sequence in A 1s bounded. According to exercise
2.3 this happens exactly when A 1s absorbed by every neighborhood in %
(that is, given U € %, AA < U for sufficiently small |1]). A set A < X is
totally bounded 1if for every U € % there 1s a finite subset B < X such that
A < B + U. Clearly a compact set 1s totally bounded and every totally
bounded set 1s bounded. The converse of this last remark 1s sometimes valid;
see exercise 2.3. In particular, the bounded sets in " are exactly the relatively
compact sets there.

Finally, a subset of X 1s fundamental in X if its linear hull is dense in X.
Evidently, X has finite dimension exactly when it contains a finite funda-
mental subset (9E). We preface the main result by an abstract form of
“Riesz’s lemma”.

Lemma. Let A be a bounded subset and M a closed subspace of X. If
there exists e F, |A| < 1, such that A < M + 1A, then A = M.

Proof. For any U e % there 1s an integer n such that A"4A < U. Hence
AcM+ "Ac M+ U,andsoAd = M = M. ]

It follows immediately that if 4 1s both bounded and fundamental, if
4| < 1,and if A = B + 1A, then the set B is fundamental.

Theorem. The linear topological space X is finite dimensional if and
only if it contains a totally bounded neighborhood.

Proof. Suppose that some U e % 1s totally bounded. Then U is both
bounded and fundamental. For any scalar 4 with 0 < |4| < 1 there is a
finite set B such that U <« B + AU, the preceding remark now shows that
B must be fundamental. []

Thus we see that a locally compact (Hausdorff) linear topological space
must be finite dimensional.

J10. Locally Convex Spaces

In this section we specialize the very general notion of linear topology
developed 1n the preceding section. The reason for doing so 1s that the linear
topology axioms are simply too weak to yield a useful duality theory. Thus
1in order to be able to link up the present topological considerations with the
powerful linear-geometric theory of Chapter I, we find it necessary to impose
an additional but crucial geometric condition on our linear topologies,
namely that the topology be determined by convex neighborhoods.

A. A linear topological space X 1s a locally convex space if it contains
a local base consisting of convex 6-neighborhoods. This condition implies
that any x-neighborhood (x € X) contains a convex x-neighborhood. The
definitions (9.2) and (9.3) of local bases for C(Q2) and for | |, X, show that these
spaces are locally convex (provided in the latter case that each X, is locally
convex and the local base %, in X, contains only convex sets).
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A barrel 1n a linear topological space X 1s a closed absolutely convex
absorbing subset of X. It follows from 9A and the preceding definition that
any locally convex space has a local base consisting of barrels. Note that
we do not claim that every barrel 1s a 6-neighborhood; only that enough of
them are so as to define the topology. Clearly intersections and positive
multiples of barrels are again barrels. In general, an absolutely convex
absorbing set 4 in X 1s a barrel exactly when 1ts gauge p, 1s lower semi-
continuous on X.

The next lemma comprises the geometric description of locally convex
topologies; the analytical description follows momentarily.

Lemma. Let 9 be a family of absolutely convex absorbing sets in a
linear space X.

a) Suppose that, given U, V € U, there exists W € U such that W < U n
V, and that aU € % whenever o # 0. Then % is a local base for a unique
locally convex linear topology on X.

b) Whether or not % satisfies the conditions of a), there is a weakest
linear topology on X such that every set in 9% is a 0-neighborhood. A local base
for this topology consists of all positive multiples of finite intersections of the
members of U ; in particular, the topology is locally convex.

Part b) evidently follows from part a). The proof of part a) 1s omitted,
being straightforward but tedious. Let us just note that the unique topology
whose local base 1s % consists of those sets V' < X such that, for each x e V,
there exists Ue #Z with x + U < V.

B. In 3D it was observed that the semi-norms on a linear space X are
exactly the gauges of absolutely convex absorbing subsets of X. For any
semi-norm p on X we let U, = {x € X:p(x) < 1} be the p-unit ball in X.

Lemma. Let X be a linear topological space and B a barrel in X. Then
a) the gauge pg is the only semi-norm on X for which U, = B.
b) pg is continuous on X if and only if B is a 6-neighborhood.

Proof. a) We know from exercise 2.4 that B < U, .. Suppose that
x € U,_; then for every ¢ > O there1s y, € B such that x = (1 + ¢)y,. Clearly
y: = x as ¢ + 0 so that xe B = B. Thus B = U, . Now if also B = U, for
some semi-norm p then we would have p(x) < 1 < pg(x) < 1. For any

fixed ye X ande > 0O, put x = y/(p(y) + ¢€) and then put x = y/(pg(y) + &)

to obtain pg(y) < p(y) + €and p(y) < pp(y) + &
b) If pg is continuous then B contains the open 6-neighborhood {x e X

pp(x) < 1}. Conversely, if B is a 0-neighborhood, for each & > 0, pg(eB)
lies in the interval [0, ¢]. This proves that pg is continuous at 6. Since

ps(x) — pp(¥)| < pu(x — ),

it now follows that pg 1s (uniformly) continuous on X. ]
One implication of this lemma 1s that the unit balls of all the continuous
semi-norms on a given locally convex space X constitute a local base of
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barrels in X. However, this would be an inordinately large local base. It 1s
more interesting (and practical) to be able to define the topology on X with
as few semi-norms as possible. The following details constitute the analytic
description of locally convex topologies.

Let A" be a family of continuous semi-norms on X. We say that 4" is a
base of continuous semi-norms on X if, for any continuous semi-norm ¢ on
X, there exist t > 0 and p € A" such that ¢ < tp (equivalently, U, < tU,).
Thus if A" is a base of continuous semi-norms on X, then {tU,:p e A", t > 0}
1s a local base 1n X.

The most common way of specifying a locally convex topology by means
of semi-norms 1s to make use of 10A. Suppose that we are given a family
A of semi-norms on a linear space X. Then there is a weakest locally convex
topology 4 on X for which all the semi-norms in A" are continuous. J 1s
sald to be generated by A" and we often call 9 the A4 -topology. A local base
for  consists of all positive multiples of finite intersections of p-unit balls
for p e & and a base of continuous semi-norms on (X, ) 1s given by the
collection of suprema of the finite subsets of A"

Another perspective on the A -topology 1s gained from the following
considerations. Each semi-norm p € 4" defines a pseudometric d, on X by

dp(xa y) — p(x o y)
That 1s, the relations

d,(x,y) = 0,

d,)(x, y) = d,(y, x),
d)(x,y) < d,(x,z) + d,(y, z)

hold for all x, y, ze X. (The pseudo-metric d, interacts with the linear
structure on X by virtue of being translation invariant, that is, the relation

d)(x + z,y + z) = d (x, y)

holds for all x, y, z e X.) Each pseudo-metric d, defines in the usual way a
pseudo-metric topology on X and the A -topology is simply the least upper
bound of these d -topologies for p € A". The point of these remarks is to
suggest that a property of the A4 -topology is likely to be the conjunction of
the corresponding properties in all the d -topologies. This idea i1s made
forcefully clear by the next theorem which summarizes the main operating
characteristics of A -topologies.

Theorem. Let A" be a family of semi-norms on the linear space X.

a) The AN -topology is Hausdorff if and only if for each non-zero x € X
there exists p € & for which p(x) > 0.

b) Anet {x;:0€ D} = X converges to x € X if and only if limzp(x; — x) =
0, for every pe N .

c) A subset A of X is bounded in the A -topology if and only if A has
finite p-diameter for every p e N .
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d) A subset A of X is totally bounded in the A -topology if and only if
for every ¢ > 0 and every p € A there is a finite (g, p)-net in A.

Let us clarify some terminology here. The p-diameter of the set A 1s the
number sup{p(x — y):x, ye A}. An (g, p)-net in A is a subset B of 4 such
that for every x € A there exists y € B with p(x — y) < & Thus, parts ¢) and
d) may be reworded: the set A = X 1s bounded (resp., totally bounded) in
the A -topology exactly when A 1s bounded (resp., precompact) in each
d,-topology (p € A”). The proot of this theorem 1s straightforward and 1s
left to the exercises, as 1s a criterion for metrizability of an A -topology.

C. Recall (3D) that a norm p on a linear space X 1s a semi-norm
with trivial kernel: p(x) = 0 only if x = 0. Geometrically, p i1s the gauge of
an absolutely convex absorbing set which contains no proper subspace. A
locally convex space i1s normable 1if 1ts topology 1s the A -topology for A~
consisting of a single norm.

Theorem. A locally convex space X is normable if and only if there
exists a proper bounded 0-neighborhood in X.

Proof. 1If the topology on X is defined by a norm p then the p-unit ball
(10B) 1s such a 0-neighborhood. Conversely, if such a 6-neighborhood exists,
1t must contain a barrel B. The gauge pz must be a norm since pg(x) = O
implies nxe B for n = 1,2,..., so that x = 6 or else B would not be
bounded. Since pg is continuous (10B) the pg-topology is weaker than the

n
a local base in X; hence the pg-topology i1s exactly the original topology
on X. ]

.. . . ]
original topology. But since B 1s bounded, the sets {-—— B:n=12,... } form

Corollary. Let {X,:a€ I} be a family of normable spaces over the same
field. Then the product space | |, X, is normable if and only if the index set I
is finite.

The proof results directly from the theorem and exercise 2.3b.

D. In practice a normable locally convex space 1s specified analytically
rather than geometrically as in 10C. That is, there is given a pair (X, p)
consisting of a linear space X and a norm p on X. X is then considered to
be topologized by the A -topology with A" = {p}; the resulting locally
convex space 18 called a normed linear space. Since p 1s a norm the pseudo-
metric d, (10B) 1s actually a metric on X x X. The study of normed linear
spaces and the interplay between the resulting algebraic-geometrical-
topological structure 1s one of the major objects of this book.

Let us now consider some prototypical examples of normed linear spaces.
In doing so and in subsequent work we shall adhere to the tradition of writing
a norm as ||-||

Example 1. (Spaces of continuous functions). Let Q2 be a topological
space and let i be either R or C. Then the space C,(Q2, ) is the linear space
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of all bounded continuous FF-valued functions f on 2 normed by the uniform
norm

(10.1) | flle = sup{|f(t)]:t e 2}.

Convergence 1n the associated metric 1s uniform convergence on €2 (as i1n 9C).
The case where Q2 1s discrete 1s of interest here; 1n this case C,(Q2, IF) comprises
the space of all bounded [F-valued functions on Q. ]

Example 2. (Spaces of integrable functions). Let (2, 2, u) be a positive
measure space and let p > 1. The space L? = L?(Q, u, I¥) 1s the linear space
of all (equivalence classes of) p-th power u-integrable functions f: Q2 — F
normed by the p-norm

(10.2) [f1ls = (JlfOIF du)'.

The subadditivity of the p-norm is not entirely obvious; it 1s in fact equivalent
to Minkowskr’s inequality in measure theory. Convergence in the associated
metric 1s called convergence in the mean of order p. Note that this example
subsumes the earlier case of the p-norm on E" (3C). []

Example 3. (Spaces of measures). Let (2, ) be a measurable space.
Then the space .#(Q, 2, ) 1s the linear space of all F-valued countably
additive set functions u defined on the g-algebra X, normed by

(10.3) |u||l, = sup { Y |u(A;)|:{4;} partitions Q}
=1

To say that {4;} partitions Q means that {4;} is a sequence of pairwise
disjoint subsets of 2 whose union 1s 2. As 1s well known, 1f in the right hand
side of (10.3) we replace 2 by an arbitrary set 4 € 2, then th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>