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Preface

Functional analysis has become a sufficiently large area of mathematics that
it 1s possible to find two research mathematicians, both of whom call
themselves functional analysts, who have great difficulty understanding the
work of the other. The common thread 1s the existence of a linear space with
a topology or two (or more). Here the paths diverge in the choice of how
that topology 1s defined and i1n whether to study the geometry of the linear
space, or the linear operators on the space, or both.

In this book I have tried to follow the common thread rather than any
special topic. 1 have included some topics that a few years ago might have
been thought of as specialized but which impress me as interesting and
basic. Near the end of this work I gave into my natural temptation and
included some operator theory that, though basic for operator theory, might
be considered specialized by some functional analysts.

-The word Course 1in the title of this book has two meanings. The first is
obvious. This book was meant as a text for a graduate course in functional
analysis. The second meaning 1s that the book attempts to take an excursion
through many of the territories that comprise functional analysis. For this
purpose, a choice of several tours 1s offered the reader-whether he 1s a
tourist or a student looking for a place of residence. The sections marked
with an asterisk are not (strictly speaking) necessary for the rest of the book,
but will offer the reader an opportunity to get more deeply involved in the
subject at hand, or to see some applications to other parts of mathematics,
or, perhaps, just to see some local color. Unlike many tours, it 18 possible to
retrace your steps and cover a starred section after the chapter has been left.

There are some parts of functional analysis that are not on the tour. Most
authors have to make choices due to time and space limitations, to say
nothing of the financial resources of our graduate students. Two areas that




arc only briefly touched here, but which constitute entire arecas by them-
selves, are topological vector spaces and ordered linear spaces. Both are
beautiful theories and both have books which do them justice.

The prerequisites for this book are a thoroughly good course in measure
and 1ntegration-together with some knowledge of point set topology. The
appendices contain some of this material, including a discussion of nets 1n
Appendix A. In addition, the reader should at least be taking a course in
analytic function theory at the same time that he is reading this book. From
the beginning, analytic functions are used to furnish some examples, but it
1S only 1n the last hall of this text that analytic functions are used in the
proofs of the results.

It has been traditional that a mathematics book begin with the most
general set of axioms and develop the theory, with additional axioms added
as the exposition progresses. To a large extent 1 have abandoned tradition.
Thus the first two chapters are on Hilbert space, the third i1s on Banach
spaces, and the fourth 1s on locally convex spaces. To be sure, this causes
some repetition (though not as much as I first thought it would) and the
phrase the proof is just like the proof of ...” appears several times. But 1
firmly believe that this order of things develops a better intuition in the
student. Historically, mathematics has gone from the particular to the
general-not the reverse. There are many reasons for this, but certainly one
reason 1§ that the human mind resists abstraction unless it first sees the need
to abstract.

I have tried to include as many examples as possible, even if this means
introducing without explanation some other branches of mathematics (like
analytic functions, Fourier series, or topological groups). There are, at the
end of every section, several exercises of varying degrees of difficulty with
different purposes in mind. Some exercises just remind the reader that he i1s
to supply a proof of a result in the text; others are routine, and seek to fix
some of the ideas in the reader S mind; yet others develop more examples;
and some extend the theory. Examples emphasize my idea about the nature
of mathematics and exercises stress my belief that doing mathematics 1s the
way to learn mathematics.

Chapter 1 discusses the geometry of Hilbert spaces and Chapter II begins
the theory of operators on a Hilbert space. In Sections 3-8 of Chapter II,
the complete spectral theory of normal compact operators, together with a
discussion of multiplicity, 18 worked out. This material 1s presented again in
Chapter IX, when the Spectral Theorem for bounded normal operators is
proved. The reason for this repetition 1s twofold. First, I wanted to design
the book to be usable as a text for a one-semester course. Sccond, 1f the
reader understands the Spectral Theorem for compact operators, there will
be less difficulty in understanding the general case and, perhaps, this will
lead to a greater appreciation of the complete theorem.

Chapter Il 1s on Banach spaces. It has become standard to do some of
this material in courses on Real Variables. In particular, the three basic




principles, the Hahn-Banach Theorem, the Open Mapping Theorem, and
the Principle of Uniform Boundedness, are proved. For this reason 1
contemplated not proving these results here, but in the end decided that
they should be proved. 1 did bring myself to relegate to the appendices the
proofs of the representation of the dual of L# (Appendix B) and the dual of
C,(X) (Appendix C).

Chapter IV hits the bare essentials of the theory of locally convex spaces
-enough to rationally discuss weak topologies. It 1s shown in Section 5 that
the distributions are the dual of a locally convex space.

Chapter V treats the weak and weak-star topologies. This 1S one of my
favorite topics because of the numerous uses these ideas have.

Chapter VI looks at bounded linear operators on a Banach space.
Chapter VII 1introduces the reader to Banach algebras and spectral theory
and applies this to the study of operators on a Banach space. It 1S 1n
Chapter VII that the reader needs to know the elements of analytic function
theory, including Liouville § Theorem and Runge § Theorem. (The latter 1s
proved using the Hahn-Banach Theorem in Section 111.8.)

When 1n Chapter VIII the notion of a C*-algebra i1s explored, the
emphasis of the book becomes the theory of operators on a Hilbert space.

Chapter IX presents the Spectral Theorem and its ramifications. This 1s
done in the framework of a C*-algebra. Classically, the Spectral Theorem
has been thought of as a theorem about a single normal operator. This it 1s,
but it 1s more. This theorem really tells us about the functional calculus for
a normal operator and, hence, about the weakly closed C*-algebra gener-
ated by the normal operator. In Section IX.8 this approach culminates in
the complete description of the functional calculus for a normal operator. In
Section IX.10 the multiplicity theory (a complete set of unitary invariants)
for normal operators 1s worked out. This topic 1s too often i1gnored 1in books
on operator theory. The ultimate goal of any branch of mathematics 1s to
classify and characterize, and multiplicity theory achieves this goal for
normal operators.

In Chapter X unbounded operators on Hilbert space are examined. The
distinction between symmetric and self-adjoint operators 1s carefully delin-
cated and the Spectral Theorem for unbounded normal operators 1s ob-
tained as a consequence of the bounded case. Stone S Theorem on one
parameter unitary groups 1s proved and the role of the Fourier transform in
relating differentiation and multiplication 1s exhibited.

Chapter XI, which does not depend on Chapter X, proves the basic
properties of the Fredholm index. Though it 1s possible to do this in the
context of unbounded operators between two Banach spaces, this material 1s
presented for bounded operators on a Hilbert space.

There are a few notational oddities. The empty set 1s denoted by 0O. A
reference number such as (8.10) means item number 10 in Section 8 of the
present chapter. The reference (1X.8.10) 1s to (8.10) in Chapter IX. The
reference (A.Ll) 1s to the first 1tem 1n the first section of Appendix A.




There are many people who deserve my gratitude in connection with
writing this book. In three separate years I gave a course based on an
evolving set of notes that eventually became transfigured into this book. The
students in those courses were a big help. My colleague Grahame Bennett
gave me several pointers in Banach spaces. My ex-student Mar¢c Raphael
read final versions of the manuscript, pointing out mistakes and making
suggestions for improvement. Two current students, Alp Eden and Paul
McGQGuire, read the galley proofs and were extremely helpful. Elena Fraboschi
typed the final manuscript.

John B. Conway
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CHAPTER 1

Hilbert Spaces

A Hilbert space is the abstraction of the finite-dimensional Euclidean spaces
of geometry. Its properties are very regular and contain few surprises,
though the presence of an infinity of dimensions guarantees a certain
amount of surprise. Historically, it was the properties of Hilbert spaces that
guided mathematicians when they began to generalize. Some of the proper-
ties and results seen in this chapter and the next will be encountered in more
general settings later in this book, or we shall see results that come close to
these but fail to achieve the full power possible in the setting of Hilbert
space.

§1. Elementary Properties and Examples

Throughout this book [F will denote either the real field, R, or the complex
field, C.

1.1. Definition. If X is a vector space over [F, a semi-innerproduct on X is
a function u: Xx X = F such that for all a,8in F and x, y, z in &, the
following are satisfied:

(a) u(ax + By, z) = au(x, z) + Bu(y, 2),
(b) u(xa ay + 182) = au(xa V) + Bu(x, z),
(€ u(x, x) =20,
(d) u(xa y) — U(y,X).

Here, for ainF,a =aif F =R and a is the complex conjugate of a if
F=C.If a€C, the statement that a> 0 means that a €R and a is
non-negative.



2 I. Hilbert Spaces

Note that if @« = 0, then property (a) implies that ©(0,y) =u(a . 0, y) =
au(0, y) = 0 for all y in Z. This and similar reasoning shows that for a
semi-inner product w,

(e) u(x,0)=u(0, y) =0 for all x, yin Z.

In particular, ©(0,0) =0
An inner product on £ is a semi-inner product that also satisfies the
following:

(f) If u(x,x) = 0, then x = 0.
An inner product in this book will be denoted by

(x,y) = u(x,y).
There 1s no universally accepted notation for an inner product and the
reader will often see (x, y) and (x|y) used in the literature.

1.2. Example. Let & be the collection of all sequences {a,.n=1} of
scalars a, from F such that &, = O for all but a finite number of values of
n. If addition and scalar multiplication are defined on £ by

{a,} +{B,}={a, + B,},
«(a,) = (aa,},

then £ i1s a vector space over F.

If u({a,},{B,}) =1L 10,,B,,, then u is a semi-inner product that is
not an inner product. On the other hand,

(e}, (B} = fanﬁn,
({a), (B)) = 2 L

n

!

8

({a,}, {B.}) = Zlna B,

all define inner products on Z.

[.3. Example. Let (X, £, ) be a measure space consisting of a set X, a
u-algebra §2 of subsets of X, and a countably additive R U {co} valued
measure p defined on Q. I f and g € L*(p)=L*( X, 2, 1), then Holder S
inequality implies fg & L'(p). If

(f,8) = [f2dn.

then this defines an inner product on L*(p).

Note that Holder § inequality also states that |[fgdp|<[ [If]>dp]'/?
[ {\g)* dp)l/? This is, in fact, a consequence of the following result o
semi-inner products.



Note that if a = 0, then property (a) implies that (0, y)=u(a .0, y) =
au(0, y) = 0 for all yin £. This and similar reasoning shows that for a
semi-inner product u,

() u(x,0) =u(@Q,y)=0 for all x, yin &.

In particular, u(0,0) =0
An inner product on £ is a semi-inner product that also satisfies the

following:
(f) If u(x, x) = 0, then x = 0.
An inner product in this book will be denoted by
(x,y) = u(x,y).

There 1s no universally accepted notation for an inner product and the
reader will often see (x, y) and (x|y) used in the literature.

1.2. Example. Let £ be the collection of all sequences {a,:n =1} of
scalars a, from F such that a, = O for all but a finite number of values of
n. If addition and scalar multiplication are defined on % by

{a,} + {B,}={a, + B.},
afa,} = {aa,).
then £ is a vector space over [F.

ir u({a,), {B,}) =L 0a,,B,,, then u is a semi-inner product that is
not an inner product. On the other hand,

({0} (B)) = T b,
() (B.)) = L b

<{an}? {Bn}> o Eln anﬁn:

all define inner products on Z.

1.3. Example. Let (X, $, ) be a measure space consisting of a set X, a
u-algebra § of subsets of X, and a countably additive R U {oo} valued
measure p defined on Q.If f and g € L?(p)=L*( X, 2, p), then Holder S
inequality implies fg < L'(p). If

(f8) = [fzdp.,

then this defines an inner product on LZ(p).
Note that Holder § inequality also states that |ffgdu|<[[|f]*dp]'/?.
[f|g|"’-’¢:1fu.]1/2 This 1s,1n fact, a consequence of the following result on

semi-inner products.



1.4. The Cauchy-Bunyakowsky—Schwarz Inequality. If (--) is a semi-
inner product on £, then

[{x, )17 < (x, x)(y, ¥)
for all x and y in Z.

PROOF. If a €F and x and y € Z, then
0<{(x—ay,x—ay)
= (x,x)—a(y, x)—a(x, Y) + |al*(y, p).

Suppose (y, Xx) = befa, b > 0, and let a = e_fat, tin R. The above
inequality becomes

0 < (x,x) —e the’® —e®the™ + t¥y, y)
= (x, x) — 2bt + t* y, y)
= ¢ —2bt + at’*= q(1),

where ¢ = (x, X) and a = (y, y). Thus ¢(z) 1s a quadratic polynomial 1n
the real variable ¢ and ¢(z) = O for all ¢£. This implies that the equation
qg(t) = 0 has at most one real solution f. From the quadratic formula we
find that the discriminant is not positive; that is, 0 >4b*—4ac. Hence

0 2b*—ac = |(x, y)|* = (x, x)(, y),
proving the inequality. n

The inequality in (1.4) will be referred to as the CBS inequality.

1.5. Corollary. If (-, -) is a semi-innerproduct on Z and ||x||= (x, x>1/2
for all x in &, then

(@) 1x + Yl =|Ix|l + |l for x, y in Z,
(b) |lax|| = |a||lx|| for a in F and x in Z.

If (-, -)is an inner product, then
(c) ||x|| = O implies x = 0.

ProoF. The proofs of (b) and (c) are left as an exercise. To see (a), note that
for x and y m X,

1x + VI = (x+y,x 4+ »)

= X2 4+ (s %) 4+ (x, )+ P
= [IxlI2 + 2Re(x, ») + Iyl

By the CBS inequality, Re{(x, y) <|{(x, y)|<|lx|||l¥|l. Hence,
Ix + Y12 <lxl® + 2lx Wl + Wwll?

2
= (llxIl + i)~
The inequality now follows by taking square roots. B




If (-,-) 1s a semi-inner product on Z and if X, y € Z, then as was
shown 1n the preceding proof,

1x + ¥II* = lIx]I* + 2 Re(x, y) + |Iy|I%.
This 1dentity 1s often called the polar identity.

The quantity ||x{| = (x, x)/* for an inner product ( -,-) is called the
norm of x. If Z=FY(R%or C%) and ({a, },{B,})=%%_.a B, then the
corresponding norm is ||{a M= [Z%_,la,|*]/2

The virtue of the norm on a vector space £ 1s that d(x, y) = |jx — yl|
defines a metric on £ [by (1.5)] so that 2" becomes a metric space. In fact,
d(x, v) = llx—yll = lx—2)+ (= <lx —z|| +llz -yl =
d(x,z) + d(z,y). The other properties of a metric follow similarly. If
Z =1F “ and the norm is defined as above, this distance function is the usual
Euclidean metric.

1.6. Definition. A Hilbert space 18 a vector space S over IF together with
an inner product ( -, - ) such that relative to the metric d(x, y) = {|x — y||
induced by the norm, 5# 1s a complete metric space.

If #= L*(p) and (f, g) = [fgdp, then the associated norm is ||f}l =
[/1A%*dr])'/* 1t is a standard result of measure theory that L*(u)is a
Hilbert space. It is also easy to see that F¢ is a Hilbert space.

Remarc. The inner products defined on L*(p) and F 4 are the “ usual ones.
Whenever these spaces are discussed these are the inner products referred
to. The same 1s true of the next space.

1.7. Example. Let Z be any set and let /°(1) denote the set of all functions
x. Z —F such that x(i) = 0 for all but a countable number of { and
Y. e Ax()|* <oo. For x and y in I*(I) define

(x, )y =2 x(i)y(i).

Then /°(I) is a Hilbert space (Exercise 2).

If Z =N, I%(I) is uvsually denoted by /. Note that if £ = the set of all
subsets of Z and for E in £, u(E)=oc if E 1s infinite and p(E) = the
cardinality of E if E is finite, then /*(]) and L*(I, 2, n) are equal.

Recall that an absolutely continuous function on the unit interval [0, 1]
has a denivative a.e. on [0, 1].

1.8. Example. Let 5= the collection of all absolutely continuous func-
tions f: [0, 1]>F such that f(0) = 0 and f L%, 1). If {(f, g) =

fof ()g’(t)dr for f and g in 5#, then ¥ is a Hilbert space (Exercise 3).

Suppose & 1s a vector space with an mner product ( -,-) and the norm
1s defined by the mner product. What happens if (2, d) (d(x, y) ={|x— y||)
1S not complete?



1.9. Proposition. If X is a vector space and ( -, Y4 is an inner product on
X and if I is the completion of & with respect to the metric induced by the
norm on %, then there is an inner product ( -, ), on 3 such that

(X, Y)#= (X, ¥V)g prxandy in X and the metric on H is induced by this
inner product. That is, the completion of X is a Hilbert space.

The preceding result says that an incomplete inner product space can be
completed to a Hilbert space. It 1s also true that a Hilbert space over R can
be imbedded in a complex Hilbert space (see Exercise 7).

This section closes with an example of a Hilbert space from analytic
function theory.

1.10. Definition. If G is an open subset of the complex plane C, then
L2(G) denotes the collection of all analytic functions f: G = C such that

ffG[f(x + iy)|Pdxdy < .

L%(G) is called the Bergman space for G.

Several alternatives for the integral with respect to two-dimensional
Lebesgue measure will be used. In addition to [[.f (x + iy) dx dy we will

also see
ffo and j;;f dArea.

Note that L2(G) < L*(p), where p = Area|G, so that L?(G) has a
natural inner product and norm from L*(p).

1.11. Lemma. If fis analytic in a neighborhood of E(a; r), then

1
/a) = 7r’ f”;i'(a;r)f'

[Here B(a; r) = {z:|z— a| <r)and B(a,r)= {z: |z—a|< r}.]

Proor. By the mean value property, if 0 <t<r, fla) =1 /27)(" _f(a +
te®)d6. Hence

(wrz)_lfj;(a;r)f= (wrz)ﬂj{;rt :flf(a + te'?) d&j dt

=(2/r2)j:tf(a) dt = fla). ®

1.12. Corollary. IfFfELX(G),a € G, and 0 <r< dist(a, dG), then

f(a)l < r\}; A, -




PROOF. Since E(a;r); G, the preceding lemma and the CBS inequality
imply

f@=—5ff f1

(a;r)
1/2( 11,2

1| 21 2
wrszj;I m ij;s' 1_

|

(a;r) (a;, r)

1
< _"glmlz"‘/';- =
Tr

1.13. Proposition. L2(G)is a Hilbert space.

Proor. If p = area measure on G, then L%(p) is a Hilbert space and
L2(G)c L*(p). So it suffices to show that LZ(G) is closed in L*(p). Let
{ .} be a sequence in L2( G) and let f € L*(u) such that fIf.— fl*dup— 0
as n — oo.

Suppose B(a;r)C G and let 0 < P <dist(B( a; r),dG). By the preced-
ing corollary there is a constant C such that |f,(2)— [, ()| CIlf,— f.ll5
for all n, m and for |z—a|< p. Thus { f,} is a uniformly Cauchy sequence
on any closed disk in G. By standard results from analytic function theory
(Montel 8§ Theorem or Morera S Theorem, for example), there 1S an analytic
function g on G such that f,(z) > g(z) uniformly on compact subsets of
G. But since f|f,— fif*dp — 0, a result of Riesz implies there is a subse-

quence {J., } such that f, (z) = f(2 ae. [p]. Thus f = g ae. [p] and so
feLip) =

EXERCISES

1. Verify the statements made in Example 1.2.

2. Verify that /(1) (Example 1.7) is a Hilbert space.

3. Show that the space ¥ in Example 1.8 is a Hilbert space.
4

. Describe the Hilbert spaces obtained by completing the space Z in Example 1.2
with respect to the norm defined by each of the inner products given there.

5. (A variation on Example 1.8) Let n> 2 and let = the collection of all
functions f: [0, 1]—=F such that (a) f(0) = 0; (b) for | <k <n— 1, R
exists for all #in [0, 1] and %) is continuous on [0, 1l () f" P is absolutely
continuous and f“e€L*(0, 1). For f and g in 5, define

(f,8) = Zﬁzf”"(z‘)g”‘)(t) dr.

Show that 5 is a Hilbert space.
6. Let u be a semi-inner product on £ and put /' = {x €. u(x, x) = O}.

(a) Show that A" is a linear subspace of £ .



(b) Show that if
(x+ N,y + ) =u(x,y)

for all x + A4 and y + A4 in the quotient space Z/A", then ( -, ) is a
well-defined inner product on Z/A".

7. Let S be a Hilbert space over R and show that there is a Hilbert space ¢~ over
C and a map U: 5= X such that (a) U is linear; (b) (Uh,,Uh,) = {(hy,hy)
for all hy, h,in 5; (c) for any k in X there are unique h;, h, in S such that
k = Uhy +iUh,.(X is called the complexijication of 3 .)

8. If G = {z€ C: 0 <|z|]<1)} show that every fin L>( G) has a removable
singularity at z = 0.

9. Which functions are in LZ(C)?

10. Let G be an open subset of C and show that if a € G, then {fELﬁ(G):
f(a) = 0} is closed in L> (G).

I1. If {h,} is a sequence in a Hilbert space ¥ such that 2 ||4,|| < co, then show
that 2%°_, h,, converges in J%.

n=1

§2. Orthogonality

The greatest advantage of a Hilbert space 1s its underlying concept of
orthogonality.

2.1. Definition. If 5 is a Hilbert space and f, g &€ 5, then f and g are
orthogonal if (f, g) = 0. In symbols, fL g If A, BC 5, then A 1 Bif
fl g for every f in A and g in B.

If #=R?, this is the correct concept. Two non-zero vectors in R? are
orthogonal precisely when the angle between them 1s m/2.

2.2. The Pythagorean Theorem. If f, f5,..., f, are pairwise orthogonal
vectors in JC, then

it /s "'f;r.-||2=|Ur1||2+ quz + ...+ an”z-
Proor. If f, 1 f,, then

1f1 + f2|2 =Nt ht h) = |Ur1||2 + 2Re(f1, o) + Hfz”z

by the polar identity. Since f;L f,, this implies the result for » = 2. The
remainder of the proof proceeds by induction and 1s left to the reader. u

Note that if fLg then fL—g, so |If —gll*=I/1I* + llgll*>. The next
result 18 an easy consequence of the Pythagorean Theorem if fand g are
orthogonal, but this assumption is not needed for its conclusion.



2.3. Parallelogram Law. If 5 is a Hilberr space and [ and g € H#, then

If +gll? + 1If—gll® = 2007 + ligh?).
Prookr. For any f and g in % the polar identity implies

If + gll* = IAI* + 2Re( [, g) +1igl%,
If = gll* = IINI° — 2Re(f, g) + ligll’.

Now add. R

The next property of a Hilbert space is truly pivotal. But first we need a
geometric concept valid for any vector space over IF.

2.4. Definition. If £ 1s any vector space over F and A C 4, then A is a
convex set if for any x and y in A and 0 <r<l,ex + (1 —¢#)y € A.

Note that {tx+ (1 —¢)y: 0 <t <1} is the straight-line segment joining
x and y. So a convex set is a set A such that it x and y &€ A, the entire line
segment joining X and y 1S contained in A.

If & is a vector space, then any linear subspace in £ is a convex set. A
singleton set 1s convex. The intersection of any collection of convex sets 1is
convex. If 5 is a Hilbert space, then every open ball B( f , ) = [g e
If —gl|<r} is convex, as is every closed ball.

2.5. Theorem. If 3¢ is a Hilbert space, K is a closed convex nonempty
subset of 3, and h € I, then there is a unique point k, in K such that

lh — k|| = dist(h, K) =inf{||h — k|: k € K.

PROOF. By considering K —h = {k — h: k € K} instead of K, it sutfices
to assume that A = 0. (Verify!) So we want to show that there 1s a unique
vector k, in K such that

lkoll = dist(O, K) =inf{||k||: k€K ).

Let d = dist(O, K ). By definition, there is a sequence {k,}in K such that
|k,||— d. Now the Parallelogram Law implies that

k,—k, k, +k,
2 = 3keal? + el \ .

Since K is convex, 3(k, + k,) € K. Hence, 1 5(k,+k)|*>=d* If e> 0,
choose N such that for n > N, |1k,,,,.||2<d:Z + %&°. By the equation above, if
n, m =2 N, then

Thus, ||k, —k,||<e€for n, m = N and {k,} is a Cauchy sequence. Since
A 1s complete and K is closed, there is a k,in K such that ||k, — k|| — O.

2 2

2

— k
k, m <%(2d2+%52)—d2=“}£2.

2




Also for all k,,
d<|lkoll = llko — k,, + k,l

Thus Ilko” = d.

To prove that k, is unique, suppose hy,€ K such that ||hy||=d. By
convexity, 3(k, + h,) € K. Hence,

d<||3(ho + ko)l < 3ol + llkoll) < d.
So ||3(hy + ky)|| = d. The Parallelogram Law implies

hO+l\:02____d2
2

ho"ko
2

2

»

4~

hence h, =k,. _

If the convex set in the preceding theorem 1s 1n fact a closed linear
subspace of 5, more can be said.

2.6. Theorem. If A is a closed linear subspace of ¥, h € 3, and [, is the
unique element of M such that |h— f,|| = dist(h, A), then h — f, L A.
Conversely, if f, € M such that h — f, L M, then ||h— fy|| = dist(h, A ).

ProoF. Suppose f,€ A and |h— fy||= dist(h, #). It f< A, then f, +f

e M andso ||h— flI> < b —(fo + N7 = (B = fo)— A7 = [1h = foll?
— 2 Re( h ~ fo, f + |A1>. Thus

2ReCh — fo, £ < A7

for any fin 4. Fix fin 4 and substitute fe’’f for fin the preceding
inequality, where (h — f,, /) = re'®,r> 0. This yields 2 Re{ te re’?} <
2N, or 2tr <t?||f]]. Letting t — 0, we see that r = 0; that is, h — fy L f.

For the converse, suppose f,&.# such that h — f, LA If f€ A, then
h — foL fo— fso that

Ih = A7 = IICh = f)+(fo—pIF
= I1h = foll* + Ilfo — A7

> ||h— foll*
Thus ||h— f,|| = dist(h, #). ®

IfACH let A= {fes#: fLgforall gin 4}. It is easy to see that
A * is a closed linear subspace of .

Note that Theorem 2.6, together with the uniqueness statement in Theo-
rem 2.5, shows that if 4 is a closed lincar subspace of ¥ and h € 5#, then
there is a unique element f, in & such that & — f,€ .# ~. Thus a function
P:#— M can be defined by Ph = {,.



2.7. Theorem. If A is a closed linear subspace of  and h € 5, let Ph be
the unique point in M such that h — Ph L .#. Then

(a) P is a linear transformation on 3,

(b) ||Ph|| < ||hl| for every h in 5,

(c) P? = P (here P* means the composition of P with itself),
(d) kerP=#"* agnd ran P = #A.

ProoF. Keep in mind that for every h in 5, h — Ph € # * and ||h — Ph|
= dist(h, A ).

(a) Let hy,h,€ # and a,a,€F. If f € #, then {(ajh; + ay,h,]—
[, Phy + @,Phy), f) = ay(hy — Phy, )+ ay(hy = Phy, [ = 0. By
the uniqueness statement of (2.6), P(ah; + a,h,) = ayPh, +a,Ph,.

(b) If h € s, then h=(h— Ph)+ Ph,Phe #, and h— Phe A"
Thus [[l|> = {|h— Ph{)> + ||Ph]|> = || PAI|>.

(c) If f € #, then Pf=f. For any h in ¥, Ph € #; hence P*h = P(Ph)
= Ph. That is, P* = P.

(d) If Ph = 0, then h = h — Ph e # +. Conversely, if h € £+, then O is
the unique vector in 4 such that h — 0 = h L .#. Therefore Ph = 0.
That ran P = A 1is clear. _

2.8. Definition. If A4 is a closed lincar subspace of 5 and P is the linear
map defined 1n the preceding theorem, then P 1s called the orthogonal
projection of H# onto A . If we wish to show this dependence of P on A, we
will denote the orthogonal projection of S onto 4 by P,.

It also seems appropriate to introduce the notation A4 <3¢ to signify
that .# is a closed linear subspace of 5. We will use the term linear
manifold to designate a linear subspace of 5 that is not necessarily closed.
A linear subspace of ¥ will always mean a closed linear subspace.

2.9. Corollary. If # <, then (M )" =M.

ProokF. If I is used to designate the identity operator on S¢ (viz., Ih = h)
and P = P,, then I —P is the orthogonal projection of 5 onto A *
(Exercise 2). By part (d) of the preceding theorem, (A *)* =ker({— P).
But 0 = (I — P)h iff h = Ph. Thus (M *)L=ker(] — P)=rtan P = A.

B

2.10. Corollary. If A C3#, then (A *)* is the closed linear span of A in 5.

The proof is left to the reader; see Exercise 4 for a discussion of the term
Closed linear span.”

2.11. Corollary. If Y is a linear manifold in #, then Y is dense in H iff
Y+ = (0).

Proor. Exercise.



EXERCISES

1. Let »# be a Hilbert space and suppose f, g€ s with ||f]|=1lgl| = 1. Show that
ltf + (1 =) gll< 1 for O <z < 1. What does this say about {h € 5:||h|| <1}?

2. If # <5 and P= P,, show that I — P is the orthogonal projection of 5#
onto A * .

3.1f # <5, show that #/ n A+ = (0) and every hin S can be written as
h=f+gwherefe#andge - M+ M= {(f,g). fEH gEHM)
and T: A + #+ — 3 is defined by T(f,g)=f+ g, show that T is a linear
bijection and a homeomorphism if # + # * is given the product topology.

(This is usually phrased by stating that A and 4 * are topologically complemen-
tary in %))

4, If A € 57, let VA = the intersection of all closed linear subspaces of # that
contain A. VA is called the closed linear span of A. Prove the following:

(a) VA <5 and VA 1s the smallest closed linear subspace of 5# that con-
talns A.

(b) VA = the closure of {&i_ja,fr:n=1, a.€F, f.€ A)
3. Prove Corollary 2.10.

6. Prove Corollary 2.11.

§3. The Riesz Representation Theorem

The ftitle of this section 1s somewhat ambiguous as there are at least two
Riesz Representation Theorems. There 1s one so-called theorem that repre-
sents bounded linear functionals on the space of continuous functions on a
compact Hausdorff space. That theorem will be discussed later in this book.
The present section deals with the representation of certain linecar function-
als on Hilbert space. But first we have a few preliminaries to dispose of.

3.1. Proposition. Let 5 be a Hilbert space and L: #—>F a linear
functional. The following statements are equivalent.

(a) L is continuous.

(b) L is continuous atr 0.

(c) L is continuous at some point.

(d) There is a constant ¢ > 0 such that \L(h)} <cl|h|| for every hin 5.

PrRooOF. It 1s clear that (a) = (b) = (¢) and (d) = (b). Let S show that
(¢) = (a) and (b) = (d).

(c) = (a): Suppose L is continuous at hy and % is any point in . If
h — hin 5, then h,— h + hy— h,. By assumption, L(hy) = llim[L(h,
— h + h)] = im[L(h,)— L(h) + L(hy)] = lim L(h,)— L(h) + L(hy).
Hence L(h) = lim L(h).



(b) = (d): The definition of continuity at O implies that L*"l({ae IF:
la| < 1)) contains an open ball about 0. So there is a 8> 0 such that
B(0; 8) c L '({aeF:|a|<1}). That is, ||A||<8 implies |L(h)|< 1. If A
is an arbitrary element of 5% and &> 0, then ||8(||A|| + ) 'h||< 8. Hence
Oh

)
L> L e || = i+ e E s

thus,

L(R) < (Al + o).

Letting € = 0 we see that (d) holds with ¢ = 1/9. B

3.2. Definition. A bounded linear functional L on 5 is a linear functional
for which there is a constant ¢ > 0 such that |L(h)|<c||A| for all A in SZ.
In light of the preceding proposition, a linear functional 1s bounded if and
only 1f it 1s continuous.

For a bounded linear functional L: s - F, define
ILY| = sup{|L(h)]: ||kl < 1}.
Note that by definition, ||L||<woo;]|L|| is called the norm of L.

3.3. Proposition. If L is alinear functional, then
ILI| = sup{|L(A)|: Al = 1}
= sup{|L(h)|/\\hl|: h €#, h # 0]
= inf{c > 0: [L(h)|< c||h||, hin SF }.
Also, \L(M)| <||LI|\\#l| for every h in 52,

PrROOF. Let a = inf{c > O: ||L(h)||<c|lA||, h in £ }. Tt will be shown that
|L|| = a; the remaining equalities are left as an exercise. If &> 0, then the
definition of ||L|| shows that |L((||k||+ &) 'h)|<||L||. Hence |L(h)|<
IIL|[(||h]| + €)- Letting € — 0 shows that |L(h)|<||L||||A|| for all A. So the
definition of a shows that a <||L||]. On the other hand, if |L(h)|< cl||Al|
for all h, then ||L||< c¢. Hence ||L|| L a. u

Fix an h,in 5 and define L: 3¢— IF by L(h) = (h. h). It is easy to
sec that L is linear. Also, the CBS inequality gives that | L{ h)|=|(h, h,) |
<lA||||hyll- So L is bounded and ||L|| <|lhyl|l. In fact, L(hy/||hyll) =

Cho/Wholl, ho) = llholl, SO that || L} = J|Ayll. The main result of this section
provides a converse to these observations.

3.4. The Riesz Representation Theorem. Zf L: - F is a bounded linear
functional, then there is a unique vector hyin X such that L(h) = (h, h )
for every hin 3. Moreouer, ||L|| = [lhy]|.



Proor. Let A = ker L. Because L 1s continuous, # 1s a closed linear
subspace of J#. Since we may assume that # # ¥, # ~+ (0). Hence there
is a vector f, in A * such that L(f,) = 1. Now if h€ ¢ and a = L(h),
then L(h—afy,)=L(h) —a = 0; so h —L(h)f,e #A. Thus

0 = <h - L(h)f(}&f0>

= (h, fo) = L(R)IfII*.

So if hg = ||[foll " *fo» L(h) = (h, h,) for all h in .

If h, € such that (h, hy) = (h, h() for all h, then hy— hjy LS. In
particular, hy— hy L hy— hy and so hy = hy. The fact that ||L|| = ||hl|
was shown 1n the discussion preceding the theorem. n

3.5. Corollary. If (X, 2, 1) is a measure space and F:L*(p)—F is a
bounded linear functional, then there is a unique hin L*(n) such that

F(h) = f hh, dp
for every h in L*(n).

Of course the preceding corollary 1s a special case of the theorem on
representing bounded linear functionals on L ?(u), 1 < p <oo. But it is
interesting to note that it 1s a consequence of the result for Hilbert space
[and the result that L*(u) is a Hilbert space].

EXERCISES
I. Prove Proposition 3.3.

2. Let #=[*(N).If N> | and L:#—F is defined by L({a,}) = a,, find the
vector hg in X such that L(h) = (h, hy) for every hin 5.

3, Let #=1*(Nu {O}). (a) Show that if {a”}Elz, then the power series25_ja, z”
has radius of convergence > 1. (b) If |A|]< | and L:5#— C is defined by
L({a,}) = X _pa,X", find the vector hy in 5 such that L(h) = (h, hy) for
every hin 5#. (c) What is the norm of the linear functional L defined in (b)?

4. With the notation as in Exercise 3, define L:#— Cby L({a, Y= Yo na )T 1,
where |A|< 1. Find a vector A, in ## such that L(h) = (h, h,) for every k
in J7.

5. Let 5# be the Hilbert space described in Example 1.8, If 0 <t < 1, define L:
H—F by L(h) = h(t). Show that L is a bounded linear functional, find ||L}],
and find the vector hyin S such that L.(h) = (h, hy) for all hin 5.

6 Let #=L%*0, 1) and let C be the set of all continuous functions on [0, 1] that
have a continuous derivative. Let f€ [0, 1] and define L:C*'—>F by L(h) =
h’(t). Show that there is no bounded linear functional on S# that agrees with L
on CV.



§4. Orthonormal Sets of Vectors and Bases

It will be shown 1n this section that, as in Euclidean space, each Hilbert
space can be coordinatized. The vehicle for introducing the coordinates is
an orthonormal basis. The corresponding vectors in F? are the vectors
{e,e,,...,€,), where e, 1s the d-tuple having a 1 in the & th place and
zeros clsewhere.

4.1. Definition. An orthonormal subset of a Hilbert space 5 is a subset &
having the properties: (a) for ¢ in &,|le|l = 1; (b) if e;, e, € 6 and e; # e,,
then e; 1 e,.

A basis for s is a maximal orthonormal set.

Every vector space has a Hamel basis (a maximal linearly independent
set). The term basis for a Hilbert space is defined as above and it relates

to see this after understanding several facts about bases.

4.2. Proposition. If & is an orthonormal set in 3, then there is a basis for #
that contains &.

The proof of this proposition 1s a straightforward application of Zorn S
Lemma and 1s left to the reader.

4.3. Example. Let #=Lg[0,27] and for n in Z define e, in 5 by
e,(t) = (2m) /%exp(int). Then {e,: n €Z} is an orthonormal set in .
(Here L&[0,27] is the space of complex-valued square integrable functions.)

It 1s also true that the set in (4.3) 1s a basis, but this 1s best proved after a
bit of theory.

4.4. Example. If #=F“ and for 1 <k <d, e, = the d-tuple with 1 in the
k th place and zeros elsewhere, then {e,, ..., €,}is a basis for .

4.5. Example. Let s#=/[%(I) as in Example 1.7. For each iin Z define e,
in 3 by ¢(i) = 1 and e,(j) = 0 for j+# i Then {e,; i €1} 1s a basis.

The proof of the next result 1s left as an exercise (see Exercise 5). It 1s very
useful but the proof i1s not difficult.

4.6. The Gram-Schmidt Orthogonalization Process. If 5 is a Hilbert
space and {(h,:n €N} is a linearly independent subset of , then there is
an orthonormal set fe,; n €N} such that for every n, the linear span of
{e,...,e,} equals the linear span of {h,, ..., h}.



Remember that VA is the closed linear span of A (Exercise 2.4).

4.77. Proposition. Let{e,,...,e,} be an orthonormal set in H and let
M=VN{e...,e,}. If Pis the orthogonal projection of H# onto M, then

n

Ph= ). (h,e)e,
k=1

for all h in 5.

PrRooF. Let Qh = L;_(h,e,ye,. If 1 <j< n then (Qh, e,) =
E=1< h, ek><ek=ej> = (h? ej+> since ek‘lef for k # J Thus (h _Qh, ej)
=0 for 1 <j<n That is, h — Qh L M for every h in . Since Qh is

clearly a vector in A,Qh is the unique vector hy in A such that
h—hyL A (2.6). Hence Qh = Ph for every h in 5. _

4.8. Bessel § Inequality. Zf {e,; n €N} is an orthonormal set and h € H,
then

>, I{h, e, < |A|>.
n=1

PrROOF. Let h, = h —X7_i{(h,e,>e,. Then h, Le, for 1 <k <n (Why?).
By the Pythagorean Theorem,

[k

117+ 2o (h,e, e,
k=1

101% + 2 1<h e, )7
k=1

> ), [Kh,e)’.
k=1

Since n was arbitrary. the result 1s proved. u

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

4.9. Corollary. Zf & is an orthonormal set in 3 and h € 3, then (h, e) # 0
¢ for at most a countable number of vectors e in &

: PRooF. For cach n>11et &, = {e €1:|(h,e)|= 1/n}. By Bessel S
¢ Incquality, &, is finite. But US_,8, = {e €& (h, ¢,) # O). B

4.10. Corollary. Zf& is an orthonormal set and h € 3¢, then

2 [{h, e)|* < |ih]).

eed

This last corollary 1s just Bessel S Inequality together with the fact (4.9)
that at most a countable number of the terms in the sum differ from zero.
Actually, the sum that appears in (4.10) can be given a better interpreta-
tion- a mathematically precise one that will be useful later. The question 1is,



what is meant by X{h: i €1} if h, € # and [ is an infinite, possibly
uncountable, set? Let # be the collection of all finite subsets of / and order
F by inclusion, so % becomes a directed set. For each F in %, define

hp= Y {h:i€F}.
Since this is a finite sum, 4 is a well-defined element of 5. Now { h:
"Fe%}isanetin #.

4.11. Definition. With the notation above, the sum 2{ h,: i € I} converges

if the net {h,: F € % ) converges; the value of the sum is the limit of the
net. *

If »#= F, the definition above gives meaning to an uncountable sum of
scalars. Now Corollary 4.10 can be given its precise meaning; namely,
Y{|(h,e)|*: e € &} converges and the value < |/h||* (Exercise 9).

If the set / in Definition 4.11 is countable, then this definition of
convergent sum is not the usual one. That is, if {/,} 1s a sequence in 7,
then the convergence of 2{4,: n € N} is not equivalent to the convergence
of £*_.,h,. The former concept of convergence is that defined in (4.11) while
the latter means that the sequence {27 _,h, }>_, converges. Eyen if = F

b RS A T RN IR S RS,
these concepts do not coincide (see Exercise 12). If, however, 2{h : n € N}

+++++++++++++++++++++++++++++++++++++++++++++++++

converges, then X*°_ A, converges (Exercise 10). Also see Exercise 11.

4.12. Lemma. If & is an orthonormal set and h € 3, then

Y {(h,ede: e € &)

converges in .

PrROOF. By (4.9), there are vectors e;,e,, ... in & such that {e €&~
(h,e) # 0} = {e}, e,, ...}. Wealso know that £2_,|(h, e, )|* < ||h]|* < oo,
So if £> 0, there is an N such that ¥ ,|(h,e, )|* <&’ Let F,=
{e(,...,ey_1} and let &= all the finite subsets of &. For F in # define
hp=Y{(h,ede: e F}.If Fand G € % and both contain Fj, then

lhe—hgl?= 2 {|(h,e)*: e € (F\G)U(G\ F))

o0
< 2 Kh,e)l’
n=N
< g%
So {hyp: F&€ %} is a Cauchy net in 5. Because 5 1s complete, this net
converges. In fact, it converges to 2.°_;{(h, e, >e,. _

4.13. Theorem. If & is an orthonormal set in 3, then the following
statements are equivalent.

(a) & is a basis for K.
(by IfhesxX and h L &, then h = 0.
(c) V&= 7.



(d) If he 5#, then h= L{(h,e)e:eE ).
(e) If g and he I, then

(8. h)y = 2 {(g.e)e,h)y: e€&}.

(D) If he #, then ||h||* = L{|(h,e)|*. e € &) (Parseval’s Identity).

PROOF. (a) = (b): Suppose h L& and h # 0; then EU{ h/|h|} is an
orthonormal set that properly contains &, contradicting maximality.

(b) < (¢): By Corollary 2.11, V&€ = ¢ if and only if &+ = (0).

(b) = (d): If h€H, then f=h —2{(h e)e;e€ &} is a well-defined
vector by Lemma 4.12. If e¢; €&, then (f, e;) = (h, e;)— 2{{(h,e){e,e)):
ec€&)=(h e;)—(h e;)=0. That is, f€E*. Hence f = 0. (Is every-
thing legitimate in that string of equalities? We don{ want any illegitimate
equalities.)

(d) = (e): This 1s left as an exercise for the reader.

(e) = (): Since ||h||> = (h, k), this is immediate.

(f)= (a): If & is not a basis, then there is a unit vector ey (]ley]| = 1) in

A such that e, L &. Hence, 0 = L{|{e,, e)| e &}, contradicting (f).
|

Just as in finite-dimensional spaces, a basis in Hilbert space can be used
to define a concept of dimension. For this purpose the next result is pivotal.

4.14. Proposition. Zf ¢ is a Hilbert space, any two bases have the same
cardinality.

PROOF. Let 6 and % be two bases for S and put € = the cardinality of &,
n = the cardinality of %#.1If € or ; is finite, then € = (Exercise 135).
Suppose both & and 5 are infinite. For ein &, let #F,={fE€ F: (e, ) #
O}; so #, is countable. By (4.13b), each fin # belongs to at least one set
F.,ein & That is, F=U{ F:e€ ). Hence n<e-N,=¢e Similarly,
£ <. u

4.15. Definition. The dimension of a Hilbert space 1s the cardinality of a
basis and is denoted by dim 2.

If (X, d) is a metric space that is separable and {B;,=B(x,;E): i€ Z }is
a collection of pairwise disjoint open balls in X, then Z must be countable.
Indeed, if D is a countable dense subset of X,B,MN D #0 for each i in 1.
Thus there is a point x;in B,N D. So {x,: i € Z} is a subset of D having
the cardinality of I; thus Z must be countable.

4.16. Proposition. Zf X is an injinite-dimensional Hilbert space, then 3 is
separable if and only if dim =N .



Proor. Let & be a basis for . If e;,e, €&, then |le;—e,]|* = |le]|* +
lle,||> = 2. Hence { B(e;1/V2): e €6 is a collection of pairwise disjoint
open balls in 5. From the discussion preceding this proposition, the

assumption that 5# 1s separable implies 6 1s countable. The converse is an
EXCICISE. m

EXERCISES
1. Verily the statements in Example 4.3.
2. Verily the statements in Example 4.4.
3, Verily the statements in Example 4.5.
4, Find an infinite orthonormal set in the Hilbert space of Example 1.8.

5. Using the notation of the Gram-Schmidt Orthogonalization Process, show that

up to scalar multiple e; = h; /|||l and for n2 2, €, = |lh, — f,ll 7 (h, — f,),
where f, is the vector defined formally by

| Chys hy) Chu—1shy) Chashy)
-1 : : :
f, = - det ' ' '
det[(hi h)|; oy | Pohacy o (B b)) KRy oy
h, ce h, 4 0

. —

In the next three exercises, the reader 1s asked to apply the Gram-Schmidt
Orthogonalization Process to a given sequence in a Hilbert space. A reference for
this material is pp. 82-96 of Courant and Hilbert [1933].

6. If the sequence 1,x,x°, is orthogonalized in Lz(— 1, 1), the sequence
e.(x) = [32n+1)])/?P,(x) is obtained, where

1 d\",6 , n
= — 1) .
Pn(x) znn!(dx) (’x )
The functions P,(x) are called Legendre polynomials.

7. If the sequence e_"‘zfz, xe_xz/z,xze_xz/z, is orthogonalized in
L?(— 00, 00), the sequence e,,(x) = [Z”n!\/;]ﬁl/an(x)e_x /% is obtained,
where

H (x) = (-1)”ex’*(%)"ex’*.

The functions H, are Hermite polynomials and satisfy H,(x) =2 nH, | ( x).

8. If the sequence e /% xe */%,x%"*/*,.. is orthogonalized in L*(0,c0), the

sequence e,(X) = e"‘/an (x) n ' is obtained, where
L,(x) = e” —d-)n(xnedx).
’ dx
The functions L are called Laguerre polynomials.

9. Prove Corollary 4.10 using Definition 4.11.

10. If { h,} is a sequence in Hilbert space and X{ h,:n&N} converges to h
(Definition 4.11), then lim 27 _,h, = h. Show that the converse is false.



11.

12.

13

14.

15.
16.

17.

18.

19.
20.

If {h,} is a sequence in a Hilbert space and 2;°_,||h,,ll<oco, show that X{h,:
n& N} converges in the sense of Definition 4.11.

Let {a,} be a sequence in F and prove that the following statements are
equivalent: (a) 2{ a,;; n&€N} converges in the sense of Definition 4.11. (b) If «#
is any permutation of N, then 2%°_,a converges (unconditional convergence).
(©) Lr-ila,| < co.

m(n)

Let & be an orthonormal subset of ¥ and let # = V&.If P is the orthogonal

projection of 5 onto 4, show that Ph=2{ (h, e)e: e €&} for every h
in J¢.

et A = Area measure on D and show that 1, z, zz, . . . are orthogonal vectors

in L*(A). Find ||z"),n> 0. If e, = ||z"]| 'z",n> O, is {e,, e;,.} a basis
for L*(A\)?

In the proof of (4.14), show that if either ¢ or  is finite, then ¢ = 75

If 5 is an infinite-dimensional Hilbert space, show that no orthonormal basis
for 52 is a Hamel basis. Show that a Hamel basis is uncountable,

Let d > 1 and let p be a regular Borel measure on R“ Show that L*(p) is
separable.

Suppose L*( X,82,p) is separable and { E:i € I} is a collection of pairwise
disjoint subsets of X, E €2, and 0 <u( E,) < cc for all i. Show that [ is
countable. Can you allow p( E;)=00?

If {hes:||hll<1} is compact, show that dim ¥ <co.

What is the cardinality of a Hamel basis for /%7

5. Isomorphic Hilbert Spaces and the Fourier

Transtorm for the Circle

Every mathematical theory has its concept of isomorphism. In topology
there 1s homeomorphism and homotopy equivalence; algebra calls them
isomorphisms. The basic idea i1s to define a map which preserves the basic
structure of the spaces in the category.

5.1,

Definition. If ¥ and X are Hilbert spaces, an isomorphism between

H and X is a linear surjection U: ¥ — X such that

(Uh,Ug) = <(h, g)

for all A, g in J#. In this case ¥ and X are said to be isomorphic.

It is easy to see that if U:#— X is an isomorphism, then so is U™ !:

X — 3. Similar such arguments show that the concept of |somorphic is
an equivalence relation on Hilbert spaces. It 1s also certain that this 1s the



correct equivalence relation since an inner product is the essential ingredient
for a Hilbert space and i1somorphic Hilbert spaces have the Same inner
product. One might object that completeness is another essential ingredient
in the definition of a Hilbert space. So it i1s! However, this too 1s preserved
by an 1somorphism. An isometry between metric spaces 1$ a map that
preserves  distance.

5.2. Proposition. If V: > X is a linear map between Hilbert spaces, then
V is an isometry if and only if {Vh, Vg) = (h, g) for all h, g in .

Prook. Assume (Vh, Vg) = (h, g) for all h, g in . Then ||Vh||* =
(Vh,Vh) = (h, h) = ||h||* and V is an isometry.

Now assume that V is an isometry. If A, g € and AE€F, then
|h + Ag||* = || VA + AVg||%. Using the polar identity on both sides of this
equation gives

Al + 2ReX(h, g) + IAPligl? = [IVAII® + 2ReX(Vh, Vg) + ||| Vgl”.

But ||Vh|| = ||kl and ||Vgl| = ||gll, so this equation becomes
Rej\(h, g) = Rei(Vh, Vg)

for any A in F.IfF =R, take A = 1. If F=C, first take A = 1 and then

take A = ito find that (A, g) and (Vh, Vg) have the same real and
imaginary parts. B

Note that an 1sometry between metric spaces maps Cauchy sequences into
Cauchy sequences. Thus an 1somorphism also preserves completeness. That
1s, 1f an inner product space 1s 1somorphic to a Hilbert space, then it must be
complete.

5.3. Example. Define S:I*—1*by S(a,,a,,...) = (0, a;,a,,...). Then

S is an i1sometry that is not surjective.

The preceding example shows that i1sometries need not be isomorphisms.

A word about terminology. Many call what we call an 1somorphism a
unitary operator. We shall define a unitary operator as a linear transforma-
tion U: ¥ — J¢ that is a surjective isometry. That is, a unitary operator is
an 1somorphism whose range coincides with its domain. This may seem to
be a minor distinction, and in many ways it 1s. But experience has taught me
that there 1s some benefit in making such a distinction, or at least in being
aware of it.

5.4. Theorem. Two Hilbert spaces are isomorphic if and only if they have the
same dimension.

Prook. If U: ¢— XX is an isomorphism and & is a basis for 5%, then it is
easy to see that U6 ={Ue:e €&} i1s a basis for X ". Hence, dim = dim ¢ .



Let 2 be a Hilbert space and let & be a basis for #. Consider the
Hilbert space [’ (&). It he i, define h:& —>F by hie) = (h,e). By
Parseval’s Identity hel*(&) and ||h|| = ||h||. Define U: #— I1%(&) by
Uh = h. Thus U is linear and an iIsometry. It 1s ecasy to see that ranlU
contains all the functions f in /*(&) such that f(e) = O for all but a finite
number of e; that is, ranU is dense. But U, being an isometry, must have
closed range. Hence U: H—-1%(&) is an isomorphism.

If X is a Hilbert space with a basis %, is isomorphic to [*(F). If
dim = dim ¢, & and % have the same cardinality; it is easy to see that

[2(& )and / 2( %) must be isomorphic. Therefore % and X are isomorphic.
|

5.5. Corollary. All separable infinite dimensional Hilbert spaces are isomor-
phic.

This section concludes with a rather important example of an isomor-
phism, the Fourier transform on the circle.

The proof of the next result can be found as an Exercise on p. 263 of
Conway [1978]. Another proof will be given later in this book after the
Stone-Welerstrass Theorem 1s proved. So the reader can choose to assume
this for the moment. Let D = {z €C:|z|<1}.

5.6. Theorem. Zf f: 0D —C is a continuous function, then there is a

sequence { p,(z, 2)} of polynomials in z and Zz such that p,(z,Z)— f(z)
uniformly on dD.

Note that if z €dD,z = z~!. Thus a polynomial in z and Z on dD
becomes a function of the form

Yzt
K= —m

If we put z = e‘?, this becomes a function of the form
H
Z o eikﬂ
k
= —m

Such functions are called trigonometric polynomials.
We can now show that the orthonormal set in Example 4.3 1s a basis for
L&[0,27]. This is a rather important result.

5.7. Theorem. Zf for each n in Z, e,(t) =27) Y?%exp(int), then fe,:
n€Z)}is a basis for L{[0,27].

ProoF. Let I={2L7__,a,e,: ¢, €C n> 0} Then J is a subalgebra of
Cel0,27], the algebra of all continuous C-valued functions on [0,27]. Note
that if f€ 9, f0) = f(27). We want to show that the uniform closure of 7



={fe€C.l0,27]: f(0) = f(27)}. To do this, let f €€ and define F:
dD — C by F(e'') = f{1). F is continuous. (Why?) By (5.6) there is a
sequence of polynomials in z and Zz,{ p (z,z)}, such that p (z,z)— F(z)
uniformly on dD. Thus p,(e',e ")— f(t) uniformly on [0,2#]. But
p.(e',e”")ET.

Now the closure of € in LE[0,27]is all of L&[0,27] (Exercise 6). Hence
V{e: neZ)=Li[0,27] and {e,} is thus a basis (4.13). n

Actually, it is usually preferred to normalize the measure on [0, 27]. That
is, replace dt by (27) ' dt, so that the total measure of [0,27] is 1. Now
define e,(t) = exp(int). Hence {e,: nE€Z} is a basis for H'=
Li([0,27]),27) 'dr). If f €3, then

1

5.8 fWEM%=EKWWW&

is called the nth Fourier coefficient of f,nin Z. By (5.7) and (4.13d),
5.9 f= X f(n)e

where this infinite series converges to f in the metric defined by the norm of
2. This is called the Fourier series of f. This terminology is classical and
has been adopted for a general Hilbert space.

If # is any Hilbert space and & is a basis, the scalars {(k, ¢); ¢ €& }
arc called the Fourier coefficients of h (relative to &) and the series in
(4.13d) is called the Fourier expansion of h (relative to 8).

Note that Parseval § Identity applied to (5.9) gives that ):,,_+w[f(n)|2<
infinity. This proves a classical result.

5.10. The Riemann-Lebesgue Lemma. If fe&L?[0,27], then
[&7f(t)e ™dt - 0 as n = + 0.

If fe Li[0,27], then the Fourier series of f converges to f in L*-norm.
It was conjectured by Lusin that the series converges to f almost every-
where. This was proved in Carleson [1966]. Hunt [1967] showed that if
feLl[0,27],1 <p <oo, then the Fourier series also converges to f a.e.
Long before that, Kolmogoroff had furnished an example of a function f in
L[0,27] whose Fourier series does not converge to f a.e.

For f in LZ[O, 277] the function f:Z —C is called the Fourier transform
of f+ the map U: L&[0,27] = I%(Z) defined by Uf = f is the Fourier

transform. The results obtained so far can be applied to this situation to
yield the following.

5.11. Theorem. The Fourier transform is a linear isometry from LE[0,27]
onto 1*(Z).



PrRoOOF. Let U: L%[O,qu]—-»lz(Z) be the Fourier transform. That U maps
L? = LZ[0,27] into /*(Z) and satisfies ||Uf]| = |If]] is a consequence of
Parseval § Identity. That U is linear is an exercise. If {a,}€!*(Z) and
a, = 0 for all but a finite number of n, then f =X _a,e, € L% It is

— Qo N n
easy to check that f(n) = a, for all n,so Uf = {a&, }. Thus ranU is dense in
/°. But U is an isometry, so ranU is closed; hence U is surjective. u

Note that functions in L&[0,27] can be defined on 9D by letting
f(e'®y= f(0). The ambiguity for # = 0 and 27 (or e’ = 1) might cause us
to pause, but remember that elements of Lg [0,27 ] are equivalence classes
of functions-not really functions. Since {0,2#} has zero measure, there is
really no ambiguity. In this way L&[0,27] can be identified with Li( ID),
where the measure on dD is normalized arc-length measure (normalized so
that the total measure of dD is 1). So L% [0, 27]) and L% ( dD) are (naturally)
iIsomorphic). Thus, Theorem 5.11 is a theorem about the Fourier transform
of the circle.

The importance of Theorem 5.11 is not the fact that L*[0,2w] and /%(Z)
are 1somorphic, but that the Fourier transform 1s an i1somorphism. The fact
that these two spaces are i1somorphic follows from the abstract result that all
separable infinite dimensional Hilbert spaces are isomorphic (5.5).

EXERCISES
1. Verity the statements in Example 3.3.

2. Define V: L%, 00) = L*(0, ) by (Vf)(¢) = f(t + 1). Show that ¥ is an
1Isometry that 1s not sujective.

3. Define V:L*(R)— L*(R) by (Vf)(¢t) = f(t+ 1) and show that V is an isomor-
phism (a unitary operator).

4. Let # be the Hilbert space of Example 1.8 and define U:#— L*(0, 1) by
Uf = f’. Show that U is an isomorphism and find a formula for U/~ *.

5. Let (X, §2, ) be a u-finite measure space and let u: X — IF be an ~-measurable
function such that sup{ |u(x)|: x € X} < co. Show that U:L*(X,Q,p)—
L*(X, 8, 1) defined by Uf = uf is an isometry if and only if |u(x)| =1 a.e. [u],
in which case U 1is sujective.

6. Let €= {f €C[0,27]: f(0) = f(2m)) and show that € is dense in L*[0,27].

7. Show that {(1/v27),(1/ \/;T)CQS nt,(1/ \/;)Sin nt: 1 <n< cc} is a basis for
L’[—7, 7]

§. Let (X, §2) be a measurable space and let pu, v be two measures defined on
(X, £2). Suppose v < pu and ¢ is the Radon-Nikodym derivative of v with
respect to p (¢ = dv/dp). Define V: L*(»)— L*(p) by Vf = \/c;gf Show that V
is a well-defined linear isometry and V¥ is an isomorphism if and only if p<v
(that 1s, o and v are mutually absolutely continuous).
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§6. The Direct Sum of Hilbert Spaces

Suppose ¢ and X are Hilbert spaces. We want to define @ X so that it
becomes a Hilbert space. This 1s not a difficult assignment. For any vector
spaces & and %, Z ® Y is defined as the Cartesian product £ X Y where
the operations are defined on X Y coordinatewise. That is, if elements of
Z® Y are defined as {x ®y:xE€Z,y€ Y}, then (x;® y;) +{(x,® p,)
=(x;+ Xx,)®(y;+ ),), and so on.

6.1. Definition. If 2 and X are Hilbert spaces, #® X ={h@® k: h € F,
k€ X} and

(hy®@ ky, hy @ ky) = hy, hy) + (ki ky).

It must be shown that this defines an inner product on #°® X and that
H® A is complete (Exercise).

Now what happens if we want to define 2, ® %, @ --- for a sequence
of Hilbert spaces ¢, #,,...7 There is a problem about the completeness
of this infinite direct sum, but this can be overcome as follows.

6.2. Proposition. If H#,, H#,, . . . are Hilbert spaces, let 3= {(h ,)*_;:
h, €, for all n and X2_||h ||*<o0). For h = (h,) and g = (g,) in ¥,
dejine

6.3 (h, 8y = 2<h,, 8,)-

n=1

Then (-,-) is an inner product on X and the norm relative to this inner
product is Al = [Z2,|1#(5. With this inner product X is a Hilbert
space.

Proor. If i = (h,) and g = (g,) €57, then the CBS inequality implies
1 h,, 801 < ZiA N < ElAP) 2(Z1g.l17) 2 <. Hence the series
in (6.3) converges absolutely. The remainder of the proof 1s left to the
reader. _

6.4. Definition. If 37, 5%,,... are Hilbert spaces, the space £ of Proposi-
tion 6.2 is called the direct sum of Xy, H,,... and is denoted by H'= ¥
SH,D -,

This is part of a more general process. If {J:i€ I} is a collection Of
Hilbert spaces, =@ {#;:i€1l} is defined as the collection of function:
h: I >U{H#:i€ I} such that h(i) €3 for all i and L{||A())*
i€} <oo.Ifth, g €3, (h, g) =2L{{(h(i), g(i)): i €1};3¢ is a Hilber
space.



The main reason for considering direct sums 1s that they provide a way of
manufacturing operators on Hilbert space. In fact, Hilbert space i1s a rather
dull subject, except for the fact that there are numerous interesting ques-

tions about the linear operators on them that are as yet unresolved. This
subject 1s introduced i1n the next chapter.

EXERCISES

L Let {(X,,82,,p,):i€1} be a collection of measure spaces and define X, £, and
i as follows. Let X = the disjoint union of { X;:i€ I} and let £ = {A C X
An Xef for all iJ. For A in £ put p(4)=2,u,(A n X). Show that

(X, 2, p) is a measure space and L*( X, 2, p) is isomorphic to & { L*( X, 2,, u,):
e 1),

2. Let (X, ) be a measurable space, let p,, p, be measures defined on (X, §2), and
put p = p,+p,. Show that the map V:L*(X, 2, p) = L*( X, 2,p,)®
L*(X,8,p,) defined by Vf= f,@®f,, where f, is the equivalence class of
L*(X, Q,p,) corresponding to f, is well defined, linear, and injective. Show that
U 1s an 1somorphism iff u, and p, are mutually singular.



CHAPTER II

Operators on Hilbert Space

A large areca of current research interest is centered around the theory of
operators on Hilbert space. Several other chapters in this book will be
devoted to this topic.

There 1s a marked contrast here between Hilbert spaces and the Banach
spaces that are studied in the next chapter. Essentially all of the information
about the geometry of Hilbert space 1s contained i1n the preceding chapter.
The geometry of Banach space lies in darkness and has attracted the
attention of many talented research mathematicians. However, the theory of
linear operators (linear transformations) on a Banach space has very few
general results, whereas Hilbert space operators have an elegant and well-
developed general theory. Indeed, the reason for this dichotomy 1s related to
the opposite status of the geometric considerations. Questions concerning
operators on Hilbert space don t necessitate or imply any geometric difficul-
ties.

In addition to the fundamentals of operators, this chapter will also
present an interesting application to differential equations in Section 6.

§1. Elementary Properties and Examples

The proof of the next proposition is similar to that of Proposition 1.3.1 and
1s left to the reader.

1.1. Proposition. Let 3 and X be Hilbert spaces and A: ' — X a linear
transformation. The following statements are equivalent.

(a) A is continuous.
(b) A is continuous ar 0.



(c) A is continuous at some point.
(d) There is a constant ¢ > 0 such that ||Ah|| < c||h|| for all h in .

As in (1.3.3), if
I4ll = sup{||4A||: h € 5, ||h|| <1},
then
||l = sup{|l4A]: k]| = 1)
= sup{|i4A||/||All: h # 0}
= inf{ ¢ > 0: ||[4A|| < c||A]|, h in I }.

Also, ||Ah|| < |4]] ||#]|- ||4]| is called the norm of A and a linear transfor-
mation with finite norm is called bounded. Let (3¢, X% ) be the set of
bounded linear transformations from 5 into X . For = A", B(H 6 )
= ZB( ). Note that Z(#,F) = all the bounded linear functionals on 5#Z.

1.2. Proposition. (a) If A and B € B(#, X ), then A + B € B(H, X),
and 14+ Bl < ||4] + ||B]|.

(b) If a€F and A € B(H, X)), then aA€ B(H, X ) and ||ad| =
|l [|A4]].

(C) IfA€ B(H, X )and B € B(HA, L), then BA € B(H, L) and |BA|]
< ||Bli I14]].

PrROOF. Only (c) will be proved; the rest of the proof 1s left to the reader. If
k € X, then ||Bk|| <||B|||k||. Hence, if h €3¢, k = Ah € and so
|1BAA|| < |[B]} ||[4A|| < (| B[ 4]} ||#]l- _

By virtue of the preceding proposition, d(A4, B) = ||A— B|| defines a
metric on Z (3, A"). So it makes sense to consider Z (I, X") as a metric
space. This will not be examined closely until later in the book, but later in
this chapter the idea of the convergence of a sequence of operators will be
used.

1.3. Example. If dim #=n<o0 and dim X'=m <o0, let {e,, . .., e,} be
an orthonormal basis for ¢ and let {€,...,€,} be an orthonormal basis
for X . It can be shown that every linear transformation from S into X  is
bounded (Exercise 3). If 1 <j<n,1 <i<m, let Q= (Ae,, €,>. Then the

m x n matrix (a,;) represents A and every such matrix represents an
clement of #(H,X").

1.4. Example. Let /?=[*N) and let e, e,,... be its usual basis. If
A € #(1%), form a, = (Ae, e.y. The infinite matrix (a,,) represents A as

One difficulty 1s that it 1s unknown how to find the norm of A in terms of



the entries in the matrix. In fact, if 2 <n< c¢c, there 1s no known formula
for the norm of a matrix 1in terms of its entries. A sufficient condition that 1s
useful 1s known, however (see Exercise 11).

1.5. Theorem. Let (X, §,u) be a finite measure space and put K=
L*(X,2,p)=L*p). If € L*(p), define M,: L*(n)— L*(p) by M,f =
of. Then queg(Lz(P‘)) and IMll = ||®ll -

ProoF. Here ||¢||,, 1S the ~-essential supremum norm. That 1s,

]|, = inf{sup{|¢p(x)|: x & N}: N€ 2, u(N) =0}

inf{c > 0: pt({xE X: |¢(x)|> c}) = O}.

Thus 1]l o 1S the infimum of all ¢ > 0 such that |[¢(x)|< ¢ a.e. [] and,

moreover, |P(x)| <|l¢]l, a.e. [#]. Thus we can, and do, assume that ¢ is a
bounded measurable function and |p(x)|<|l¢]|., for all x. So if f &€ L2(p),

then [|¢f|*du < ||¢ll,/1fI*dp. That is, M, € B(L*(p)) and [[M,|| <
|$|| - If €> O, the u-finiteness of the measure space implies that there is a
set A in £, 0 <u(4)<oo, such that [p(x)| =[Pl — € on A. (Why?) If
=) X4 then fEL*(#) and IIfll, = 1. So [M|* > |[of]13 =
(1(4)) falpl* dp = (li9ll, — €)°. Letting e — 0, we get that | M,[| > [|¢|.,.
u

The operator M, is called a multiplication operator. The function ¢ is its
symbol.

If the measure space (X, §2, ) is not a-finite, then the conclusion of
Theorem 1.5 is not necessarily valid. Indeed, let §2 = the Borel subsets of
[0, 1] and define p on £ by n(4) =the Lebesgue measure of A if 0 € A and
n(4d)=00if 0 € A. This measure has an infinite atom at O and, therefore, is
not u-finite. Let ¢ = X (5. Then ¢ € L¥(u) and ||¢|, = 1. If feL*(p),
then o0 > [|f]*du = [f(0)|°({0}). Hence every function in L*(u) vanishes
at 0. Theretore M, =0 and |[M || <||¢|| .

There are more general measure spaces for which (1.5) 1s valid-the
decomposable measure spaces (see Kelley [1966]).

1.6. Theorem. Let ( X, $2, u) be a measure space and suppose k: X x X —»F
is an § X §2-measurable function for which there are constants c,and ¢, such
that

[ kG ldu(y)<e ae[ul,

fxlk(x, yldp(x)<c, ae [p].



If K: L*(p)— L*(w) is defined by

(Kf)(x) = [k(x,9)f(y)dn(y).

then K is a bounded linear operator and ||K||<(c,c,)/>

ProoF. Actually it must be shown that Kf € L?(n), but this will follow
from the argument that demonstrates the boundedness of K If f& L%(p),

KF (o)l < [1k(x, I ()l dp(y)

= [l Ce, 21K Ce, N2 () ()

11/2( 11,2

< -f|k(x,y)| du(y) flk(x,y)llf(y)lzdu(y)

. - | o

1,2

IA

¢y/* :flk(x, y) lf(y)lzdu(y):

Hence

JIKF(x) P dp(x) < ey [ flke(x, p) ()12 dn(p) dp(x)

= e [N f1k(x, )i dp(x) dy(»)

2
< 6|1

Now this shows that the formula used to define Kf i1s finite a.e. [u],
Kf €L*(p), and | KAI> <cicofl?. =

The operator described above 1s called an integral operator and the
function % 1s called 1ts kernel. There are conditions on the kernel other than
the one in (1.6) that will imply that K 1s bounded.

A particular example of an integral operator 1s the Volterra operator
defined below.

1.7. Example. Let k: [0, 1] x /0, 1] =R be the characteristic function of
{(x, y): y < x}. The corresponding operator V:L*(0, 1) = L*(0. 1) defined
by Vf (x) = [ok(x, y)A y) dy is called the Volterra operator. Note that

VF(x) = foxf(y)dy-

Another example of an operator was defined in Example 1.5.3. The
nonsurjective isometry defined there i1s called the wunilateral shift. 1t will be

studied in more detail later in this book. Note that any isometry 1S a
bounded operator with norm 1.



EXERCISES

1.
2.

3.

10.

11.

12.

Prove Proposition 1.1.
Prove Proposition 1.2.

Suppose {e, } is an orthonormal basis for S and A: #— X is a linear
transformation such that X||Ae, || <oo. Show that A is bounded.

Proposition 1.2 says that d(A, B) = ||A— B|| is a metric on #(5¢, X ). Show
that (3¢, X") is complete relative to this metric.

. Show that a multiplication operator M, (1.5) satisfies M§ = M, if and only if ¢

is a characteristic function.

Let (X, §2,u) be a measure space and let k;,k, be two kernels satisfying the
hypothesis of (1.6). Define

ke XX X—>F byk(x,y) = [ki(x,2)k;(z,p) du(z),

(a) Show that k£ also satisfies the hypothesis of (1.6). (b) If K, K|, K, are the
integral operators with kernels k, ky, k,, show that K = K, K,. What does this
remind you of? Is more going on than an analogy?

If (X, 2,pn) is a measure space and k € L*(u X ), show that k defines a
bounded integral operator.

. Let {e,) be the usual basis for /* and let {a, } be a sequence of scalars. Show

that there is a bounded operator A on [ such that Ae, = a,e, for all n if and
only if {a, } is uniformly bounded, in which case ||4|] = sup{ |a,|: n = 1). This
type of operator is called a diagonal operator or is said to be diagonalizahle.

(Schur test) Let {a, }{°,_; be an infinite matrix such that a,, > O for all ¢ j

and such that there are scalars p, > () and B,y > 0 with

o0
Z afjplg Bpj?
1=1

o0
Z afjp_; < Ypi
j=1
for all ;, j > 1. Show that there is an operator A on [*(N) with (Ae,,e, )= a;,

and ||4|]* < By.

(Hilbert matrix) Show that (Ae;, e,) =(i+j+1) for0<i j< cc defines
a bounded operator on [*(N U {0}) with ||[4|| < 7. (See also Choi [1983].)

Find the operator norm of a 2 x 2 matrix in terms of its entries.

(Direct sum of operators) Let {5 } be a collection of Hilbert spaces and let
H=@@ . Suppose A, € () for all i. Show that there is a bounded
operator A on S such that A |[5¢¥ = A, for all 7 if and only if sup, || A, || <oo. In
this case, ||A]|| = sup,||4,]|.
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§2. The Adjoint of an Operator

2.1. Definition. If 5# and X are Hilbert spaces, a function u: #X ¥ —>F
is a sesquilinear form if for h, g in ¢, k, fin X', and «, 8 in IF

(a) u(ah + Bg, k) = au(h, k) + Bu(g, k);
(b) u(h,ak + Bf) = au(h, k) + Bu(h, f).

2

The prefix Sesqui 1s used because the function is linear in one variable
but (for F = C) only conjugate linear in the other. ( Sesqui means
one-and-a-half. )

A sesquilinear form 1s boundea if there 1s a constant M such that
lu(h, k)| < M||h||||k|| for all A in S and k in X'. The constant M is
called a bound for u.

Sesquilinear forms are used to study operators. If A € Z(5#,X), then
u(h, k) = (Ah, k) is a bounded sesquilinear form. Also, if B Z(X ", 5¥),
u( h, k) = (h, Bk) is a bounded sesquilincar form. Are there any more? Are
these two forms related?

2.2. Theorem. If u: #XH —>F is a bounded sesquilinear form with bound
M, then there are unique operators A in B(H, X% )and B in B(X , ) such
that

2.3 u(h, k) = (Ah, k) = (h, Bk)
for all hin ¥ and k in X" and ||A|,||B|| < M.

Proovr. Only the existence of A will be shown. For each A in 5, define L,:
X—F by L(k) = u(h, k). Then L, is linear and |L,(k)|< M|h| | k|.
By the Riesz Representation Theorem there 1s a unique vector fin X such
that (k, /) = L(k) = u(h, k) and ||f]j< M||Ak||. Let Ah = f. Tt is left as
an exercise to show that A is linear (use the uniqueness part of the Riesz
Theorem). Also, (Ah, k) = (k, Ah) = (k, f) = u(h, k).

If A, e Z(5,X) and u(h, k) = (Ah, k), then (Ah — Ah, k) = 0 for
all k; thus Ah — A h = 0 for all h. Thus, A is unique. H

2.4. Definition. If A € #(5¢, "), then the unique operator B in
B(XH,H) satisfying (2.3) is called the adjoint of A and is denoted by
B =A%

The adjoint of an operator will usually be used for operators in Z(5F),
rather than (¢, X"). There is one notable exception.

2.5. Proposition. ZfU € B(, "), then U is an isomorphism if and only if
U is invertible and U~ '=U *.

Proor. Exercise.
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From now on we will examine and prove results for the adjoint of
operators in Z(5¢). Often, as in the next proposition, there are analogous
results for the adjoint of operators in Z(5¢, X ). This simplification is
justified, however, by the cleaner statements that result. Also, the interested
reader will have no trouble formulating the more general statement when it
1s needed.

2.6. Proposition. ZfA, BEZA(X') and a € IF, then:

(a) (a4 + B)* = aA* + B*

(b) (AB)* = B*A4*.

(¢c) A** = (A*)* = A,

(d) Zf A is invertible in B(#) and A~ is its inverse, then A* is invertible
and (A*)"!' = (4" H*

The proof of the preceding proposition 1s left as an exercise, but a word
about part (d) might be helpful. The hypothesis that A i1s invertible in
#(H) means that there is an operator A~ ' in Z(I) such that A4~ =
A '4 =1 Tt is a remarkable fact that if A is only assumed to be bijective,
then A is invertible in Z(25¢). This is a consequence of the Open Mapping
Theorem, which will be proved later.

2.7. Proposition. If A€ B(H),||A| = ||4*| = ||[4*4|]*/*.

Proor. For h in 5, ||k < 1, [|[4h||> = (Ah, Ah) = (A*Ah, h) <
|A*Ah|| ||h|| < [|A*A4]| < |4*|| ||4|l. Hence [|4|* < ||[4*4|| < [|4*]| ||4]I.
Using the two ends of this string of inequalities gives {|4]| <||A*|] when
|4]| is cancelled. But A = A** and so if A* 1s substituted for A, we get
|A*|| <||A**|| = ||A||. Hence {|4]|| = ||4*||. Thus the string of inequalities
becomes a string of equalities and the proof i1s complete. |

2.8. Example. Let (X, £, 1) be a u-finite measure space and let M, be the
multiplication operator with symbol ¢ (1.5). Then M is Mg, the multipli-
cation operator with symbol ¢.

If an operator on F? is represented by a matrix, then its adjoint is
represented by the conjugate transpose of the matrix.

2.9. Example. If Kis the integral operator with kernel k as in (1.6), then
K *is the integral operator with kernel k*(x,y)=k(y, x).

2.10. Proposition. Zf S: 1> > 1% is dejined by S(ap,a,,...)=
0, ay, ay,...), then S is an isometry and S*(a;,a,,...)=(a,,a;3,...).

Proor. It has already been mentioned that S is an isometry (1.5.3). For («,)

and (B,) in I%,(S*(a,), (B,)) = {(a,, S(B,)) ={(a;, a3,...), (0, B;, B,
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D =a,B, + asBy + - ={(ay,as,...), (B, Ba,...)). Since this holds
for every (8,), the result is proved. n

The operator S 1n (2.10) 1s called the unilateral shift and the operator S*
1s called the backward shift.

The operation of taking the adjoint of an operator is, as the recader may
have seen from the examples above, analogous to taking the conjugate of a
complex number. It is good to keep the analogy in mind, but do not become
too religious about it.

2.11.  Definition. If A € #(5F), then: (a) A 1s hermitian or self-adjoint if
A* = A; (b) A 1S normal 1t AA* = 4*4.

In the analogy between the adjoint and the complex conjugate, hermitian
operators become the analogues of real numbers and, by (2.5), unitaries are
the analogues of complex numbers of modulus 1. Normal operators, as we
shall see, are the true analogues of complex numbers. Notice that hermitian
and unitary operators are normal.

In light of (2.8), every multiplication operator M, is normal; M, is
hermitian 1f and only it ¢ is real-valued; M, 1s unitary if and only if
|¢|=1 ae. [n]. By (2.9), an integral operator K w1th kernel k& 1s herm1t1an
if and only 1f k(x y) = k(y, x) ae. [px p]. The umlateral ‘;hlft i 1'101E

2.12. Proposition. Zf # is a C-Hilbert space and A € B(}X), then A is
hermitian if and only if (Ah, h) €R for all h in .

PrRoor. If A = A* then (Ah, h) = (h, Ah) = (Ah, h); hence (Ah, h) €
R.

For the converse, assume (Ah, h) is real for every h in J¥.If a € C and
h, g €5, then (A(h + ag), h +ag) = (Ah, h) + a{Ah, g) + a{Ag, h)
+ |a|*( Ag, g) ER. So this expression equals its complex conjugate. Using
the fact that (Ah, h) and (Ag, g) €R yields

a(Ag, h) + a{Ah,g) = a(h, Ag) + a{g, Ah)
= a{A*h, g) + a(A*g, h).
By first taking @ = 1 and then a =i, we obtain the two equations
(Ag, h) + (A4h, g) = (A*h, g) + (A*g, h),
i(Ag, h) —i{Ah, g) = -i(A*h, g) + i(A*g, h).
A little arithmetic implies (Ag, h) = (A*g, h), so A = A% u

The preceding proposition i1s false if it is only assumed that 5 is an

W-Hilbert space. For example, if A {—(l) H_on R then (Ah, h) =
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for all A in R%. However, A* is the transpose of A and so A* # A. Indeed,
for any operator A on an R-Hilbert space, (Ah, g) €R.

2.13. Proposition. If A = A* then
14|l = sup{|{A4h, h)|:||h]| = 1}.

PROOF. Put M = sup{{{Ah, h)|:||Al| = 1}.If |}A]| = 1, then [(AA, h)| <
I4]||; hence M <||4]||. On the other hand, if ||A]|=]Igll = 1, then

(A(h £ g), ht g) = (Ah, h) £{Ah, g) £{Ag, h) + (48, g)
= (Ah, h)t (Ah, g) £(g, A*h) + (Ag.8).

Since A = A* this implies

(A(h £8),ht g) = (Ah,h) £+ 2Re(4h,g) + (A48, 8).

Subtracting one of these two equations from the other gives
4Re(Ah,g) = (A(h + g),h + g) —(A(h—g),h—g).

Now it is easy to verify that | (Af f) | < M||f]|*> for any fin 5. Hence
using the parallelogram law we get

4Re(Ah, gy< M(|h + glI> + ||k — gII*)

= 2M(||A))? + 1g11*)
= 4M

since h and g are unit vectors. Now suppose (Ah, g) = e’9| (Ah, 2) |-
Replacing % in the inequality above with e °h gives | (Ah, 2) |< M if
|2]| = |lg]l = 1. Taking the supremum over all g gives ||[AA||< M when

A= 1. Thus (A( <M. =

2.14. Corollary. If A = A* and (Ah, h) = 0 for all h, then A = 0.

The preceding corollary 1s not true unless A = A*, as the example given
after Proposition 2.12 shows. However, if a complex Hilbert space 1s

present, this hypothesis can be deleted.

2.15. Proposition. If 3 is a C-Hilbert space and A € B(X°) such that
(Ah, h) = O for all h in 37, then A = 0.

The proof of (2.15) 1s left to the reader.
If # is a C-Hilbert space and A € #(5¢), then B = (A + A*)/2 and

C =(A—A*)/2i are self-adjoint and A = B + i(C. The operators B and

C are called, respectively, the real and imaginary parts of A.
,:ﬁ':,
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2.16. Proposition. If A € Z( ), the following statements are equivalent.

(a) A is normal.
(b) [|4A|| = ||4A*h|| for all h.

If % is a C-Hilbert space, then these statements are also equivalent to:

(¢) The real and imaginary parts of A commute. =

Proor. If h € 5, then ||Ah||?> —||A*h||*> = (Ah, Ah) —(A*h, A*h) =
((A*A — AA*)h, h). Since A*A — AA* 1s hermitian, the equivalence of (a)
and (b) follows from Corollary 2.14.

It B, C are the real and imaginary parts of A, then a calculation yields

A*4 = B* — iCB + iBC + C?,

AA* = B*+iCB—iBC + C*.
Hence A*A = AA* if and only if CB = B(C, and so (a) and (¢) are
cequivalent. B

2.17. Proposition. Zf A € B(X), the following statements are equivalent.

(a) A is an isometty.
(b) A*A = I
(c) (Ah, Ag) = (h, g) for all h, g in .

Proor. The proof that (a) and (¢) are equivalent was seen in Proposition
I.5.2. Note that if h, ¢ € 5, then (A*Ah, g) = (Ah, Ag). Hence (b) and
(¢c) are easily seen to be equivalent. _

2.18. Proposition. If A € B(), then the following statements are equiv-
alent.

(a) A is unitary.
(b) A is a surjective isometry.
(c) A is a normal isometry.

Proor. (a) = (b): Proposition 1.5.2.
(b) = (¢): By (2.17), A*A = I. But it is easy to seec that the fact that A is
a surjective isometry implies that 4~ ' is also. Hence by (2.17) Z =
(A"H*4 71 = (4*)" 471 = (44*)7!; this implies that A*A = AA* = [
(c) = (a): By (2.17), A*A = I. Since A is also normal, AA* = A¥A = Z
and so A 1s surjective. u

We conclude with a very important, though easily proved, result.

2.19. Theorem. If A € B(H#), then kKer A = (ran A*) ~.

Proor. If h €EkerA and g € 5, then (h, A*¢) = (Ah, g) = 0, so kerAC
(ran A*) +. On the other hand, if & L ran A* and g €%, then (Ah, g) =
(h, A*g) = 0; so (ran A*)+ Cker A. _
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Two facts should be noted. Since A** = A, it also holds that ker A* =
(ran A) +. Second, it is not true that (ker4)~ = ran A* since ran A* may
not be closed. All that can be said is that (ker4)+ = cl(ranA*) and
(ker A*)* = cl(ran A).

EXERCISES

. Prove Proposition 2.5.

2. Prove Proposition 2.6.

3. Verify the statement in Example 2.8,

4, Verily the statement in Example 2.9.

5. Find the adjoint of a diagonal operator (Exercise 1.8).

6. Let S be the unilateral shift and compute SS* and S$*S. Also compute S"S*"
and §*"S§".

7. Compute the adjoint of the Volterra operator ¥ (1.7) and V + V'*. What is
ran( V +V*)?.

8. Where was the hypothesis that 5 is a Hilbert space over C used in the proof of
Proposition 2.12?

9. Suppose A = B +iC, where B and C are hermitian and prove that B = (A +
A*)/2, C = (A — A%) /2.

10. Prove Proposition 2.15.

1. If A and B are self-adjoint, show that AB is self-adjoint if and only if
AB = BA.

[2. Let X%*_,a,z" be a power series with radius of convergence R, 0 <R <oo. If
A €eB(H) and ||A||< R, show that there is an operator 7 in Z(¥) such that
for any h, g in ¥, (Th, g) = L. q0,{A"h,g>. [If f(z) = La,z", the operator
T is usually denoted by f(A).]

13. Let A and T be as in Exercise 12 and show that ||T-—2E=UakAk||—*Oas
n—oo.If BA = AB, show that BT = TB.

14, If f(z) = expz = X%_4z"/n' and A is hermitian, show that f(iA) is unitary.

5. If A is a normal operator on J¢, show that A is injective if and only if A has
dense range. Give an example of an operator B such that ker B = (0) but ran B

is not dense. Give an example of an operator C such that C is surjective but
kerC # (0).

16. Let M, be a multiplication operator (1.5) and show that kerM, = (0) if and
only if w({x:¢$(x)=0}) = 0. G’1ve necessary and sufficient conditions on ¢
that ran M, is closed.



11.3. Projections and ldempotents; Invariant and Keducmg dubspaces 3/

§3. Projections and Idempotents; Invariant and
Reducing Subspaces

3.1. Definition. An idempotent on  is a bounded lincar operator E on ¢
such that E% = E. A projection is an idempotent P such that kerP =
(ran P)*.

If #<¢,then P, is a projection (Theorem 1.2.7). It is not difficult to
construct an idempotent that is not a projection (Exercise 1).

Let E be any idempotent and set 4 = ran E and A& =Kker E. Since FE is
continuous, A" is a closed subspace of 5. Notice that (I —E)2 =/ — 2F
+ E2=Z—-2E+E=1—-E; thus Z —Eis also an idempotent. Also,
O=(I—Eh =h — Eh, if and only if Fh = h. So ran E 2ker(f — E).
On the other hand, if h € ran E, h = Eg and so Eh = Ezg = FEg = h;
hence ran E = ker( I — E). Similarly, ran(l — E) = ker E. These facts are
recorded here.

3.2. Proposition. (a) E is an idempotent if and only if I — E is an idempo-
tent. (b) ran E = ker(1 — E), kerE = ran( 1 — E), and both ran E and
ker E are closed linear subspaces of . (c) If # =ran E and N = ker E,
then M N A= (0) and M + N =K.

The proof of part (¢) 1s left as an exercise. There 1s also a converse to (¢).
M N <H, M n = (0), and A + A=, then there is an idempo-
tent £ such that A = ran E and A =ker E; moreover, E is unique. The
difficult part in proving this converse 1s to show that F is bounded. The
same fact 1s true in more generality (for Banach spaces) and so this proof
will be postponed.

Now we turn our attention to projections, which are peculiar to Hilbert
space.

3.3. Proposition. If E is an idempotent on X and E #+ 0, the following
statements are equivalent.

(a) E is a projection.

(b) E is the orthogonal projection of H onto ran E.
©IE] = 1

(d) E is hermitian.

(e) I is normal.

() (Eh,h) =0 for all h in ¥.

Proor. (a) = (b): Let #/ =ran E and P = P,.If h € ¢, Ph = the unique
vector in A4 such that h — Ph € # * = (ran E) * = kerE by (a). But
h— Eh = (I— E)h €kerE. Hence Eh = Ph by uniqueness.

(b) = (¢): By (1.277),||E||< 1. But Eh = h for h in ran E, so ||E||=1.
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(¢) = (a): Let he(kerE)*. Now ran(/ — E) = ker E, so h— Eh €
kerE. Hence 0 = (h — Eh, h) = ||h||*>— (Eh, h). Hence ||h||> = (Eh, h)
<||Eh||||k|| < ||h)|%. So for h in (kerE)*,||Eh|| = ||h|| = (Eh, h)/* But
then for A in (ker E) *,

|h— Ehj||* = |jh||> —2Re(Eh, h) + ||Eh||* = o.

That is, (ker E)* cCker(I — E) = ran E. On the other hand, if g € ran E,
g =g,+g, where g,€ ker E and g, € (kerE)*. Thus g = Eg = Eg, =
g,; that is, ran E C(kerE)*. Therefore ran E = (kerE)" and F is a
projection.

(b) =) If h €5¢, write h = hy + h,,h,€ ran E, h,EkerE
(ran E)*. Hence (Eh, h) = {(E(h, + hy),hy + h,) = (Eh,, h,) =
(hy ) = ly1% > 0,

(f) = (a): Let h, € ran E and h,€ kerE. Then by (f), 0 <{E(h, +
hy),hy+hyy = (h, h) + (h, hy). Hence —{|h||\* <(hy, hy) for all by
in ran E and k, in ker E. If there are such A, and h, with (h,, h;) = a # 0,
then substituting k., = —2a ™ !||k,||k,, for h, in this inequality, we obtain
— ||h|I* < —2||4||*, a contradiction. Hence (h,, h,) = 0 whenever h, €
ran E and & , € ker E. That 1s, E 1s a projection.

(a) (d): Let h,ge s and puth=h, + h, and g = g, + §,, where
h,,g,€ran E and h,,g,€kerE = (ran E)*. Hence (Eh, g) = (h, &)
Also, (E*h,g) = (h,Eg) =(h,g) = (Fh,g). Thus E = E*

(d) = (e): clear.

(e) = (a): By (2.16),||Eh|| = ||E*h|| for every h. Hence kerE = kerE*.
But by (2.19), ker E * = (ran E) *,s0 Eis a projection. n

Note that by part (b) of the preceding proposition, if E 1s a projection
and A = ran E, then £ = P,

Let P be a projection with ran P = 4 and kerP = A". So both A4 and
A" are closed subspaces of S and, hence, are also Hilbert spaces. As in
(1.6.1), we can form A S A . L U. M &N —> K is defined by U(h® g)
=h + g for hin A and g in A", then it is easy to see that U is an
isomorphism. Making this identification, we will often write X#'= .4 & A",

More generally, the following will be used.

3.4. Definition. If { .#,} is a collection of pairwise orthogonal subspaces of
2, then
&M=V, M,

If # and A" are two closed linear subspaces of ¢, then
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Note that if #, A/ <3¢ and A L A, then A + A is closed. (Why?)
Hence A & N =M + 4. The same is true, of course, for any finite
collection of pairwise orthogonal subspaces but not for infinite collections.

3.5. Definition. If A € AB(H') and A <, say that A is an invariant
subspace for A if Ah € # whenever h € #. In other words, if A4 C . 4A.

If # < then #=H4& M+ . If AcB(), then A can be written as
a2 x 2 matrix with operator entries,

w3
Y ZV1

where WE.@(.//{),XE.@(./”‘L,.//{),YE.@(‘/”,./%'L), and Z E.@(./f{l)

3.6 A=

3.7. Proposition. If A€ B(X), # <K, and P = P, then statements (a)
through (c) are equivalent.

(a) A is invariant for A.
(b) PAP = AP.
(c) In (3.6), Y = 0.

Also, statements (d) through (g) are equivalent.

(d) A reduces A.

(e) PA = AP.

() In (3.6), Y and X are O.

(g) A is invariant for both A and A*.

Proor. (a) =0 If he#, Phe #. So APhe #. Hence, P(APh) =
APh. That 1s, PAP = AP.
(b) = (¢): If P 1s represented as a 2 X 2 operator matrix relative to

H=_H& H ', then
P=[0 @

_[w o]_ =W0]
PAP—[O 0] AP [Y ol

Hence,

SoY = 0.
(¢) =>(@: IfY=0and h € 4, then
W X”h] _ [Wh
0 ZJ[l0 0
(d) = (e): Since both # and A * arc invariant for A, (b) implies that
AP = PAP and A(I— P) = (I — P)A(I — P). Multiplying this second
equation gives A — AP = A — AP — PA + PAP. Thus PA = PAP = AP.

Ah=[ ]e//{.
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(e) = (f): Exercise.
(D= (g): It X =Y =0, then

w0 . _ | w* o
A—[O Z] a n d A 0 Z*_'

By (¢), A is invariant for both A and A *.

(g) = (d): If he #+ and g € #, then (g, Ah) = (A*g, h) = 0 since

A*g € #. Since g was an arbitrary vector in #, Ah € # *. That is,
AN+ H+. n

If # reduces A, then X =Y = 0 in (3.6). This says that a study of A is

reduced to the study of the smaller operators W and Z. This 1s the reason
for the terminology.

If A € () and A is an invariant subspace for A, then A|A is used

to denote the restriction of A to 4. That is, A|.# is the operator on A4
defined by (A|A )Yh = Ah whenever h € #. Note that A|# € SB(A) and

|A|A) <||A]]. Also, if A is invariant for A and A has the representation
(3.6) with Y = O, then W = A|A4.

EXERCISES

L.

Let 5 be the two-dimensional real Hilbert space R?, let # ={(x,0) €R?:
x €R} and let &= {(x,x tanf): x € R}, where 0 <8 <3#. Find a formula

for the idempotent E,; with ran E,= # and ker E, = A". Show that || Ey|| =
(sinf)~!.

. Prove Proposition 3.2 (¢).

. Let {A,:ie T} be a collection of closed subspaces of »# and show that

(A i€ Z}) =V{A:1€T})" and [ A:iel}] " =V{ A} :iel)

. Let P and Q be projections. Show: (a) P+ Q 1s a projection if and only if

ran P Lran Q. If P + @ 1s a projection, then ran(P + ) = ran P + ranQ and
ker( P+ @) = ker Pn ker Q. (b) PQ 1s a projection if and only if PQ = QP. If
PQ 1s a projection, then ran PQ = ran P n ran Q and ker PQ = cl(ker P +
ker Q).

. Generalize Exercise 4 as follows. Suppose {A,:iel} 1s a collection of

subspaces of 5 such that 4,1 .# if i+ j. Let P, be the projection of
onto #, and show that for all hin 5, 2{ P.h:i1} converges to Ph, where
P i1s the projection of 5 onto V{ A i €1},

. It Pand Q are projections, then the following statements are equivalent. (a)

P— @ is a projection. (b) ranQCran P. (¢ PQ = Q. (d) QP = Q. If P— Q
is a projection, then ran( P —- @) = (ran P) © (ran Q) and ker( P— Q) =ran Q
+ ker P.

Let P and Q be projections. Show that PQ = QP if and only if P+ @ — PQ
1s a projection, If this 1s the case, then ran( P+ Q — PQ) = cl(ran P + ran Q)
and ker( P+ @ — PQ) = ker P n ker Q.
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8. Give an example of two noncommuting projections.

9. Let A € Z(5) and let A= graph A C #® . That is, A/ ={h® Ah:
he  }. Because A is continuous and linear, N/ <#® . Let # = H'® (0) <
HD . Prove the following statements. (a) A N A= (0) if and only if ker A =
(0). (b) A + A is dense in #'® ¢ if and only if ran A is dense in J2. (¢)
M+ N =#®H if and only if A is surjective.

10. Find two closed linear subspaces #, A" of an infinite-dimensional Hilbert space
¥ such that 4 N A= (0) and A + N is dense in ¥, but A+ N+ .

11. Define A: [*(Z) > P@)byA(....a |, &y, 0, ...)=(.... & |,05, 0, ...)
where - sits above the coefficient in the O-place. Find an invariant subspace of A
that does not reduce A.

12, Let 4 = Area measure on D= {z €C:|z|<1} and define A: L?(p)— L*(p)
by (Af)(z) = zf(z) for |z|< | and f in L*(). Find a nontrivial reducing
subspace for A and an invariant subspace that does not reduce A.

§4. Compact Operators

It turns out that most of the statements about linear transformations on
finite-dimensional spaces have nice generalizations to a certain class of

operators on infinite-dimensional spaces-namely, to the compact oper-
ators.

4.1. Definition. A linear transformation 7T:# — X is compact if T(ball

) has compact closure in X . The set of compact operators from J# into
KX is denoted by By(H, X)), and By( K ) = By(H, ).

4.2. Proposition. (a) By(H, A ) B(H,X).

(b) B,(H, X ") is a linear space and if {T,}C#y( H, K) and T € #Z( H, K)
such that ||T,—T||— 0, then T € By(X,X").

(c) If A €EB(H),BEB(X), and T € By( H,X), then TA and BT €
Bo(H, ).

PROOF. (a) If T € By( 3¢, X"), then cl[ T(ball )] is compact in X". Hence
there is a constant C > 0 such that T(ball ) C {k € X":||k||< CJ. Thus
17| < C.

(b) It is left to the reader to show that %By(H¢, X ") is a linear space. For
the second part of (b), it will be shown that 7T(ball 5#) is totally bounded.
Since X is a complete metric space, this is equivalent to showing that
T(ball ) has compact closure. Let €> 0 and choose » such that || 7 — T,
<¢g/3. Since T, is compact, there are vectors hy,...,H, in ball ¥ such
that T,(ball #°) U7 B(T h;;e/3). So if ||h]|< 1, there is an h; with
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i|7,h, —T,hl|| <e/3. Thus
\Th, — Thi| < ||Th, = T,h || + | T,h, — T,hl| + [|T,h — Thi

<2 T -T) + E/3
< E,.

Hence T(ball #)cUT_,B(Th; E).
The proof of (¢) 1s left to the reader. u

4.3, Definition. An operator 7 on S has finite rank if ran T 1s finite

dimensional. The set of finite-rank operators is denoted by Byo(, X );
Boo(H) = By (K, H).

It is ecasy to see that HByo(H, X ) is a linear space and HByo( H#, X ) C
B(H, ) (Exercise 2). Before giving other examples of compact oper-
ators, however, the next result should be proved.

4.4, Theorem. If T € HB( K, X'), the following statements are equivalent.

(a) T is compact.
(b) T * is compact.
(¢) There is a sequence {T,} of operators of finite rank such that ||T — T,

- (.

PROGF. (¢) = (a): This is immediate from (4.2b) and the fact that
Boo(H, A ) C B(H, X).

(a) = (c): Since cl[T(ball )] is compact, it is separable. Therefore
clran T) = .2 is a separable subspace of )¥. Let {e,, €,,.. .} be a basis for
& and let P, be the orthogonal projection of X onto V{e,: 1 <j<n}. Put
T = P T; note that each 7, has finite rank. It will be shown that ||7,, — T||

H

— (, but first we prove the following:
Claim. If h € 5,||T, h—Th||— 0.

In fact, k = Th € %, so ||P,k— k||— 0 by (1.4.13d) and (1.4.7). That is,
|P.Th—Th|— 0 and the claim is proved.

Since T is compact, if € > 0, there are vectors h,,..., h, in ball I such
that T(ball ) CUT_ | B(Th¢/3). So if ||h||< 1, choose h, with [|Th—
Th | <e/3. Thus for any integer n,

\Th = T,h|| < ||Th = Th| + |Th, = T,h,| + |P,(Th, — Th)|
<2|Th =Th)| + ||Th, — T, h ||
<2/3+||Th, — T,h .
Using the claim we can find an integer ng such that || Th, — T, h |[<&/3 for

l <j<mand n= n, So ||Th—T h||<e uniformly for A in ball 7.
Therefore || T — T,|| < efornz=n,.
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(¢) = (b): If {T,}s a sequence in Hy,( X, X ) such that ||T,,—T||— 0,
then ||T*—T*| = ||T,—T| — 0. But T*€ %,,(,X) (Exercise 3).
Since (¢) implies (a), T *1s compact.

(b) = (a): Exercise. n

A fact emerged in the proof that (a) implies (¢) in the preceding theorem
that 1s worth recording.

4.5. Corollary. If TE B,(H,X"), then cl(ran T) is separable and if { e,/
is a basis for cl(ran T) and P, is the projection of X onto V{ e;:1 <j<n},
then ||P,T —T||— 0.

4.6. Proposition. Let € be a separable Hilbert space with basis {e)}; let
{a,}CF with M = sup{ la,|:n=1}<co. If Ae, = a,¢, for all n, then A
extends by linearity to a bounded operator on H with ||A||=M. The operator
A is compact if and only if «,— 0as n —>00.

Proor. The fact that A 1s bounded and ||4|| = M is an exercise; such an
operator is said to be diagonalizable (see Exercise 1.8). Let P, be the
projection of 5 onto V{ e, ...,¢,}. Then A, = A — AP, is seen to be
diagonalizable with A,e =ae;ifj>nand A,e;=0itj<n So AP, E
Boo() and ||4,]| = sup{|a,:j > n) If a,— O, then ||4,||— 0 and so A
1s compact since 1t 1s the limit of a sequence of finite-rank operators.

Conversely, if A is compact, then Corollary 4.5 implies ||4,||— 0; hence
a, — 0, _

4.7. Proposition. If X, &,p) is a measure space and k €L*(X X X,2 X
2,0 X p), then

(Kf)(x) = [k(x,»)f(y)du()

is a compact operator and ||K|| <||k}|5-

The following lemma 1s useful for proving this proposition.

4.8. Lemma. Iffe,;i €Z} is a basis for L*(X,2,p) and

¢:’j(x# y)= ei(x)ej(y)

fori,jin Z and x, y in X, then {$;;: i, j € I} is a basis for L*( X X X, {2 X
2, p X p).

PROOF. Since ffl‘f’fﬂzdﬂ dp = ||€;||2||€j||2 = 1, ¢ijL2(“x“)- If (¢, j) #
(a,B), then

(bups 01,9 = [ [0a(x)05(3) &:(x);(¥) din(x) dpn(y)

= <¢a& ¢:><¢ja ¢B> — 0
5o {¢;,} 1s an orthonormal family.
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If ¢ € L?(n x ), then the fact that [[|é(x, y)|*dp(x)dp(y)<oo im-
plies that fl¢(x, y)|*dpk)<oo for almost all y in X. That is, if ¢,(x) =
¢(x, y), then ¢, e L?(p) for almost all y. Thus f(y) = (ef,(p) —
fo(x, y)e, (x)dp(x 1§ well defined. Moreover, f.€ L*(p) (Exercise). But

2

Iil? = T, [y = Z| [£(7)e, () du()

J

= Z| [ [o(x, )e,(x)e,(») du(x) dp(y)

J

= Yo, ;)%

So if ¢ L ¢;, for all 4, j, then f, = O for all & Thus ¢, = 0 in L*(p) for
almost all y. That is, ¢ = 0. Therefore, { ¢;,} is a basis. _

Proor or ProrosiTion 4.7. Let {e;} and {¢;;} be as in Lemma 4.8. Since
ke L(p X p),

”k“% = El(k, ¢':‘j>'2
i, J

= T | [ [k(x, y)e,(x)e;(y) du(x) du(y)

i, J

T [ [kt e () dn () e )
Z+|<Kejre:‘>|2‘

Thus, if f = ZjajejELZ(p), Zjlajlz-f:oo, then

2

(Kf,e))” =| o (ke
(Zla Li¢Ke el

Therefore,

IKAI> = 2 ICKS, e )]

< &SN

This shows that K is bounded and || K] <]k]|.

Now assume that k is a linear combination of a finite number of the
{¢,;}. It is left to the reader to show that in this case K has finite rank. If %
is an arbitrary element of L%*(u x p), then k is in the linear span of a
countable number of ¢;;. Say that & = X5, 19,80 Com(X, ¥) =
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e (x)e,(¥) It ky =2, 1, b, m then Ky —k|l,— 0 as N — cc. If
K, 1is the integral operator corresponding to k,, K, has finite rank and
|Ky— K||<|lky— k||, = 0. Thus K is compact. _

In particular, note that the preceding proposition shows that the Volterra
operator (1.7) 1s compact.

One of the dominant tools in the study of linear transformations on
finite-dimensional spaces 1s the concept of eigenvalue.

49. Definition. If A € Z(5), a scalar « is an eigenvalue of A if ker( A —
a)# (0). If his a nonzero vector in ker(4A —a), k is called an eigenvector
for a; thus Ah = ah. Let 6,(A) denote the set of eigenvalues of A.

4.10. Example. Let A be the diagonalizable operator in Proposition 4.6.
Then o,(A) ={a;,a;,... }. fa€0,(A), let J, = {JEN: a, =a}. Then
h is an eigenvector for a if and only if h € V{ e;:jEJ,}.

4.11. Example. The Volterra operator has no eigenvalues.

4.12. Example. Let h € #=L&i(— 7, 7) and define K: #— ¥ by
(Kf )(x) = [7 h(x— y)f(y)dy. If M = 2m) V7  h(x)exp(—inx) dx =
h(n), the nth Fourier coefficient of A, then Ke, = A e,, where e,(x) =
(27) Y 2exp( inx).

The way to see this is to extend functions in L&i(—a,7) to R by
periodicity and perform a change of variables in the formula for (Ke,)(x).
The details are left to the reader.

Operators on finite-dimensional spaces always have eigenvalues. As the
Volterra operator illustrates, the analogy between operators on finite-dimen-
sional spaces and compact operators breaks down here. If, however, a

compact operator has an eigenvalue, several nice things can be said if the
eigenvalue 1S not zero.

4.13. Proposition. Zf T € By(¥'), A €0,(T), and A+ 0, then the eigen-
space ker(T — A)is finite dimensional.

PROOF. Suppose there 1s an infinite orthonormal sequence {e,} in ker(T —
A). Since T is compact, there is a subsequence {e, } such that {Te, }
converges Thus, {Te } is a Cauchy sequence. But for n, # n,, |[Te, —

Te, || — ||[Ae,, — Ae, l| = 2[A|?> 0 since A # 0. This contradiction shows
that ker(T - A) must be finite dimensional. B

The next result on the existence of eigenvalues 1s not a practical way to
show that a specific example has a nonzero eigenvalue, but it i1s a good

theoretical tool that will be used later in this book (in particular, in the next
section).
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4.14. Proposition. zf T is a compact operator on 3 ,A+ 0, and inf{ ||( T —
M|l = 1} = 0, then A€o (T).

Proor. By hypothesis, there is a sequence of unit vectors {4, } such that
(T —A)h ||— 0. Since T is compact, there is a vector fin 5 and a
subsequence {h, } such that |Th, — fil— 0. But h, =A"'[(A—T)h,
+ Th, 1—> A7 So 1 = A1 = 1A|—1|m| and [ + 0. Also it must be
that Th — A" 'Tf. Since Th, L =A 'Tf, or Tf = hf. That is, f €
ker(T — J\) and f# 0, so A €0,(T). _

4.15. Corollary. Zf T is a compact operator on #,A#0, A& 0,(T), and
Ao AT *), then ran( T —A)= ¢ and (T — AN lis a bounded operator
on%’

ProoF. Since A€o (1), the preceding proposition implies that there is a
constant ¢ > 0 ';uch that |[((T —A)h||=c||hl| for all A in . If f € clran(T
— A), then there is a sequence {h,/ in S such that (T —A)h_ —f Thus
\h, —h _||<c YT —ANyh,— (T —A)h_|| and so {h,} is a Cauchy se-
quence. Hence A, — h for some A in 5. Thus (T —A)Yh = f. So ran(T — )
1s closed and, lSy (2.19), ran(T — A) = [ker(T — A)*] * = 5#, by hypothesis.

So for fin 5 let Af = the unique vector h such that (T —A)h = f.
Thus (T —A)Af = f for all fin 5. From the inequality above, c|lAf]| <
T —MYAA] = Al So |[AAl < ¢ YIfll and A is bounded. Also, (T —
MA(T —ANh = (T —A)h, s0 0 = (T —MN[A(T —AYh— h]. Since A&
0,(T), A(T —A)h = h. That is, A = (T —A)" L _

It will be proved in a later chapter that if A & o0,(7T) and A+ 0, then
AN&o (TF).

More will be shown about arbitrary compact operators in Chapter VI. In
the next section the theory of compact self-adjoint operators will be
explored.

EXERCISES
1. Prove Proposition 4.2(c).

2. Show that every operator of finite rank is compact,

3. If T € Byy(H,X), show that T* € By (X ,#) and dim(ran T) =
dim(ran T*),

4. Show that an idempotent is compact if and only if it has finite rank.
5. Show that no nonzero multiplication operator on L*(0, 1) is compact.

6. Show that if T: #— X is a compact operator and {e,} is any orthonormal
sequence in S, then ||Te,||— 0. Is the converse true?
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], If T is compact and 4 is an invariant subspace for T, show that 7|4 is
compact.

3, Ilfh,ge s, define T: #— HbyTf = (f,h) g Show that T has rank 1 [that
is, dim(ran T) = 1]. Moreover, every rank | operator can be so represented.
Show that if T is a finite-rank operator, then there are orthonormal vectors
e,,...,e, and vectors g,,...,8, such that Th =%"_,(h,e ) g, forall h in 5.

In this case show that T is normal if and only if g,=A e, for some scalars
As-.-» A, Find o,(T).

5, Show that a diagonalizable operator is normal.
10. Verify the statements in Example 4.10.
1. Vernty the statement in Example 4.11.

2. Verify the statement in Example 4.12. (Note that the operator K in this example
is diagonalizable.)

3. IfT, € B(#,), n 21, withsup,|iT,|| <coand T = &7 T, on #=&S 7,
show that T is compact if and only if each 7, is compact and ||7,]|— O.

§5*. The Diagonalization of Compact
Selt-Adjoint Operators

This section and the remaining ones in this chapter may be omitted if the
reader intends to continue through to the end of this book, as the material
in these sections (save for Section 6) will be obtained in greater generality in
Chapter IX. It 1s worthwhile, however, to examine this material even if

Chapter IX 1s to be read, since the intuition provided by this special case is
valuable.

The main result of this section 1s the following.

B.1. Theorem. If T is a compact self-adjoint operator on 3 ,{A,A,, - . .}
are the distinct nonzero eigenvalues of T, and P, is the projection of 3 onto
ker(T — A,), then PP =P P =0ifn# m, each A, is real, and

00
5.2 T = E)\nPna
n=1

where the series converges to T in the metric defined by the norm of #(3).
[Of course, (5.2) may be only a finite sum.]

The proof of Theorem 3.1 requires a few preliminary results. Before
beginning this process, let S look at a few consequences.
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5.3. Corollary. With the notation of (5.1):

(a) kerT=[V{P,#:n=1}]"=(ranT)*;
(b) each P has finite rank;
(c) ||IT|| = sup{|A,|: =1} and A,— 0 us n = .

Proor. Since P, L P, for n # m, if h €5, then (5.2) implies ||Th||* =
> |IAP A2 = T2\, )°||P,k)|% Hence Th = 0 if and only if P, h =0 for
all n. That is, h € ker T if and only if A L P 3¢ for all n, whence (a).

Part (b) follows by Proposition 4.13.

For part (c¢), if = cllran TJ, £ is invariant for T. Since T = T*,
L= (ker T) + and .2 reduces T So we can consider the restriction of T to
L, T\¥. Now F= V{ P #:n=>1} by (a). Let {e/": 1 <j<N,} be a
basis for P, = ker(T — A)), so Te{" =X e{") for 1 <j<N,. Thus {e""
1l <j<N,nx>1}is a basis for &£ and T|-¥ 1s diagonalizable with respect
to this basis. Part (¢) now follows by (4.6). u

The proof of (¢) in the preceding corollary revealed an interesting fact
that deserves a statement of its own.

54. Corollary. If T is a compact self-adjoint operator, then there is a

sequence {1, } of real numbers and an orthonormal basis fe,} for (ker T) ~
such that for all h,

o0
Th = 2t h.e,)e,.
n=1

Note that there may be repetitions in the sequence {u,} in (5.4). How
many repetitions?

3.5. Corollary. If TER,(¥), T=T%*, and ker T = (0), then H# is

separable.

Also note that by (4.6), if (5.2) holds, T € %,( ).
To begin the proof of Theorem 3.1, we prove a few results about not
necessarily compact operators.

5.6. Proposition. If A is a normal operator and AEF, then ker( A —A) =
ker( A —A)* and ker( A —A) is a reducing subspace for A.

Proor. Since A is normal, so is A —A. Hence {|(A—A)A} = ||(A—A)*h||
(2.16). Thus ker(A — A) = ker( A —A)*. If h € ker(A —A), Ah = Ah €
ker(A — X). Also A*h = Ah€ ker( A — A). Therefore ker(A —A) reduces
A B

5.7. Proposition. If A is a normal operator and A, p are distinct eigenvalues
of A, then ker(A —A) L ker(A —p).
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PROOF. If heker(4—A) and g €ker(A—p), then the fact (5.6) that
A*¢ = pg implies that A(h, g) = (Ah, g)=<(h, A*g)=<h,pg) =
u(h, g). Thus (\—p)(h,g) = 0. Since A—p#0,hlg g

5.8. Proposition. If A = A* and A€ a,( A), then \ is a real number.

Proor. If Ah = Ah, then Ah = A*h = Ah by (5.6). So (A —A)h = 0. Since
h can be chosen different from 0, A = A. n

The main result prior to entering the proof of Theorem 5.1 1s to show that
a compact self-adjoint operator has nonzero eigenvalues. If (5.3¢) is ex-
amined, we see that there is a A, in o0,(T) with |A, | =]||T]|. Since the
preceding proposition says that A, €R, it must be that A, = +||7||. That
is, either *||7)|€0,(T). This is the key to showing that u,(T) is nonvoid.

5.9. Lemma. Zf T is a compact self-adjoint operator, then either +||T)| is an
eigenvalue of T.

Proor. If T = 0, the result is clear. So suppose T # (0. By Proposition 2.13
there is a sequence {h,} of unit vectors such that |{Th,, s, >|—|T]|. By
passing to a subsequence if necessary, we may assume that (7Th,, h) — A,
where |A|=|| 7). It will be show that A € u,(T). Since |A|=||T|[, 0 <
(T — M)A || = ||Th, || —2X{(Th,, h,) + N*<2N —=2X(Th,, h,) = 0.
Hence ||(T —A)h,ll—= 0. By (4.14),A0,(T). B

ProorF oF THEOREM 5.1. By Lemma 5.9 there is a real number A, 1in u,(7T)
with |A{| =||T}|. Let &; = ker(T — A,), P; = the projection onto &, 3%, =
&-. By (5.6) &, reduces T, so #, reduces T. Let T, = T|5#,; then T, is a
self-adjoint compact operator on J%,. (Why?)

By (5.9) there is an eigenvalue A, for 7, such that |A,| =||T5||. Let
&, =ker(T,— A,). It is easy to check that &, = ker(T —A,) and so A, #A,.
Let P, = the projection of 3 onto &, and put 3¢, = (&9 &)~ . Note
that || ]| < ||| so that |A,] < |A].

Using induction (give the details) we obtain a sequence {A,} of real
eigenvalues of 7 such that

@D Al 2 Ay = -- -
i) If &€ = ker(T = A ), A, .4l = |TI(E @ -BE ).

By (i) there is a nonnegative number « such that |A, |— a.
Claim. a = 0; that is, lim A, = 0.

In fact, let e, €& ,,||le |l = 1. Since T is compact, there is an A in S and
a subsequence {e,,} such that || Te,, —h||— 0. But e, Le,  for n # m and
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Te,, = A, e,. Hence ||Te, —Tei,,l.fu2 =\ + )\2”[22052. Since {Te,,} is a
Cauchy séquence, a=0. j

Now put P, = the projection of # onto &, and examine T'—27_ A P.
Ifheé, 1 <k<n, then (T' =27 A P)h = Th — A h = 0. Hence &,
® - 06,C ker(T —X[_AP).Ifhe(F,® &), then P,h = 0
for 1 < j<n;so(T —):;Llhjf})h = Th. These two statements, together
with the fact that (&, @®---®&)* reduces T, imply that

T— Y A\P|=|TI(E @ &E,)" |

Jj=1

= 'An+1| — 0.
Therefore the series 2°_,A, P, converges in the metric of Z( ) to T. _

Theorem 5.1 is called the Spectral Theorem for compact self-adjoint
operators. Using 1t, one can answer virtually every question about compact
hermitian operators, as will be seen before the end of this chapter.

If in Theorem 5.1 it is assumed that 7' is normal and compact, then the
same conclusion, except for the statement that each A, is real, is true
provided that 5# 1s a C-Hilbert space. The proof of this will be given in
Section 7.

EXERCISES
1. Prove Corollary 5.4,
2. Prove Corollary 5.5

3. Let K and % be as in Proposition 4.7 and suppose that 2( x, y) = k( y, x). Show

that K is self-adjoint and if {u,} are the eigenvalues of K, each repeated
dim( K —pu,) times, then X3°|u,|* < cc.

4. If T is a compact self-adjoint operator and {e, } and { 4, } are as in (5.4) and if A
is a given vector in J¢, show that there is a vector [ in 2 such that Tf = hif

and only if hLlkerT and ¥ u?|(h,e,)|* < co. Find the form of the general
vector [ such that Tf = h.

5. Let T, {p,}, and {e,} be as in (5.4). If A# 0 and A# p, for any pu,, then for
every h in J¢ there is a unique f in # such that (T - A) [ = h. Moreover,
f=A"h+X2 A (A—X,) Xh,e,Ve,). Interpret this when 7" is an integral
operator.

§6 *. An Application: Sturm-Liouville Systems

In this section, [a, b] will be a proper interval with —oo<a < b <o0.
Cla, b/ denotes the continuous functions f: [a, bf - R and for n> 1,
C"a, b] denotes those functions in Cla, b] that have n continuous deriva-
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tives. C{™[a,b] denotes the corresponding spaces of complex-valued func-
tions. We want to consider the differential equation

6.1 ~h" + gh —Ah = §,

where A is a given complex number, ¢ € Cla, b], and fELZ[a, bl, to-
gether with the boundary conditions

(a) ah(u) + a;h’(a) = 0
(b) Bh(b) +&h (b) = O’

where a, a;, B8, and B, are real numbers and a’+a;> 0, B°+ B{> 0.
Equation (6.1) together with the boundary conditions (6.2) 1s called a
(regular) Sturm-Liouville system. Such systems arise in a number of physi-
cal problems, including the description of the motion of a vibrating string.
In this section we will discuss solutions of the Sturm-Liouville system by
relating the system to a certain compact self-adjoint integral operator.
Recall that an absolutely continuous function % on [a, b] has a derivative

a.e. and h(x) = [JR(t)dt + h(u) for all x.
Define

0.2

2,={heCPC[a,b]: h is absolutely continuous,

h €L?[a,b], and h satisties (6.2a)}.

2, is defined similarly but each h in &, satisfies (6.2b) instead of (6.2a).
The space =2, N 2,.
Define L: 2 — L?[a, b] by

6.3 Lh = —h” + gh.

L 1s called a Sturm-Liouville operator.

Note that &£ is a linear space and L is a linear transformation. The
Sturm-Liouville problem thus becomes: if A€ C and f € L?[a, b], is there
an h in £ with (L — A)h = f. Equivalently, for which A is fin ran( L — A)?

By placing a suitable norm on %, L can be made into a bounded
operator. This does not help much. The best procedure 1s to consider
(L —A)"'. Integration is the inverse of differentiation, and it turns out that
(L —A\)~! (when we can define it) is an integral operator.

Begin by considering the case when A = 0. (Equivalently, replace ¢ by

g— A.) To define L™! (even if only on its range), we need that L is
injective. Thus we make an assumption:

6.4 fthe and Lh = 0, then h = 0.

The first lemma 1s from ordinary differential equations and says that
certain 1nitial-value problems have nontrivial (nonzero) solutions.

6.5. Lemma. Zf a,al,B,BlelR,a2 + af> 0, and B* + B> 0, then
there are functions h ,, h ,in 2,,2,, respectively, such that L{ h,) = 0 and
L{h)=0and h_,h, are real-valued and not identically zero.
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The Wronskian of h, and h, is the function

-ha hb_
W = det = h K, — h'h,,
LA
Note that W = hahg—h:hb = ha(qhb)_(qha)hb = (. Hence W(x) =
W(a) for all x.

6.6. Lemma. Assuming (6.4), W(a) # 0 and so h, and h, are linearly
independent.

Proor. If W(a) = O, then linear algebra tells us that the column vectors in
the matrix used to define W{(a) are linearly dependent. Thus there is a A in
R such that A,(a) = Ah,(a) and hj(a) = Ahl(a). Thus h, €D and L(h,)
= 0. By (6.4),h,= 0, a contradiction. l

Put ¢ = W{(a) and define g: [a, b] x [a, b] > R by

(. —1 .
c h (x)h,(y) ifa<x<y<bh
6.7 g(x,y) =1 ’

e (p)hy(x) fa<y<x<b

The function g is the Green function for L.

6.8. Lemma. The function g defined in (6.7) is real-valued, continuous, and
g(x,y) = 8(y, x).

Proor. Exercise.

6.9. Theorem. Assume (6.4). If g is the Green function for L defined in (6.7)
and G: L*[a, b] - L*[a, b] is the integral operator defined by

(6)(x) = [8(x.3)f(») .

then G is a compact self-adjoint operator,ranG = 2, LGf = f for all f in
L?[a,b], and GLh=h forall hin 2.

Proor. That G 1s self-adjoint follows from the fact that g is real-valued and
g(x,y) = g( vy, x); G is compact by (4.7). Fix finL?[a, b] and put h = Gf.
It must be shown that h € Z.

Put

H(x) = [ (ay  and Hy(x) = e [T (0)1(0) v

Then

h(x)

f:g(x, y)f(y)dy
o™ [ra NIy 4 e [T () ho(2)F (1)

X



11.6. An Application; Sturm-Liouville Systems 53

That 1s, h = H,h, + h, H,. Differentiating this equation gives h =
(c ‘h,fYh, + Hh,+h,H, + h(—c 'h,f)= Hh), + h"H, ae. Since
Hh,+h' H, is absolutely continuous, as part of showing that » €2 we
want to show the following.

Claim. » = H h',+h/ H, everywhere.

Put ¢ = H h, +h’ H, and put y(x) = h(u) + [ d(y)dy. So h and ¢
are absolutely continuous, A(w = Y(a), and A = ¢’ a.e. Thus A =
everywhere. But ¢ has a continuous derivative ¢, so A does too. That 1s, the
claim 1s proved.

Differentiating o = H,h, + h/ H, gives that a.e, h = (¢ th f)h}, +
Hhy + h/H, + h'(—c 'h,f); since each of these summands belongs to
L*[a,b], h € L?*a, b]

Because H,(a) = 0 and h,€2,,ah(a) + ajh’(a) = ah (a)H (a) +
wh (a)H (a)=[ah, (a)+ ah,(a)]H(a) = 0. Hence h €D, Similarly,
heP, Thus h €%. Hence ranG C 2.

Now to show that LGf =f It h = Gf, L(h) = -h + qgh =
—[chhyf + Hohy + hIH, — ¢ 'hihf] + q(Hhy, + b, Hy) = (—h} +
gh)H,+ (—h] + gh )H, + ¢ '(h,h,—h,h,)f = fsince L(h,) =
L(h,)=0and Wl h,—h h, = W = c

If h €9, then Lh € L?[a, b]. So by the first part of the proof, LGLh =

Lh. Thus O = L(GLh — h). Since ker L = (0), h = GLh and so h € rang.
A

6.10. Corollary. Assume (6.4). Zfh €Y, A€C, and Lh = Ah, then
Gh = A" th. Zf h € L*[a, b] and Gh = A" 1h, then h €2 and Lh = Xh.

Proor. This 1s 1mmediate from the theorem. n

6.11. Lemma. Assume (6.4). Zf a€0,(G), then dim ker(G —a) = 1.

Proor. Suppose there are linearly independent functions hy, h, in ker(G —
a). By (6.10) A, h, are solutions of the equation

-h  +(q *a‘l)h = 0.

Since this 1s a second-order linear differential equation, every solution of it
must be a linear combination of A, and h,. But h{,h, € D so they satisly
(6.2). But a solution can be found to this equation satisfying any initial
conditions at u-and thus not satisfying (6.2). This contradiction shows
that linearly independent Ay, h, in ker(G —a) cannot be found. n

6.12. Theorem. Assume (6.4). Then there is a sequence { A, \,,...} of real

numbers and a basis {e,e,,...} for L*[a, b] such that

() 0 <|A{<|A,|<--- and A, — 0.
(b) e, €Z and Le, = A e, for all n.



54 I1. Operators on Hilbert Space

©) IfF A+ A, for any N, andf € L*[a, b], then there is a unique h in 2D with
Lh —Ah =f

(d) If A=A for some n and f €L*[a, b], then there is an h in 2 with
Lh — Xh =fifandonlyif (f,e,) = 0. If {(f,e,> = 0, any two solutions
of Lh —Ah = f differ by a multiple of e,.

Proor. Parts (a) and (b) follow by Theorem 5.1, Corollary 6.10, and Lemma
6.11. For parts (¢) and (d), first note that

6.13 Lh —Ah=fif and only if h —AGh = Gf

This is, in fact, a straightforward consequence of Theorem 6.9.

(¢) If A# X, for any n, A" 40,(G). Since G = G*, Corollary 4.15
implies G —A"! is bijective. So if f€ L?[a, b], there is a unique % in
L*[a,b] with Gf = (A"'— Gh. Thus h €2 and (6.13) implies L(k/\)—
ACh/N) = T.

(d) Suppose A=A, for some n. If Lh —A h=f then h — A Gh = Gf.
Hence (Gf.e,) = (he,)~A,(Ghe,) = (h,e,y~ A (h.Ge,) = (he,)
—A A Khye,) =0 S 0={Gf,e,)={(f,Ge,y=A[{f,e,). Hence fL
e,.

Since Ce, = ker(G —A 1), [e,] =4 reduces G. Let G, = G|4". So G,
is a compact self-adjoint operator on A" and A,&0,(G,). By (4.15),
ran(G;— A,) = A". As in the proof of (¢), if fLe,, there is a unique & in
A" such that Lh — A, h=f Note that i + ae, is also a solution. If &, A,
are two solutions, 7;,—h,€ ker( —A,), s0 h,—h, = ae,,. _

What happens if ker L # (0)? In this case it is possible to find a real
number p such that ker(l. —p) = (0) (Exercise 6). Replacing ¢g by ¢ —p.,

Theorem 6.12 now applies. More information on this problem can be found
in Exercises 2 through 5.

EXERCISES

1. Consider the Sturm-Liouville operator LA=—h" with a =0, b = 1, and for
each of the following boundary conditions find the eigenvalues {A, }, the
eigenvectors {e,,}, and the Green function g(x,y): (a) h(0) = h(l) = 0; (b)
h(0)=h(1)=0; (¢) h(0) =0 and h (1) =0; (d)A(0) = h (0) and h(l) = -h (D).

2. In Theorem 6.12 show that ¥*_ A *<oo (see Exercise 5.3).

3. In Theorem 6.12 show that kA€ 2 if and only if h€ L*[a,b] and
Y A|(h,e Y <oco.If h€ D, show that h(x) = L ,(h,e,)e,(x), where
this series converges uniformly and absolutely on [a, b].

4, In Theorem 6.12(c), show that h(x) = X (A, —A) {f,e, de,(x) and this
series converges uniformly and absolutely on [a, b}.

5. In Theorem 6.12(d), show that if fle, and Lh— A h = f, then h(x) =
Lisn(A, — NS, e e (x) + ae,(x) for some a, where the series converges
uniformly and absolutely on [a, b].
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6. This exercise demonstrates how to handle the case in which ker L+ (0). (a) If
h,geCW[a,b] with h, g absolutely continuous and h, g €L*[a,b], show
that

f:(h”g — hg”) =[h'(b)g(b) — h(b)g'(b)] —[h'(a)g(a) — h(a)g'(a)].

(b) If h, g € 2, show that ( Lh, g) = (h, Lg). (The inner product is in L*[a, b].)
(o) If h,geP and A, pe R, A#pu, and 1f heker(L — A), g € ker(L — p),
then & L g. (d) Show that there 1s a real number p with ker( L —pn) = (0).

§7*. The Spectral Theorem and Functional Calculus
for Compact Normal Operators

We begin by characterizing the operators that commute with a diagonaliz-
able operator. If one considers the definition of a diagonalizable operator
(4.6), it is possible to reformulate it in a way that is more tractable for the
present purpose and closer to the form of a compact self-adjoint operator
given in (5.2). Unlike (4.6), it will not be assumed that the underlying
Hilbert space 1s separable.

7.1. Proposition. Let {P,: i €1} be a family of pairwise orthogonal pro-
jections in B(3X). (That is, PP, = P P = 0 fori #j)If h €3¢, then
L{Ph:i€I) converges in 3 to Ph, where P is the projection of ) onito
Vi Po.iel}.

This appeared as Exercise 3.5 and its proof is left to the reader.

If {P:i€1l} is as in the preceding proposition and A= P53, then
with the notation of Definition 3.4, P is the projection of 5 onto & .
Write P = 2, P,. A word of caution here: Ph = X Ph, where the conver-
gence is in the norm of 3. However, 2.P. does not converge to P in the
norm of Z(3#). In fact, it never does unless I is finite (Exercise 1).

7.2.  Definition. A partition of the identity on 3¢ is a family { P:i € Z} of
pairwise orthogonal projections on 3¢ such that V, P.5¥= 5. This might be
indicated by 1 =2X,P or 1 =& P, [Note that 1 is often used to denote the
operator on ¥ defined by I(h) = h for all A. Similarly if a €F, a is the
operator defined by a(h) = ah for all h. ]

7.3. Definition. An operator A on S is diagonalizable if there is a
partition of the identity on #, {P,: i € I}, and a family of scalars {a;:
{ € I} such that sup,la;/<ococ and Ah = a,# whenever h € ran P,

i

It 1s easy to see that this i1s equivalent to the definition given in (4.6) when
KA 1s separable (Exercise 2). Also, ||4]| = sup,la,|.
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To denote a diagonalizable operator satisfying the conditions of (7.3),
write

A=)aP or A=®aqaP,.

Note that 1t was not assumed that the scalars «, 1n (7.3) are distinct.
There 18 no loss in generality in assuming this, however. In fact, it a;=a,,
then we can replace P; and P, with P, + P,

i

7.4. Proposition. An operator A on 3 is diagonalizable if and only if there
is an orthonormal basis for I consisting of eigenvectors for A.

Proor. Exercise.

Also note that if A = ®,a,P;, then A* = & ,a,P, and A is normal
(Exercise 5).

7.5. Theorem. IfA = ©,a,;P, is diagonalizable and all the o, are distinct,

then an operator B in B(3#) satisfies AB = BA if and only if for each i,
ran P reduces B.

Proovr. If all the a; are distinct, then ran P, = ker(A — a,). If AB = BA
and Ah = a;h, then ABh = BAh = B(a,h) = a,Bh; hence Bh € ran P,
whenever h € ran P,. Thus ran P, is left invariant by B. Therefore B leaves
Vi{ran P, j # i} = A, invariant. But since & P, =1, A, = (rtan P,)

Thus ran P, reduces B.
Now assume that B is reduced by each ran P,. Thus BP, = P.B for all i.
If h €5, then Ah = X.a;Ph. Hence BAh = X .a;BPh = }.,a,PBh = ABh.

i1 !

(Why 1s the first equality valid?) _

Using the notation of the preceding theorem, if AB = BA, let B, =
Blran P,. Then it is appropriate to write B = &, B, on =@ ( P,5¢). One
might paraphrase Theorem 7.5 by saying that B commutes with a diagonal-
izable operator if and only if B can be diagonalized with operator entries.”

7.6. Spectral Theorem for Compact Normal Operators. If T is a compact
normal operator on the complex Hilbert space H,{A, A, ...} are the
distinct nonzero eigenvalues of T, and P, is the projection of 3 onto

n

ker(T —A,), then PP =P P = 0ifn+ m and

7.7 T= ) AP,

n=1
where this series converges to T in the metric defined by the norm on HB().

Proovr. Let A = (T + T*)/2, B = (T —T*)/2i. So A, B are compact
self-adjoint operators, 7 = A + iB, and AB = BA since T is normal. The
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idea of the proof is rather simple. We |1 get started in this proof together but
the reader will have to complete the details.

By Theorem 5.1, A = X{°a,E,, where a, ER,a, #a, if n# m, and E,
is the projection of H# onto ker(A —a,). Since AB = BA, the idea is to
use Theorem 7.5 and Theorem 5.1 applied to B to diagonalize A and B
simultaneously; that is, to find an orthonormal basis for J¢ consisting of
vectors that are simultaneously eigenvectors of A and B.

Since BA = AB, E, =% reduces B for every n (7.5). Let B, = B|.Z;
then B, = B* and dim £ <oo. Applying (5.1) to B, (or, rather, the
corresponding theorem from linear algebra) there is a basis {e(”) 1 <J<
d,} for &, and real numbers { 8{™:1 < j<d,} such that B, e(") = Bel™.
Thus Te(") = Ae!™ + iBe™ = (a + iB")el™.

Therefore {e(,") 1<y < d, n>l}is a bam for cl(ran A) consisting of
eigenvectors for 7. It may be that cl(ran A) # cl(ran 7). Since B is reduced
by ker4 = (ran A)~ and B, = BlkerA4 is a compact seclf-adjoint operator,
there is an orthonormal bam {e(o) Jj =1} for clran B,) and scalars {8
j =1} such that Be® = B¢ (0)&(0) It follows that Te® = iB@e®. Moreover,
ker T C ker A N ker B SO cl(ran T)Ccliran A) @ cl(ran Bo)

The remainder of the proof now consists 1n a certain amount of book-
keeping to gather together the eigenvectors belonging to the same eigenval-

ues of 1 and the performing of some light housekeeping chores to obtain
the convergence of the series (7.7) n

7.8, Corollary. With the notation of (7.6):

(@) ker T = [V{ P, #:n=1}]";
(b) each P, has finite rank;
(c) |T|} = sup{ |[A,|:n=1} and A, — O us n— oo.

The proof of (7.8) is similar to the proof of (5.3).

7.9.  Corollary. If T is a compact operator, then T is normal if and only if T
is diagonalizable.

It T 1s a normal operator which 1s not necessarily compact, there 1s a
spectral theorem for 1 which has a somewhat different form. This theorem
states that 1 can be represented as an integral with respect to a measure
whose values are not numbers but projections on a Hilbert space. Theorem
7.6 will be a consequence of this more general theorem and correspond to
the case in which this projection valued measure 1s atomic.”

The approach to this more general spectral theorem will be to develop a
functional calculus for normal operators 7. That is, an operator ¢(7) will
be defined for every bounded Borel function ¢ on € and certain properties

of the map ¢ — ¢(7T) will be deduced. The projection valued measure will
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then be obtained by letting p(4) = x (7). These matters are taken up in
Chapter IX.

At this point, Theorem 7.6 will be used to develop a functional calculus
for compact normal operators. For the remainder of this section J¢ is a
complex Hilbert space.

7.10. Definition. Denote by /*(C) all the bounded functions ¢:C—->C. If
T is a compact normal operator satisfying (7.7), define ¢(7): ¢ — S by

o(T) = L ¢(A) P, + ¢(0)
n=1
where P, = the projection of S onto ker T.

Note that ¢(7) is a diagonalizable operator and ||¢(T)|| =
sup{|¢(0), |d(A))], .- -} (4.6). Much more can be said.

7.11. Functional Calculus for Compact Normal Operators. If T is a compact
normal operator on a C-Hilbert space 3¢, then the map ¢ — ¢(T) of
[Z(C)—> B( ) has the following properties:

(a) ¢ — ¢(T) is a multiplicative linear map of [°(C) into B(H).If =1,
&(T)=1;if p(z) =1z, then ¢(T) = T.

(0) lo(T) = sup{{$(A)]: A € 0,(T)}.

(c) ¢(TY* = ¢*(T), where ¢* is the function defined by ¢*(z) = ¢(z).

(d) Zf A € B(#) and AT = TA, then AP(T) = ¢(T)A for all ¢ in | (C).

Proor. Adopt the notation of Theorem 7.6 and (7.10).

(a) If ¢,y €I*(C), then (d¥)(z) = ¢(2)¢Y(z) for z in C. Also,
S(TH)Y(T)h = [¢(0)Py + LO(A )PV (O) Py + LY (A,) P10 = [¢(0) Py +
X (AP NVO)P A+ Y(AN )P, k] Since P,P, = 0 when n # m, this
gives that ¢(T)Y(T)h = ¢(O)Y(0)Poh + L p(A )P (A,)Ph = (dy )T )h.
Thus ¢ — ¢(7) is multiplicative. The linearity of the map is left to the
reader. If ¢(z)= 1, then (P(T) = IT) = P,+2X>_ P, =1 since
{P,, P,...} is a partition of the identity. If ¢(z) =1z, ¢(A,)=A, and so
o(T)=T.

Parts (b) and (¢) follow from Exercise 5.

(d) If AT = TA, Theorem 7.5 implies that Py3¢, P,5¢,... all reduce A.
Fix h,in P #,n=>0.1f &€ [ (C), then Ah, € P,.5# and so ¢(T)Ah, =
d(A VAR, = A(d(A)h,) = AP(T)h It h € #, then h = X%_,h,,, where
h,, € P . Hence ¢(T)Ah = X2_d(T)Ah, = L% _AP(T)Yh, = Ap(T)h.
(Justify the first equality.) B

Which operators on J# can be expressed as ¢(7') for some ¢ in [Z(C)!
Part (d) of the preceding theorem provides the answer.
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7.12. Theorem. zf T is a compact normal operator on a C-Hilbert space,
then {p(T):p€1™(C)} is equal to

[B € B(H). BA = AB whenever AT = TA).

Proor. Half of the desired equality is obtained from (7.11d). So let
Be B() and assume that BA = AB whenever AT = TA. Thus, B must
commute with 7 itself. By (7.5), B is reduced by cach P, #=#,n= 0;
put B = BJ|>,. Fix n> 0 for the moment and let A, be any bounded
operator in #(£,)). Define Ah = A hif he £, and Ah = 0 if h €5,
m # n, and extend A to J# by linearity; so A = ®°_,A,, where A, = 0 if
m # n. By (7.5), AT = TA; hence BA = AB. This implies that B, A,k =
A, B,.. Since A,, was arbitrarily chosen from #(%,), B, = 8, for some S,
(Exercise 7). If ¢:C— C is defined by ¢(0) = B, and ¢(A,) = B, for
n> 1, then B = ¢(7T). ||

7.13. Definition. If A € #(), then A is positive if (Ah, h) = O for all h
in 2. In symbols this is denoted by A = 0.

Note that by Proposition 2.12 every positive operator is self-adjoint.

7.14.  Proposition. zZ£ T is a compact normal operator, then T is positive if
and only if all its eigenvalues are positive real numbers.

Proor. Let T = Y¥A, P I T >0 and h € P,# with ||h]| = 1, then
Th = A, h. Hence ?\n= (Th, h) = 0. Conversely, assume each A > 0. If

hesX, h = hy + L7 where hoekerT and h, € P ¢ for n>1.
Then Th = XA ,h,. Hence (Th, h) = (X34 ,,hmh +):°° h,,) =
e 1io_oA (hn,hm) = Ak, ||:2 O since (h,, h) = 0 when n+ m.

|

7.15. Theorem. Zf T is a compact self-adjoint operator, then there are unique
positive compact operators A, B such that T = A — B and AB = BA = 0.

PrOOF. Let 7 = 1°_,A P, as in (7.6). Define ¢,y:C—->C by ¢(A,) =A,
if A, >0, ¢(z) = 0 otherwise; $(A,) = —A_if A, <0, Y(z) = 0 other-
wise. Put A = ¢(T) and B = Y(T). Then A = L{A,P:A,> 0} and
B=Y{—-A,P:A, <0}. Thus T=A-B. Since ¢y =0, AB=BA=0
by (7.11a). Since ¢, > 0, A, B > 0 by the preceding proposition. It
remains to show that A, B are unique.

Suppose T = C — D where C, D are compact positive operators and
CD = DC = 0. It 1s easy to check that C and D commute with 7. Put
Ao = 0 and P, = the projection of 2 onto ker 7. Thus C and D are
reduced by P #=¢ for all n > 0. Let C, = C|H#, and D, = D|H#,. So
CD =DC =0 AP =T =C,—D,, and C,, D, are positive. Sup-
pose A, > 0 and let h € )#,. Since C D, = 0, kerC, 2 cl[ran D,] =
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(kerD)1. So if he(kerD,)*, then A h = —D,h. Hence A |h)||* =
—(D h, h) < 0. Thus h = 0 since A, > 0. That is, ker D, = 5#,. Thus
D =0 = B|o# and C,= A, P, = A|5,. Similarly, if A, <0, C, = 0 =
A|H#, and D, = —~A, P, = B|oF,. On X, T|H, =0 = C,— D, Thus C,
= D,. But 0 = C,D, = C{. Thus 0 = (Cgh, h) = ||Coh||*, s0o Cy = 0 =
A, and Dy = 0 = B|S5,. Therefore C = A and D = B. n

Positive operators are analogous to positive numbers. With this in mind,
the next result seems reasonable.

7.16. Theorem. If T is a positive compact operator, then there is a unique
positive compact operator A such that A* = T.

ProoFr. Let T = 2%_,A P, as in the Spectral Theorem. Since 7>0, A,> 0
for all n (7. 14) Let ¢(A) = A/% and ¢(z) = 0 otherwise; put A = ¢(T).
It is easy to check that 4>0; A = Y®N/2P g0 that A is compact; and
A* =T

The proof of uniqueness is left to the reader. |

EXERCISES

1. If { P,} is a sequence of pairwise orthogonal nonzero projections and P =2 P,,

show that ||P—2%_P|l =1 for all .

2. If ¥ is separable, show that the definitions of a diagonalizable operator in (4.6)
and (7.3) are equivalent.

3. If A = Xa, P, as in (7.3), show that A is compact if and only if: (a) a, = 0 for
all but a countable number of i; (b) P, has finite rank whenever a,# 0, (c) if
{a,,a,,...} ={a,;a;# 0}, then a, —» 0 as n— co.

4, Prove Proposition 7.4.

51 A = D o P, show that A*¥ = & &, P, A is normal, and ((A(( = sup{|a,:
e 1)

6. Give the remaining details in the proof of (7.6).

7. If A eZB(H) and AT = TA for every compact operator 7, show that A is a
multiple of the identity operator.

8. Suppose T is a compact normal operator on a C-Hilbert space such that
dim ker( 7 —A)< 1 for all A in C. Show that if A € () and AT = TA,
then A = ¢(7') for some ¢ in /I”(C).

9. Prove a converse to Exercise 8: if 7 is a compact normal operator such that
(A € B(X): AT = TA} = {¢(T): ¢ €1*(C)}, then dimker(T — A) < 1 for
all A in C.

10. Let T be a compact normal operator and show that ker(T —A)< 1 for all A in
C if and only if there is a vector k& in ¥ such that { p(T)h: p is a polynomial
in one variable} is dense in . (Such a vector A is called a cyclic vector for T'.)



11.8. Unitary Equivalence for Compact Normal Operators 01

[1. If A€, let §, be the unit point mass at A; that is, &, is the measure on C
such that §,(A)=1if A€ A and §,(A)=01H A& A. If {A,A,,...} are
distinct complex numbers and {a,,} is a sequence of real numbers with a, > 0
and ¥, a, <oo, let p =27 a,8, ; so p is a finite measure. If ¢ €/*(C), let
M, be the multiplication operator on L?*( ). Define T: L*(p)— L*(p) by
(TfYA,)=A,f(A,). Prove: (a) T is a normal operator; (b) 7T has a cyclic
vector (see Exercise 10); (¢) if A € Z(#) and AT = TA, then A = M, for
some ¢ in [©(C); (d) T is compact if and only if A,— 0. (e) Find all of the
cyclic vectors for 7. (f) If T is compact, find the decomposition (7.7) for 7.

2. Using the notation of Theorem 7.11, give necessary and sufficient conditions on

T and ¢ that (p(T) be compact. (Hint: consider separately the cases where ker T
is finite or infinite dimensjonal.)

3. Prove the uniqueness part of Theorem 7.16.
4. If T € B(5), show that T*T > 0.

15. Let T be a compact normal operator and show that there is a compact positive
operator A and a unitary operator U such that T = UA = AU. Discuss the
uniqueness of A and U.

16. (Polar decomposition of compact operators.) Let T € %, (S%) and let A be the
unique positive square root of T*T [(7.16) and Exercise 14]. (a) Show that
\Ah|| =||Th|| for all hin . (b) Show that there is a unique operator U such
that ||Uh|| =||h|| when AL ker T,Uh =0 when h€ ker T, and UA = T. (c) If
Uand A are as in (a) and (b), show that T = AU if and only if 7 is normal.

7. Prove the following uniqueness statement for the functional calculus (7.11). If T
is a compact normal operator on a C-Hilbert space ¢ and 7:/*(C)— Z(5¥)
is a multiplicative linear map such that [|7(¢)|| = sup{|¢(A)||:A €, (T)},
7({) =1, and 7(z) =T, then 7(¢) - ¢(T) for every ¢ in [*(C).

§8*. Unitary Equivalence for Compact
Normal Operators

In Section 1.5 the concept of an i1somorphism between Hilbert spaces was
defined as the natural equivalence relation on Hilbert spaces. This equiv-
alence relation between the spaces induces a natural equivalence relation
between the operators on the spaces.

8.1. Definition. If A, B are bounded operators on Hilbert spaces 4,4,

then A and B are unitarily equivalent if there is an isomorphism U: ¢ — X
such that UAU ! = B. In symbols this is denoted by A = B.

Some of the elementary properties of unitary equivalence are contained in
Exercises 1 and 2. Note that if UAU ' = B, then UA = BU.
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The purpose of this section 1s to give necessary and sufficient conditions
that two compact normal operators are unitarily equivalent. Later, in
Section 1X.10, necessary and sufficient conditions that any two normal
operators be unitarily equivalent are given and the results of this section are
subsumed by those of that section.

8.2. Definition. If T 1s a compact operator, the multiplicity function for T
is the function m;:C - C U { o0} defined by m,(X) = dimker(T — X).

Hence m, (A)> 0 for all A and m,(h) > 0 if and only if A is an
cigenvalue for 7. Note that by Proposition 4.13, m,(A) <ccif A# 0.

If TS are compact operators on Hilbert spaces and U:#°— X is an
isomorphism with UTU ! =8, then U ker(T —A) = ker(S —\) for every
A in C. In fact, if Th = Ah, then SUh = UTh = AUh and so Uh €
ker(S — X). Conversely, if £k €ker(S— A) and h = U 'k, then Th =
TU 'k =U 'Sk = Ah. In particular, it must be that m, =m, If § and T
arc normal, this condition 1s also sufficient for unitary equivalence.

8.3. Theorem. Two compact normal operators are unitarily equivalent if and
only if they have the same multiplicity function.

Proor. Let T,§ be compact normal operators on Hilbert spaces 5, ¢ . If
T =S§, then it has already been shown that m., = m, Suppose now that
m, = m, We must manufacture a unitary operator U:3#— X such that
UTU ! = s.

Let T =2X%_(A,P, and let S =2X%_n,0Q, as in the Spectral Theorem
(7.6). So if n# m, then A, # A, and u,# n,, and each of the projections
P and Q, has finite rank. Let Py, Q, be the projections of S, X onto
ker T,kerS; so Py =(FP)* and Q, = (XQ,) . Put A, = p, = 0.

Since my=mg, 0 <my(A,) = mg(A,). Hence there is a unique p; such
that u, = A,. Define m:N—>N by letting p,,, =A,. Let #(0) = 0. Note
that o 18 one-to-one. Also, since 0 <m(p,)=m (p,), for every n there 1s
a j such that a(j) = n. Thus m:N U {0} >N U {0} is a byection or
permutation. Since dim P, =mr(A,)=mg(p,,,)=dm@Q, ., there is an
isomorphism U,: P, #— Q. X for n> 0. Define U: #— X by letting
U=U,on P, and extending by linearity. Hence U =@ U,. It is ecasy
to check that U 1s an isomorphism. Also, if # € P 5, n > 0, then UTh =
AUR - p, Uh = SUA. Hence UTU ' = 8. |

If V' 1s the Volterra operator, then m, =0 (4.11) and V and the zero
operator are definitely not unitarily equivalent, so the preceding theorem
only applies to compact normal operators. There are no known necessary
and sufficient conditions for two arbitrary compact operators to be unitarily
cquivalent. In fact, there are no known necessray and sufficient conditions
that two arbitrary operators on a finite-dimensional space be unitarily
equivalent.
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EXERCISES

L.

2.

10.

1.

12.

Show that unitary equivalence is an equivalence relation on 2(2¢).

Let U: ' — XA be an isomorphism and define p:ZB(#)— Z(X") by p(A) =
UAU . Prove: (a) |lp(A)| = ||4]|, p(A*) = p(A)*% and p is an isomorphism
between the two algebras Z( ) and Z(X"). (b) p(A) € B, (X) if and only if
A €By(H). (¢c) f TERB(H), then AT= TA if and only if p(T)p(A) =
p(A) p(T). (d) If A €ZB(H) and A < ¥, then A is invariant (reducing) for
A if and only if UA is invariant (reducing) for p(A).

Say that an operator A on J¢ is irreducible if the only reducing subspaces for A
are (0) and 5. Prove: (a) The Volterra operator is irreducible. (b) The unilateral
shift is irreducible.

Suppose A = D{A:i€l)and B=D{B,:i€Z) where each A, and B, is
irreducible (Exercise 3). Show that A =B if and only if there is a bijection

m:Z — Z such that A, =B, .

If 7 is a compact normal operator and m4 = m is its multiplicity function,
prove: (a) {A: m(X) > 0} is countable and O is its only possible cluster point;
(b) m(X) <oo if A# 0. Show that if m: C—>Nu {0,000} is any function
satisfying (a) and (b), then there is a compact normal operator T such that
ms = m.

Show that two projections P and Q are unitarily equivalent if and only if
dim(ran P) = dim(ran Q) and dim(kerP) = dim(ker Q).

. Let A : L?(0,1)~ L2(0,1) be defined by (Af) x) = x/(x) for fin L?(0,1) and

x in (0,1). Show that A = A2

Say that a compact normal operator 7 is simple if my < 1. (See Exercises 7.10
and 7.11.) Show that every compact normal operator 7 on a separable Hilbert
space is unitarily equivalent to @:117;, where each T, is a simple compact
normal operator and my>my  for all n. Show that |{|7}||— 0. (Of course,

there may only be a finite number of T .)

. Using the notation of Exercise 8, suppose also that § is a compact normal

oD

operator and § EGB"=1SH, where §, is a simple compact normal operator and
me = Mg

) L for all n. Show that 7 =§ if and only if T,=§, for all n.

If T is a compact normal operator on a separable Hilbert space, show that there
are simple compact normal operators 77,7,,.. such that 7 = 0 ®T1®T2(2)®
TP @ - -, where: (a) for any operator A, A=A ®--®A4 (n times); (b) 0
is the zero operator on an infinite-dimensional space; (¢) for n#*k mpmp =0;
and (d) if ker T is infinite dimensional, then ker T = (0) for all n. (Of course
not all of the summands need be present.) Show that ||T |[— O.

Using the notation of Exercise 10, let § be a compact normal operator and let
0S5, ®SY®-- be the corresponding decomposition. Show that 7 = § if
and only if 7,=S, and ker T and kerS have the same dimension.

If T is a compact normal operator, show that 7 and 7T & T are not unitarily
equivalent.
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13. Give an example of a nontrivial operator T such that T = T & T. Show that if
T'=T®& T, then T = T &® T & . . Characterize the diagonalizable normal
operators T suchthat T = T & T,

14. Let ¥ be the space defined in Example 1.1.8 and let U:#¥— L*(0, 1) be the
isomorphism defined by Uf = f (Exercise 1.1.4). If (Af)x)=xf(x) for fin
H, what is UA U™ '?



CHAPTER III

Banach Spaces

The concept of a Banach space 1s a generalization of Hilbert space. A
Banach space assumes that there 1s a norm on the space relative to which

the space 1s complete, but it 1s not assumed that the norm 1s defined in terms

of an inner product. There are many examples of Banach spaces that are not
Hilbert spaces, so that the generalization 1s quite useful.

§1. Elementary Properties and Examples

1.1. Definition. If & is a vector space over [, a seminorm is a function
p: £— [0, o0) having the properties:

(a) p(x+ y)< p(x) + p(y) for all x, yin Z.
(b) p(ax) =|a|p(x) for all «in F and x in £.

It follows from (b) that p(0) = 0. A norm is a seminorm p such that

(©) x = 0 if p(x) = 0.

Usually a norm is denoted by ||-]|-
The norm on a Hilbert space is a norm. Also, the norm on #()is a
norm.

If & has a norm, then d(x, y)=||x— y|| defines a metric on Z.

1.2. Definition. A normed space is a pair (Z,||-||), where & is a vector

space and ||-|| is a norm on Z'. A Banach space is a normed space that is
complete with respect to the metric defined by the norm.
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1.3. Proposition. If & is a normed space, then

(a) the function Ix¥ =% defined by (x, y) = x+ y is continuous;
(b) the function F XX =X defined by (a, x) — ax is continuous.

Proor If x, = x and y,— y, then |[(x, + »,)— X + V)| =1[(x,— x) +
(v, — I <I|lx,—x|]| + v, — Y]] 20as n—>o0. This proves (a). The
proof of (b) 1s left to the reader. |

The next lemma 1s quite usetul.

1.4. Lemma. If p and g are seminorms on a vector space X, then the
following statements are equivalent.

(a) p(x) < q(x) for all x. (That is, p < q.)

b)) {x € X:¢g(x) <1)) C {x €X: p(x) <l}.
(b ) p(x) <1 whenever q(x) < 1.

) {x: qg(x) <1}C {x: p(x) <1}.

(¢ ) p(x) <1 whenever g(x) < 1.

(d) {x: g(x) <1}C {x: p(x) <1}.
(d ) p(x) < 1 whenever g(x) < 1.

Proor It is clear that (b) and (b ), (¢) and (¢ ), and (d) and (d ) are
equivalent. It is also clear that (a) implies all of the remaining conditions
and that (b) implies (d). It will be shown that (d) implies (a). The proof that
(¢c) implies (a) 1s left as an exercise.

Assume that (d) holds and put ¢(x) = a.If &> 0, then g((a + €) 'x) =
(a+¢&) la< 1. By (d), 1 > p(a+e) 'x)=(a+ &) p(x), so p(x) <a
+ € = ¢g(x) + & Letting e~ 0 shows (a). _

If ||-||; and ||+ ||, are two norms on £, they are said to be equivalent
norms 1f they define the same topology on X.

1.5. Proposition. If||-||; and ||‘||, are two norms on £, then these norms

are equivalent if and only if there are positive constants ¢ and C such that
cllx|l; < |Ix|l; = Clixil,

for all x in X

Proor Suppose there are constants ¢ and C such that c¢||x]||; <||x]], <
Clix]l; for all x in X. Fix x4 in X, ¢> 0. Then

(x € x|lx —xoll, < E/C} C {x € x: [lx = xoll, <e),
{x € x: [lx = Xgll, < CE} C {x € x: [lx — x|l < E}.

This shows that the two topologies are the same. Now assume that the two
norms are equivalent. Hence {x: ||x||; <1} is an open neighborhood of 0 in
the topology defined by |[|:||,. Therefore there is an r > 0 such that {x:
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x|l < r} € {x:|lxll; <1}. I q(x) = r '|ix|l; and p(x) = [|x]l,, the pre-
ceding lemma implies ||x||; <r |x||, or c||x||; <||x|l,, where ¢ = r. The
other inequality 1s left to the reader. _

There are two types of properties of a Banach space: those that are
topological and those that are metric. The metric properties depend on the

precise norm; the topological ones depend only on the equivalence class of
norms (see Exercise 4).

1.6. Example. Let X be any Hausdortf space (all spaces in this book are
assumed to be Hausdorff unless the contrary 1s specified) and let C,(X) = all
continuous functions f: X —F such that ||f]|= sup{ |f(x)]: x € X} < co.
For f, g in C(X), define (f + g): X »>F by (f+ g9x) = f(x) + gx);
for a in F define (af )(x) = af(x). Then C,(X) is a Banach space.

The proofs of the statements in (1.6) are all routine except, perhaps, for
the fact that C,(X) is complete. To see this, let { f,} be a Cauchy sequence
in C,(X). So if €> 0O, there is an integer N, such that for n, m = N_,
e>||f, — 1.l = sup{|f.,(x)— [, (x)|]: X € X}. In particular, for any x in
X |f.(x)— 1. <f, — .l <€ when n, m > N_.. So {f,(x)} is a Cauchy
sequence in F. Let f(x) = lm f, (x)if x € X. Now fix x in X. If n, m > N,

then |£(x) = £,()] < |f(X) = O + W = Full <1f(x) = £ (X)] + &
Letting m — oo gives that If(x) — f,(x)| <€ when n> N, This is indepen-
dent of x. Hence ||f — f,||<¢€ for n> N_

What has been just shown is that ||f — f ||— O as n—>oc0. Note that this
implies that f,(x) = f(x) uniformly on X. It is standard that f is continu-

ous. Also, I/l <IIf = f + IIf,)] < c0. Hence f€ C,(X) and so C,(X) is
complete.

Note that a linear subspace % of a Banach space £ that is topologically
closed is also a Banach space if it has the norm of Z.

1.7. Proposition. Zf X is a locally compact space and C,(X) = all continuous
functions f: X = F such that for all €> 0, {x € X:|f(x)|=¢} is compact,
then C,(X) is a closed subspace of C,(X) and hence is a Banach space.

Proor. That C,(X) 1s a linear manifold in C,(X) 1s left as an exercise. It
will only be shown that C,(X) is closed in C,(X). Let { f,}C C,(X) and
suppose f,—>fin C,(X). If &€> 0, there is an integer N such that
If.— fll<e/2; that is, |f,(x)— f(x)|<e/2 for all n> N and x in X. If
f(x)|=¢ then e < If(x) -f,(x) + f.(x)|<¢e/2 +|f,(x)] for n= N; so
(X)) =¢€/2 for n> N. Thus, {x € X:|f(x)|=>¢}C {x € X: |fv(x)|=>
e/2} so that f€ C,(X). m

The space C,(X) is the set of continuous functions on X that vanish at
infinity. If X =R, then C,(R) = all of the continuous functions f: R—F
such that lim, |, | f(x) = 0. If X is compact, C,(X) = C,(X) = C(X).
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If I is any set, then give I the discrete topology. Hence I becomes locally
compact. Also any function on I 1s continuous. Rather than C.(Z), the

customary notation is Z (Z). That is, Z (Z) = all bounded functions f:
I > F with ||[fl| = sup{lf(i)}: 1 €1}.Cy(I) consists of all functions f:
Z — F such that for every €¢> 0, {i € I:|f(i)| > ¢} is finite. If I =N, the

usual notation for these spaces is I and c¢,. Note that I consists of all

bounded sequences of scalars and Cq consists of all SCQUENCCS that CONnverge
to 0.

1.8. Example. If (X, §2,un) 1s a measure space and 1 < p <00, then
L?(X,§2, pn)is a Banach space.

The preceding example 1s usually proved in courses on integration and no
proof 1s given here.

1.9. Example. Let I be a set and 1 < p< cc. Define [7( ) to be the set of
all functions f:I—F such that L{|f()|\":i€]}<oo; and define ||f]|, =

{f(D)P: i € I})I/P Then {?(I) is a Banach space. If I =N, then
[P(N) = [7,

If £ = all subsets of I and for each A in £, u(A) = the number of points
in A if A is finite and u(A) = cc otherwise, then [7(I) = L?(1,8, ). So
the statement 1in (1.9) 1s a consequence of the one 1n (1.8).

1.10. Example. Let n> 1 and let C[0,1] = the collection of functions
f: [0, 1] > F such that f has n continuous derivatives. Define ||f]| =
SUPy « 1 <, isup{ |f®(x)]|: 0 <x < 1}}. Then C™[0,1] is a Banach space.

I.L11.  Example. Let 1 <p <ooand n= 1 and let W'[0,1] = the functions
f: [0, 11> F such that f has n— 1 continuous derlvatlves fin=b g

absolutely continuous, and f¢ & L?[0,1]. For f in W'[0,1], define

11/p

z 1
M=X| [
k=0 "0 .
Then W[0,1] is a Banach space.

The following 1s a useful fact about seminorms.

1.12.  Proposition. 4p 1s a seminormon Z,|p(x)— p(y)|< p(x—1y) for

all x, yin Z.If||-|| is @ norm, then |||x||— ||| <|[x— y|| for all x, y
in 4.

PRrROOF. Of course, the inequality for norms is a consequence of the one for

seminorms. Note that if x, yeZ, px) = p(x—y +y) <p(x—y)+
p(y),so p(x) -p(y) < p(x— y).Similarly, p(y) —p(x) < p(x— Y).
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There is the concept of “isomorphism™ for the category of Banach spaces.

[.13. Definition. If & and % are normed spaces, Z and % are isometri-
cally isomorphic if there is a surjective linear isometry from % onto %.

The term isomorphism in Banach space theory is reserved for linear

bijections T: & — % that are homeomorphisms.

EXERCISES

L.

2

3.

10.
I1.

12.

[3.

Complete the proof of Proposition 1.3.
Complete the proof of Proposition 1.5.

For 1 <p <oo and x = (xg,...,x,) in F9 define xlf, = jf:l‘xj'p]l/p;
define l1xlle = sup{ |x,|: 1 <j<d}. Show that all of these norms are equiv-
alent. For 1 < p,qg <00, what are the best constants ¢ and C such that
c|lx|l, < lix|l, < Cljx||, for all x in F9?

If 1 <p <o0 and |||, is defined on R’ as in Exercise 3, graph {x €R?*:
x|, = 1}. Note that if 1 <p<oo,|x||, =|lyl[, = I, and x # y, then for
0<t<1,|ltx+ (1 —£)y|l,< 1. The same cannot be said for p =1, 00.

. Let ¢ = the set of all sequences {a,}?, «, in F, such that lima, exists. Show

that ¢ is a closed subspace of /* and hence is a Banach space.

. Let X ={n"tin> 1} u {0}. Show that C(X) and the space of ¢ of Exercise 5

are isometrically isomorphic.

(a) Show that if | <p <oo and I is an infinite set, then /#(I) has a dense set
of the same cardinality as 1.

(b) Show that if 1| <p <o0,l”([I) and [#(J) are isometrically isomorphic if
and only if I and J have the same cardinality.

LI I°(7Z) and {*°(J) are isometrically isomorphic, do I and J have the same

cardinality?

. Show that I is not separable.

. Complete the proof of Proposition 1.7.

Verify the statements in Example 1.10.
Verily the statements in Example 1.11.

Let X be locally compact and let X, = X U {cc} be the one-point compactifi-
cation of X. Show that C,(X) and {f & C( X,): f(o0) = 0}, with the norm it
inherits as a subspace of C( X ), are isometrically isomorphic Banach spaces.

Let X be locally compact and define C,(X) to be the continuous functions f:
X — F such that sptf =cl{ x € X {(x) # 0} is compact (spt f is the support
of ). Show that C,(X) is dense in C,,(X).
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14. If X is a metrizable locally compact space that is a-compuct, then C,(X) is
separable. (X is a-compact if X =UY_, K,, where each K, is compact.)

15. If W;'{0,1] is defined as in Example 1.11 and feW]{0,1], let ||if]l| =

L1FOOP dx 7 + [fIf (%)) dx]'/P. Show that || ||| is equivalent to the
norm defined on W '{0,1]

16. Let Z be a normed space and let & be its completion as a metric space. Show
that 2 is a Banach space.

§2. Linear Operators on Normed Spaces

This section gathers together a few pertinent facts and examples concerning
linear operators on normed spaces. A fuller study of operators on Banach
spaces will be pursued later.

The proof of the first result 1s similar to that of Proposition 1.3.1 and 1is

left to the reader [Also sece (II.1.1)]. #(Z,%) = all continuous linear
transformations A: Z - %.

2.1.  Proposition. If & and % are normed spaces and A: & > % is a linear
transformation, the following statements are equivalent.

(a) A €« B(L,%).
(b) A is continuous at O.
(c) A is continuous at some point.

(d) There is a positive constant ¢ such that ||Ax|| < cl|x||for all x in &.
If A €e#B(Z,%) and

141l = sup{llAx|: [|x]| < 1},
then
I41l = sup{ll4x||: |lx]| = 1}
= sup{||4x]|/||x||: x # 0)
= inf{ ¢ > 0: ||Ax|| < c|jx|| for x in L }.

WA || 1s called the norm of A and Z(Z,% ) becomes a normed space if
addition and scalar multiplication are defined pointwise. Z(Z,%) is Banach
space if % is a Banach space (Exercise 1). A continuous linear operator is
also called a bounded linear operator.

The following examples are reminiscent of those that were given in
Section 11.1.

2.2. Example. If (X, £,u) is a u-finite measure space and ¢ € L=( X, 2, ),
define My: LP(X,Q,p)>LP(X,2,pn),1 <p<o0,by My,f = ¢f for all f
in LP( X, @,p). Then M, € B(LP(X,E,p)) and || M|l = [[¢]l -
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2.3. Example. If (X, §£,p), k, ¢y, and ¢, are as in Example 11.1.6 and
1 <p<cc then Ki LP(p)— LP(p), defined by

(Kf)(x) = [k(x, ) f(»)dn(y)
for all f in LP(p) and x in X, is a bounded operator on L?(pn) and
IK|| < c}/9cY/?, where 1/p + l/q = 1.

2.4, Example. If X and Y are compact spaces and 70 Y — X 1§ a

continuous map, define A: C(X) = C(Y) by (Af)¥) = My)). Then
A eB(C(X),C(Y)) and ||A]| = 1.

EXERCISES

. Show that Z(Z%,%) is a Banach space if and only if % is a Banach space.

2. Let & be a normed space, let % be a Banach space, and let % be the completion
of I. Show that if p: ZB(X,%)—> B(Z,%) is defined by p(A) = A|Z, then p is
an isometric isomorphism.

3. If (X, §,p) is a u-finite measure space, ¢: X = F is an O-measurable function,
| <p <ce, and ¢f € LP(p) whenever f € L?( ), then show that ¢ € L=( p).

Verily the statements in Example 2.2.
. Verily the statements in Example 2.3

. Verily the statements in Example 2.4.

Jd N A

. Let A and 7 be as in Example 2.4. (a) Give necessary and sufficient conditions
on 7 that A be injective. (b) Give such a condition that A be surjective. (¢) Give
such a condition that A be an isometry. (d) If X = Y, show that 4° = A if and
only if 7 is a retraction.

§3. Finite-Dimensional Normed Spaces

In functional analysis it it always good to see what significance a concept
has for finite-dimensional spaces.

3.1. Theorem. If & is a finite-dimensional vector space over IF, then any two
norms on & are equivalent.

Proor. Let {e,, ..., e,} be a Hamel basis for Z. For x = Zf=1xjej, define
1X||o = max{ |x,|:1 <j<d} It is left to the reader to verify that ||-||,, is
a norm. Let ||-]| be any norm on Z. It will be shown that ||-|| and |||},

arec equivalent.

If x = X x,e;, then [|x||< X |x]lle)l <Cllx|l,, when C = X le]l. To

show the other inequality, let 7 be the topology defined on Z by || ]|
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and let  be the topology defined on £ by ||:||- Put B = {x€ Z:
|x|| . <1}. The first part of the proof implies J 2 %. Since B is J-compact
and I D%, Bis @-compact and the relativizations of the two topologies to
B agree. Let A = {x €Z:||x||, <1}. Since A is J~open, it is open in
(B, % ). Hence there is a set U in % such that UN B = A. Thus 0 €U and
there is an » > (0 such that {x €Z:||x||<r}CU. Hence

3.2 |x|]| < r and x|}, < 1 1mplies [|x||, < 1.

Claim. [|x|| < r implies ||x|| < 1.

Let |lx|[<r and put x = Xx,e,a=|x|. So [|x/«|, =1 and x/a&
B. If a> 1, then |\x/a||< #/a < r, and hence ||x/a||, <1 by (3.2), a

contradiction. Thus ||x||,, =a< 1 and the claim 1s established.

By Lemma 1.4, ||x||., <r '||x|| for all x and so the proof is complete.
|

3.3. Proposition. If & is a normed space and A is a finite dimensional
linear manifold in &, then A is closed.

PrRooF. Let x, € Z\ A and put A, = the linear span of .# and {x,}.
Define a norm |||y on A, by |[x + aoXx,|l; = ||x|| + |ag|, for x in A
and a,in F. It 1s left as an exercise to show that ||-||; is a norm on 4. By
Theorem 3.1 and Proposition 1.5, there are constants ¢ and C such that
cllx + apgxgll S |Ix|| + |ag| < Cllx + agxel] for all x in A and a4 in F.
Hence for all x in A, |x,— x||2C 7 Y(||x|| + 1) 2C~ " Thus 0 <C~ <
inf{ |jx,— x1): x € A }=dist(x,, A ). That is, every point x, not in . is
at a positive distance from A. Hence # is closed. |

3.4. Proposition. Let & be a finite-dimensional normed space and let ¥ be
any normed space. If T: % —> % is a linear transformation, then T is
continuous.

PROOF. Since all norms on & are equivalent and 7= Z — % 1is continuous
with respect to one norm on £ precisely when it is continuous with respect
to any equivalent norm, we may assume that [|[L9_, el =max{ [§]:1 <
<d}), where {e,}is a Hamel basis for 2. Thus, for x = 2§.e,{|Tx|| =
|12 ,€Te |l < X|&| l|Tell < Clix|l,where C = L [|Te/||. By (2.1), T is con-
tinuous. _

EXERCISES

1. Show that if £ 1s a locally compact normed space, then £ is finite dimensional.

2. Show that ||-|};, defined on A, in the proof of Proposition 3.3, is a norm.
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§4. Quotients and Products of Normed Spaces

Let X be a normed space, let 4 be a lincar manifold in X, and let Q:

X—>Z/# be the natural map Qx = x + 4. We want to make Z/ 4 into a
normed space, so define

4.1 lx + A = inf{||x+ y||: y €A }.

Note that because # is a linear space, ||x+ | = inf{ ||x—y|l:yE A}
= dist(x, A ), the distance from x to . It is left to the reader to show that
(4.1) defines a seminorm on /.. But if A is not closed in &, (4.1) cannot

define a norm. (Why?) If, however, # 1is closed, then (4.1) does define a
norm.

42. Theorem. If # <X and ||x + A|| is defined us in (4.1), then ||-|| is a
norm on X/ M . Also:

(@) Q)< ||x|| for all x in X and hence Q is continuous.

(b) If & is a Banach space, then so is Z/ M .

(c) A subset W of Z/ M is open relative to the norm if and only if Q" ( W) is
open in X.

(d) Zf U is open in X, then Q(U) is open in Z/ .

Proor. It 18 left as an exercise to show that (4.1) defines a norm on Z/.#.

To show (a), |[Q(x)|| =1|x + AZ| <||x|| since 0 € #; Q is therefore
continuous by (2.1).

(b) Let {x, + A& } be a Cauchy sequence in Z/.#. There is a subsequence
{x, +#} such that

(e, + )= (x4 A = llx,, = X, + M <27
Let y; = 0. Choose y, in A such that
X0, = X, + Yall <%, —x,, + A + 270 <2271,
Choose y;in A such that

“(xnz + yZ) —_(xn3 + y3)” < ”xn2 o xn3 + '//{” + 2-2< 2 '2'—2-

Continuing, there is a sequence { y.}in .# such that

1(x,, + V)= (%, + Vsl <2275

Thus {x, + y,} is a Cauchy sequence in X (Why?). Since X is complete,
there is an x4 in X such that x, + y, > x, in X. By (a), x, + A4 =
Q(x, + yi) 2> 0xy=x,+ A. Smce {x,+ #} is a Cauchy sequence,
X, + M —>x,+ M and Z/# i1s complete (Exercise 3).

(¢) If Wis open in Z/#, then Q- (W) is open in X because Q is
continuous. Now assume that W C /A and Q '( W) is open in X. Let
r>0and put B = {x € X: ||x|| <r}. It will be shown that Q( B,) = {x
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+ A ||x + A|| <r}. Infact, if [|x|| < r, then ||x + #| < ||x|| < r. On the
other hand, if ||x + || < r, then thereis a y in .# such that ||x + y|[ <r,
Thus x + # = Q(x +y)€E Q(B,). If x, + # < W, then x, € Q }(W).
Since O~ (W) is open, there is an r > 0 such that x, + B, = {x: ||x — x|
< r} C Q '(W). The preceding argument now 1mphes that W =
QO 'W)2Q(xq+B)={x+ M |x— Xo + | <r}. Hence W is
open.

(d) If U is open in &, then Q QU ) =U+ A = fu+y: ue U,
yedy=UU-+y ye#} EachU + y is open, so Q }(Q(U)) is open
in Z. By (¢), Q(U) is open in Z/4. _

Because Q is an open map [part (d)], it does not follow that Q is a closed
map (Exercise 4).

4.3. Proposition. If Z is a normed space, M <X, and N is a finite
dimensional subspace of &, then M + A is a closed subspace of % .

PROOF. Consider Z/.# and the quotient map Q: % — %/.#. Since
dim Q(/V ) < dim A< 00, Q(A") is closed in £/.#. Since Q is continuous
Q HQ(A))isclosedin &;but Q" QN N=H+N. =

Now for the product or direct sum of normed spaces. Here there is a
difficulty because, unlike Hilbert space, there is no canonical way to
proceed. Suppose { Z;: i € I} is a collection of normed spaces. Then [{Z:
i € I} 18 a vector space if the linear operations are defined coordinatewise.
The 1dea is to put a norm on a linear subspace of this product.

Let || - || denote the norm on each Z. For 1 < p < oo, define

i 11/p
@p@”fa{xel‘l@:: xll = | Zilx ()i <oo}.

Define

® % = {x = HQ}: |1x]] = sup||x(i)|| < oo}.

!

It {Z,,%,, ...} 1s a sequence of normed spaces, define

Dz, = {x e [1Z,: lix(n) - 0};
n=1

give @ Z, the norm it has as a subspace of & _Z .
The proof of the next proposition is left as an exercise.

4.4. Proposition. Let {Z: i € I} be a collection of normed spaces and let
=D Z,1<p< oo

(a) Z is a normed space and the projection P: ¥ > %, is a continuous linear
map with ||P,(x)|] < ||x|| for each x in &.
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(b) & is a Banach space if and only if each &; is a Banach space.

'

(¢) Each projection P, is an open map of Z onto Z,.

A similar result holds for @ ,%,, but the formulation and proof of this is

left to the reader.

EXERCISES

L.
2.

10.

11.

12.

13.

14

Show that if # < &, then (4.1) defines a norm on Z/4.

Prove that Z is a Banach space if and only if whenever { x, } is a sequence in &
such that X ||x, || < oo, then ¥X%_,x, converges in Z.

al

. Show that if (X, d) is a metric space and { x,, } is a Cauchy sequence such that

there is a subsequence { x, } that converges to x,, then x, — x,.

Find a Banach space & and a closed subspace # such that the natural map Q:
¥ — X/ M is not a closed map. Can the natural map ever be a closed map?

Prove the converse of (4.2b): If & is a normed space, # < 5, and both .# and
X/ M are complete, then & is complete. (This is an example of what is called a

“ two-out-of-three” result. If any two of ', A, and Z/# are complete, so 1s the
third.)

.Let £ ={xe€l”: x(2n)=0 for all n}, 1 < p < . Show that [?/# is

isometrically isomorphic to /7.

Let X be a normal locally compact space and F a closed subset of X. If

M= {fe C(X): f(x)=0forall x in F}, then G(X)/A is isometrically

isomorphic to Gy (F).
Prove Proposition 4.4,
Formulate and prove a version of Proposition 4.4 for © Z,,.

If {%Z,,...,%,) is a finite collection of normed spaces and 1 < p < 00, show
that the norms on @ % are all equivalent.

Here is an abstraction of Proposition 4.4, Suppose {Z,: i € I} 1s a collection of
normed spaces and Y is a normed space contained in F’. Define ¥ = {x €[, %:
thereisa y in Y with ||x(i)|| < y(i) for all i }. If x € X', define ||x|| = 1nf{||y||
lx ()| < y(i) for all i}. Then (&, || - ||) is a normed space. Give necessary and
sufficient conditions on Y that each of the parts of (4.4) are valid for Z.

Let & be a normed space and A < Z. (a) If & is separable, so is Z/ 4. (b) If
X/ M and A are separable, then & is separable. (c) Give an example such that
%/ M is separable but Z 1s not.

Letl < p < o0 and put = D %,. Show that % is separable if and only if I is
countable and each %; is separab]e Show that € _Z%, is separable if and only
if I 1s finite and each %, 1s separable.

i

Show that & %, is separable if and only if each %, is separable.
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15. Let JC I, and fE@p{f}:ie I}, A= {x €Z: x(G) = 0 for j in J}.
Show that %/ is isometrically isomorphic to & {%:j€J}.

16. Let 2 be a Hilbert space and suppose A& < J¥. Show that if Q: ' — /A is
the natural map, then Q: A+ — /A is an isometric isomorphism.

§5. Linear Functionals

Let £ be a vector space over F. A hyperplane in & is a lincar manifold A
in £ such that dm(Z/A#) = 1. If f:—>F is a linear functional and
f# 0, then kerf is a hyperplane. In fact, f induces an isomorphism
between Z/kerf and F. Conversely, if # is a hyperplane, let Q: & > Z/ A
be the natural map and let 7" Z/# —F be an isomorphism. Then
f=To@Q is a linear functional on Z and ker f = A.

Suppose now that f and g are linear functionals on % such that
kerf = kerg. Let xo €% such that f(xy)=1; so g(xy)# 0. If x €Z and
a = f(x), then x —ax,€ kerf = kerg. So 0 = g(x) —ag(x,), or gx) =
(g(xy))a = (8(xg))f(x). Thus g = Bf for a scalar B. This is summarized as
follows.

5.1.  Proposition. A linear manifold in Z is a hyperplane if and only if it is
the kernel of a linear functional. Two linear functionals have the same kernel if
and only if one is a nonzero multiple of the other.

Hyperplanes in a normed space fall into one of two categories.

5.2. Proposition. If £ is a normed space and A is a hyperplane in Z, then
either A is closed or # is dense.

Proor. Consider cl .4, the closure of #. By Proposition 1.3, cl.# is a
linear manifold in &. Since A4 C cl A and dim £/ 4 = 1, cither ¢l A = A
orcl #4=%. N

If =cy and f: Z—>F is defined by f(ea;, @5,...) =@, then kerf =
{(a,)) € ¢y: a; = 0} is closed in ¢3. To get an example of a dense hyper-
plane, let £ =c¢, and let e, be the element of ¢, such that e, (R) = 0 if
k # nand e(n) = 1. (It is best to think of ¢, as a collection of functions
on N.) Let xg(n) = 1/n for all n; so xyg€ ¢y and {xy,€y,€5,...}1 18 a
lincarly independent set in ¢,. Let # = @ Hamel basis in ¢, which contains
{Xg,€1,€55...}. Put B ={xq,€1,€,,... YU {birt€l}, b#x, or e, for
any 1 or n. Define f: ¢y—=F by f(agxy+Lo a6, + L;B:b) = a,. (Re-
member that in the preceding expression at most a finite number of the «,
and B, are not zero.) Since e, € kerf for all n > 1, kerf is dense but
clearly kert #c,.
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The dichotomy that exists for hyperplanes should be reflected in a
dichotomy for linear functionals.

5.3. Theorem. If X is a normed space and f: £ = F is a linear functional,
then f is continuous if and only if kerf is closed.

Proor. If fis continuous, ker f= f~'({0}) and so kerf must be closed.
Assume now that kerf is closed and let Q: X — Z/kerf be the natural

map. By (4.2), Q is continuous. Let T: Z/kerf = F be an isomorphism; by
(3.4), T is continuous. Thus, if g=T0° Q: £ — IF, g is continuous and
kerf = kerg. Hence (5.1) f= ag for some a in IF and so fi1s continuous.

B

If X —F 1s a linecar functional, then fis a linear transformation and

so Proposition 2.1 applies. Continuous linear functionals are also called
bounded linear functionals and

1Al = sup{I/(x)|: lIx]| < 1}.

The other formulas for ||f|| given in (2.1) are also valid here. Let X* = the
collection of all bounded linear functionals on X. If f,g€ X * and a € F,

define («af + gllx) = ofix) + g(x); X * is called the dual space of X.
Note that X * = #(Z,[F).

54. Proposition. If X is a normed space, X * is a Banach space.

Proor. It is left as an exercise for the reader to show that X * is a normed
space. To show that X * 1s complete, let B = fx € X: ||x||< 1}. If
feaZ*, define p(f): B —=F by p(fi(x) = f(x); that 1is, p(f) 1s the
restriction of fto B. Note that p: X* — C,(B) is a linear isometry. Thus
to show that X * is complete, it suffices, since C,(B) is complete (1.6), to
show that p(Z *) is closed. Let {f,}C X *and suppose g€ C,(B) such
that ||p(f,)—g|l=>0as n 0. Let x € X. If o, BEF, a, B# 0, such
that ax, Bx € B, then a 'g(ax) = lim a™'f,(ax) = lim B~ (Bx) =
B~ 'g(Bx). Define f: = F by ketting fix) = a” 'g(ax) for any a+# 0 such
that ax € B. It 1s left as an exercise for the reader to show that fe X *
and p(f) = g _

Compare the preceding result with Exercise 2.1.
It should be emphasized that it is not assumed in the preceding proposi-
tion that X is complete. In fact, if X is a normed space and £ is its

completion (Exercise 1.16), then X * and £ * are isometrically isomorphic
(Exercise 2.2).

55. Theorem. Let ( X,2,u) be a measure space and let 1 <p <oo. If
l/p T l/q = 1 and gELq( X&QEI'L):; define FgLP(p)—%ﬂ: by

F(f) = ffgdu-
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Then F,€ LP(p)* and the map g — F, defines an isometric isomorphism of
Li(p) onto LP(p)*.

Since this theorem 1is often proved in courses in measure and integration,
the proof of this result, as well as the next two, 1s contained in the
Appendix. See Appendix B for the proofs of (5.5) and (5.6).

5.6. Theorem. If(X, §, ) is a o-finite measure space and g € L*( X, 2, ),
dejine F,:L'(p)—F by

F.(f) = ffgdu-

Then I, & L'(p)* and the map g — F, dejines an isometric isomorphism of
L>(w) onto L'(p)*.

Note that when p = 2 in Theorem 5.5, there 1s a little difference between
(5.5) and (1.3.5) owing to the absence of a complex conjugate in (3.5). Also,
note that (5.6) 1s false if the measure space 1s not assumed to be u-finite
(Exercise 3).

If X is a locally compact space, M(X) denotes the space of all If-valued
regular Borel measures on X with the total variation norm. See Appendix C
for the definitions as well as the proof of the next theorem.

5.7. Riesz Representation Theorem. If X is a locally compact space and
pE M(X), define F,:Co(X)—>F by

F.() = [fdn.

Then F,€Cy(X)* and the map p— F, is an isometric isomorphism of
M(X) onto Cy( X)*.

There are special cases of these theorems that deserve to be pointed out.

5.8. Example. The dual of ¢, is isometrically isomorphic to /!. In fact,
co = C,(N), if N is given the discrete topology, and I = M(N).

5.9. Example. The dual of I is 1sometrically isomorphic to I . In fact,
['= LYN, 2N p), where p(4) = the number of points in A. Also, [® =
LN, 2N ).

5.10. Example. If 1 <p <oo, the dual of /7 1s /9, where 1 = l/p + 1/q.

What is the dual of L*( X, £, u)? There are two possible representations.
One is to identify L*°( X, £2, u)* with the space of finitely additive measures
defined on £ that are absolutely continuous with respect to p and have
finite total variation (see Dunford and Schwartz [1958], p. 296). Another -
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representation is to obtain a compact space Z such that L*( X, £, ) is
isometrically isomorphic to C(Z) and then use the Riesz Representation
Theorem. This will be done later in this book (VIIL.2.1).

What is the dual of M(X)? For this, define L*( M( X)) as the set of all F
in [I{ L*(p):p € M(X)} such that if p<<p; then F(p) = F(v) a.e. [p]
This is an inverse limit of the spaces L*™(p), p in M(X).

511, Lemma. If F € L*( M(X)), then

IFY = sup||F(p)]l,, < co.
7

ProoOF. If ||F]| = oo, then there 1s a sequence {p,} in M(X) such that
1F(p )l = n. Let p= 2027 " 4/lle,ll. Then p, << p for all n,so

F(p,) = F(p) ae. [p,) for each n. Hence |F(p)ll o= 1F(p,)llp = n for
cach n, a contradiction. _

5.12. Theorem. If X is locally compact and F € L*(M( X)), define @
MX)+ IF by

()= [F(p)dp.

Then @, M(X)* and the map F — @ is an isometric isomorphism of
L2(M( X)) onto M(X)*.

PROOF. It is easy to see that @, is linear. Also, |P-(w)|< [|F(p)|d|p| <
IF() o llell < IF1 el Thus @ € M(X)* and ||| < || F]]

Now fix @ in MX)*. If p€ M(X) and f € L'(|p|), then » = fp €
M(X). (That is, v(A) = [,fdu for every Borel set A.) Also ||¥|| = [|f] 4|l
In fact, the Radon-Nikodym Theorem can be interpreted as an 1dentifica-
tion (isometrically isomorphic) of L'(|u|) with { e M(X): n<|u|}. Thus
f= ®(fp) is a linear functional on L'(|p}) and |P(fw)| < ||| [If]| dinl-
Hence there is an F(u) in L*=(|u]) such that @( fu) = [fF(un) du for every f
in L'(|u|) and ||F(p)|l. <||P|l. (We have been a little nonchalant about
using p or |u|, but what was said is perfectly correct. Fill in the details.) In

particular, taking f = 1 gives ®(p) = JF(p)dp. It must be shown that
FE L*(M( X)), it then follows that ® = @, and |[|Pg| = ||F|| -

To show that F € L*( M( X)), let p and v be measures such that p < v,
By the Radon-Nikodym Theorem, there is an fin L'(ju|) such that v = fu.
Hence if g € L(|»]), then gf € L'(|u|) and fg dv = [gfdp. Thus,

JgF(v) dv = P(grv) = P(gfr) = [gfF(u)dp = JgF(p) dv.So F(v) = F(p)
ae [viand FEL®(M(X). =

EXERCISES
1. Complete the proot of Proposition 5.4.

2. Show that £ * 1s a normed space.
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3. Give an example of a measure space (X, {2, u) that is not a-finite for which the
conclusion of Theorem 5.6 is false.

4. Let {X.iel) be a collection of normed spaces. If 1 < p<oo, show that the
dual space of @pf{ is isometrically isomorphic to D ,ZX, wherel/p+Vq=1

5. ¥%,,%,,. are normed spaces, show that ( ® % )* is isometrically isomorphic
o ® T,

6. Let n> 1 and let C'"’[0,1] be defined as in Example 1.10. Show that ||f]| =
2ol 0] + sup{|f"(x)]: 0 < x < 1)is an equivalent norm on C‘"[0,1].
Show that L& (C'[0,1})* if and only if there are scalars a,, a,, ,a, , and
a measure p on [0,1] such that I{) = X7 s, f0)+ [f" du. Is there a
formula for ||L|| in terms of |ay|,|eq],.,|a,_,], and ||u]|?

§6. The Hahn-Banach Theorem

The Hahn-Banach Theorem 1s one of the most important results in
mathematics. It 1s used so often 1t 1s rightly considered as a cornerstone of
functional analysis. It 1s one of those theorems that when it or one of its
immediate consequences 1s used, it 1s used without quotation or reference
and the reader is assumed to realize that it 1s being invoked.

6.1. Definition. If 4 is a vector space, a sublinear functional 1s a function
qg: £ — R such that

(@) g(x +y) < qg(x) + q(y) for all x, yin &;
(b) g(ax) = ag(x) for x in & and a = 0.

Note that every seminorm 1s a sublinear functional, but not conversely. In
fact, it should be emphasized that a sublinear functional 1s allowed to
assume negative values and that (b) in the definition only holds for a> O.

6.2. The Hahn-Banach Theorem. Let & be a vector space over R and let g
be a sublinear functional on & .1If # is a linear manifold in & and f: 4 —> R

is a linear functional such that f(x) < g(x) for all x in M, then there is a

linear functional F:% — R such that Fi./# = f and F(x) < g(x) for all x in
Z.

Note that the substance of the theorem 1s not that the extension exists but
that an extension can be found that remains dominated by ¢. Just to find an
extension, let {e, } be a Hamel basis for . and let { yj} be vectors in 4
such that {e, } U {y }is a Hamel basis for Z. Now define F: £ —R by
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Fl,ae; + X .B,y,) =2,a,f(e;) = f(X;ae;). This extends f. If {y,} is any
collection of real numbers, then F(r,ae,+ 2L ,8,y,)= f(l,a;e;)+ 2L B, is
also an extension of f. Morcover, any extension of f has this form. The
difficulty 1s that we must find one of these extensions that is dominated
by 4-

Before proving the theorem, let § see some of its immediate corollaries.
The first 1s an extension of the theorem to complex spaces. For this a lemma
is needed. Note that if X is a vector space over C, it is also a vector space
over R. Also, if f:Z—>C is C-linear, then Ref: - R is R-linear. The
following lemma 1s the converse of this.

6.3. Lemma. Let X be a vector space over C.

(@) If [+Z >R 1s an R-linear functional, then f(x) = fx) —if (ix) is a
C-linear functional and f = Ref.

(b) If g: - C is C-linear, f = Reg, andfis defined as in (a), then f = g.

.(¢c) If pis a seminorm on X andf and f are as in (a), then |f(x)|< p(x) for
all x if and only if |f(x)|< p(x) for all x.

(d) Zf X is a normed space and f and f are as in (a), then ||| = ||f]|.

Proor. The prooff; of (a) and (b) are left as an exercise. To prove (¢),
suppose |f(x)| p(x). Then f(x) = Re f(x) <|f(x)|< p(x). Also,
-f(x) = Ref(—x)<|f(—x)|< plx). Hence {f(x)|< p(x). Now assume
that |f(x)|< p(x). Choose @ such that f(x) = e”?|f(x)|. Hence |f(x)|
f(e™x) = Ref(e " x) = f(e “x) < p(e”x) = p(x).

Part (d) 1s an easy application of (c). H

6.4. Corollary. Let & be a vector space, let A be a linear manifold in X,
and let p: £ — [0, oo) be a semuinorm. If f: # > Fis a linear functional such
that |f (x)|<p(x) forall x in A ,then there is a linear functional F: X >
such that F|A#4 = fand |F(x)|< p(x) for all x in £,

Proor. Case 1I: F = R. Note that fix) <|f(x)|< p(x) for x in . By
(5.2) there is an extension F: X — R of f such that F(x) < p(x) for all x.
Hence -F(x) = F(-x) < p(—x) = p(x). Thus |F|< p.

Case 2: IF = C. Let f, = Ref. By (6.3¢),|f,|< p. By Case 1, there is an
W-linear functional F;:Z—=R such that F|# = f, and |F||< p. Let
F(x)=F(x) —iF,(ix) for all x in X. By (6.3¢),|F| < p. Clearly, F|A# = f.

B

6.5. Corollary. If X 1s a normed space, # 1s a linear manifold in & ,and f:
M — [F 15 a bounded linear functional, then there 1s an Fin X * such that

F\A = fand IIF)| = I/l-
PRoor. Use Corollary 6.4 with p(x) = ||f]}||x]|- u
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6.6. Corollary. If X is a normed space, { x{,X5,...,X4} 18 a linearly
independent subset of &, and ay, a5, ..., a, are arbitrary scalars, then there
tsanfin Z* such that f (x;)=a,for I <j<d.

Proor. Let # = the linear span of x,...,x, and define g: A4 —F by
g(X B x;)=2;Ba;. So g is lincar. Since & is finite dimensional, g is
continuous. Let fbe a continuous extension of g to X. H

6.7. Corollary. If X is a normed space and x € X, then

Ix|| = sup{[f(x)|: f€ X* and |fil<1}.
Moreover, this supremum is attained.

Proor. Let a=sup{|f(x)|:f€ X* and ||fli<1}.Iff€ X* and ||f]| < 1,
then SOOI < I/l {Ix]l < |Ix]j; hence a <||x||. Now let A ={pBx:BEF}
define g: A —F by g(Bx) = B||x||. Then g € #* and ||g|| = 1. By
Corollary 6.5, there is an fin X* such that ||f]] = 1 and flx) = g(x) =
Txll.

This introduces a certain symmetry in the definitions of the norms in X
and X * that will be explored later (§811).

6.8. Corollary. If X is a normed space, M <X, x, €EIXZ\ A, and d =

dist( x4, A ), thenthere is an fin & * such that f(xy)=1, fix) = 0 for all x
in A, and ||f|| = d"*.

Proor. Let Q: £ —>Z/# be the natural map. Since ||x, + #||=d, by the
preceding corollary there is a g in (Z/4)* such that g(x, + #)=d and
gll=1.Let f=d 'go Q: F—F. Then fis continuous, fix) = 0 for x in
M, and f(x) = 1. Also, |f(x)] = d"g(Q(x)|<d | Q(x)l|<d |||
hence ||f]l<d ! On the other hand, ||g]l = 1 so there is a sequence { x, )}
such that |g(x, + A)|— 1 and ||x, + A||< 1 for all n. Let y, € .# such
that ||x, + y,/l < 1. Then |f(x,+ )l =d '|g(x, + #)|>d ", so |l =
dal. =

To prove the Hahn-Banach Theorem, we first show that we can extend
the functional to a space of one dimension more.

6.9. Lemma. Suppose the hypothesis of (6.2) is satisfied and, in addition,
dim Z/4 = 1. Then the conclusion of (6.2) is valid.

Proor. Fix x,in Z\A; so X=&V {x,}={tx, +y:t R,y € A ).
For the moment assume that the extension F: Z— R of f exists with

F <q. Let s see what F must look like. Put ay = F(x,).If £ > 0 and
Vi€ A, then F(txy + y;) = tag + f (y1) <q(ixy + y;). Hence ay <

—t7f(0n) + 17q(txg + y1) = —f(» /1) + q(xo + y/t) for every y, in
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M. Since y,/t€ HA, this gives that

6.10 ag < —f(y;)+4q(xy + 1)

for all y, in A. Also note that if e« satisfies (6.10), then by reversing the

inequalities in the preceding argument, it follows that ray + f(y,) <gq(tx,
+ y,) whenever > 0.

If t > 0and y, € A and if Fexists, then F(—1x, + y,) = —tay + f(),)
<gq(—txy+ y,). As above, this implies that

0.11 ag= f(»,)—q(—x0 + »)

for all y, in A . Moreover, (6.11) is sufficient that —tay+ f( y,) <q(—tx,
+ y,) for all = 0 and y, in A.

Combining (6.10) and (6.11) we see that we must show that a, can be
chosen satisfying (6.10) and (6.11) simultaneously. Thus we must show that

.12 f(nm)=—q(—=xy + »)<—f(y) + 9(xy+ )

for all y,, y, in A . But this means we want to show that f( y; + »,) <q(x,
+ Y1) + g(-xo + ¥2)-But

fri+ »m)<q(y + ») = a((y + x0) +(=x0+ ;)

<q(y1 + x0) + 9(—=x¢ + ),

so (6.12) is satisfied. If ap is chosen with sup{ f( y,)—q(—Xxy + »,):
neM}<as<mi{ —f(y) + q(xo + y): 1 €A} and F(txg + y) =
tay+ f( yy), F satisfies the conclusion of (6.2). B

Proor orF THE Haun- Banacu THeEorREM. Let & be the collection of all
pairs (A, f1), where A, is a linear manifold in £ such that 4,2 .4 and
fi:#,—R is a linear functional with f;|# = f and fi<q on A,. If
(A, f) and (A 5, [,) €, define (A1, f1) S (A5, ;) to mean that A,
C A, and f,|#,= f;- So (¥,<) is a partially ordered set. Suppose
€={(A,[f) 1€ I} is a chain in L. If /= U{ A i€ Z}, then the fact
that ¢ is a chain implies that A" is a linear manifold. Define F: A4 — R by
setting F(x) = f(x)itx €A . It is easily checked that F is well defined,
linear, and satisfies F <qon A . So (A", F) €% and (A", F) is an upper
bound for €. By Zorn § Lemma, % has a maximal element (%, F). But the
preceding lemma implies that Y = Z. Hence F is the desired extension.

This section concludes with one important consequence of the Hahn-
Banach Theorem. It will be generalized later (IV.3.11), but it is used so often
it 18 worth singling out for consideration.

6.13. Theorem. Zf Z is a normed space and A is a linear manifold in &,
then

M =kerf: feX*and # C kerf}.
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PROOF. Let #'=(Ykerf:. f€ Z* and A C kerf}. If fEX* and A C
ker f, then the continuity of fimplies that ¢l 4 C ker f. Hence ¢l A C A
If x,¢& cl A, then d = dist(x,, #Z)> 0. By Corollary 6.8 there is an fin
& * such that f(x,)=1 and fix) = 0 for every x in 4. Hence x,4 A"
Thus A°Ccl # and the proof is complete. B

6.14. Corollary. If Z 1s a normed space and A is a linear manifold in Z,
then A is dense in Z if and only if the only bounded linear functional on £
that annihilates A is the zero functional.

EXERCISES

1. Complete the proof of Lemma 6.3.

2. Give the details of the proof of Corollary 6.5.

3. Show that ¢* 1s 1sometrically isomorphic to I . Are ¢ and ¢, isometrically
isomorphic?

4, If p 1s a measure on [0, 1] and [x" du(x) = 0 for alln> 0O, show that p = 0.

5. It n> 1, show that there 1s a measure p on [0, 1] such that for every polynomial
p of degree at most n,

[pdu=3 p*(ks/n).
k=1

6. If n> 1, does there exist a measure w on [0, 1] such that p (0) = [pdu for every
polynomial of degree at most n?

7. Does there exist a measure p on [0, 1] such that f[pdu = p (0) for every
polynomial p?

8. Let K be a compact subset of € and define A(K) to be {f&€ CK): f is
analytic on int K} (Functions here are complex valued.) Show that if a € K
then there is a probability measure p supported on dK such that f(a) = [fdu

for every f in A(K). (A probability measure is a nonnegative measure p such
that [lfl = 1.

9 f K =cl D(D = {|z]<1}) and a € K, find the measure pu whose existence
was proved in Exercise 8.

10. Let P={ p|dD:p = an analytic polynomial} and consider P as a manifold in
C( dD). Show that if p is a real-valued measure on dD such that [pdu =0 for
every p in P, then u = 0. Give an example of a complex-valued measure u such
that w# 0 but [pdu =0 for every p in P.

§7*. An Application: Banach Limits

If x = {x(n)} € ¢, define L{x) = limx(n). Then L is a lincar functional,
L[l =1, and, if for x in ¢, x is defined by x = (x(2),x(3), ...), then
Lix) = L(x’). Also, if x = 0 [that 1S, x(n) = O for all n/, then L{x) = 0.
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In this section it will be shown that these properties of the limit functional
can be extended to /*. The proof uses the Hahn-Banach Theorem.

7.1. Theorem. There is a linear functional L: 1 —F such that

@IIL| = 1.

(b) Zf x € ¢, L(x) = lim x(n).

(¢c) Zf x €[ and x(n) = O for all n, then L(x) = 0.

(d) Zf x €l™ andx = (x(2), x(3), ...), then L(x) = L(x").

Proor. First assume F =R; that 1s, /[ = [g. It x €[*, let x denote the
element of /* defined in part (d) above. Put A = {x — x ! x €/*}. Note

that (x + ay)’ = x +ay’ for any x, y in /™ and a in R; hence A 1s a
linear manifold in 7 . Let 1 denote the sequence (1,1, 1,...)in /

7.2. Claim. dist(1, .#) = 1.

Since 0 € A, dist(1, #)< 1. Let x €[®;if (x — x )(n) <0 for any n,
then ||1— x — x| ,=|1— (x(r) —x’(n))|= 1. Suppose 0 < (x —
x)(n) = x(n) — x(n) = x(n) —x(n+ 1) for all n. Thus x(n + 1) < x(n)
for all n. Since x €1%, a = lim x(n) exists. Thus lim(x — x )(rn) = 0 and
11— (x —x")||.,= 1. This proves the claim.

By Corollary 6.8 there is a linear functional L: [/ —> R such that
\L|| =1, L(I) = I, and L(A) = 0. So this functional satisfies (a) and (d)
of the theorem. To prove (b), we establish the following.

7.3. Claim. ¢, Cker L.

If x €¢p, let x = x  and let x"*D = (x)" for n > 1. Note that

xHD — x = [xD — xW] + ... +[x"— x]€ #. Hence L(x) =
L(x") for all n > 1. If e> 0, then let n be such that |x(m)|<e for
m> n. Hence |L(x)| = |L(x")|<|Ix"™|| = sup{|x(m)|: m > n} <e.

Thus x € ker L. Condition (b) 1s now clear.

To show (c), suppose there i1s an x in [* such that x(rn) > 0 for all n and
I(x) <O0.If x 18 replaced by x/||x||,, it remains true that I(x) <O and 1t
is also true that 1 = x(n) = 0 for all n. But then ||]1—x||,,< 1 and
Ld —x)=1— L(x) > 1, contradicting (a). Thus (¢) holds.

Now assume that F=C. Let L; be the functional obtained on [g. If
x €[g, then x = x; + 1x, when x,x,€/lg. Define L(x) = L(x{) +
iL,(x,). It 1s left as an exercise to show that L is C-linear. It § clear that (b),
(¢), and (d) hold. It remains to show that {|L||= 1.

Let E,,..., E, be pairwise disjoint subsets of N and let a;,...,a,, €C
with |e,|< 1 for all & Put x = 2P ja,xg; s0 X €% and ||x]|, < 1.
Then L(x) = Lo, L(xg) = Ly Li(xg, ) But Li(xg )= 0 and
Lili(xg) = L\(xg), where E = U, E,. Hence X, L (xg )< I. Because
la, | < 1 for all £, |L(x)|< 1. (This 1s a small convexity argument.) If x is
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an arbitrary element of [*,||x|| < 1, then there is a sequence {x,} if
elements of /* such that ||x,— x|, 20, |[|x,|l..< 1, and each x, i1s the
type of element of /® just discussed that takes on only a finite number of
values (Exercise 3). Clearly, ||L||< 2, so L(x,)— L(x). Since |L(x )< 1
for all n,|L(x)|< 1. Hence ||L||< 1. Since L(1) = 1, ||L|| = 1. B

A linear functional of the type described in Theorem 7.1 1s called a
Banach limit. They are useful for a variety of things, among which is the
construction of representations of the algebra of bounded operators on a
Hilbert space.

EXERCISES

[. If L is a Banach limit, show that there are X and y in I such that L(xy)#
L(x)L(y).

2. Let X be a set and £ a u-algebra of subsets of X. Suppose u is a complex-valued
countably additive measure defined on §2 such that |[u|| = p(X) < co. Show that
iw(A)= 0 for every A in §2. (Though it is difficult to see at this moment, this fact
is related to the proof of (¢) in Theorem 7.1 for the complex case.)

3. Show that if x € I, ||x|,< 1, then there is a sequence {x,},x, in I such
that 1Xalle < 1, ll1x, = x|l = 0, and each x, takes on only a finite number of
values.

§8*. An Application: Runge S Theorem

8.1. Runge S Theorem. Let K be a compact subset of C and let E be a subset
of C_\ K that meets each component of C_\ K. If f is analytic in a
neighborhood of K, then there are rational functions f, whose only poles lie in
E such that f,— [ uniformly on K.

The main tool in proving Runge S Theorem 1s Theorem 6.13. (A proof
that does not use functional analysis can be found on p. 198 of Conway
[1978]).) To do this, let R(K, E) be the closure in the space C(K) of the
rational functions with poles in FE. By (6.13) and the Riesz Representation
Theorem, it suffices to show that if p&€ M(K) and [g dp = 0 for each g in
R( K, E), then [fdu = 0.

Let R > 0 and let A be areca measure. Pick p> 0 such that B(0; R) C
B(z; p) for every z in K. Then for z in K,

f |z—w|_1d}\(w)§f 1z — w] " dA(w)
B(0; R) B

(z:p)

= j;wj(:drdﬁ = 27p.
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If p€ M(K), define p:C— [0, cc] by
dlp(z)

|z — W]

i(w) =

when the integral i1s finite, and jg(w) = o0 otherwise. The inequalities above
1mply

v/;;(o;R)ﬁ(W)dh(w) =L(0;R)f dl#l(z) d?\(w)

K|z —w

dA(w)

= dlu|( z
K“}(S’.(O;R) |z — W] it 2)

< 2mp||ul.

Thus fi(w) < cc a.e.[A].
8.2. Lemma. If u&€ M(K), then

) du(z)
i(w) = .[ zZ—w
is in L"(B(0; R), A) for any R >0, ji is analytic on C_\ K, and js(0) = 0.

Proor, The first statement follows from what came before the statement of
this lemma. To show that f is analytic on C_\K, let w, wo, € C\ K and
note that

plw) —plwy) du(z)
W =W '[K(Z"W)(Z—Wo)-

As w 2wy, [(z —w) z —wc,)]1—»(;:—'»420)_2 uniformly for z in K, so
that . has a derivative at w, and

ji(WO) = fK(Z “Wo)_zdﬂ(z)-

So fi is analytic on C\ K. To show that it is analytic at infinity, note that
i(z)— 0 as z = cc¢, so infinity 18 a removable singularity. u

It is not difficult to see that for wy in C\ K,

5.3 [ ) On) =nt f(z=w) ™ du(2)

Also, we can easily find the power series expansion of f at infinity. Indeed,

a(w) =f _1_w du(z) = —%f(l—é)ldu("f)

Choose w near enough to infinity that |z/w|< 1 for all z in K. Then

8.4 ﬁ(W)=—l§=6[( =) du(z)

Z

14% 14%
n
ve
=-r =
n+1"~
n=0 W

where a, = [z"du(z).
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Now assume p &€ M(K) and fgdu = 0 for every rational function g with
poles in E. Let U be a component of C_\K, and let wo ENU. If
wy, # 00, then the hypothesis and (8.3) implies each derivative of f at w,
vanishes. Hence =0 on U. If wy = o0, then (8.4) implies 2= 0 on U. Thus
L =0onC_\ K.

If f is analytic on an open set G containing K, let Y. .. vy be
straight-line segments in G \ K quch that

[0 = L g [ 25

w— 2z

for all z in K. (See p. 195 of Conway [1978].) Thus
_ v L oS
[/ au()= L 5~ fgfnw—z dw dp(2)

k=1

i [ SORG)

by Fubini § Theorem. But }L(W) =0on v, (CC\K), so [fdu=0. By
(6.13) f€ R(K, E). This proves Runge S Theorem. m

8.5. Corollary. If K is compact and C \ K is connected and if f is analytic in

a neighborhood of K, then there is a sequence of polynomials that converges to
f uniformly on K.

EXERCISES

1. Let u be a compactly supported measure on C that is absolutely continuous with
respect to area measure. Show that i is continuous on C__

2. Let m = Lebesgue measure on [0, 1]. Show that Az is not continuous at any point
of [0, 1].

§9*. An Application: Ordered Vector Spaces

In this section only vector spaces over R are considered.

There are numerous spaces in which there is a notion of < in addition to
the vector space structure. The L# spaces and C(X) are some that spring to
mind. The concept of an ordered vector space i1s an attempt to study such
spaces 1n an abstract setting. The first step 1S to abstract the notion of the
positive elements.

9.1. Definition. An ordered vector space is a pair (X, 1) where Z is a
vector space over R and < is a relation on £ satisfying

(a) x < x for all x;
(b) if x <y and y < z, then x £ z;
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(¢c) if x
(d) if x

yvand ze€e F, then x + z <y + z;
y and a € [0, cc), then ax < ay.

A A

Note that 1t 1s not assumed that < 1s antisymmetric. That 1s, 1t 1S not
assumed that if x <yand y < x, then x =y,

9.2. Definition. If £ is a real vector space, a wedge is a nonempty subset P
of £ such that

()it x, y € P, then x +y € P;
(b) if x € P and a€ [0, co), then ax € P.

9.3. Proposition. (a) If (< _}1s an ordered vector space and P = {x € X :
x> 0}, then P is a wedge. (b) Zf P is a wedge in the real vector space & and
< is defined on & by declaring x <y if and only if y —x € P, then (£ ,<)
is an ordered vector space.

Proor. Exercise.

If (£,<) is an ordered vector space, P = fx €& :.x > 0} is called the
wedge of positive elements. The next result 1s also left as an exercise.

0.4. Proposition. Zf (& ,< ) is an ordered vector space and P is the wedge of
positive elements, < is antisymmetric if and only if PN (— P) = (0).

9.5. Definition. A cone in £ is a wedge P such that P n (—P) = (0).

0.6. Definition. If (£,1) is an ordered vector space, a subset A of & is
cojinal if for every x > 0 in & there is an a in A such that a > x. An

clement e of & is an order unit if for every x in & there is a positive integer
n such that —ne < x < ne.

If X is a compact space and & = C(X), then any constant function is an
order unit. (f < g if and only if f{x) < g(x) for all x). If = C(r), all
real-valued continuous functions on R, then & has no order unit (Exercise
4). If e 1s an order unit, then { ne: n >1} is cofinal.

9.7. Definition. If (£,1) and (%#,1) are ordered vector spaces and T
Z— Y is a linear map, then 7T is positive (in symbols 7> 0) if Tx > 0
whenever x > 0.

The principal result of this section 1s the following.

9.8. Theorem. Let (£,<) be an ordered vector space and let Y be a linear
manifold in & that is cofinal. Zf f: Y = R is a positive linear functional, then
there is a positive linear functional f:Z — R such that f|Y = /.

Proor.Let P = {x €Z:x >0} and put ;=Y + P — P. It is easy to
see that £, is a linear manifold in £. If there is a positive linear functional
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90

g: ¥, > Rthat extends f, let f be any linear functional on £ that extends
(use a Hamel basis). If x = 0, then x € P € £, so that f(x) g(x)=0.

Hence f is positive. Thus, we may assume that £ =%+ P~—P.

99. Claim. ¥=%+ P =%— P.

let x EX;s0x =y + p,— Py Yy in¥, py, p,in P. Since ¥ is cofinal
there is a y, in # such that y, > p,. Hence py=y1— (1 —p1)E¥ - P.
Thus x=y—p, +p, € F—~-P)+(¥-P)C¥—-P. So T=%—-P.
Also, F=—-F=—-%+P =%+ P.

9.10. Claim. If x €, there are y;, y, in % such that y, < x < y;.

- In fact, Claam 9.9 states that we can write X = Y{—=Py= Y2+ P2, P1, P2

€ Pand y,y,€%. Thus y, < x < y,.
By Claim 9.10, it is possible to define for each x in Z,

g(x)=inf{ f(y): ye ¥ and y > x}.

9.11. Claim. The function ¢ is a sublinear functional on % .

The proof of (9.11) 1s left as an exercise.

For y in %, let y; €% such that y, > y. Because f is positive, f(y) <
f(yy). Hence f(y) < q(y) for all y in %. The Hahn-Banach Theorem
implies that there is a linear functional f: & >R such that fl% = f and
f<qon F.Ifxe€P then —x< 0 (and 0 €¥). Hence q(— x) < f(0).

Thus - f(x)= f(— « <q(—x) <0, or f(x) = 0. Therefore f is positive.
d

9.12. Corollary. Let (Z,<) be an ordered vector space with an order unit e.
If % is a linear manifold in & and e €%, then any positive linear functional
defined on % has an extension to a positive linear functional defined on % .

EXERCISES
. Prove Proposition 9.3.

2. Prove Proposition 9.4,

3. Show that e is an order unit for (&Z,1) if and only if for every x in & there is a
0> 0 such that e + &x > 0 for 0 <t <.

4. Show that C(R), the space of all continuous real-valued functions on R, has no
order unit.

5. Prove (9.11).
6. Characterize the order units of C,(X). Does C,(X) always have an order unit?

TR B
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7. Characterize the order units of C,(X) if X is locally compact. Does C,(X)
always have an order unit?

8. Let =M,(R), the 2 X 2 matrices over R. Define A in M, (R) to be positive if
A = A* and (Ax, x) = 0 for all x in R%. Characterize the order units of M, (R).

9. 1f 1 <p<ccand I= L?(0,1), define f< g to mean that f(x) £ g(x) a.e.
Show that & is an ordered vector space that has no order unit.

§10. The Dual of a Quotient Space and a Subspace

Let & be a normed space and £ <Z.If f€Z*, then f| A, the restriction
of T o A, belongs to #* and |f| A4 <||fll. According to the
Hahn-Banach Theorem, every bounded linear functional on 4 is obtain-
able as the restriction of a functional from < *. In fact, more can be said.

Note that if A= {gE€X*:g(M) = 0} (note the analogy with Hilbert
space notation); then # * is a closed subspace of the Banach space & *.
Hence & * /4 * is a Banach space. Moreover, if f + # *€ & */MH * , then
[+ A * induces a linear functional on #, namely f|.#.

10.1. Theorem. If £ <% and #A*={geX*:g(MA) = 0, then the
map p: X */ M+ —> M* dejnedby

o(f+ A" )=fIA

1S an 1sometric 1Somorphism.

PROOF. It is easy to see that p is linear and injective. If f€ Z * and
ge M+, then ||f|AZ|=||(f+DIZI<|f + g||. Taking the infimum over
all g we get that ||[fIAZ|<||f + # *||. Suppose ¢ € A *. The Hahn-Banach
Theorem implies that there is an fin & * such that f|.# = ¢ and

Al = ll¢li- Hence ¢ = p(f + 4 “)and [¢|| = |/ 2 IIf + A *|.

Now consider &/, what is (Z/#) *? Let Q: & > Z/ A be the natural
map. If f €(Z/A)*, then foQEZ* and |f e Q| <||fll. (Why?) This
gives a way of mapping (£/A)* = 2 *. What is its image? Is it an
1Isometry”?

10.2. Theorem. If £/ <% and Q: F > 2/ A is the natural map, then
p(f) = f o Q defines an isometric isomorphism of (Z/# )Y*onto M .

PrRooF.If fE€ (Z/MA)* and y €E M, then foQ(y)=0,50 foeQ E M.
Again, it is easy to see that p: (Z/M#)*— A ~ is linear and, as was seen
carlier, HP(f )” < “f” Let {xn + ./”} be a sequence 1n Q‘/./f{ such that
Ix, + || <1and|f(x, + #) — ||fll. For each n there is a y, in .# such

that [X, + Yull <1. Thus||po(f)I = [p(f XX, + Y = f(x, + A) = /],
SO p 1s an 1sometry.
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To see that p is surjective, let g € 4 *; then g € X* and g(A) = 0.
Define f:%/# —F by f(x + A) = g(x). Because g(A) =0, [ is well
defined. Also, if x € X and y € A, |f(x + )| =|g(x)| = |g(x + y)| <
gl llx + y||. Taking the infimum over all y gives |[f(x + .#)| <||g||||x +

A)|. Hence fE(Z/A)Y*, p(f) =g and I/l = lle(S)Il- B

§11. Reflexive Spaces

If X is a normed space, then we have seen that X* is a Banach space (5.4).
Because X * 1s a Banach space, it too has a dual space (X *)* = X * * and
X * * is a Banach space. Hence X ** has a dual. Can this be kept up?
Before answering this question, let S examine a curious phenomenon. If
x € X, then x defines an element X of & **; namely, define X: X * - [F by

11.1 X(x*) = x*(x)

for every x* in X *. Note that Corollary 6.7 implies that ||X|| =||x]|| for all
x in X. The map x = X of Z = X** 1is called the natural map of X into
its second dual,

11.2. Definition. A normed space X is reflexive if X** = {x:x€Z },
where x 1s defined in (11.1).

First note that a reflexive space X is isometrically isomorphic to X **,
and hence must be a Banach space. It 1s not true, however, that a Banach
space X that 1s isometric to X * * 1s reflexive. The definition of reflexivity
stipulates that the isometry be the natural embedding of X into X ** In

fact, James [1951] gives an example of a nonreflexive space X that is
isometric to X * *,

11.3. Example. If 1 <p <o0, LP(X,8,u) is reflexive.

11.4. Example. ¢, is not reflexive. We know that ¢ =.J"so ¢* = (1 )*

>

= 1 . With these identifications, the natural map c¢y—cg* is precisely the
inclusion map ¢y, — I .

A discussion of reflexivity 1s best pursued after the weak topology is
understood (Chapter V). Until that time, we will say adieu to reflexivity.

EXERCISES
1. Show that (Z*)** and (Z* *)* are isometrically isomorphic.
2. Show that C,(X) is reflexive if and only if X is finite.

3. Let £ <% and let pp . T > Z** and p,. M = A ** be the natural maps. If
1: M — X is the inclusion map, show that there is an isometry ¢: H** — G **
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such that the diagram

q P > kX

fT Tqb
M > M+

P.a

commutes. Prove that ¢p(M**)= (M) L={x**eF** . x**(A")=0).

4. Use Exercise 3 to show that if & is reflexive, then any closed subspace of Z is
also reflexive.

§12. The Open Mapping and Closed Graph Theorems

12.1. The Open Mapping Theorem. If & ,% are Banach spaces and A:
& — Y is a continuous linear surjection, then A(G) is open in Y whenever G
is open in X .

Proor For r > 0, let B(r) = {x € Z:||x|| < r].
12.2. Claim. 0 €intcl A(B(r)).

Note that because A is surjective, Y = UT_cl[A(B(kr/2))] =
UZ_k cll A( B( #/2))]. By the Baire Category Theorem, there is a k> 1 such
that k£ cl[ A( B( r/2))] has nonempty interior. Thus V = int{ cl| A( B( r/2))}}
# QA L If y,€V,let s> 0 such that {¥y € Y: |ly —yll<s}cV C
cl A(B(r/2)). Let ye%,||y|]|< s. Since Y, € cl A( B(r/2)), there is a
sequence {x, }in B(r/2) such that A(x,)— y,. There is also a sequence
{z.} in B(r/2) such that A(z,)—> y, + y. Thus A(z,—x,)—y and
{z —x,}C B(r); that is, {y€ Y: |[¥||< s} € cl A(B(r)). This estab-
lishes Claim 12.2.

It will now be shown that

12.3 cl A(B(r/2)) € A(B(r)).

Note that if (12.3) 1s proved, then Claim 12.2 implies that 0 € int A(B(r))
for any » > (. From here the theorem 1is easily proved. Indeed, if G 1s an
open subset of &, then for every x in G let r,> 0 such that B(x;r,)C G.
But 0 € int A( B( r,)) and so A(x) € int A( B(x;r,)). Thus there is an
s.,> 0 such that U ={ye€ Y: |y — Ax)||<s,} S A(B(x;r.)). There-
fore A(G) 2 U{ U_:x€ G}. But A(x) €U, so A(G) = U{ U,:x€ G} and
hence A(G) 1S open.

To prove (12.3), fix y, in ¢l A(B(r/2)). By (12.2) 0 € int[cl A(B(2 *r))].
Hence [y, — cl A(B(27%r))] n A( B(r/2))+0. Let x; € B(r/2) such that
A(xy) €y, — cl A(BQ2 °r)]; now A(x;) = y,— y,, where » €
cl A( B(2°r)). Using induction, we obtain a sequence {x, }in £ and a
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sequence { y,}in % such that

f (i) x € B(27"r),
12.4 { (i) Yn € clA(B(27"r)),
(i) Yne1 = Yu— A(x,).
But [|x, || <27"r, so £{||x,|]|<o0; hence x = X*_,x, exists in X and

|x]| < r. Also,

n

ZA(xk) = Z(yk_yk+1) = Y]l = Vp+1-
k=1 k=1

But (12.411) implies {|y,||<||A||2" "r; hence y,— 0. Therefore y, =
r—1A(x,) = A(x) € A(B(r)), proving (12.3) and completing the proof of
the theorem. B

The Open Mapping Theorem has several applications. Here are two
important ones.

12.5. The Inverse Mapping Theorem. Zf X and Y are Banach spaces and A:
X — Y is a bounded linear transformation that is bijective, then A1 is
bounded.

Proor. Because A 1s continuous, bijective, and open by Theorem 12.1, A 1s
a homeomorphism. W

12.6. The Closed Graph Theorem. Zf X and Y are Banach spaces and A:
X = Y is a linear transformation such that the graph of A,

graA={x@Ax€XFS Y : x )
is closed, then A is continuous.

Proor. Let ¥ = gra A. Since X &% is a Banach space and ¥ is closed, ¢
is a Banach space. Define P: 4 - X by P(x® Ax) = x. It is easy to check
that P 1s bounded and biective. (Do it). By the Inverse Mapping Theorem,
P~ 14> % is continuous. Thus A: & — Y is the composition of the
continuous map P~ ': X > ¥ and the continuous map of ¥ > % defined by
X @& Ax — Ax; A 1s therefore continuous. B

Let X= all functions f: [0, 1]—[F such that the derivative f’ exists and
is continuous on [0, 1]. Let #=CJ[0,1] and give both X and Y the

supremum norm: ||f]| = sup{ [f(#)|:z€[0,1]}. So X is not a Banach space,
though Y 1s. Define A: X —» Y by Af = f’. Clearly, A is linear. If { f, }C X
and (f,, f))—(/f, g in Xx %, then f’— g uniformly on [0, 1]. Hence

fn(t) -f;,(O) = ern’(S) s “"Ltg(S)dS.
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But /(1) = /,(0) > /(1) — f(0), s0
f(1)=£(0) + [g(s) ds.
0

Thus f’ = g and gra A is closed. However, A is not bounded. (Why?)

The preceding example shows that the domain of the operator in the
Closed Graph Theorem must be assumed to be complete. The next example
(due to Alp Eden) shows that the range must also be assumed to be
complete.

Let & be a separable infinite-dimensional Banach space and let {e,:
i € I} be a Hamel basis for £ with ||e,]| = 1 for all i Note that a Baire
Category argument shows that I is uncountable. If x €%, then x = X1, a,e,,
a, €F, and a; = 0 for all but a finite number of i in I. Define ||x||; = X,|a,]|.
It is left as an exercise for the reader to show that ||-||; i$ a norm on Z.
Since ||e)|| = 1 for all i ||x||<X,|ea] = ||x||;- Let =2 with the norm
-], and let T: % — Z be defined by T(x) = x. Note that it was just
shown that T~ % > % is a contraction. Therefore gra T ' is closed and
hence so 1s gra 7. But 7 1s not continuous because if i1t were, then 7 would
be a homeomorphism. Since & is separable, it would follow that % is
separable. But % is not separable. To sce this, note that |le;— e[, = 2 for
i+ j and since I is uncountable, % cannot be separable.

When applying the Closed Graph Theorem, the following result 1s useful.

12.7. Proposition. If & and Y are normed spaces and A: & = Y is a linear

transformation, then gra A is closed if and only if whenever x,— 0 and
Ax, = vy, it must be that y = 0.

Proor. Exercise 3.

Note that (12.7) underlines the advantage of the Closed Graph Theorem.
To show that A 1s continuous, it suffices to show that if x,— 0, then
Ax, — 0. By (12.7) this 1s eased by allowing us to assume that {Ax,} 1s
convergent.

It 1s possible to give a measure-theoretic solution to Exercise 2.3, but here
is one using the Closed Graph Theorem. Let (X, £, u) be a u-finite measure
space, 1 <p <oo, and ¢: X = F an Q-measurable function such that
of € LP(u) whenever f€ LP(u). Define A: L?(u)— L?(u) by Af = ¢f.
Thus A is linear and well defined. Suppose f,— 0 and ¢f,— g in L?(u).
If 1 <p<oo, then f — 0 in measure. By a theorem of Riesz, there is a
subsequence {fnk} such that f,,(x) = 0 a.e. [n]. Hence ¢(x)fnk(x)—+ 0 a.c.
[]. This 1mplies g = 0 and so gra A is closed. If p = oo, then f,(x) — 0
a.c. |u] and the same argument implies gra A is closed. By the Closed Graph
Theorem, A is bounded. Clearly, it may be assumed that ||4| = 1. If §> 0,

let £ = {x: |¢(x)[= 1 + S}. Now [[4"|< 1, so ||¢"fli, <|Ifll, for all
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n> 1. Thus

Il = flqbl""’mp dp > (1 + 8)”"fE If|7 du.

But (1 + 6)"”— 00 as n— co. Hence [g|f|?du =0 for each f in L?(p),
and u(E) = 0. It follows that ¢ € L>®(u) and || < 1 a.e. [u].

12.8. Definition. If &, Y are Banach spaces, an isomorphism of £ and Y
is a linear bijection T: & — % that is a homeomorphism. Say that £ and Y
are isomorphic if there is an isomorphism of £ onto Y.

Note that the Inverse Mapping Theorem says that an isomorphism 1s a
continuous bijection.

The use of the word Isomorphism is counter to the spirit of category
theory, but 1t i1s traditional in Banach space theory.

EXERCISES

1. Suppose £ and % are Banach spaces. If A €e Z(Z,%) and ran A is a second
category space, show that ran A is closed.

2. Give both CV[0,1] and C[0,1] the supremum norm. If A: C[0,1]- C[0,1] is
defined by Af = f’, show that A is not bounded.

3. Prove Proposition 12.7.

4, Let & be a vector space and suppose ||-{i, and ||. ||, are two norms on % and

that .#, and %, are the corresponding topologies. Show that if 2 1s complete in
both norms and #,2.%,, then £, = .%.

5. Let & and % be Banach spaces and let A € Z(Z,% ). Show that there 1s a
constant ¢ > 0 such that ||Ax||>c||x|| for all x in & if and only if kerA4 = (0)
and ran A is closed.

6. Let X be compact and suppose that & is a Banach subspace of C(X). If K is a
closed subset of X such that for every g in C(E) there is an fin & with
fl E = g, show that there is a constant ¢ > 0 such that for each g in C(E) there is
an [ in & with flE = g and max{|f(x)|: x € X} <cmax{|g(x)|: x € E}.

7. Let 1 <p <oco and suppose (a,,) 1s a matrix such that (Af )(i/) =27 a,,())
defines an element Af of /? for every f in [?. Show that A € #(/?).

8. Let (X, £, u) be a u-finite measure space, 1 <p <oc, and suppose that k:
X X X —»Fisan £ X §2 measurable function such that for fin L?(u) and a.e.

x, k(x,)Yf(-Ye L' (p) and (Kfi(x) = [k(x,y)f(y)du(y) defines an element
Kf of L?(u). Show that K: L?(u)— L?(u)is a bounded operator.
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§13. Complemented Subspaces of a Banach Space

If X is a Banach space and & < X, say that # is algebraically comple-
mented in X if there is an A/ < X suchthat #/ n A= (0) and # + A =X,
Of course, the definition makes sense 1n a purely algebraic setting, so the
requirement that . and A" be closed seems fatuous. Why is it made?

If A is a lincar manifold in a vector space X (a Banach space or not),
then a Hamel-basis argument can be fashioned to produce a linear manifold
A" such that £/ n A= (0) and A + A= X. So the requirement in the
definition that 4 and A be closed subspaces of the Banach space X
makes the existence problem more interesting. Also, since we are dealing
with the category of Banach spaces, all definitions should involve only
objects 1n that category.

If # and A are algebraically complemented closed subspaces of a
normed space &, then A: A& &, A4 — X defined byA(m & n) = m + nis a

linear bijection. Also, ||[A(m @ n)|| = ||lm + n|| <||m]| + ||n|] = ||m & nl||.
Hence A is bounded. Say that A and A" are topologically complemented if
A 1s a homeomorphism; equivalently, if |||m + nl|||=|m} +||n|| 1s an

cquivalent norm. If X 1s a Banach space, then the Inverse Mapping
Theorem i1mplies A 1s a homeomorphism. This proves the following.

13.1. Theorem. If a pair of subspaces of a Banach space are algebraically
complementary, then they are topologically complementary.

This permits us to speak of complementary subspaces of a Banach space
without modifying the term. The proof of the next result 1s left to the reader.

13.2. Theorem. (a) If # and N are complementary subspaces of a Banach
space X and E: X — X is defined by E( m +n) = m for m in M and n in
N, then E is a continuous linear operator such that E * = E, ran E = A, and
kerE=A". D) IfE<€%B(X) and E* = E, then # = ran E and N/ = ker E
are complemented subspaces of X.

If #/ <X and A is complemented in X, its complementary subspace
may not be unique. Indeed, finite-dimensional spaces furnish the necessary
examples.

A result due to R. S. Phillips [1940] is that ¢, is not complemented in I .
A straightforward proof of this can be found in Whitely [1966]. Murray
[1937] showed that /7, p #+ 2, p > I has uncomplemented subspaces. This
seems to be the first paper to exhibit uncomplemented subspaces of a
Banach space.

Lindenstrauss [1967] showed that if # is an infinite-dimensional sub-
space of I” that is complemented in I, then & is isomorphic to I . This
same result holds if T 1is replaced by /7,1 <p <00, ¢, or ¢,.
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Does there exist a Banach space 2 such that every closed subspace of
1s complemented? Of course, 1f Z 1s a Hilbert space, then this 1s true. But
arc there any Banach spaces that have this property and are not Hilbert
spaces? Lindenstrauss [1971] proved that if 2 1s a Banach space and every
subspace of Z 1s complemented, then Z is isomorphic to a Hilbert space.

EXERCISES

1. If & is a vector space and A is a linecar manifold in £, show that there i1s a
lincar manifold A" in & such that /N A= (0) and £ + /' =Z.

2. Let & be a Banach space and let E: £ — & be a linecar map such that E* = E
and both ran E and ker E are closed. Show that E is continuous.

3. Prove Theorem 13.2.

4. Let & be a Banach space and show that if .# is a complemented subspace of Z,
then every complementary subspace is isomorphic to /4.

5. Let X be a compact set and let Y be a closed subset of X. A simultaneous

extension for Y 1s a bounded linear map T: C(Y) — C(X) such that for each g

in CY), T(g)|IY =g Let Go(X\Y)={f€ CX): f(y) =0 for all y in Y}.

- Show that 1if there 1s a simultaneous extension for Y, then C,( X\ Y) 1s comple-
mented 1n C(X).

6. Show that if Y is a closed subset of [0, 1], then there is a simultaneous extension
for Y (see Exercise 5). (Hint: Write [0, 1]1\'Y as the union of disjoint intervals.)

7. Using the notation of Exercise 5, show that if Y 1s a retract of X, then
Co (XA Y) is complemented in C(X).

§14. The Principle of Uniform Boundedness

There are several results that may be called the Principle of Uniform
Boundedness (PUB) and all of these are called the PUB by various
mathematicians. In this book the PUB will refer to any of the results of this

section, though 1n a formal way the next result plays the role of the founder
of the tamily.

14.1. Principle of Uniform Boundedness (PUB). Let & be a Banach space
and 9 a normed space. If X C RB(Z, 9) such that for each x in Z,
sup{||Ax||: A € &} < cO, then sup{||4||: A € &} < 0.

ProoF. (Due to William R. Zame) For each x in Z let M(x) = sup{||Ax|):
A €}, s0||Ax||< M(x) for all x in Z. Suppose sup{ [|A]]: A € '} =o0.
Then there 1s a sequence {A,} €« and a sequence {x, } of vectors in &
such that ||x,|J|=1 and ||4,x,]|> 4 . Let y,=2 "x,; thus ||y,||=2"" and
1A, Yl > 27,
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14.2, Claim. There is a subsequence { ¥, } such that for k> 1:

(a) A”k+1y”k+1||>l+k + J’ 1M(yﬂ)
(b) W, N <27%sup{li4, lI: 1 < <k}

The proof of (14.2) 1s by induction. Let n; = 1. The induction step is
valid since ||y, J|— O and ||4,y,|| = cc. The details are left to the reader.

Since ZllVn Il <0, Xy y, = yinZ (here is where the completeness of £
1s used). Now for any 2 > 1,

|4, Yl = ZAMyH + A I F ) Anp\In,
Jj=1 j=k+2
_ B . i,
- A”k+1y”k+l 0 ZA"H]-})”; - E A"k+1y";
=1 Jj=k+2 1
k ve
> A, I I X Anon + X A, Y
Jj=1 j=k+2
k i o0 ]
>1+k+ EM(ynJ)— ZM(yn) o 2 14l
j=1 J=k+2 |

>1+k—- ) 2/71
j=k+2
> k.

That is, M(y) > % for all 2, a contradiction. |

14.3. Corollary. If & is a normed space and A CZ , then A is a bounded set
if and only if for every fin Z *,sup{|f(a)|:a € A} <.

Proor. Consider Z as a subset of Z(Z *, IF) (= Z **) by letting X(f) =
fix) for every fin £ *. Since £ * is a Banach space and ||x|| =||x|| for all
X, the corollary 1s a special case of the PUB, n

144. Corollary. If Z is a Banach space and A CZ *, then A is a bounded
set if and only if for every x in Z,sup{|f(x)|:f € A} <oo.

Proor. Consider £ * as #(Z,F). H

Using Corollary 14.3, 1t 1s possible to prove the following improvement of
(14.1).

14.5. Corollary. If & is a Banach space and Y is a normed space and if
I CRB(X,Y) such that for everyx inZ and gin Y *,

sup{|g(A4(x))|: A €4} < o0,
then sup{ ||A||:A € &} <o0.
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Proor. Fix x in Z. By the hypothesis and Corollary 14.3, sup{ ||[4(x)||:
A €} < co. By (14.1) sup{||4]: A € &} <o0. .

A special form of the PUB that i1s quite useful 1s the following.

14.6. The Banach-Steinhaus Theorem. Zf X and % are Banach spaces and
{A,}] is a sequence in B(Z,¥) with the property that for every x in X there
is ayin? such that |[A,x— y|| = 0, then there is an A in B(Z,%) such
that ||A,x — Ax|| = O for every x in X and sup||A, || < oo.

Proor. If x € X, let AXx = lim A x. By hypothesis A: £ —> % 1is defined
and it is easy to see that it i1s linear. To show that A 1s bounded, note that
the PUB implies that there is a constant M > O such that ||4,|| < M for all
n. If x € X and ||x||< 1, then for any n> I, ||[Ax||<||Ax — A x| +
A, x| < l|IAx — A x|| + M. Letting n— oo shows that ||Ax||<M
whenever ||x|| < 1. _

The Banach-Steinhaus Theorem 1s a result about sequences, not nets.
Note that if Z is the identity operator on X and for each n > I, A, = n U
and for n < 0, A,, = nl, then {A ,:n€Z}1s a countable net that converges
in norm to O. but the net 1s not bounded.

14.7.  Proposition. Let X be locally compact and let { f, } be a sequence in
C.(X). Then [f,du— [fdu for every p in M(X) if and only if sup,||f,|| <o
and [, ( x) = fix) for every x in X.

ProoOF. Suppose [f dp— [fdp for every p in M(X). Since M(X) =
C,(X)*, (14.3) implies that sup, ||f,|| <oo. By letting p =4_, the unit point
mass at X, we see that [f,dé, = f,(x) — f{x). The converse follows by the
Lebesgue Dominated Convergence Theorem. u

EXERCISES

J

1. Here is another proof of the PUB using the Baire Category Theorem. With the
notation of (14.1), let B,= {x € ¥:||4x||< n for all A in & }. By hypothesis,
UX_,B,=%. Now apply the Baire Category Theorem.

3 If 1 < p<oo and {x,} € /P, then 29, x,(j)y(j)— O for every y in /9,

l/p+ 1/q = 1, if and only if sup,||x,|[, < cc and x,(j)— O for every j > 1.

3. If {x,} €/, then 25 %,(/yy(jy— 0 for every y in ¢y if and only if

sup,||x,||; <oo and x,,(j) — O for every j > I.
v

4. If ( X,82,pn) is a measure space, | <p <oo, and { f,}CL?(X,§,pn), then

[fgdp — O for every g in Li(p),1/p+ l/q = 1, if and only if sup{|if,|l,:
n>1} < oo and for every set E in 2 with u(E) < o0, [f, dp — 0as n — oo.

5. If (X, §2,p) is a u-finite measure space and { f, } is a sequence in L' X,82,n),
then ff,gdp— 0 for every g in L*(p) if and only if sup{|if,ll;:n=>1}<o0
and [pf, dp — O forevery E in$2.
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A

6. Let 5 be a Hilbert space and let & be an orthonormal basis for J#. Show that

Q0 .

a sequence { h,}in J satisfies (h, ,h) — O for every hin 3 if and only if
sup{||h,l|:n=1}< cc and (h,,e)— 0 for every e in &.

. If X is locally compact and { g, } is a sequence in M(X), then L(p,)— O for

every L in M(X)* if and only if sup{||p,ll:n=1}< cc and p,(E)— O for
every Borel set E.

. In (14.6), show that ||4}| <limsup||4,||.

If (S, d) is a metric space and X is a normed space, say that a function
f:§—> X is a Lipschitz function if there is a constant M > 0 such that
If(x)— f()|| < Md(s,¢t) for all s,¢ in S. Show that if f:S— X is a function
such that for all L in £*, L of: §—>F is Lipschitz, then f:S— X is a
Lipschitz function.

. Let X be a Banach space and suppose { x,} is a sequence in X that is linearly

independent and such that for each x in X there are scalars {a, } such that
lim,, - oo X — 27 10, X, |l = 0. Such a sequence is called a basis. (a) Prove that
X is separable. (b) Let ¥ = {{a,, }€ IF : X%_,a, x, converges in X} and for

y = {a,} in ¥ define ||y|| = sup,|l&; _;a, x,||. Show that # is a Banach space.

(¢) Show that there is a bounded biyectionT:Z—%. (d) If n> 1 and [ :

Z —F is defined by f (-F_,a,x,) = «,, show that f, €Z*. (e) Show that

x, & the closed linear span of {x,:%k #n}.



CHAPTER IV

Locally Convex Spaces

A topological vector space 1s a generalization of the concept of a Banach
space. The locally convex spaces are encountered repeatedly when discuss-
ing weak topologies on a Banach space, sets of operators on Hilbert space,
or the theory of distributions. This book will only skim the surface of this
theory, but it will treat locally convex spaces in sufficient detail as to enable
the reader to understand the use of these spaces i1n the three arecas of
analysis just mentioned. For more details on this theory, see Bourbaki
[1967]}, Robertson and Robertson [1966], or Schaefer [1971].

§1. Elementary Properties and Examples

A topological vector space 1s a vector space that i1s also a topological space
such that the linear structure and the topological structure are vitally
connected.

1.1. Definition. A topological vector space (TVS) is a vector space Z
together with a topology such that with respect to this topology

(a) the map of ZX Z— Z defined by (x, y)~> x + y is continuous;
(b) the map of F x & — % defined by (a, x) = ax is continuous.
It is easy to see that a normed space is a TVS (Proposition 111.1.3).

Suppose & is a vector space and £ is a family of seminorms on Z.Let
be the topology on Z that has as a subbase the sets { x: p(x — xy) <&},
where p € £, x, =%, and €> 0. Thus a subset U of Z is open if and only
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if for every x,in U there are p,,...,p,inPande,.. . , ¢, > 0 suchthat
NI {xE€Z:pi(x—xy)<eg}CU. It is not difficult to show that Z with
this topology 1s a TVS (Exercise 2).

1.2. Definition. A locally convex space (LCS) 1s a TVS whose topology is
¥ defined by a family of seminorms £ such that () e 2{ X: plx) = O} = (0).

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

The attitude that has been adopted in this book 1s that all topological
spaces are Hausdorff. The condition in Definition 1.2 that M, ¢ { x: p(x)
= 0} = (0) is imposed precisely so that the topology defined by £ be
Hausdorff. In fact, suppose that x # y. Then there is a p in & such that
p(x—y) #0;let p(x—y) >e>0. If U = {z: p(x—2) <3¢} and V =
{z: p(y —2) <3e}, then UNV =0 and U and V' are neighborhoods of x
and y, respectively.

If Z is a TVS and x,€ %, then x — x + x, is a homeomorphism of Z;
also, if a€F and a# 0, x — ax is a homeomorphism of £ (Exercise 4).
Thus the topology of Z looks the same at any point. This might make the
next statement less surprising.

1.3. Proposition. Let & be a TVS and let p be a seminorm on £ . The
following statements are equivalent.

(a) p is continuous.

(b) {x €Z: p(x) <1} is open.

(c) 0 € int{x € Z: p(x) <1}.

(d) 0 € int{x €Z: p(x) < 1}.

(e) p is continuous at 0.

(f) There is a continuous seminorm q on & such that p < q.

Proov. It 1s clear that (a) = (b) = (¢) = (d).

(d) implies (e): Clearly (d) implies that for every ¢>0,0 € int{ x €Z":
p(x) <e};soif {x,} is a net in Z that converges to 0 and &£> 0, there is
an i, such that x,€ {x: p(x) <e} for i =i, that is, p(x,)<e for i = i,
So p 1S continuous at O.

(e) implies (a): If x, = x, then |p(x)— p(x;)|< p(x— x,). Since x — Xx;
— 0, (e) implies that p(x— x,) — 0. Hence p(x;)—= p(x).

Clearly (a) implies (f). So it remains to show that (f) implies (¢). If x, = 0
in £, then g(x;)— 0. But 0 < p(x;)<4q(x,), so p(x;)— 0. n

1.4, Proposition. I £ ZisaTVS and py,..., p, are continuous seminorms,
thenp, + -+ +p,and max ( p,(x)) are continuous seminorms. If {p;}is a
family of continuous seminorms such that there is a continuous Seminormq
with p, < q for all i, then x — sup,{ p,(x)} defines a continuous seminorm.
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ProoF. Exercise.

If @ is a family of seminorms on & that makes X into a LCS, it is often
convenient to enlarge % by assuming that & is closed under the formation
of finite sums and supremums of bounded families [as in (1.4)]. Sometimes it
is convenient to assume that £ consists of all continuous seminorms. In
cither case the resulting topology on £ remains unchanged.

1.5. Example. Let X be completely regular and let C(X) = all continuous
functions from X into F.If K is a compact subset of X, define p(f) =

sup{{f(x)|: x € K }. Then { px: K compact in X} is a family of semi-
norms that makes C(X) mto a LCS.

1.6. Example. Let G be an open subset of € and let H(G) be the subset of
Cc(G) consisting of all analytic functions on G. Define the seminorms of
(1.5) on H(G). Then H(G) 1s a LCS. Also, the topology defined on H(G)
by these seminorms is the topology of uniform convergence on compact
subsets-the usual topology for discussing analytic functions.

1.7. Example. Let & be a normed space. For each x* in Z*, define
p,.(x) = |x*(x)|. Then p.»is a seminorm and if ={p . x*e€T*},#
makes £ into a LCS,. ‘The topology defined on Z by these seminorms 1is
called the weak tOpolog) and 1S often denoted bv o(X. I *Y:

1.8. Example. Let 2 be a normed space and for each x in £ define p,:
T*— |0, oo) by p.(x*) = |x*(x)| Then p_is a seminorm and 93’ = {Px'

by o ( Z'*, 92’)

The spaces £ with its weak topology and I* with its weak* topology are
very important and will be explored in depth in Chapter V.

Recall the definition of convex set from (1.2.4). If a, b € &, then the line
segment from a to b is defined as [a, b] ={th + (1 —t)a: 0 <t <1}. 50 a
set A 1s convex If and only if [a, b] € A whenever aq, b € A. The proof of
the next result 1s left to the reader.

1.9. Proposition. (a) A set A is conuex if and only if whenever x{,...,X, €A
and t,,..., t,€[0,1) with 2t; = 1, then L;1;x, €A (b) If {A,: i €l}isa
collection Of convex sets, then N A; is convex.

1.10. Definition. If A C &, the conuex hull of A, denoted by co(A4), is the
intersection of all convex sets that contain A. If €& is a TVS, then the closed
conuex hull of A is the intersection of all closed convex subsets of Z that
contain A; it is denoted by co(A).
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Since a vector space 1s itself convex, each subset of X is contained in a
convex set. This fact and Proposition 1.9(b) imply that co(A) i1s well defined
and convex. Also, co(A) 1s a closed convex set.

If X is a normed space, then {x: ||x||<1} and {x: ||x||<1} are both
convex sets. If fE€Z* {x:|[f(x)|<1}, {xt Ref(x) <1}, {x: Ref(x)>1)}
are all convex. In fact, if 7 Z > % 1is a real linear map and C i1s a convex
subset of #, then T~Y(C) is convex in X.

1.11. Proposition. Let & be a TVS and let A be a convex subset of % . Then
(@) cl A is convex; (b)if a€ intA and b € cl A, then [a,b)={th + (1 —
t)a: 0 <t<1}C int A.

Proor.Let a € A, b€ cl A, and 0 <tr< 1. Let {x;} be a net in A such
that x, = b. Then &, + (I — t)Ja = tb + (I —t)a. This shows that

1.12 binclA and a in 4 imply [a, b] C cl 4.

Using (1.12) it is easy to show that cl 4 is convex. To prove (b), fix ¢,
O<tr<l,and putc =1t + (I —t)a, where a € int A and b € cl A. There
1s an open set V' in X such that O €V and a + V C A. (Why?) Hence for
any d in A

ADtd+(1 —t)a+ V)
=Hd ~b) + th +(1— t)(a +V)
= [t(d — b) +(1—-t)V]+c.

If it can be shown that there 1s an element d in A such that O € «d — b) +
(1 =)V =U, then the preceding inclusion shows that ¢ € int A since U is
open (Exercise 4). Note that the finding of such a d in A 1s equivalent to
finding a d such that 0 €t A=)V +(d—-b)ord€b—1t'QA-1)V.
But 0 €—1t"}(1—1¢)V and this set is open. Since b € cl A, d can be found
in A. _

1.13. Corollary. If A C [ then 5(,4) is the closure of co(A).

A is absorbing if for each x in X there is an &> 0 such that zx € A for
0 <t <e Note that an absorbing set must contain the origin. If a € A,
then A is absorbing at a if the set A — a 1s absorbing. Equivalently, A is
absorbing at a if for every x in X there 1s an €> 0 such that a + x € A
for 0 <t <e.

If X is a vector space and p is a seminorm, then V = {x: p(x) <1} is a
convex balanced set that i1s absorbing at each of its points. It 1s rather
remarkable that the converse of this i1s true. This fact will be used to give an
abstract formulation of a LCS and also to explore some geometric conse-
quences of the Hahn-Banach Theorem.
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1.14. Proposition. If Z is a vector space over F and V is a convex, balanced

set that i1s absorbing at each of its points, then there 1s a unigque seminormp on
Z such that V = {x €Z: p(x) <l1}.

PrROOF. Define p(x) by
p(x)=inf{t: t>0and x € ¢tV )

Since Vis absorbing, = U%. nV, so that the set whose infimum is p(x) is

nonempty. Clearly p(0) = 0. To see that p(ax) = |a|p( x), we can suppose
that a« # 0. Hence, because V 1s balanced,

plax) = inf{t> 0: ax €tV }

=inf{ t>0: x € {%V)}
=in{{ t=>0:x € (I—il-V)}

To complete the proof that p is a seminorm, note that if a, 8> 0 and
a, b €V, then
za + b= (a+ B)| —2ca+ —L—b|e (a+p)V
a+ f3

a+ 8

by the convexity of V. If x, y€ X, p(x) = a, and p(y) = B, let §> 0.
Then x €(a+ 6)V and y€ (B + 6)V. (Why?) Hence x + y&€(a+d)V
+ (B+06) =(a+ B+ 28)V (Exercise 11). Letting 6§ > 0 shows that
p(x +y)<a+ f=p(x)+p(y)

It remains to show that V= {p)<1}. I p(x) = a < 1, then a<pf
< 1 implies x € BV C V since V is balanced. Thus V 2 (x: p(x) < 1). If
x €V, then p(x) < 1. Since V i1s absorbing at x, there 1s an £€> 0 such
that for 0 <t<eg,x+m =y € V. But x = (1+t)“1y,yE V. Hence
p(x) = A+ )" p(y)<(1+ 1) '<L

Uniqueness follows by (111.1.4). |

The seminorm p defined in the preceding proposition is called the
Minkowski functional of V or the gauge of V.

Note that if & is a TVS space and V is an open set in £, then V is
absorbing at each of its points.

Using Proposition 1.14, the following characterization of a LCS can be
obtained. The proof 1s left to the reader.

1.15. Proposition. Let & be a TVS and let % be the collection of all open
convex balanced subsets of Z.Then Z is locally convex if and only if % is a
basis for the neighborhood system at 0.
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EXERCISES

1.

10.
11.

12

13.

14,

Let £ be a TVS and let % be all the open sets containing 0. Prove the
Following. (a) If U€ %, there is a V in % such that V+VCU. (b)) If Ue ¥,
there is a V in % such that V CU and aV C V for all |a|< 1. (V is balanced.)
[Hint: If W e % and aW C U for |a|<e, then eW C BU for |B]= 1.)

Show that a LCS is a TVS.

. Suppose that & is a TVS but do not assume that £ is Hausdorff, (a) Show that

4 is Hausdorff if and only if the singleton set {0} is closed. (b) If & is
Hausdorff, show that & is a regular topological space.

Let & be a TVS. Show: (a) if x,€ I, the map x> X + X, is a homeomor-
phism of & onto &; (b) if a €F and a # 0, the map x— ax is a homeomor-
phism.

Prove Proposition 1.4.

Verify the statements made in Example 1.5. Show that a net {f;} in C(X)
converges to f if and only if f,— f uniformly on compact subsets of X.

. Show that the space H(G) defined in (1.6) is complete. (Every Cauchy net

converges.)

. Verily the statements made in Example 1.7. Give a basis for the neighborhood

system at 0.
Verily the statements made in Example 1.8,
Prove Proposition 1.9,

Show that if A is a convex set and a, 8> 0, then aA + BA = (a + /7)A. Give
an example of a nonconvex set A for which this is untrue.

If & is a TVS and A is closed, show that A is convex if and only if
s(x+ y)€ A whenever x and y € A,

Let s = the space of all sequences of scalars. Thus s = all functions x: N—F.
Define addition and scalar multiplication in the usual way. If X, y€s, define

_ 0 . |x(n)‘*)’(”)|
d(x,y) Eiz 1+ |x(n) —y(n)

Show that d is a metric on s and that with this topology s i1s a TVS. Also show
that s 1s complete,

Let (X, O, p) be a finite measure space, let # be the space of O-measurable
functions, and identify two functions that agree ae. [pn].If f, g € A, define
f — &

d(frg)= 1+|f_gid|'-‘"

Then d is a metric on 4 and (A, d)is a complete TVS. Is there a relationship
between this example and the space s of Exercise 137

15. If & isaTVSand 4 C &, thencl4d ={A4 +V:0 €V and V is open}.
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16. If & is a TVS and A is a closed linear space, then Z/A# with the quotient
topology is a TVS. If pis a seminorm on &, define p on &/ 4 by p(x+ HA) =
inf{ p(x+y):ye#}. Show that pisa seminorm on £/ 4. Show that if & is
a LCS, then so is Z/#.

17.f{Z:iel} is a family of TVs s, then F=11{Z:i€l} with the product
topology is a TVS. If each %, is a LCS, then so is &.If 2 is a LCS, must each
Z, be a LCS?

18. If & is a finite-dimensional vector space and J,,7, are two topologies on %
that make Z into a TVS, then I, =9,.

19. If & is a TVS and # is a finite-dimensional linear manifold in &, then # is
closed and % + A is closed for any closed subspace % of .

20. Let & be any infinite-dimensional vector space and let J be the collection of
all subsets W of & such that if x €W, then there is a convex balanced set U
with x + UC W and U N A open in A for every finite-dimensional linear
manifold A4 in £. (Each such /# is given its usual topology.) Show: (a) (Z,7)
is a LCS; (b) a set F is closed in & if and only if F N A is closed for every
finite-dimensional subspace # of I, (¢) if Y is a topological space and f:
Z — Y (not necessarily linear), then f is continuous if and only if f|A is
continuous for every finite-dimensional space ; (d) if &% is a TVS and T':
X — % is a linear map, then T is continuous.

21. Let X be a locally compact space and for each ¢ in C,(X), define p+(f) =
| &/l for f in C,(X). Show that p, is a seminorm on C,(X). Let B = the
topology defined by these seminorms. Show that (C,(X), B) is a LCS that is
complete. B is called the strict topology.

22, For 0 < p <1, let [? = all sequences x such that 22°_,|x(n)|? < cc. Define
d(x,y)=2%_i|x(n)—y(n)l (no pth root). Then d is a metric and ({7,d) is
a TVS that is not locally convex.

23, Let & and % be locally convex spaces and let T: F— % be a linear
transformation. Show that T is continuous if and only if for every continuous
seminorm p on %, po T is a continuous seminorm on % .

24, Let £ be a LCS and let G be an open connected subset of &. Show that G is
arcwise connected.

§2. Metrizable and Normable Locally Convex Spaces

Which LCS’s are metrizable? That is, which have a topology which is
defined by a metric? Which LCS’s have a topology that is defined by a
norm? Both are interesting questions and both answers could be useful.

If £ is a family of seminorms on &£ and & is a TVS, say that £
determines the topology on % if the topology of & is the same as the
topology induced by 9.
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2.1. Proposition. Let{p,, p,,..- } be a sequence of seminorms on X such
that N°_{ x: p(x) = 0) = (0). For x and y inZ, define

= px—y)
dix.y) = ¥ 27" |
() = L2 )

PrRoOOF. It 1s left as an exercise for the reader to show that d 1s a metric and
induces the same topology as {p,}. f £ is a LCS and its topology is
determined by a countable family of seminorms, it is immediate that Z is
metrizable. For the converse, assume that £ is metrizable and its metric is
p. Let U, = {x: p(x, 0) < l/n }. Because Z 1is locally convex, there are
continuous seminorms ¢,,...,{, and positive numbers €,,...,€, such that
ﬂﬁzl{x: qg,.(x) <¢g}CU,. If p, = e, 'qy + -+ +e'q,, then x €U,
whenever p,(x) < 1. Clearly, p, 1s continuous for each n. Thus it x.— 0 in
Z, then for each n, p,(x,) = 0 as j— co. Conversely, suppose that for
cach n, p,(x;)—>0as j— co. If €> 0, let n >¢'. Then there is a j, such
that for j = jo, p,(x,) < 1. Thus, for j=j,, x, €U, C {x: p(x,0)< E}.
That 1s, p(x;, 0) <e for j> j, and so x;,— 0 in Z. This shows that { p,/
determines the topology on £. (Why?) |

2.2. Example. If C(X) is as in Example 1.5, then C(X) 1s metrizable if and
only if X = U%_,K,, where each K, is compact, K, CK,C---, and if K
is any compact subset of X, then K C K, for some n.

2.3. Example. If X 1s locally compact and C(X) 1s as in Example 1.5, then
C(X) 1s metrizable 1f and only 1if X 18 u-compact (that 1s, X 1s the union of
a sequence of compact sets). If H(G) is as in Example 1.6, then H(G) is
metrizable.

If & is a vector space and d is a metric on %', say that d is translation
invariant if d(x + z y +z) = d(x, y) for all x, y, z in £. Note that the
metric defined by a norm as well as the metric defined in (2.1) are
translation 1nvariant.

24. Definition. A Frechet space is a TVS & whose topology 1s defined by

a translation invariant metric d and such that (£, d) is complete.

It should be pointed out that some authors include in the definition of a
Frechet space the assumption that & is locally convex.

2.5. Definition. If & is a TVS and B C %, then B is bounded if for every
open set U containing 0, there 1s an €> 0 such that eBC U.
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If & is a normed space, then it is easy to see that a set B is bounded if
and only if sup{ ||b||: b € B} <0, s0 the definition is intuitively correct.

Also, notice that if ||-]| is a norm, {x: ||x||[<1} is itself bounded. This is
not true for seminorms. For example, if C(R) is topologized as in (1.5), let
p(f) = sup{ |f(¢)|:0 <t<1). Then p is a continuous seminorm. How-
ever, { f: p(f) <1} 18 not bounded. In fact, if f, is any function in C(R)
that vanishes on [0,1],{af,;: a €ERYC {f: p(f) <1}. The fact that a
normed space possesses a bounded open set is characteristic.

2.6. Proposition. If X is a LCS, then & is normable if and only if & has a

bounded open set.

Proor. It has already been shown that a normed space has a bounded open
set. So assume that £ is a LCS that has a bounded open set U. It must be
shown that there is norm on % that defines the same topology. By
translation, 1t may be assumed that 0 €U (see Exercise 41). By local
convexity, there is a continuous seminorm p such that {x: p(x) <1}=V
CU (Why?). It will be shown that p 1s a norm and defines the topology
on .

To see that p is a norm, suppose that x €%, x # 0. Let W,,W,_ be
disjoint open sets such that 0 €W, and x €W_. Then there is an €> 0
such that Wy2¢eU D€V, But €V = {y: p(y) < E}. Since x € W, p(x) >«
Hence p is a norm.

Because p is continuous on £, to show that p defines the topology of Z
it suffices to show that if ¢ is any continuous semunorm on £, there is an
« > () such that ¢ <ap (Why?). But because ¢ 1s continuous, there 1s an
¢ > 0 such that {x: g(x) <1}2elU DeV. That is, p(x) <e implies q(x)
<1. By Lemma 111.14, g<& 'p. »

EXERCISES

1. Supply the missing details in the proof of Proposition 2.1.
2. Verily the statements in Example 2.2.

3. Verily the statements in Example 2.3.

4. Let & be a TVS and prove the following: (a) If B is a bounded subset of &, then
so i1s ¢l B. (b) The finite union of bounded sets is bounded. (c) Every compact set
is bounded. (d) If B C %, then B is bounded if and only if for every sequence
{ x, } contained in B and for every {a, }in¢y,a,x,— 0inZ. (e) If Y is a
TVS, T % — Y is a continuous linear transformation, and Bis a bounded
subset of &, then T(B) is a bounded subset of Y. (f) If & is a LCS and BC &,
then B is bounded if and only if for every continuous seminorm p, sup{ p(h):
beB}<oo. (g)If X is anormed space and B C %, then B is bounded if and
only if sup{||bl|l:b € B} <. (h) If & is a Frechet space, then bounded sets

have finite diameter, but not conversely. (i) The translate of a bounded set is
bounded.



IV.3, Some Geometric Consequences of the Hahn-Banach Theorem 111

5. It & is a LCS, show that & is metrizable if and only if £ is first countable. Is
this equivalent to saying that {0} 1s a Gy set?

6. Let X be a locally compact space and give C,(X) the strict topology defined in
Exercise 1.21. Show that a subset of C,,(X) 1s P-bounded 1f and only if it 1s norm
bounded.

7. With the notation of Exercise 6, show that (C,(X), B) i1s metrizable if and only 1f
X 18 compact.

8. Prove the Open Mapping Theorem for Frechet spaces.

§3. Some Geometric Consequences of the
Hahn-Banach Theorem

In order to exploit the Hahn-Banach Theorem in the setting of a LCS, it 1s
necessary to establish some properties of continuous linear functionals. The
proofs of the relevant propositions are similar to the proofs of the corre-
sponding facts about linear functionals on normed spaces given in $111.5.
For example, a hyperplane in a TVS 1s either closed or dense (see 111.5.2).
The proof of the next fact 1s similar to the proof of (111.2.1) and (1113.3)
and will not be given.

3.1. Theorem. If X isa TVS and [ [-2--+Fisa linear functional, then the
following statements are equivalent.

(a) f s continuous.

(b) f is continuous at 0.

(c) f is continuous at some point.

(d) ker f is closed.

(e) x = |f(x)| is a continuous seminorm.

If X is a LCS and & is a family of seminorms that defines the topology on
&, then the statements above are equivalent to the following:

(f) There are p{,..., p,in P and positive scalars &,,...,«, such that

f(x)] < 2} o1 Pr(x) for all x.

The proof of the next proposition 1s similar to the proof of Proposition
1.14 and will not be given.

3.2. Proposition. Let X be a TVS and suppose that G is an open convex
subset of X that contains the origin. If

g(x) = inf{ t: t >0 and x €1G},

then g is a non-negative continuous sublinear functional and G = {x: g(x) <

1).
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Note that the difference between the preceding proposition and (1.14) 1s
that here G 1s not assumed to be balanced and the consequence 1s a
sublinear functional (¢g( ax) = ag(x)fa > 0) that is not necessarily a
seminorm,

The geometric consequences of the Hahn-Banach Theorem are achieved
by interpreting that theorem 1n light of the correspondence between linear
functionals and hyperplanes and between sublinear functionals and open
convex neighborhoods of the origin. The next result i1s typical.

3.3. Theorem. If Z isa TVS and G is an open convex nonempty subset of &

that does not contain the origin, then there is a closed hyperplane M such that
MN G =

PROOF. Case 1. £ is an R-linear space. Pick any x, in G and let
H=x,—G. Then H1s an open convex set containing 0. (Verity). By (3.2)
there 1s a continuous nonnegative sublinear functional g: & — R such that
H = {x: q(x) < 1}. Since xy€& H, g(x,)= 1.

Let #={axy,: « €RY} and define f;: YR by fy(axy) = ag(x,). If
a= 0, then f(axy)=aq(xy)=q(axy); if a< 0, then f(axy) = ag(xy) <
a<0=<qg(axy).So fo<qg on Y. Let f>Z—R be a linear functional such
that f|% = f, and f<q on &. Put 4 = Xkerf.

Now if x € G, then xo— x € H and so f(xy) -filx) = f(xg— %) <
g(xy — x) < 1. Therefore fix) > f(xy)— 1 =q(xy;)— 1 = 0 for all x in
G. Thus £ NG=0Q0 .

Case 2. & is a C-linear space. Lemma 111.6.3 will be used here. Using
Case 1 and the fact that & is also an R-linear space, there is a continuous
R-linear functional f £ — R such that G Nkerf = Q 1 If Fx) = filx) —
if(ix), then Fis a C-linear functional and f= ReF (111.6.3). Hence
F(x) = 0 if and only if filx) = f(ix) = 0; that 1s, # =kerF = kerf n
[i kerf |. So A is a closed hyperplane and A#Z NG = 0O u

An affine hyperplane in & is a set # such that for every x, in .,
M — x, i1s a hyperplane. (See Exercise 3.) An affine manifold in & is a set Y
such that for every x,in %, Y- x, 1s a linear manifold in Z. An affine
subspace of a TVS & is a closed affine manifold.

34. Corollary. Let & bea TVS and let G be an open convex nomempty
subset of X .If Y is an affine subspace of £ such that Y N G = O, then there
is a closed affine hyperplane M in & such that Y C M and H# N G =

Proor. By considering G —x, and Y — x, for any x, in %, it may be
assumed that Y i1s a linear subspace of Z. Let Q: & > %£/% be the natural
map. Since Q" NQ(G) ={y + Gy € Y}, Q(G) is open in /¥. It is

easy to see that Q(G) is also convex. Since Y NG =0, 0 ¢ Q(G). By the
preceding theorem, there is a closed hyperplane A" in X/Y such that
AN QIG) = O Let # =0 1(A). It is easy to check that 4 has the

desired propertiecs. B
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There is a great advantage inherent in a geometric discussion of real
TVS’s. Namely, if f: £ — R is a nonzero continuous R-linear functional,
then the hyperplane kerf disconnects the space. That 1s, 2\ kerf has two

components (see Exercises 4 and 5). It thus becomes convenient to make the
following definitions.

3.5. Definition. Let 2 be a real TVS. A subset S of & is called an open
half-space 1f there is a continuous linear functional f: Z— R such that
S={xe€XZ: f(x)> a)} for some a. S is a closed half-space if there is a
continuous linear functional f: 2 — R such that S = {x € Z: f(x) > a}
for some «.

Two subsets A and B of & are said to be strictly separated if they are
contained in disjoint open half-spaces; they are separated if they are
contained i1n two closed half-spaces whose intersection 1s a closed affine
hyperplane.

3.6. Proposition. Let & be a real TVS.

(a) The closure of an open half-space is a closed half-space and the interior of
a closed half-space is an open half-space.

(b) If A, B C Z, then A and B are strictly separated (separated) if and only
if there is a continuous linear functional f: & — R and a real scalar a such
that f(a) > a forallain A and f(b) < a forallbin B (f(a) = « for all
ain A and f(b) < «a for all b in B).

PrROOF. Exercise 6.

In many ways, the next result is the most important “separation” theorem
as the other separation theorems follow from this one. However, the most
used separation theorem is Theorem 3.9 below.

3.7. Theorem. If & is a real TVS and A and B are disjoint open convex
subsets of &, then A and B are strictly separated.

PROOF. Let G=A — B= {a— b: a € A,b € B}, it is easy to verify that
G is convex (do 1t!). Also, G =U{ A4 — b: b € B}, so G is open. Moreover,
because 4 N\ B = [, 0 & G. By Theorem 3.3 there is a closed hyperplane ./
in & such that /N G = 0. Let f: 2 — R be a linear functional such that
M = ker f. Now f(G) 1s a convex subset of R and 0 € f(G). Hence either
f(x)>0Oforall x inG or f(x) < 0 for all x in G; suppose f(x) > 0 for all
x in G. Thus if a€ A and b€ B, 0 < f(a — b)= f(a) — f(b); that is,
f(a) > f(b). Therefore there is a real number « such that

sup{ f(b): be B} <ax<inf{f(a): ac 4}.

But f(A) and f(B) are open intervals (Exercise 7), sO f < « on B and
f>aon A. u
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3.8. Lemma. If 2 is a TVS, K is a compact subset of &, and V is an open

subset of Z such that K C V, then there is an open neighborhood of 0, U, such
that K+ U C V.

PROOF. Let %, = all of the open neighborhoods of 0. Suppose that for each
Uin %, K+ U is not contained in V. Thus, for each U in %,, there is a
vector x,;, in K and a y, in U such that x, + y, € &\ V. Order %, by
reverse inclusion; that is, U; > U, if U; C U,. Then %, is a directed set and
{xy} and { y,} are nets. Now y, — 0 in Z. Because K is compact there is
an x 1n K such that x,—~x ({x,} clusters at x). Hence x, + y,—5~x + 0
= x. (Why?) Hence x € cl(Z\ V) = Z\ V, a contradiction. u

The condition that K be compact in the preceding lemma is necessary; it
1s not enough to assume that K is closed. (What is counterexample?)

3.9. Theorem. Let & be a real LCS and let A and B be two disjoint closed
convex subsets of Z. If B is compact, then A and B are strictly separated.

PROOF. By hypothesis, B i1s a compact subset of the open set 2\ 4. The
preceding lemma implies there is an open neighborhood U, of 0 such that
B + Uy € &\ A. Because & is locally convex, there is a continuous semi-
norm p on Z such that {x: p(x) <1} C U, Put U= {x: p(x)< ).
Then (B + U)N (A + U) =0 (Verify!),and 4 + U and B + U are open
convex subsets of 2 that contain 4 and B, respectively. (Why?) So the
result follows from Theorem 3.7. u

The fact that one of the two closed convex sets in the preceding theorem
1s assumed to be compact is necessary. In fact, if = R2, 4 = {(x, y) € R%:
y <0}, and B= {{(x,y)€ER?* y> x“l}, then A and B are disjoint
closed convex subsets of R? that cannot be strictly separated.

The next result generalizes Corollary 111.6.8, though, of course, the metric
content of (II1.6.8) is missing,.

3.10. Corollary. If & is a real LCS, A is a closed convex subset of ¥, and
x & A, then x is strictly separated from A.

3.11. Corollary. If & is a real LCS and A C &, then co(A) is the
intersection of the closed half-spaces containing A.

PROOF. Let 5 be the collection of all closed half-spaces containing A.
Since each set in J# is closed and convex, co(A4) C ﬂ{ H: H € 5#}. On the
other hand, if x, & co(A4), then (3.10) implies there is a continuous linear
functional f: Z — R and an « in R such that f(x,) > « and f(x) < « for
all x in co(A). Thus H = {x: f(x) < a) belongs to > and x, & H. u

The next result generalizes Theorem I11.6.13.
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3.12. Corollary. If X isa real LCS and A C %, then the closed linear span
of A is the intersection of all closed hyperplanes containing A.

It 2 is a complex LCS, it is also a real LCS. This can be used to
formulate and prove versions of the preceding results. As a sample, the
following complex version of Theorem 3.9 is presented.

3.13. Theorem. Let & be a complex LCS and let A and B be two disjoint
closed convex subsets of . If B is compact, then there 1s a continuous linear
functional f: X - C,anainR,and an € > 0 such that forain A and b in B,

Ref(a)<a<a + e <Ref(b).

3.14. Corollary. If X is a LCS and Y is a linear manifold in & ,then Y is

dense in & if and only if the only continuous linear functional on & that
vanishes on Y is the identically zero functional.

3.15. Corollary. If Z isa LCS, Y is a closed linear subspace of &, and
X EZ\Y, then there is a continuous linear functional f: Z — F such that
fly) =0 for ally in Y and f(x,) = 1.

These results imply that on a LCS there are many continuous linear
functionals. Compare the results of this section with those of §I11.6.

The hypothesis that & is locally convex does not appear in the results
prior to Theorem 3.9. The reason for this is that in the preceding results the
existence of an open convex subset of 2 is assumed. In Theorem 3.9 such a
set must be manufactured. Without the hypothesis of local convexity it may

be that the only open convex sets are the whole space itself and the empty
sel.

3.16. Example. For 0 <p <1, let L?(0, 1) be the collection of equivalence
classes of measurable functions f:(0,1) - R such that

((£)),= _/;)l|f(x)|pdx < 0.

It will be shown that d( f, g) = ((f —g)), 1s a metric on L?(0, 1) and that
with this metric L?(0, 1) is a Frechet space. It will also be shown, however,
that L?(0, 1) has only one nonempty open convex set, namely itself. So

L?(0,1),0 <p < 1, 1s most emphatically not locally convex. The proof of
these facts begins with the following inequality.

3.17 For s,tin [0, co) and 0 < p< 1, (s +1)7 <s? +¢7.

To see this, let f(t) = s? +tP— (s + t)? for t =0, s fixed. Then
f(t) = ptP ' —p(s+1)? ! Since p —I<0and s+t>1¢, f(t) > 0.
Thus 0 = f{0) <f(t). This proves (3.17).
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If d(f,g)=({(f - g), for f,gin L?(0,1), then (3.17) implies that
d(f,g <d(f,h)y+d(h,g) for all f,g, hin L?(0, 1). It follows that d is a
metric on LZ(0, 1). Clearly d is translation invariant.

3.18 L?(0,1),0<p< 1, is complete.
The proof of this is left as an exercise.
3.19 L?(0,1)is a TVS.

The continuity of addition 1s a direct consequence of the translation in-
variance of d. If f, = f and «, = «, ¢, in IF, d(«,f,,af)=((a,f,—af)),
< (&nfy = /N, + (&g = af N, = 1P (fy = 1N, + |, = alP(/)),
<C({(f,— 1), tla,— «”((f)),, where C is a constant independent of r.
Hence «,f,— a«f. Thus L?(0, T) 1s a Frechet space.

3.20 If G is a nonempty open convex subset of L?(0,1),then

G=L?0,1).

To see this, first suppose f &€ L*(0,1) and ((f)),=r <R. As a function
of 1, [o|f(x)I dX is continuous, assumes the value 0 at ¢ = 0, and assumes
the value ratt = 1. Let 0 <t < 1 such that [;|f(x)|? dx = r/2. Define
g, h:(0,1)=F by gix) = f(x) for x <t and 0 otherwise; h(x) = f(x) for
x 2t and 0 otherwise. Now f=g+h=3(2g+2h) and ((2g)), = ((2h)),
=2 P(rp) =r/2'"?. Hence f €< co B(0; R/2' 7). This implies that
B(0; R) C coB(0;R/2'"?), or, equivalently, B(0;2! “?R) C coB(0, R) .
Hence B(0;4' ?R)YCcoB(0;2' "?R)CcoB(0; R) . Continuing we see that
for all n, B(0; 2"*~2'R) C coB(0; R).

SO if G is a nonempty open convex subset of L#(0,1), then by translation
it may be assumed that O € G. Thus thereisan R > (0 with B(0; R) C G.
By the preceding paragraph, B(0;2"¢ "2 R)CcoB(0; R) C G foralln>1.
Therefore L?(0, 1) C G.

Also note that this says that the only continuous linear functional on
L?0,1),0<p< 1, 1s the identically zero functional.

EXERCISES
1. Prove Theorem 3.1

2. Let p be a sublinear functional, G = {x: p(x) <1}, and define the sublinear
functional ¢ for the set G as in Proposition 3.2. Show that g(x)=max{ p( x), 0)
for all x in L

3. Let £/ CZ, a TVS, and show that the following statements are equivalent: (a)
A is an affine hyperplane; (b) there exists an x,in 4 such that A4 —x, is a

hyperplane; (c¢) there is a linear function f:Z — F and an a in F such that
M= {xeX: f(x)=a}.

4, Let & be a real TVS. Show: (a) if G is an open connected subset of 4, then G
is arcwise connected; (b) if f:& — R is a continuous linear functional, then

Z\ kerf has two components, (x: f(x) > 0} and {x: f(x) < O}.

5.If & is a complex TVS and f:%Z — Cis a nonzero continuous linear function,
show that £\ kerf is connected.
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6. Prove Proposition 3.6.

7.1f f: >R is a continuous R-linear functional and A is an open convex subset
of &, then f{A) is an open interval.

8. Prove Corollary 3.12.
9. Prove Theorem 3.13.

0. State and prove a version of Theorem 3.7 for a complex TVS.
1. State and prove a version of Corollary 3.11 for a complex LCS.
2. State and prove a version of Corollary 3.12 for a complex LCS,
3. Prove (3.18).

4. Give an example of a TVS Z that is not locally convex and a subspace % of £
such that there is a continuous linear functional fon % with no continuous
extension to Z%.

§4*. Some Examples of the Dual Space of a Locally
Convex Space

As with a normed space, if & is a LCS, &* denotes the space of all
continuous linear functionals f: X - F. X* is called the dual space of X.

4.1.  Proposition. Let X be completely regular and let C(X) be topologized as
in Example 1.5. If L: C(X) —F is a continuous linear functional, then there
is a compact set K and a regular Borel measure pon K such that LCf) = [ fdu
for every f in C(X). Conversely, each such measure dejines an element of
C(X)*.

Proor. It 1s casy to see that each measure p supported on a compact set K
defines an element of C(X)*. In fact, if pgx(f)=sup{lf(x)|:x € K} and
L) = [xfdu, then |L(f)|<|inllpx(f), and so L is continuous.

Now assume L € C(X)* There are compact sets K,,...,K, and posi-
tive numbers ay,..., @, such that |L(f)|£E;=1anij(f)(3.1f). Let K =
UT_1K, and a = max{|a]|: 1 <j<n) Then |[L(f)|<apg(f)- Hence if
f€ C(X) and fI|[K = 0, then L{(f) = 0.

Define F: C(K) —F as follows. If g €eC(K ), let € be any continuous
extension of g to X and put F(g) = L(g). To check that Fis well defined,
suppose that g, and g, are both extensions of g to X. Then g,— g, = 0 on
K, and hence L({ g,)=L( g,). Thus Fis well defined. It 1s left as an exercise
for the reader to show that Fr C(K) —»F 1s linear. If ¢ € C(K) and g 1s
an extension in C(X), then |F(g)|=|L(2)|<apx(g) = al|g||, where the
norm 1s the norm of C(K). By (111.5.7) there i1s a measure g in M(K) such
that F(g)= [xgdu. If f € C(X), then g=fIK€ C(K) and so L(f) =

F(g) = Jxfdp. =
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Let C_ denote the extended complex plane. Thus € = Cu { o0} with
the metric it obtains from its identification with the sphere. If y: [0, 1] = C
is a rectifiable curve and f is a continuous function defined on the trace of
Y, Y([0, 1]), then ff is the line integral of f over y. That is, ff“'
[of (Y(D)) dy(1). (See Conway [1978].) The next result generalizes to arbi-
trary regions in the plane, but for simplicity it is stated only for the disk D.
Recall the definition of H(D)) from Example 1.6.

4.2. Proposition. L€ H(D)* if and only if there is an r <1 and a unique
function g analytic on C__ \ B(0; r) with g( «) = 0 such that

43 L(f) = 5, [fe

for every f in H(D), where y(t)=pe"’,0<t<27, and r<p < 1.
Proor. Let g be given and define L as in (4.3). If K = {z: |z| = p}, then

IL{f >I=75_ 2,” f f(pe” g(pe”)fpe”dt‘

_21pr(f )px(g)27p.

So if ¢ = ppx(8), IL(f ) <cpx(f ). and L € H(D)*.
Now assume that . € H (D) *. The Hahn-Banach Theorem implies there

is an FF in C(D)* such that F|H(D) = L. By Proposition 4.1 there is a
compact set K contained in [ and a measure w on K such that L (f) =
[xf dp for every fin H(D). Define gct C_\K — C by g(o0) = 0 and
o(z) = — fxt/(w—2z)du(w) for zin C\K. By Lemma 111.8.2, g is
analytic on C_\ K. Let p< 1 such that K C B(0; p). If y(t) =

0 <tr<27, then Cauchy § Integral Formula implies

flw)= 2:1'1'.[ M) 4,

TZ—"W

for |w|< p; in particular, this is true for w in K. Thus,

L(f)= [ 1(w)dn(w)

—

=.[Kh%f2“ f(-pe”zve”dt- dp(w)

0 pe:r___

—

_ P 2 it\ it 1
aw fy J(pe)e| [ oo, du(w) |

ff( )g(z)dz.

This completes the proof except for the uniqueness of g (Exercise 3). B

2771
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EXERCISES

. Let {Z:i€l} be a family of LCS’s and give F=11{Z.:i €I} the product
topology. (See Exercise 1.17.) Show that L € &* if and only if there is a finite
subset F contained in I and there are x* i Z* for jin F such that
L(x)=2, . X,*x()) for each x 1n L

2. Show that the space s (Exercise 1.13) 1s linearly homeomorphic to C(N) and
describe s*.

3. Show that the function g obtained in Proposition 4.2 1s unique.

4. Show that L € H(D)* if and only if there are scalars by, b,,.1n C such that
limsup |b,|'"/"< 1 and L(f) = X2_,1/(a)f" ()b, .

5. If G is an annulus, describe H(G)*.

6. (Buck [1958]). Let X be locally compact and let 8 be the strict topology on
C,,(X) defined 1in Exercise 1.2]1. (Also see Exercises 2.6 and 2.7.) Prove the
following statements: (a) If p€ M(X) and ¢, 0, then there are compact sets
K,, K,,. such that for each n> 1, K, C int K, ,, and |p|(X\ K,,) <eg,. (b) If
we M(X), then there is a ¢ in C,(X) such that ¢ > O, |p[( X\ {x:¢$(x)>0})
=0,1/¢ € L'(|u]), and [1/¢d|u|< 1. (c) Show that if p€ M(X) and L(f) =
Jfdp forf in C,(X), then L& (C,(X),B)*. (d) Conversely,if Le(C,(X),B)*,
then there is a p in M(X) such that L(f) = [fdu for f in C,(X).

7. Let X be completely regular and let .# be a linear manifold in C(X). Show that
if for every compact subset K of X, #Z|K={f|K:f€ )} is dense in C(K),
then A is dense in C(X).

§5*. Inductive Limits and the Space of Distributions

In this section the most general definition of an inductive limit will not be
presented. Rather one that removes certain technicalities from the argu-
ments and yet covers the most important examples will be given. For the
more general definition see Kothe [1969], Robertson and Robertson [1966],
or Schaefer [1971].

5.1. Definition. An inductive system 1is a pair (Z,{Z:i€1}), where & is
a vector space, Z, is a linear manifold in £ that has a topology 7, such
that (2,,.7;) is a LCS, and, moreover:

(a) I is a directed set and %g.@} if § < J;
b)ifi<jand U €7, thenU N %, € T
(¢) =U{Z:ie€ I}

Note that condition (b) 1s equivalent to the condition that the inclusion
map Z,— Z, is continuous.
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5.2. Example. Let d > 1 and let £ be an open subset of R% Denote by
C{*®)(£2) all the functions ¢:§2 —F such that ¢ is infinitely differentiable
and has compact support in £2. (The support of ¢ is defined by spt ¢ = cl{ x:
d(x)# 0}.) If Kis a compact subset of §2, define Z(K)={¢ € C>*(2):
spt ¢ < K }. Let 9(K) have the topology defined by the seminorms

Pi.m(®) = sup{|e"(x)|: |kl <m, x € K },
where Kk =(ky,..., k), kK, ENU {0}, |k| =k, +---+k, and

(k) _
(i) kl..

Then (CX(2),{Z2(K): Kis compact in §2}) is an inductive system. The
space C°(£2) is often denoted in the literature by Z(§2), as it will be in this
book.

This example of an inductive system 1s the most important one as it 1s
connected with the theory of distributions (below). In fact, this example was
the inspiration for the definition of an inductive limit given now.

5.3. Proposition. If (Z£,{Z,,.7.}}s an inductive system, let % = all con-
vex balanced sets V such that V "X, €T, for all i. Let T = the collection of
all subsets U of X such that for every Xoin U there is a V in # with
Xog+ VCU. Then (Z,7) is a (not necessarily Hausdorff) LCS.

Before proving this proposition, it seems appropriate to make the follow-
ing definition.

5.4. Definition. If (Z,{Z,})1s an inductive system and 7 is the topology
defined in (5.3), .9 is called the inductive limit topology and (Z£,5 ) is said
to be the inductive limit of { &, }.

5.5. Lemma. With the notation as in (3.3), #C T .

Proor. Fix Vin #. It will be shown that V i1s absorbing at each of its
points. Indeed, if x,€ V and x €Z, then there is an £, and an Z; such

i

that xo € Z, and x € Z,. Since I is directed. there is a k in Z with
k > i, j. Hence x4, x€Z,. But VNZ,€.9,. Thus there is an £€> 0 such
that xo + ax€e VNI, CV for |a|<E.

Since V 1s convex, balanced, and absorbing at each of its points, there 1s a
seminorm p on & such that V = {x € X: p(x) <1} (1.14). So if x, €V,
p(x,) =r,< 1. Let W = {x € X: p(x) <3(1—17y)}. Then W = 3(1 -
ro)V and so W € #. Since x,+ WCV,Ved. _

PROOF OF PRoPoOSITION 5.3. The proof that 7 is a topology is left as an
exercise. To see that (£, ) is a LCS, note that Lemma 5.5 and Theorem
1.14 imply that 7 is defined by a family of seminorms. u
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For all we know the inductive limit topology may be trivial. However, the
fact that this topology has not been shown to be Hausdorff need not
concern us, since we will concentrate on a particular type of inductive limit
which will be shown to be Hausdorff. But for the moment we will continue
at the present level of generality.

5.6. Proposition. Let (Z,{Z,}) be an inductive system and let T be the
inductive limit topology. Then

(a) the relative topology on X, induced by I (viz., T\Z,) is smaller than I

(b) if % is a locally convex topology on X such that for every i, U|Z . C I,
then U C I ;

(c) a seminorm p on & is continuous if and only if p|Z, is continuous for
each i.

Proor. Exercise 3.

57. Proposition. Let (Z,7) be the inductive limit of the spaces {(Z,,7)):
iel} Zf % isa LCS and T: & — Y is a linear transformation, then T is
continuous if and only if the restriction of T to each &, is g-continuous.

H

ProoF. Suppose 7T: & — Y is continuous. By (5.6a), the inclusion map
(£,,7,)— (X, J) is continuous. Since the restriction of 7 to %, is the
composition of the inclusion map &, - %2 and 7, the restriction is continu-
ous.

Now assume that each restriction 1s continuous. If p 1s a continuous
semunorm on %, then p o T|%,; is a g-continuous seminorm for every i. By

(5.6¢), p o T'is continuous on Z. By Exercise 1.23, 7 is continuous. _

It may have occurred to the reader that the definition of the inductive
limit topology depends on the choice of the spaces Z; in more than the
obvious way. That is, if Z=U % and each % has a topology that is
Compatible with that of the spaces {Z,}, perhaps the inductive limit
topology defined by the spaces { %} will differ from that defined by the

{Z,}. This is not the case.

5.8. Proposition. Let (Z,{(ZX,,7,)}) and (Z,(¥,,%,)}) be two inductive
systems and let I and U be the corresponding inductive limit topologies on Z .
Zf for every i there is a j such that 2, C %, and U |\%,C J,, then UC T .

Proor. Let ¥V be a convex balanced subset of & such that for every j,
Vn % e, 1t Z, is given, let j be such that &, C %, and %,|Z;C ..

Hence VNZ,=(V n ¥)n Z €7, Thus Ve H [as defined in (5.3)]. It
now follows that # C 7. _

5.9. Example. Let & be any vector space and let { Z;:i € Z} be all of the
finite-dimensional subspaces of 2. Give each &, the unique topology from
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its identification with a Euclidean space. Then (£,{Z’}) 1s an inductive
system. Let 7 be the inductive limit topology. If Yisa LCS and 7: 2 > %
1S a linear transformation, then 7' 1s Z-continuous.

5.10. Example. Let X be a locally compact space and let { K,: i €1} be
the collection of all compact subsets of X. Let &; = all f in C(X) such that
spt f € K,. Then U, Z; = C,(X), the continuous functions on X with com-
pact support. Topologize each Z; by giving it the supremum norm. Then
(C.(X), { Z£;}) 1s an inductive system.

Let U; be the open subsets of X such that ¢l U, is compact. Let Cy(U;) be
the continuous functions on U; vanishing at co with the supremum norm. If
| € Co(U)) and [ is defined on X by letting it be identically 0 on X\ U,
then f € C.(X). Thus (C,(X), { C(U;)}) 18 an inductive system. Proposition
5.8 implies that these two inductive systems define the same inductive limit
topology on C,(X).

5.11. Example. Let d > 1 and put K, = {x €R?||x]|< n}. Then
(2(R*), {2(K,))=.,) is an inductive system. By (5.9), the inductive limit

topology defined on Z(R?) by this system equals the inductive limit
topology defined by the system given in Example 3.2.

If £ is any open subset of R9, then £ can be written as the union of a
sequence of compact subsets {K,} such that K, Cint K, _ ;. It follows by
(5.9) that { 2(K,)} defines the same topology on 2(£2) as was defined in
Example 5.2.

The preceding example inspires the following definition.

5.12. Definition. A strict inductive system 1s an inductive system
(Z,{Z%,,7,} 1) such that for every n> 1,2, %Z,.1,7,..112,=7,, and
Z, 1s closed in £, ;. The inductive limit topology defined on & by such a
system 1s called a strict inductive limit topology and & 1s said to be the strict

inductive limit of { Z,,}.

Example 5.11 shows that 2(R?), indeed 2(8), is a strict inductive limit.
The following lemma 1s useful in the study of strict inductive limits as

well as 1n other situations.

5.13. Proposition. If Zisa LCS, Y <&, and p is a continuous seminorm
on %, then there is a continuous seminorm p on & such that p|% = p.

Proor. Let U = {y € Y: p(y) <1}. So U 1s open in Y; hence there 1s an
open subset ¥, of & such that ;N Y=U. Since 0 €V, and £ 1s a LCS,
there 1s an open convex balanced set V in & such that ¥V CV,. Let g = the
gauge of V. Soif ye Y and ¢g(y) < 1, then p(y) < 1. By Lemma 111.1.4,
P <ql%.
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Let W =co(U uV); it is easy to see that W is convex and balanced
since both U and V are. It will be shown that W is open. First observe that
W={tu+(( -tvo<t<LuclUv€V)} (verify). Hence W = U{ U
+ (1 =)V:0<t< 1). Put W,=tU+ (1 —t)V. So W, =V, which is
open. If 0 << 1, W,=U{ ru+ (1 —t)V:u €V}, and hence is open. But
W, =U, which is not open. However, if u €U, then there is an €> 0 such
that eu€V. For 0 <t< 1, lety, = t 7 '[1—¢e+telu(e€¥). As t > 1,
y, = u. Since U is open in %, there is a ¢, 0 <t < 1, with y,in U. Thus
u=1ty,+ (1 —t)eu)€ W, Therefore W = U{ W:0<¢<1} and W 1is
open.

5.14. Claim. WN% = U.

In fact, UCW,so UcWN¥ If we WN%X, then w = tu+ (1 —t)v,
uinU,vinV,0 <t< 1; it may be assumed that 0 <¢< 1. (Why?) Hence,
v=(1—-t)"Y (w—tu) €. SoveEVNHC U, hence w € U.

Let p = the gauge of W. By Claim 5.14, {y €¥:p(y)<1}={y€¥:
p(y) <1}. By the uniqueness of the gauge, p|% = p. |

5.15. Corollary. If X is the strict inductive limit of {£,},k is fixed, and p,
is a continuous seminormon %, then there is a continuous seminormp on X
such that p|Z, = p,. In particular, the inductive limit topology is Hausdorff.

PrROOF. By (5.13) and induction, for every integer n > &, there 1S a continu-
ous seminorm p, such that p |%,_;=p,_1- If x €Z, define p(x) = p,(x)
when x €%,. Since £,C %, ., for all n, the properties of {p,} insure that
p is well defined. Clearly p is a seminorm and by (5.6¢) p is continuous.

If x € X and x # 0, there is a 2 > 1 such that x €Z,. Thus there is a
continuous seminorm p, on £, such that p,(x)# 0. Using the first part

of the corollary, we get a continuous seminorm p on X such that p(x) # 0.
Thus (£, 7 ) is Hausdorff. n

5.16. Proposition. Let X be the strict inductive limit of {Z,}. A subset B of

Z is bounded if and only if there is an n > 1 such that B CZ, and B is
bounded in £ ,.

The proof will be accomplished only after a few preliminaries are settled.
Before doing this, here are a few consequences of (5.16).

5.17.  Corollary. If X is the strict inductive limit of {Z,}, then a subset K of

X is compact if and only if there is an n > 1 such that K C%Z, and K is
compact in Z .

5.18. Corollary. Zf X is the strict inductive limit of Frechet spaces {Z,},¥
is a LCS, and T:X =% is a linear transformation, then T is continuous if
and only if T is sequentially continuous.
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Proor. By Proposition 5.7, T is continuous if and only if 7)%, is continu-
ous for every n. Since each &, is metrizable, the result follows. u

Note that using Example 5.11 it follows that for an open subset §2 of R?,
2(£2) is the strict inductive limit of Frechet spaces [each Z( K ) is a Frechet
space by Proposition 2.11. So (5.18) applies.

5.19. Definition. If £ is an open subset of RY a distribution on £ is a
continuous linear functional on Z(§2).

Distributions are, in a certain sense, generalizations of the concept of
function as the following example illustrates.

5.20. Example. Let f be a Lebesgue measurable function on §2 that is
locally integrable (that is, [x|f|dA <oo for every compact subset K of
{2—here A is d-dimensional Lebesgue measure). If L,; Z(8§2)—F is defined
by L( ¢) = [fodA, L, is a distribution.

From Corollary 5.18 we arrive at the following.

5.21. Proposition. A linear functional L: 2(82)—F is a distribution if and
only if for every sequence {&,}in 2(82) such that cl|U5_;spt¢,]= K is
compact in £ and ¢,(1k)(x)—+ O uniformly on K as n — o0 for every k =
(ki,..., k), it follows that L(¢,)— 0.

Proposition 5.21 1s usually taken as the definition of a distribution in
books on differential equations. There 1s the advantage that (5.21) can be
understood with no knowledge of locally convex spaces and inductive limuits.
Moreover, most theorems on distributions can be proved by using (5.21).
However, the realization that a distribution 1s precisely a continuous linear
functional on a LCS contributes more than cultural edification. This knowl-
edge brings power as it enables you to apply the theory of LCS’s (including
the Hahn-Banach Theorem).

The exercises contain more results on distributions, but now we must
return to the proof of Proposition 5.16. To do this the idea of a topological
complement 1s needed. We have seen this idea in Section 111.13.

5.22. Proposition. If & is a TVS and % <X, the following statements are
equivalent.

(a) There is a closed linear subspace & of & such that Y NZ = (0),
Y+ F=F, and the map of ¥ XF > given by (v, z)—> y + zis a
homeomorphism.

(b) There is a continuous linear map P.: % —> % such that PZ =Y and
P> =P
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Proor. (a) = (b): Define P: —>Xby P(y+2z)=y,for yin Y and Z in
Z. It is easy to verify that P is linear and PX= Y. Also, P*(y + z) =
PP(y + z2) =Py =y = P(y + 2); so P> =P If {y,+ 2z} is a net in X
such that y + z,—y+ z, then (a) implies that y,— y (and z,— z). Hence
P(y,+z,)> P(y+2z) and P is continuous.

(b) = (a): If P is given, let &= ker P. So & <X. Also, x = Px + (x —
Px) and y = Px €%, and z = x — Px has Pz = Px —P*x = Px — Px =
0,s0oze€%. Thus, Y + Z=F.IfxeEY NZ, then Px = 0 since x €Z;
but also x = Pw for some w in X since x € Y = PX, Therefore 0 = Px =
P>w = Pw = x; that is, Y NZ = (0). Now suppose that { y,)} and {z,} are
nets in Y and Z.If y, > y and z,— z, then y,+ z,—2 y + z because
addition 1s continuous. If, on the other hand, it 1s assumed that Y, + 2z, 2y
+ 7z, then y = P(y+2) =1im P(y, +z,)=1lim y, and z, = (y, + z;) — ),
— z. This proves (a). u

5.23. Definition. If X is a TVS and Y <%, Y is topologically comple-
mented 1n X 1f either (a) or (b) of (5.22) 1s satisfied.

5.24. Proposition. If X is a LCS and Y < X such that either dim% < o0 or
dim X/Y <00, then Y is topologically complemented in X.

Proor. The proof will only be sketched. The reader is asked to supply the
details (Exercise 9).

(a) Suppose d =dim% < ¢c and let V1,..., y,; be a basis for Y. By the
Hahn-Banach Theorem (II1.6.6), there are f,,. . . , f,in &* such that
fi(y)=1ifi=j and O otherwise. Define Px = ¥9_, f,(x)y;

(b) Suppose d =dim X/Y <oo, Q: £ — X/Y is the natural map, and

Z1,....24€ X such that Q(zy),...,Q(z,) is a basis for X/Y. Let &=
V{z,..., 24} _

PRrROOF OF ProrosITION 5.16. Suppose X 1s the strict inductive limit of
(Z,,7,}) and Hs a bounded subset of X. It must be shown that there is
an n such that BC %, (the rest of the proof is easy). Suppose this is not
the case. By replacing {Z,} by a subsequence if necessary, it follows that

for each n there is an x,in B\ Z,. Let p; be a continuous seminorm on
Z, such that p,(x)=1.

5.25. Claim. For every n = 2 there is a continuous seminorm p, on Z,
such that p,(x,)=nand p,|Z, 1=p,-1

The proof of (5.25) is by induction. Suppose p, is given and let Y = £,V
{x_ .1} By G-24), Z, and V{x,.1} are topologically complementary in Y.
Define ¢q: Y — [0, o0) by g(x+ax, . ) = p,(x) + (n +1)|a|, where x €Z,
and a« €F. Then ¢ is a continuous seminorm on (%, 7, ,,|Y ). (Verify!) By
Proposition 5.13 there is a continuous seminorm p_ ., on Z,., such that

p,.11%=gq. Thus p, |Z,=p, and p,. (X,.1)=n+ 1. This proves the
claim.
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Now define p: £ — [0, co) by p(x) = p,(x)if x €Z,. By (5.25), p is
well defined. It is easy to see that p is a continuous seminorm. However,
sup{ p(x): x € B} = o0, so B is not bounded (Exercise 2.4f). u

EXERCISES

1, Verily the statements made in Example 35.2.
Fill in the details of the proof of Proposition 5.3.
Prove Proposition 3.6.
Verily the statements made in Example 3.9.
Verily the statements made in Example 5.10.

Verify the statements made in Example 5.11.

e IS - e B

With the notation of (5.10), show that if X is u-compact, then the dual of C(X)
1s the space of all extended F-valued measures.

8, Is the inductive limit topology on C(X) (5.10) different from the topology of
uniform convergence on compact subsets of X (1.5)?

9, Prove Proposition 5.24.
10, Verify the statements made in Example 5.20,

For the remaining exercises, £ is always an open subset of R4, d> 1.
11. If p is a measure on §2,¢— [¢ dp is a distribution §2.

12. Let f:£2—F be a function with continuous partial derivatives and let L, be
defined as in (5.20). Show that for every ¢ in Z(2)and | <j<d, L( d$/0x,)
= —L,(¢), where g =df/dx,. (Hint: Use integration by parts.)

13. Exercise 12 motivates the following definition. If L is a distribution on §,
define dL/dx,.2()—F by dL/dx(¢)=—L(d¢/dx,) for all ¢ in D(£2).
Show that dL/dx, is a distribution.

14, Using Example 5.20 and Exercise 13, one is justified to talk of the derivative of
any locally integrable function as a distribution. By Exercise 11 we can differen-
tiate measures. Let f:RR — R be the characteristic function of [0, co) and show
that its derivative as a distribution is &,, the unit point mass at 0. [That is, 0, is
the measure such that 6, (A) =1 if0€A and 8,(A) =0if0& A ]

15. Let f be an absolutely continuous function on R and show that ( L;) =L

16. Let [ be a left continuous nondecreasing function on R and show that (L) is
the distribution defined by the measure u such that pf a, b) = f(b) — f(a for
all a <b.

17. Let f be a C* function on £ and let L be a distribution on 2({2). Show that
M()y=L{ ¢f ), ¢ in D(£2), is a distribution. State and prove a product rule for
finding the derivative of M.




CHAPTER V

Weak Topologies

The principal objects of study in this chapter are the weak topology on a
Banach space and the weak-star topology on its dual. In order to carry out
this study efficiently, the first two sections are devoted to the study of the
weak topology on a locally convex space.

§1. Duality

As in 51V .4, for a LCS %, let X* denote the space of continuous linear
functionals on X. If x*, y*€ X* and a€lF, then (ax* + y*)(x) =

ax*(x)+ y*(x), x in &, defines an element ax* + y* in X*, Thus X*
has a natural vector-space structure.

It 1s convenient and, more 1mportantly, helpful to introduce the notation

(x, x*)

to stand for x*(x), for x in X and x*in Z *. Also, because of a certain
symmetry, we will use {(x*, x) to stand for x*(x). Thus

x*¥(x) = {x,x*) = (x*, x).

We begin by recalling two defimitions (IV.1.7 and IV.1.8).

1.1. Definition. If X is a LCS, the weak topology on Z, denoted by Wwk”

or a( Z,X *), is the topology defined by the family of seminorms { p,«:
x*eZ*}, where

prr(x) = |{x, x*)].
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The weak-star topology on X *, denoted by “wk*” or o(Z *, X), is the
topology defined by the seminorms { p_:x &€ X/, where

p(x*) = |{x,x*)|.

So a subset U of X 1s weakly open if and only if for every x,in U there is
an € > 0 and there are x{,...,xY in X * such that

H
]

N (xe Z:[(x—x0, xP) < e} U
k=1
A net {x;} in X converges weakly to x, if and only if (x,, x*)—=>{xq, X*)
for every x* in X *. (What are the analogous statements for the weak-star
topology?)

Note that both (£, wk) and (£ *, wk*) are LCS’s. Also, X already
possesses a topology so that wk 1s a second topology on X. However, X *
has no topology to begin with so that wk* is the only topology on X *. Of
course if X is a normed space, this last statement is not correct since X * is
a Banach space (111.5.4). The reader should also be cautioned that some
authors make no distinction between the weak and weak-star topologies.
Finally, pay attention to the positions of X and X * in the notation
o(Z, X*) = wk and o(Z *, X) = wk*.

If {x;} is a net in X and x,— 0 in Z, then for every x* in £ ¥,
(x,, x*Y— 0. So if J is the topology on Z, wk €7 (A.2.9) and each x*
in X* 1s weakly continuous. The first result gives the converse of this.

1.2. Theorem. Zf X is a LCS, (£, wk)* = X *,

PrOOF. Let f € (%, wk)*; that is, f is a wk-continuous linear functional on
X. By (IV.3.1f) there are x¥ x¥,...,x¥ in X* such that |f(x)| <
v o1l{x, x¥Y| for all x in X. This implies that Mj;_ kerxf C kerf. By
(A.1.4), there are scalars ay,...,a, such that f = X}_ a, x¥; hence [ € & *.
B

There 1s a similar result for wk*; the proof 1s left for the reader.

1.3. Theorem. Zf X is a LCS, (X *, wk*)* = &

S0 X 18 the dual of a LCS-( X *, wk*)-and hence has a weak-star
topology—o((Z, wk*)*, X *). As an exercise in notational juggling, note
that a(( £, wk®)*, X *)=0(Z, X *).

All unmodified topological statements about X refer to 1ts original
topology. So if A C X and we say that it 1s closed, we mean that A 1s closed
in the original topology of X. To say that A 1s closed in the weak topology
of X we say that A 1s weakly closed or wk-closed. Also ¢l A means the
closure of A 1in the original topology while wk — ¢l A means the closure of
A 1n the weak topology. The next result shows that under certain cir-
cumstances this distinction 1s unnecessary.
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1.4. Theorem. If & is a LCS and A is a convex subset of Z, then
clA = wk — ¢l A.

Proor. If J is the original topology of £, then wk C .7, hence cl A C
wk — cl A. Conversely, if x € X\ cl A, then (IV.3.13) implies that there is
an x*in £* an ain R, and an £€> 0 such that

Re{(a,x*)<a<a + € < Re(x, x*)

for all a in ¢l A. Hence cl1AC B = [y € X: Re(y, x¥) <a). But B is
clearly wk-closed since x* is wk-continuous. Thus wk —cl A C B. Since
x& B, x € wk — cl A. |

1.5. Corollary. A convex subset of X is closed if and only if it is weakly
closed.

There is a useful observation that can be made here. Because of (111.6.3) it
can be shown that if X is a complex linear space, then the weak topology on
Z is the same as the weak topology it has if it is considered as a real linear
space (Exercise 4). This will be used in the future.

1.6. Definition. If A CZ, the polar of A, denoted by A , is the subset of
Z'* defined by

A°={x*e X*: [{a,x*)|< 1 for all ain A},
If B C X *, the prepolar of B, denoted by °B, is the subset of X defined by
°B={xe€Z:|(x,b*)] <1forall b*in B}.

If A C X the bipolar of A is the set °(A°). If there is no confusion, then it
is also denoted by °A4°.

The prototype for this idea is that if A is the unit ball in a normed space,
A° 1s the unit ball in the dual space.

1.7. Proposition. ZfACZ, then

(a) A° is convex and balanced.

(b) Zf A, C A, then A°C A;.

(¢c) If a € IF and a+ 0, (aA)° = a™'A°.
dHAC A.

(e) A4° = (vo)o_

Proovr. The proofs of parts (a) through (d) are left as an exercise. To prove
(¢) note that A €°4° by (d), so (°PA°)°C A by (b). But A C°(A4°)°
by an analog of (d) for prepolars. Also, (A ) = (°A°)°. u
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There 1s an analogous result for prepolars. In fact, it 1s more than analogy
that is at work here. By Theorem 1.3, (Z'*, wk*)* = &. Thus the result for
prepolars 1s a consequence of the preceding proposition.

If A is a linear manifold in & and x*€ A °, thenta€ A for all ¢t > 0
and a in A. So 1 =2|{(ta,x*)| = t|{a,x*)|. Letting ¢t = o0 shows that
A° = A+, where

A+= {x* in I*: (a, x*) =0 for all ain A}.
Similarly, if B is a linear manifold in & *,°B = B, where
“B={xin &: (x,b*) = 0forall b* in B}.

The next result 1s a slight generalization of Corollary 1V.3.12.

1.8. Theorem. If & is a LCS and A C X, then °A° is the closed convex
balanced hull of A.

Proor. Let A, be the intersection of all closed convex balanced subsets of &
that contain A. It must be shown that A, = °4°. Since °4° is closed,
convex, and balanced and A C°A4°, it follows that A, C°A4°.

Now assume that x,€ 2\ A,. A, is a closed convex balanced set so by
(IV.3.13) there is an x*in & *, an a«in R, and an £€> O such that

Re{a,, x*) < a <a + e < Re(x,, x*)

for all a, in A,. Since 0 € A,, 0 = (0, x*)<a. By replacing x* with
a x* it follows that there is an €> 0 (not the same as the first E) such that

Re{a;, x*>< 1 <1 + e<Re(xy, x*)

for all q, in A,. If a, € A, and (a,, x*) = |(a1,x*)|e‘ﬂ, then e_feale A,
and so

1{a;, x*)| = Re{e a;, x*)y< 1 <Re{x,, x*)

for all a, in A,. Hence x*€ A2, and x, 4 °4°. That is, Z\ A, CZ\ °4°.
|

1.9. Corollary. Zf Z is a LCS and B CZ *, then (°B)° is the wk* closed
convex balanced hull of B.

Using the weak and weak™ topologies and the concept of a bounded
subset of a LCS (IV.2.5), it is possible to rephrase the results associated with
the Principle of Uniform Boundedness ($111.14). As an example we offer the
following reformulation of Corollary II1.14.5 (which is, in fact, the most
general form of the result).

1.10. Theorem. If & is a Banach space, Y is a normed space, and
L CHB(Z,Y) such that for every x in &, {Ax: A €} is weakly bounded
in %, then &7 is norm bounded in B(Z, Y).



V.2. The Dual of a Subspace and a Quotient Space 131

EXERCISES

1. Show that wk is the smallest topology on X such that each x* in Z* is
continuous.

2. Show that wk* is the smallest topology on X* such that for each x in 4,
x¥ — (x,x*) is continuous.

3. Prove Theorem 1.3.

4, Let X be a complex LCS and let & denote the collection of all continuous
real linear functionals on X. Use the elements of 2} to define seminorms on X

and let o(Z,Z3) be the corresponding topology. Show that o(Z,2*) =
0(Z,ZZ).

5. Prove the remainder of Proposition 1.7.
6. If A C &, show that A is weakly bounded if and only if A°is absorbing in Z*.

7. Let X be a normed space and let {x,, } be a sequence in X such that x,, — X
weakly. Show that there is a sequence { y,} such that y, € co{ x;, x5,., x,, }
and [y, — x|{—= 0. (Hint: use Theorem 1.4.)

8. If ¥ is a Hilbert space and {h,} is a sequence in S such that h,— h weakly
and WA, =k, then ||k, —h]j— 0. (The same type of result is true for
F-spaces if 1 <p < co.)

9, If X is a normed space show that the norm on X is lower semicontinuous for
the weak topology and the norm on X* is lower semicontinuous for the
weak-star topology.

10 Suppose X is an infinite-dimensional normed space. If S = {x € X: ||x]|=1},
then the weak closure of S is {x: {||x]|<1}.

§2. The Dual of a Subspace and a Quotient Space

In §I11.4 the quotient of a normed space Z by a closed subspace .# was
defined and in (111.10.2) it was shown that the dual of a quotient space Z/ A
is isometrically isomorphic to 4. These results are generalized in this
section to the setting of a LCS and, moreover, it 1s shown that when
(Z/M)Y* and A+ arc identified, the weak-star topology on (Z/#)* is
precisely the relative weak-star topology that .# * receives as a subspace of
x*,
The first result was presented in abbreviated form as Exercise 1V.1.16.

2.1. Proposition. Let & be a LCS and let & be a family of seminorms
dejining the topology of Z.Zf # <% and p € P, dejine p:Z/ M — [0, o0)
by

p(x+A#)=inf{p(x +y):yeEH}.
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Then p is a seminorm on Z/#, and the topology on Z/M defined by
P={p:pE€P}isthe quotient space topology.

Proor. Exercise.

Thus if X is a LCS and A& < X, then Z/4# is a LCS. Let f€(Z/ 4 )*.
If O: % - Z/# is the natural map, then feo Q € X*. Moreover, fo Q €
M+ . Hence f— foQ is amap of (Z/M)* - M- C T *.

2.2. Theorem. If X isa LCS, 4 <Z,and Q:Z —> 2/ 4 is the natural
map, then f — f o Q defines a linear bijection between (Z/ M Y*and # *. If
(Z/M)* has its weak-star topology o((Z/M)*, X/ M) and #* has the
relative weak-star topology a( X *, & )| A ~, then this bijection is a homeomor-
phism. If X is a normed space, then this bijection is an isometty.

ProoF. Let p: (Z/#)Y*—> MH~ be defined by p(f) = f Q. It was shown
prior to the statement of the theorem that p is well defined and maps
(Z/M)* into A~ . It is casy to see that p is linear and if 0 = p(f) = f ° Q,
then f= 0 since Q is surjective. So p is injective. Now let x*€ .#* and
define f: &/ # —-F by f(x + #) = (x,x*). Because A Ckerx*, [ is
well defined and linear. Also, Q@ { x + Z:|f(x + #A)|<1} = {x € X:
|{x,x*)|<1} and this is open in X since x * is continuous. Thus { x + :
If(x+ A) <1} is open in Z/# and so fis continuous. Clearlyp( f) = x*,
SO p 18 a bijection.

If X 1s a normed space, it was shown in (111.10.2) that p is an isometry. It
remains to show that p 1s a weak-star homeomorphism. Let wk*® =
o(Z*Z) and let 0* = o((Z/M)*, Z/ ). It { f;} is a net in (Z/#4)* and
f; = 0(6*), then for each x in Z,{(x,p(f;))= f,(Q(x))— 0. Hence p(f;)
— (0 (wk*). Conversely, if p(f)— O(wk*), then for each x in Z, f,(x +
MYy ={x,p(f))— 0, hence f,—O0(o*). |

Once again let # < X. If x*&€ X *, then the restriction of x* to 4,
x*|#, belongs to A *. Also, the Hahn-Banach Theorem implies that the
map x*~» x*|.# is surjective. If p(x*)=x*|.#, then p: X* > A * is
clearly linear as well as surjective. It fails, however, to be injective. How

does it fail? It S easy to see that kerp = 4 . Thus p induces a linear
bijection p: Z* /M~ — M *.

2.3. Theorem. If Xisa 1LCS, £ <Z,and p: X * > MH* 1s the restriction
map, then p induces a linear bijection p:Z */M~—> M *If X */ M+ has
the quotient topology induced by o(X *,Z)and A * has its weak-star
topology o( M *, M), then p is a homeomorphism. If X is a normed space,
then p is an isometty.

ProoFk. The fact that p is an isometry when X is a normed space was
shown in (111.10.1). Let wk* = o(#Z *, #) and let B* be the quotient
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topology on & * /A * defined by a( X *, X). Let Q: X * >Z* /M be the
natural map. Therefore the diagram

G * AN HN*

QN /b
‘Q"*/'/ﬂl

commutes. If y € .#, then the commutativity of the diagram implies that
0 '(p {yres  [(y,y*)<1}) = Q {x* + M [(y,x*)| <1]
= {x* esfr:"*:|(y,.x*)|<1},

which is weak-star open in Z *. Hence p: (X * /M ,n*) > (M *, wk*) is
continuous.

How is the topology on Z */#* defined? If x € X, p (x*) =|(x, x*)]
is a typical seminorm on X *. By Proposition 2.1, the topology on Z */#*
is defined by the seminorms { p,:x € X }, where

pAx*+ M) = inf{|{x,x* + z*)|: z* € M }.
24, Claim. If x & .4, then p, = 0.

In fact, let Z={ax:a€F}. If x € 4, then ZN A = (0). Since
dim & < co, A is topologically complemented in &'+ .#.let x*€ X *
and define f:Z+.# >F by f(ax +y) = (y, x*) for y in A and « in F.
Because 4 is topologically complemented in &+ 4, if a;x + y, — 0, then
y,— 0. Hence f(a;x +y)=<y,x*) — 0. Thus f is continuous. By the
Hahn-Banach Theorem, there is an x{ in X* that extends f. Note that
x¥ — x* e #*+. Thus p(x*+ M) =p(xf + A)< p(x]) =
1(x, x{>| = 0. This proves (2.4).

Now suppose that {x*+ .#*}is a net in & */# " such that p(x} +
M= x¥NM—> 0 (Wk*) in £* If x € X and x & A, then Claim (2.4)
implies that p(x*+ . #*)=0.1If x €4, then p(x*+ M4 ")<|{x, x|
— (. Thus x*+ # +—>0(n*)and p is a weak-star homeomorphism. _

EXERCISES

l. In relation to Claim 2.4, show that if <1 dim £ < co, and A4 <%, then
P+ M is closed.

2. Show that if # <& and # is topologically complemented in %, then A~ is

topologically complemented in £* and that its complement is weak-star and
linearly homeomorphic to &* /A~
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§3. Alaoglu S Theorem

If & is any normed space, let S agree to denote by ball £ the closed unit
ball in Z. So ballZ= {x € Z:||x||<1}.

3.1. Alaoglu S Theorem. If % is a normed space, then ball & * is weak-star
compact.

ProoF. For each x in ball%Z, let D, ={a€ IF: |a|<1} and put D =
II{D_: x € ball Z}. By Tychonoff’s Theorem, D is compact. Define
:balZ*—> D by

T(x*)(x) = (x, x*).

That is, 7(x*) is the element of the product space ) whose x coordinate is
(x,x*). It will be shown that 7 is a homeomorphism from (ball £ *, wk¥*)
onto 7(ball & *) with the relative topology from D, and that 7(ball Z *) is
closed in D. Thus it will follow that 7(ball Z *), and hence ball & *, is
compact.

To see that 7 is injective, suppose that 7(x¥) = 7(x¥). Then for each x
in ball 2, (x, x;*) = (x, x¥). It follows by definition that x{= x7.

Now let { x*} be a net in ball Z* such that x* — x*. Then for each x in
ball Z,7(x*)x) = (x, x*) = (x,x*) = 7(x*)(x). That is, each coordi-
nate of {7(x*)} converges to 7(x*). Hence 7(x*)— 7(x*) and 7 is
continuous.

Let x* be a net in ball Z *, let f e D, and suppose T7(x¥)— fin D. So
flx) = lim(x, x}¥) exists for every x in ball Z.If x €Z, let a> 0 such
that [Jax||< 1. Then define fix) = a™'f(ax). If also B> 0 such that
IBx|l< 1, then a 'f(ax) = a lim{ax, x*) = B HNim(Bx, x*) =
B~ (Bx). So f(x s well defined. It is left as an exercise for the reader to
show that £ £ = F is a linear functional. Also, if ||x||< 1, fix) € D, so
If(x)]< 1. Thus f= x*€ballZ* and 7(x*) = f. Thus 7(ballZ *) is
closed in D. This implies that 7(ball £ *) is compact and, hence, 7 is a
homeomorphism (A.2.8). B

EXERCISES

1. Show that the functional f occurring in the proof of Alaoglu s Theorem is linear.

2. Let & be a LCS and let V be an open neighborhood of 0. Show that V ° is
weak-star compact in £ *.

3. If £ is a Banach space, show that there is a compact space X such that % is
isometrically isomorphic to a closed subspace of C(X).
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§4. Reflexivity Revisited

In §III.11 a Banach space X was defined to be reflexive if the natural
embedding of X into its double dual, Z **, is surjective. Recall that if

x €Z, then the image of x in Z ** X, is defined by (using our recent
notation)

(x*, Xy = {x,x*)
for all x* in X*. Also recall that the map x — X is an isometry.

To begin, note that X **, being the dual space of Z *, has its weak-star
topology o ( X ** X *). Also note that if X is considered as a subspace of
X**  then the topology o(Z ** X*) when relativized to X is o(Z,Z*),
the weak topology on X. This will be important later when it i1s combined

with Alaoglu § Theorem applied to X ** in the discussion of reflexivity. But
now the next result must occupy us.

4.1. Proposition. If X is a normed space, then ball X is a( X **, X *) dense
in ball X**,

PrROOF. Let B = the o(Z **, X *) closure of ball X in Z **; clearly, B C
ball Z **. If there is an xJ* in ball X** \ B, then the Hahn-Banach
Theorem implies there is an x * in X *, an ain R, and an €> 0 such that

Re(x,x*) <a<a + e <Re{x* x3*)

for all x in ball X. (Exactly how does the Hahn-Banach Theorem imply
this?) Since 0 € ball &, 0 <a. Dividing by a and replacing x * by a ~'x*, it
may be assumed that there 1s an x* in X* and an €> 0 such that

Re{x,x*>< 1 <1 + e<Re{x* xF*)

for all x in ball X. Since e’?x € ball X whenever x € ball &, this implies

that |[{x,x*)|< 1 if ||x||< 1. Hence x*€ ballZ *. But then 1 + &<
Re(x*, xd*) <|{x* xf*)|<|x3*||< 1, a contradiction. n

4.2. Theorem. Zf X is a Banach space, the following statements are equiv-
alent.

(a) X is reflexive.

(b) X* is reflexive.

(c) o(Z* %) =o(Z*Z**).
(d) ball X is weakly compact.

PROOF. (a) = (¢): This is clear since X = X **.

(d) = (a): Note that o(Z**, Z*)|Z=0(Z, X*). By (d), ballZ is
o(Z** Z*) closed in ball Z **. But the preceding proposition implies
ball  isu(X** X*)denseinballX** HenceballX= ballX**andsoX
1s reflexive.
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(¢c) = (b): By Alaoglu 8§ Theorem, ball X* is o(Z*, X)-compact. By (¢),
ball X* is o(Z *, X **) compact. Since it has already been shown that (d)
implies (a), this implies that X* is reflexive.

(b) = (a): Now ball X is norm closed in X **; hence ball X 1s
o(Z ** Z***) closed in X** (Corollary 1.5). Since X* = X*** by (b),
this says that ball X is a( X **, X *) closed in X **. But, according to (4.1),
ball X is o(Z **, Z *) dense in ball X** Hence ball X= ball X** and X
1s reflexive.

(a) = (d): By Alaoglu S Theorem, ball X** is o(%Z **, X*) compact.
Since X= Z **, this says that ball X is o(£, X *) compact. _

4.3. Corollary. If X is a reflexive Banach space and M <X, then M is
reflexive.

Proor. Note that ball & =.# n [ball X], so ball A& is o( Z, X**) com-
pact. It remains to show that o(Z,%Z *)|4 = o( A, . # *). But this follows
by (2.3). (How?) n

Call a sequence {x, }in X a weakly Cauchy sequence if for every x * in
Z*{{(x,,x*>} is a Cauchy sequence in F.

4.4. Corollary. If X is reflexive, then every weakly Cauchy sequence in X
converges weakly. That is, X is weakly sequentially complete.

Proor. Since {(x,, x*)} is a Cauchy sequence in F for each x* in X *,
{x,} 1s weakly bounded. By the PUB there is a constant M such that
I|x,||<M for all n > 1. But {x € X:||x||<M} 1s weakly compact since X
is reflexive. Thus there 1s an x in X such that x, —g> x weakly. But for
each x* in £ * Iim({x,, x*) exists. Hence (x,, x*)— (x,x*), so x,—> x
weakly. H

Not all Banach spaces are weakly sequentially complete.

4.5. Example. C}0,1} is not weakly sequentially complete. In fact, let
f,(t) = 1 —m)if0O<t<lnand f,(f) = 0ifI/n <r< 1. If p€ M[0,1],
then /f, du — n({0}) by the Monotone Convergence Theorem. Hence { f, }
is a weakly Cauchy sequence. However, { f, } does not converge weakly to
any continuous function on [0, 1].

4.6. Corollary. Zf X is reflexive, M < X, and x, € Z\ M , then there is a
pointy, in M such that ||x, — yoll = dist(x,, ).

Proor. x = ||x — x,|| 18 weakly lower semicontinuous (Exercise 1.9). If
d = dist(xy, A ), then A N (x: ||x — x4l <2d} is weakly compact and a
lower semicontinuous function attains its minimum on a compact set. _
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[t is not generally true that the distance from a point to a linear subspace
is attained. If # C &, call & proximinal if for every x in £ thereisa y 1n
A such that ||x — y|| = dist(x, #). So if Z is reflexive, Corollary 4.6
implies that every closed linear subspace of £ is proximinal. If £ is any
Banach space and ./ is a finite-dimensional subspace, then it is easy to see
that .# is proximinal. How about if dim(Z/.4) < o0?

47. Lemma. If & is a Banach space and x* € X *, then kerx* is proxim-
inal if and only if there is an x in X, ||x|| = 1, such that {x, x*) = ||x*||.

PrROOF. Let # = ker x* and suppose that # is proximinal. If f: Z/# — F
is defined by f(x +.#)= (x,x*), then f is a linear functional and
Ifll = ||x*||. Since dim Z/.# = 1, thereis an x in Z such that |x + 4| =1
and f(x + #) = ||f]|. Because .# is proximinal, there is a y in # such
that 1 = ||x + 4| = ||x + y||- Thus {(x +y,x*) = {(x,x*) = f(x + M)
= Ifll = lix*|I

Now assume that there is an x, in 2 such that ||x,|| = 1 and (xq, x*) =
Ix*||. If x€Z and ||x + 4| = a > 0, then |la”'x + #| = 1. But also
Ixo + || = 1. (Why?) Since dim Z/.# = 1, thereisa B inF, |B] = 1, such
that a 'x + 4 = B(x, + #). Hence a 'x — Bx, € A, or, equivalently,
x — afx, € #. However, ||x — (x — afixy)|| = |laBxyl| = a = dist(x, A).
So the distance from x to # 1s attained at x — afSx,. u

4.8. Example. If L: C[0,1] — [ is defined by
1/2 1
L(f) = [TF(x)dx = [ 7(x)dx.
0 1/2

then ker L 1s not proximinal.

There is a result in James [1964b] that states that a Banach space 1s
reflexive if and only if every closed hyperplane is proximinal. This result 1s
very deep.

EXERCISES
1. Show that if & is reflexive and A& < %, then Z/A# 1is reflexive.

2. If & is a Banach space, # < &, and both .# and Z/.4# are reflexive, must 2 be
reflexive?

3. If X is compact, show that C(X) is reflexive if and only if X is finite.

4 If (X, 82, p) is a o-finite measure space, show that L'(X, 8£,p) is reflexive if and
only if it is finite dimensional.

5. Give the details of the proofs of the statements made in Example 4.5.

6. Verify the statement made in Example 4.8.
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7. If (X, §2, p) 18 a u-finite measure space, show that L*(g) 1s weakly sequentially
complete but 1s reflexive if and only if it 18 finite dimensional.

8. Let X be compact and suppose there 1s a norm on C(X) that 1s given by an inner
product making C(X) into a Hilbert space such that for every x in X the
functional f— f(x) on C(X) is continuous with respect to the Hilbert space
norm. Show that X is finite.

§5. Separability and Metrizability

The weak and weak-star topologies on an infinite-dimensional Banach space
are never metrizable. It 1s possible, however, to show that under certain
conditions these topologies are metrizable when restricted to bounded sets.
In applications this i1s often sufficient.

5.1. Theorem. If 2 is a Banach space, then ball X * is weak-star metriz-
able if and only if X is separable.

PrRoOOF. Assume that X is separable and let {x, } be a countable dense
subset of ball X. For cach nlet D, ={a€F:laj<1}. Put X = [1%_,D,;
X is a compact metric space. So if (ball X *, wk*) is homeomorphic to a
subset of X, ball X * 1s weak-star metrizable.

Define 7: ball X * — X by 7(x*) = {{(x,,x*)}. If {x*} is a net in
ball Z* and x* — x* (wk*), then for each n = 1, {(x,, x*) > {x,, x*);
hence 7(x*)— 7(x*) and 7 is continuous. If 7(x*) =7(y*),{(x,, x*—
y *» =0 for all n. Since { x,,} is dense, x * —y *= 0. Thus 7 is injective.
Since ball X * is wk* compact, 7 i1s a homeomorphism onto its i1mage
(A.2.8) and ball X* 1s wk* metrizable.

Now assume that (ball X *, wk*) is metrizable. Thus there are open sets
{U:n>1} in (ballX* wk*) such that 0 €U and N>_,U, = (0). By the
definition of the relative weak-star topology on ball X *, for each »n there 1s
a finite set F, contained in X such that {x * € ball X *: |{x,x*)| <1 for
all x in £, }CU. Let F = U*_,F;so Fis countable. Also, ~(F *) is the
closed linear span of F and this subspace of X is separable. But if
x*€ F+, then for each n = 1 and for each x in E,[{x,x*/||x*||)| = 0
< 1. Hence x*/||x*||€ U, for all n = 1; thus x* = 0. Since F~= (0),
*(F1+)= X and X must be separable. _

Is there a corresponding result for the weak topology? If X* 1s sep-
arable, then the weak topology on ball X i1s metrizable. In fact, this follows
from Theorem 5.1 if the embedding of X into X** is considered. This

result 18 not very useful since there are few examples of Banach spaces X

such that X * 1s separable. Of course if X 18 separable and reflexive, then
X * 1s separable (Exercise 3), but in this case the weak topology on X is the
same as its weak-star topology when X is identified with X * *, Thus (5.1) is

i
;
!
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adequate for a discussion of the weak topology on the unit ball of a
separable retlexive space. If X= c¢,, then X * =1 and this 1s separable but
not reflexive. This 1s one of the few nonreflexive spaces with a separable
dual space.

If X is separable, is (ball 2, wk) metrizable? The answer is no, as the
following result of Schur demonstrates.

5.2. Proposition. Zf a sequence in I' converges weakly, it converges in norm.

Proor. Recall that [® = (I )*. Since /' is separable, Theorem 5.1 implies
that ball I is wk* metrizable. By Alaoglu § Theorem, ball /* is wk*
compact. Hence (ball [*, wk*) is a complete metric space and the Baire
Category Theorem 1s applicable.

Let { f,} be a sequence of elements in /' such that f, — 0 weakly and let
e > 0. For each positive integer m let

F_={¢€ balll : [{f,, o) <e/3 for n = m).

It is casy to sec that F,, is wk* closed in ball / and, because f, — 0 (wk),

- _1F,=ball I . By the theorem of Baire, there is an F  with nonempty
weak interior.

An equivalent metric on (ball /*, wk) is given by
d(¢,¥) = 12716 (j) — v (/)
=1

(see Exercise 4). Since F, has a nonempty weak interior, there is a ¢ in F,,
and a 6> 0 such that {Y € balll : d(¢,Y)<8}CF, .Let J=1such
that 2-Y-"D < 6. Fix n > m and define ¢ in [® by ¢(j) = ¢(j) for
1 <j<Jand ¢(j)=sign(£,(j)) for j> J. Thus ¢(j)f,(j) = |f,(J)| for
j>J. It is easy to see that Y € ball 1 . Also, d(¢,¢) =X, 127/|¢(j)—
V(i) < 2 2-J =2"U"D <8 So y€F, and hence (Y, f,)| <e/3. Thus

5.3 2 o()f.(J) + ) A B

j=J+1

for n> m. But there is an m, > m such that for n 2m,, X7_,|f,(j)| <e/3.
(Why?) Combining this with (5.3) gives that

1L = 21405

<-§- + .ﬁi (7)) + ; (/)L (J) ]+ ; ()1, (J)

2€ J ,
<3+ MTAED]
J=1
< g

whenever n > m,. B
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So if (ball /!, wk) were metrizable, the preceding proposition would say
that the weak and norm topologies on I agree. But this is not the case
(Exercise 1.10).

Also, note that the preceding result demonstrates in a dramatic way that
in discussions concerning the weak topology i1t 1S essential to consider nets
nd not just sequences.

roof of (5.2) that avoids the Baire Category Theorem can be found in
Banach [1955], p. 218.

EXERCISES

l. Let B = ball M[0,1] and for g, v in M[0,1] define d(p, v) = L=_,27"|fox" du
~ [3x"dv|. Show that d is a metric on M[0,1] that defines the weak-star
topology on B but not on M[0,1].

2. Let X be a compact space and let Z = {(U,V): U,V are open subsets of X and
clUcV}. Foru=(U,V)in%,let f,: X —[0,1]be acontinuous function such
that f,=1 on ¢l U and f,= 0 on X\ V. Show: (a) the linear span of {f,:
ue ¥} is dense in C(X); (b) if X is a metric space, then C(X) is separable.

3. If & is a Banach space and & * is separable, show that (a) £ is separable; (b) if
K is a weakly compact subset of ¥, then K with the relative weak topology is
metrizable.

4. If B = ball/*, show that d(¢,¥) =2X7%2,27/|$(j)—¥ (/)| defines a metric on
B and that this metric defines the weak-star topology on B.

§6*. An Application: The Stone-Cech
Compactification

Let X be any topological space and consider the Banach space C,(X).
Unless some assumption is made regarding X, it may be that C,(X) is
Very small. If, for example, it 18 assumed that X 1S completely regular,
then C,(X) has many eclements. The next result says that this assumption 1is
also necessary in order for C,(X) to be large. But first, here is some
notation.

If x €X, let 6,: C,(X) = F be defined by S,(f) = f(x) for every f in
C,(X). It is easy to see that 0,€ C,(X)* and ||6.]| = 1. Let A: X —
C,(X)* be defined by AX) = 0,.If {x;} is a net in X and x, = x, then
f(x;) = f(x) for every f in C,(X). This says that 8, =98, (wk*) in
C,(X)*., Hence A: X — (C,(X)*, wk*) 1s continuous. Is A a homeomor-
phism of X onto A(X)?

6.1. Proposition. The map A: X = (A(X), wk*) is a homeomorphism if and
only if X is completely regular.
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PROOF. Assume X i1s completely regular. If x;+# x,, then there is an f in
Co( X) such that f(x;) =1 and f(x,) = 0; thus 0,(f)#98,(f) Hence A
is injective. To show that A: X — (AX), wk*) is an open map, let U be an
open subset of X and let x, €U. Since X 1s completely regular, there 1s an
f in C,(X) such that f(xy) = 1 and f=0 on X\ U. Let V|, = {p €
Co( X)*:(f,u)> O}. Then ¥, is wk* open in C,(X)* and ¥, N A(X) =
(8. flx) >0). So if V =V, N A(X), V is wk* open in A(X) and
6, €V C A(U). Since x, was arbitrary, A(U) is open in A(X). Therefore
A: X \(A( X), wk*) 1s a homeomorphism.

Now assume that A 1s a homeomorphism onto i1ts i1mage. Since
(ball C,( X)*, wk*) is a compact space, it is completely regular. Since
AX) Chball C,(X)*, A(X) is completely regular (Exercise 2). Thus X is
completely regular. B

6.2. Stone—Cech Compactification. If X is completely regular, then there is a
compact space BX such that:

(a) there is a continuous map A: X — BX with theproperty that A: X = A(X)
is a homeomorphism;

(b) AX) is dense in BX;

(c) if f € C,(X), then there is a continuous map f’B:BX—%[F such that

fRoA =T

Moreover, if § is a compact space having these properties, then {2 is
homeomorphic to BX.

Proor. Let A: X = C,(X)* be the map defined by A(x) = §, and let
BX = the weak-star closure of A(X) in C,(X)*. By Alaoglu’s Theorem and
the fact that ||0,|] = 1 for all x, BX is compact. By the preceding proposi-
tion, (a) holds. Part (b) 1s true by definition. It remains to show (¢).

Fix fin C,(X) and define fA:BX —~IFby fP(7)=(f 1) for every 7 in
BX. [Remember that BX € C,(X)*, so this makes sense.] Clearly f* is
continuousand fFeA(X)= fA(8,)=(f,8,)=f(x).So fFfoA =fand(c)
holds.

To show that BX is unique, assume that {2 is a compact space and :
X — § is a continuous map such that:

(a) m: X > a(X) is a homeomorphism;
(b ) «( X) is dense in §; ‘_ )
(¢ ) if f€ C(X), there is an f in C( ) such that few =f.

Define g: A(X) = @ by g(A(x)) = @(x). In other words, g = mo AL,
The idea is to extend g to a homeomorphism of BX onto . 1If 7, € BX,
then (b) implies that there is a net {x;} in X such that A(x;) = 7, in BX.
Now {m(x;)}is a net in &£ and since { is compact, there is an w, in £ such
that 7(x,)—5> w,. If FE€ C(R),let f= Fom;sofe€ C,(X)(and F = f).
Also, f(x)={f,8 Y=>{f,7)=fP(x). But it is also true that f(x,) =
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F(7(x)) = F(w,). Hence F(w,) = f#(7,) for any F in C( £). This
implies that w, is the unique cluster point of {#(x;)}; thus 7(x,) = w,
(A.2.7). Let g(71) = wy- It must be shown that the definition of g(7,) does

not depend on the net {x,} in X such that 4(x,)— 7,. This is left as an
exercise. To summarize, 1t has been shown that

6.3 There is a function g: BX — {2
such that if f€ C,(X), then ff=fog.

To show that g: BX — £ is continuous, let { 7,} be a net in BX such that
ro7 IfFeC(Q),let f=Feomso f€ C(X) and f = F. Also, fA(1)
—*fB(fr) But F( g( 7)) = 15 ,)—%fﬁ('r) = F( g( 7)). It follows (6.1) that
g(71)— g(r) in . Thus g is continuous.

It is left as an exercise for the reader to show that g is injective. Since
g(BX) 2 g(A(X)) = 7(X), g(BXns dense in §. But g(BX) is compact,
so g is bijective. By (A.2.8), g is a homeomorphism. _

The compact set BX obtained in the preceding theorem is called the
Stone-tech compactification of X. By properties (a) and (b), X can be
considered as a dense subset of 8X and the map A can be taken to be the
inclusion map. With this convention, (¢) can be interpreted as saying that
every bounded continuous function on X has a continuous extension to BX.

The space BX is usually very much larger than X. In particular, it is
almost never true that BX is the one-point compactification of X. For
example, if X = (0, 1}, then the one-point compactification of X is [0, 1].
However, sin(l/x)€ C,(X) but it has no continuous extension to [0, 1], so
BX # [0, 1].

To obtain an idea of how large BX\ X is, see Exercise 6, which indicates
how to show that if N has the discrete topology, then BN \N has 2%o
pairwise disjoint open sets. The best source of information on the Stone-tech
compactification is the book by Gillman and Jerison [1960], though the
approach to BX is somewhat different there than here.

6.4. Corollary. Zf X is completely regular and u€ M(BX), dejine L,:
C,(x) >Fby

L(f)= [ fhdp

BX

for each [ in C,(X). Then the map u — L, is an isometric isomorphism of
M(BX) onto C/(X)*

Proor. Define V: C,(X) - C(BX) by Vf = f B 1t is easy to see that V 1s
linear. Considering X as a subset of BX, the fact that X = ¢l X implies
that V' is an isometry. If g € C( B8X) and f= g|X, then g = f# = Vf; hence
V' 1is surjective.
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If peM(BX)=C(BX)* it is easy to check that L, € C,(X)* and
|L,Jl = llp|l since V' 1s an isometry. Conversely, if L € C,,(X)¥% then
LoV leC(BX)*and ||L o V™! = ||L|. Hence there is a p in M(BX)
such that fgdu =L oV '(g) for every g in C(BX). Since Vg = g|X, it
follows that L = L. B

The next result 18 from topology. It may be known to the reader, but it is
presented here for the convenience of those to whom 1t is not.

6.5. Partition of Unity. I£ X isnormal and{U,...,U, }is anopen covering
of X, then there are continuous functions f,,..., f,from Xinto [0, 1)such that

(@ Xp_fi(x) = 1;
d) f,(x)=0 forxin X\ U,and 1 <k < n.

Proor. First observe that it may be assumed that {U,,...,U,} has no
proper subcover. The proof now proceeds by induction.

If n=1,1let fy= 1. Suppose n = 2. Then X\ U; and X\ U, are disjoint
closed subsets of X. By Urysohn S Lemma there is a continuous function f;:
X — [0, 1) such that fi(x)=0 for x in X\ U; and fi(x) =1 for x in
X\ U,. Let f,=1—f; and the proof of this case is complete.

Now suppose the theorem has been proved for some n = 2 and
{Up,..., U .} is an open cover of X that is minimal. Let F =X \U,_ ;;
then F'is closed, nonempty, and FC U}_,U,. Let VV be an open subset of
X such that FCVCcVclUi_U,. Since clV is normal and {U; N
clV,...,U N cl V} is an open cover of ¢l V, the induction hypothesis

implies that there are continuous functions g,,..., g, on cl}V such that
718, =1 and for 1 <k <n 0<g, <1, and g (cl¥V\U,) =0 By
Tietze 8 Extension Theorem there are continuous functions £,...,8&, on X

such that g, = g, onclVand0 <g, <1forl <k < n.

Also, there is a continuous function h: X — [0, 1]} such that A = 0 on
X\ Vad h=1on F. Put f,=8.hfor1l <k<nand let f,,,=1~—

? 1 fi Clearly 0 <f,<1if 1 <k<n Ifx €clV, then f, . (x)=1 —
i1 g.(xDh(x)=1 — h(x); so 0 <f, (x)< 1 on cV. If x € X\ V,
then f,,.,(x)=1 since A(x) = 0. Hence 0 </, , 1< 1.

Clearly (a) holds. Let 1 <k <n;if x € X\ U,, then either x €(clV)\
U,orx € (X\cl V)\U,. If the first alternative is the case, then g;(x) =0,
so f,(x)=0.1f the second alternative 1s true, then A(x) = 0 so that
fi(x)=0. It x e X\U ,,=F, then Ah(x) = 1 and so f, (x)=1 —

«-18x(Xx) = 0. o

Partitions of unity are a standard way to put together local results to
obtain global results. If { f,} is related to {U, } as in the statement of (6.5),
then { f,} is said to be a partition of unity subordinate to the cover {U,}.
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6.6. Theorem. Zf X is completely regular, then C,(X) is separable if and
only if X is a compact metric space.

Proor. Suppose X is a compact metric space with metric d. For cach n, let
(U1 <k<N,) be an open cover of X by balls of radius 1/n. Let
{ {1 <k<N,} be a partition of unity subordinate to {U{":1 <k <
N ). Let Y be the rational (or complex-rational) linear span of {fi":
n>1,1<k<N_}; thus Y is countable. It will be shown that Y is dense
in C(X).

Fix fin C(X) and €> 0. Since fis uniformly continuous there 15 a
6 > 0 such that [f(x,)— f(x,)|<e/2 whenever d(x;,Xx,)<6. Choose
n >2/8 and consider the cover {U{™:1 <k <N, ). If x;, x, € U{",
d(x{,x,)< 2/n <8; hence |f(x,)— f(x,)|<e/2. Pick x, in U{™ and let
a, € Q+iQ such that la, — f(x,)|<e&/2. Let g = X,a, f{", so g €%.
Therefore for every x in X,

F(x)= g(x) = | T (x) = Tl (x)
< DI/() — al (),

Examine each of these summands. If x € U™, then If(x) —a,|< If(x) —
f(x )l + f(x)—a,|<e If x €U, then f"(x) = 0. Hence If(x) —
g(x)| <X, eff"(x) = E Thus ||f —gl| <e and Y is dense in C(X). This
shows that C(X) 1s separable.

Now assume that C,(X) is separable. Thus (ball C,( X)*, wk*) is metrz-
able (5.1). Since X is homeomorphic to a subset of ball C,( X)* (6.1), X is
metrizable. It also follows that B8X is metrizable. It must be shown that
X = BX.

Suppose there is a 7in BX\ X. Let { x,,} be a sequence in X such that
x,— 7. It can be assumed that x,# x,, for n# m. Let A = {Xx,: n1s

even} and B = {x,: nis odd}. Then A and B are disjoint closed subsets of
X (not closed in BX, but in X) since A and B contain all of their limit
points in X. Since X is normal, there is a continuous function f: X — [0, 1]
such that f=0 on A and f= 1 on B. But then fP(7) = lim f(x5,,)=0
and fA(7)=lim f(x,,,,) = 1, a contradiction. Thus BX\ X = CL. m

EXERCISES

. f x € X and 8 (f)= f(x) for all f in C,(X), show that ||6,] = 1.

2. Prove that a subset of a completely regular space is completely regular.
3. Fill in the details of the proof of Theorem 6.2,

4, If X is completely regular, § is compact, and f: X — § is continuous, show that
there is a continuous map f#: 8 X — & such that ff]| X = /.

5. If X is completely regular, show that X is open in BX if and only if X is locally
compact.
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6. Let N have the discrete topology. Let {r,: n € N} be an enumeration of the
rational numbers in [0, 1]. Let S = the irrational numbers 1n [0, 1] and for each s
in S let {r,: n € N,} be a subsequence of {r,} such that s = lim{r,: n € N, }.
Show: (a) if s, t€ S and s# ¢, N, NN 1s finite; (b) if for each s in §,
cl N, = the closure of N, in BN and A, = (cI N))\ N, then {A,: s € §} are
pairwise disjoint subsets of SN \ N that are both open and closed.

7. Show that if X is totally disconnected, then so i1s 8 X.

8. Show that if 1 € BX and there is a sequence { x, } in X such that x, — 7 in B8 X,
then 7 € X.

9. Let X be the space of all ordinals less than the first uncountable ordinal and give
X the order topology. Show that 8X = the one point compactification of X.
(You can find the pertinent definitions in Kelley [1955].)

§7. The Krein—Milman Theorem

1.1. Definition. If X is a convex subset of a vector space 2, then a point a
in K is an extreme point of K if there is no proper open line segment that

contains a and lies entirely in K. Let ext K be the set of extreme points
of K.

Recall that an open line segment 1s a set of the form (x,, x,) = {1x, +
(1 — 1)x;: 0 <t <1}, and to say that this line segment 1s proper 1s to say
that x; # x,.

7.2. Examples.

(a) If F = R2 and K = {(x, y) € R* x*+ y* < 1), then ext K = {(x, y):
x2+y?=1}.

(b) If =R?and K = {(x, y) € R* x <0), thenextK =

() If =R? and K= {(x,y) € R* x <0} U {(0,0)}, then ext K =
((0,0)).

(d) If K = the closed region in R? bordered by a regular polygon, then
ext K = the vertices of the polygon.

(e) If 2 is any normed spaceand K = {x € Z: ||x|| < 1}, thenext K C {x:
|x|| = 1}, though for all we know 1t may be that ext K =

(f) If = L'0,1)and K = { f € L'0,1): {|fll; < 1), then extK = . This
last statement requires a bit of proof. Let f € L'[0, 1) such that ||f]|, = 1.
Choose x in [0, 1] such that [*|f(¢)|dtf = 5. Let h(t) = 2f(¢) if t < x
and 0 otherwise; let g(¢) = 2f(¢t) if t > x and 0 otherwise. Then
1A, = llgll, =1 and f= %5(h + g). So ball L'[0,1] has no extreme
points.

The next proposition is left as an exercise.
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7.3. Proposition. If Kis a convex subset of a vector space X and a € K,
then the following statements are equivalent.

(a) a € ext K.

(b) If x;,x,€ X and a = 3(x; + x,), then either x,¢ K or x, ¢ K or
X{= X, = Q.

(¢c) Zf x, x,€Z,0<t<1 and a = tx, + (1 —t)x,, then either x,& K,
x, &€ K, or x;=x, = a.

(d) If x{,...,x,€ Kanda €co{x,...,x,},then a = x, for some k.

(e) K\ {a}1sa convex set.

7.4. The Krein-Milman Theorem. Zf K 1s a nonempty compact convex subset
of a LCS &, then ext K #0 and K = co(ext K).

ProoF. (Léger [1968].) Note that (7.3¢) says that a point a is an extreme
point if and only if K\ {a} is a relatively open convex subset. We thus look
for a maximal proper relatively open convex subset of K. Let % be all the
proper relatively open convex subsets of K. Since X is a LCS and K #0O
(and let S assume that K is not a singleton), % # Cl. Let %, be a chain in %
and put Uy=U{ U:U € %, }. Clearly U is open, and since %, is a chain,
U, is convex. If U, = K, then the compactness of K implies that there is a
Uin %, with U = K, a contradiction to the propriety of U. Thus U, E%.
By Zorn S Lemma, % has a maximal element U.

IfxeKand 0 <A< 1, let T, \: K— Kbe defined by T,,,(y) = A y +
(1 — X)x. Note that T, , is continuous and T, \(X]_,a, y;) = L]_ ;T A(y,)
whenever y,,..., y,€K a,,..., a,> 0, and 2 o, = 1. (ThlS means that
T., is an affine map of K into K.) If x(:‘ U and 0 <A <1, then
T. \(U)C U. Thus UCT,_  (U) and T_y(U) is an open convex subset of
K 1t yelU)\U, T,,(y) € [x, y) CU by Proposition IV.1.11. So
cl UCT_ ;(U) and hence the maximality of U implies T s(U) = K. That
is,

7.5 T.,(K)cUifxe Uand0 <A < 1.

Claim. If V' is any open convex subset of K, then either V u U =U or
VU U=K.

In fact, (7.5) implies that VU U is convex so that the claim follows from
the maximality of U.

It now follows from the claim that K\ U is a singleton. In fact, if
a, b € K\U and a #b, let V,,V, be disjoint open convex subsets of K
such that @ €V, and b €V,. By the claim V¥V, U U = K since a 4 U. But
b&V U U, a contradiction. Thus K\ U = {a/ and a € ext K by (7.3¢e).
Hence ext K #

Note that we have actually proved the following.

i G i Sl R s o i e R
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7.6 If V 1s an open convex subset of £ and ext K C V, then K C V.

In fact, if V 1s open and convex, VN K €  and is contained in a
maximal element U of %. Since K\ U = {a} for some @ in ext K, thisis a
contradiction. Thus (7.6) holds.

Let E =co(extK). If x*€eZ*, a€ R,and EC {x € Z: Re(x, x*) <
a} = V, then K C V by (7.6). Thus the Hahn-Banach Theorem (IV.3.13)
implies £ = K, o

The Krein—-Milman Theorem seems innocent enough, but it has
widespread application. Two such applications will be seen in Sections §
and 10; another will occur later when C *-algebras are studied. Here a small
application 1s given.

If & is a Banach space, then ball £ * is weak* compact by Alaoglu’s
Theorem. By the Krein—-Milman Theorem, ball #* has many extreme
points. Keep this in mind.

7.7. Example. ¢, 1s not the dual of a Banach space. That 1s, ¢, 1s not
isometrically isomorphic to the dual of a Banach space. In light of the
preceding comments, in order to prove this statement, it suffices to show
that ball ¢, has few extreme points. In fact, ball ¢, has no extreme points.
Let x € ball ¢,,. It must be that 0 = lim x(#). Let N be such that |x(n)| < 3
for n > N. Define y,, y, 1n ¢, by letting y,(n) = y,(n) = x(n) for n < N,
and for n > N let y,(n) = x(n) +2 " and y,(n)= x(n) — 27" It is easy
to check that y, and y, € ballc,, 3(y, + y,) = x, and y, # x.

In light of Example 7.2(f), L'[0, 1] is not the dual of a Banach space.
The next two results are often useful in applying the Krein—-Milman
Theorem. Indeed, the first is often taken as part of that result.

18. Theorem. If Z is a LCS, K is a compact convex subset of X, and
F C K such that K = co(F), then ext K C cl F.

PrROOF. Clearly it suffices to assume that F is closed. Suppose that there is
an extreme point x, of K such that x, & F. Let p be a continuous
seminormon 2 suchthat FN {x € &: p(x — xy) <1} =0 Let U, = {x
EZ: p(x)<3}.5 (xy+ Uy) N(F+ Uy) =0; hence x, & cl( F + U,).

Because F 1s compact, there are y,,..., y, in F such that F C U}_,(y,
+ U,). Let K, =co(FN (y,+ Uy)). Thus K, C y, + clU, (Why?), and
K, C K. Now the fact that K,,..., K are compact and convex implies that
co(K, U --- UK )=rco(K, U --- UK, ) (Exercise 8). Therefore

K=co(F)=co(K,U --- UK,).

SiIlCe .xo = K, .xO — 2=1ak.xk, xk = Kk’ Oik 2 0, al + -t +an = 1. BUt
X, 1s an extreme point of K. Thus, x, = x, € K, for some k. But this
implies that x, € K, C y, + clU, C cl(F + U,), a contradiction. _
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You might think that the set of extreme points of a compact convex
subset would have to be closed. This 1s untrue even if the LCS 1s finite
dimensional, as Figure V-1 illustrates.

Figure V-l

7.9. Proposition. If K is a compact convex subset of a LCS Z,% is a LCS,
and T: K =% is a continuous affine map, then T(K) is a compact convex
subset of ¥ and if y is an extreme point of T(K), then there is an extreme
point x of K such that T(x) = y.

PrRoOF. Because 7 is affine, T(K) is convex and it is compact by the
continuity of 7. Let y be an extreme point of 7(K). It 1s easy to see that
T~ '(y)is compact and convex. Let x be an extreme point of 7T }(y). It
now follows that x € ext K (Exercise 9). _

Note that it 1s possible that there are extreme points x of K such that
T(x) is not an extreme point of 7T(K). For example, let T be the
orthogonal projection of R> onto R? and let K = ball R>.

EXERCISES

1. If (X,§2,p) is a u-finite measure space and 1 < p <oo, then the set of extreme
points of ball L?(u)is { f € L7 (p):|Ifll, = 1}.

2. If ( X,82, ) is a u-finite measure space, the set of extreme points of ball L'( ) is
{ax: E is an atom of u,a€F, and |a| = u(E)~'}.

3. If (X, §2, ) is a u-finite measure space, the set of extreme points of ball L*(u)

is {f€L*(p):|f(x)| =1 ae[p]}.

4. If X is completely regular, the set of extreme points of ball C, ( X)is { f €C, ( X):
1f(x)| =1 for all x}. So ball Cg [0, 1] has only two extreme points.

5. Let X be a totally disconnected compact space. (That is, X is compact and if
x € X and U is an open neighborhood of x, then there is a subset V of X that
is both open and closed and such that x&€V CU. The Cantor set is an

example of such a space.) Show that ball C(X) is the norm closure of the convex
hull of its extreme points.

6. Show that ball/' is the norm closure of the convex hull of its extreme points.

7. Show that if X is locally compact but not compact, then ball C,( X) has no
extreme points.
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8. If £ is a LCS and K,,, K,, are compact convex subsets of %, then
CO(KIU"' UK,) — CO(K1U" UK,).

9. Let K be convex and let T: K — % be an affine map. If y is an extreme point
of T(K) and x is an extreme point of T_l(y), then X is an extreme point of K,

10. If 5# is a Hilbert space, show that 7 is an extreme point of ball Z(s¥) if and
only if either 7 or T* is an isomeftry.

§8. An Application: The Stone-Weierstrass Theorem

If f: X ->C is a function, then f denotes the function from X into C
whose value at each x is the complex conjugate of f(x), f( x).

8.1. The Stone-Weierstrass Theorem. Zf X 1s compact and < is a closed
subalgebra of C( X) such that:

(@) 1 €, _
(b) if x, yEX and x# y, then there is an fin < such that fx) # f(y);
(c)if fE AL, then f €

then &/ = C(X).

If C(X) 1s the algebra of continuous functions from X 1nto R, then
condition (¢) 1s not needed. Also, an algebra in C(X) that has property (b)
is said to separate the points of X (see Exercise 1).

The proof of this result makes use of the Krein-Milman Theorem and 1s
due to L. de Branges [1959].

PROOF OF THE STONE- WEIERSTRASS THEOREM. To prove the theorem it
suffices to show that &~ = (0) (111.6.14). Suppose & ~# (0). By Alaoglu $
Theorem, ball &+~ is weak* compact. By the Krein-Milman Theorem,
there is an extreme point p of ball & ~. Let K = the support of m. Since
&+ 0),jlp|l = 1 and K #0. Fix x5, in K Tt will be shown that
K={x,}.

Let x € X, x # xy. By (b) there is an f; in & such that f,(x,)# fi(x)
= B. By (a), the function BE€ . Hence f, = fi—BE X, f,(xy)# 0 =
f(x).By (¢), f5 = |61 =fof, €. Also, f3(x) = 0 < fi(xy)and f;> 0.
Put f= (||fs]l + 1) ';. Then fE L, fix) = 0, f(x,)>0, and 0 <f< 1
on X. Moreover, because & is an algebra, gf and g1 — f) € & for every
g in /. Because pneL*, 0= [gf du= [g(1—f) du for every g in .
Therefore fu and (1 ~f)uE L +.

(For any bounded Borel function A2 on X, A denotes the measure whose
value at a Borel set A is [,Adu. Note that ||Au|| = [|h|d|p|.)

Put « = ||full = [fd|u|. Since f(x4)> 0, there is an open neighborhood
U of x, and an €> 0 such that f(y) > ¢ for y in U. Thus, a = [fd|p|=>
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Jufdlpl = e|un|(U)> 0 since UN K # 0. Similarly, since f(xg5)<1, a< 1.
Therefore, 0 <a< 1. Also, 1 —a=1—ffd|ul=f(1— f)diu| = |1 -

fpll. Since

N S PPN B (S 3T
b= | T TS

and u is an extreme point of ball/ *, u= ful|fu|| '=a 'fu. But the
only way that the measures p and a~ 'fu can be equal is if a7 f =1 a.e. [u].
Since f is continuous, it must be that f=a on K. Since x, €K, f(x,) = a.
But f(x,)> f(x) = 0. Hence x & K. This establishes that K = {x,} and
sop=1v8, where|y|=1.But pey+ andl1€,500= fldu=1v, a
contradiction. Therefore &+ = (0) and &= C(X). u

With an important theorem it 1s good to ask what happens if part of the
hypothesis 1s deleted. If x,€ X and &/'={ f € CX): f(x,) = 0}, then &

is a closed subalgebra of C(X) that satisfies (b) and (c¢) but & # C(X).
This 1s the worse that can happen.

8.2. Corollary. If X is compact and & is a closed subalgebra of C(X) that
separates the points of X and is closed under complex conjugation, then either
& = C(X) orthereisa point x,in X such that &/ = {f € C(X): f(x,) = 0}.

Proovr. Identify F and the one-dimensional subspace of C(X) consisting of
the constant functions. Since & is closed, &+ F is closed (I1I1.4.3). It is
easy to see that &/+F is an algebra and satisfies the hypothesis of the
Stone-Weierstrass Theorem; hence &/+[F = C(X). Suppose & # C(X).
Then C( X))/« is one dimensional; thus .« * is one dimensional (Theorem
2.2). Let pe& *,||ull= 1. If fE L, then fu€ & *; hence there is an a
in F such that fu = ap. This implies that each fin &7 is constant on the
support of u. But the functions in &7 separate the points of X. Hence the
support of p is a single point x, and so &~ ={B6, : BEF}. Thus
=" ={fe€ C(X): f(x,)=0}. H

There are many examples of subalgebras of C(X) that separate the points
of X, contain the constants, but ar¢ not necessarily closed under complex
conjugation. Indeed, a subalgebra of C(X) having these properties 1s called
a uniform algebra or function algebra and their study forms a separate area
of mathematics (Gamelin [1969]). One example (the most famous) is ob-
tained by letting X be a subset of C and letting &/ = R(X) = the uniform
closure of rational functions with poles off X.

Let x4, X, € X, xy#x, and let &= {f € C(X): f(xy) = f(x,)}. Then
& 1s a uniformly closed subalgebra of C(X), contains the constant func-
tions, and 1s closed under conjugation. In a certain sense this 1s the worst
that can happen if the only hypothesis of the Stone-Weierstrass Theorem
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that does not hold is that &/ fails to separate the points of X (see
Exercise 4).

If X is only assumed to be locally compact, then the story is similar,

8.3. Corollary. If X is locally compact and & is a closed subalgebra of
C.(X) such that

(a) for each x in X there is an f in &7 such that f(x) # 0;
(b) & separates the points of X;
(¢c) f € &/ whenever f €

then &= C,(X).

Proor. Let X = the one point compactification of X and identify C,(X)
with { f€ C( X ): f(0) = 0). So & becomes a subalgebra of C( X_).
Now apply Corollary 8.2. The details are left to the reader, B

What are the extreme points of the unit ball of M(X)? The characteriza-
tion of these extreme points as well as the extreme points of the set P(X) of
probability measures on X is given in the next theorem. [A probability
measure 18 a positive measure p such that p(X)=1.]

84. Theorem. If X is compact, then the set of extreme points of ball M(X)
s

{ad :|a] = 1 andx € X].

The set of extreme points of P( X), the probability measures on X, is
{6:x € X}.

Proor. It is left as an exercise for the reader to show that if x € X, 4§, 1s
an extreme point of P(X) and ab, is an extreme point of ball M(X)
(Exercise 3).

It will now be shown that if p 1s an extreme point of P(X), then p 1s an
extreme point of ball M( X). Thus the first part of the theorem implies the
second. Suppose p 1s an extreme point of P(X) and v, v, € ball M( X)
such that p = 3(»,+2,). Then 1 = |[pl| < (llpJ| + lI7oll) < 1; hence ||p,]
+[7,ll = 2 and so |[z)|| = [lz,]l = 1. Also, 1 = p(X) = 3(»,(X)+p,(X)).
Now |r (X)), |7,(X)|< 1 and 1 is an extreme point of {a&€F:|a|< 1}.
Hence for k=1,2,||»,||=»,( X) = 1. By Exercise 111.7.2, v, € P(X) for
k=1,2. Since p€ ext P( X), p = v =»,. So p is an extreme point of
ball M(X). Thus it suffices to prove the first part of the theorem.

Suppose that p 1s an extreme point of ball M( X) and let K be the
support of u. That 1s,

K= X\U{V: Visopenand [u|(V) = O}.

Hence |p|(X\ K) = 0 and [fdp = [ fdu for every fin C(X). It will be
shown that K 1s a singleton set.
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Fix x,in K and suppose there is a second point X in K, x # x4 LetU
and V' be open subsets of X such that x, €U, x€V,and clU n cl V = Cl.
By Urysohn § Lemma there is an f in C(X) such that 0 < f< 1, f(y) = 1
for y in ¢l U, and f(y) = O for y in cl V. Consider the measures fu and

(1= fp. Pute = (ful| = fIfl diu| = [fd|pl. Then a = [fd|p| <|jp|| = 1
and a = [fd|p|=> |p|(U) > 0 since Uisopen and U N K # O. Also, 1 —«

1= [fdpl = fA—f)dpl = (1 — fHmland so 1 — a = [,(1 — f) dly|
l|{(V)>0since x€ K. Hence 0 <a<1.

But fu/a and (1 — F)u/(1—a)€ ball M( X) and
,u.‘—*—al{f] (1 — a) (= /) :

1l — «

Since p is an extreme point of ball M(X) and a+# 0, u = fu/a. This can
only happen if f=a<1ae [u]l Butf=1onU and |g|(U) > 0, a
contradiction. Hence K = { x,}.

Since the only measures whose support can be the singleton set {x,} have
the form aﬁxﬂ, a in [F, the theorem is proved. B

EXERCISES

I. Suppose that & is a subalgebra of C(X) that separates the points of X and
| € o/. Show that if xi,. ., x, are distinct points in X and «,..,a, €F, there
is an f in & such that f( x,) =a, for | < j<n,

2. Give the details of the proof of Corollary 8.3.

3. If X is compact, show that for each x in X, 0, is an extreme point of P(X) and
ad_, (a( = 1, is an extreme point of ball M(X).

4. Let X be compact and let &/ be a closed subalgebra of C(X) such that 1 €%
and 7 is closed under conjugation. Define an equivalence relation ~ on X by
declaring x ~ y if and only if f(x) = f(y) for all f in &/. Let X/~ be the
corresponding quotient space and let #: X — X/~ be the natural map. Give
x / . the quotient topology. (a) Show that if f€& ., then there is a unique
function a*(f) in C(X/~) such that #*(f)exw = f. (b) Show that #*: &/ —
C( X/~ ) is an isometry. (c) Show that 7 * is surjective. (d) Show that &/={ f €
C(X): f(x) = f(y) whenever x ~ y}.

5. (This exercise requires Exercise 1V.4.7.) Let X be completely regular and topolo-
gize C(X) as in Example IV.1.5. If & is a closed subalgebra of C(X) such that
| € o/, o separates the points of X, and f € o/ whenever fe o, then o=

C(X).

6. Let X, Y be compact spaces and show that if fe C({ X X Y) and &> 0, then
there are functions g;,,g, in CX) and h,,, A, in C(Y) such that

1f(x, )= 2018 (X)h ()| <e for all (X,y)in X X Y,

7. Let &/ be the uniformly closed subalgebra of C,,(W) generated by sinx and
cos x. Show that .o/ = {fe C,, (R): f(t) = f(t+2a)foralltinR}.

8. If K is a compact subset of C, fe ¢ (K), and e> (0, show that there is a
polynomial p(z,z) in z and z such that If(z) — p(z,z)|<g¢for all z in K .
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§9*. The Schauder Fixed-Point Theorem

Fixed-point theorems hold a fascination for mathematicians and they are
very applicable to a variety of mathematical and physical situations. In this
section and the next two such theorems are presented.

The results of this section are different from the rest of this book in an
essential way. Although we will continue to look at convex subsets of
Banach spaces, the functions will not be assumed to be linear or affine. This
1S a small part of nonlinear functional analysis.

To begin with, recall the following classical result whose proof can be
found in any algebraic topology book. (Also see Dugundji [1966].)

9.1. Brouwer’s Fixed-Point Theorem. If 1 < d < o0, B = the closed unit

ball of RY, and f: B — B is a continuous map, then there is a point x in B
such that f(x) = x.

9.2. Corollary. If K is a nonempty compact convex subset of a finite-dimen-
sional normed space Z and f. K — K is a continuous function, then there is a
point x in K such that f(x) = x.

PROOF. Since Z is isomorphic to either C? or R, it is homeomorphic to
either R2¢ or RY So it suffices to assume that =R% 1< d < . If
K={xe R |x|| <r}, then the result is immediate from Brouwer’s
Theorem (Exercise). If K is any compact convex subset of R¢ let r > 0
such that K € B= {x € R*% ||x|| < r}. Let ¢: B - K be the function
defined by ¢(x) = the unique point y in K such that ||x — y|| = dist(x, K)
(1.2.5). Then ¢ is continuous (Exercise) and ¢(x) = x for each x in K. (In
topological parlance, K is a retract of B.) Hence fe¢p: B—> K C B is
continuous. By Brouwer’s Theorem, there is an x in B such that f(¢(x)) =
x.Since fe¢p(B) C K, x € K. Hence ¢(x) = x and f(x) = x. u

Schauder’s Fixed-Point Theorem is a generalization of the preceding
corollary to infinite-dimensional spaces.

9.3. Definition. If 2" 1s a normed space and F C £, a function f: F > &

1s said to be compact if f is continuous and cl f(A4) is compact whenever 4
is a bounded subset of E.

If E 1s itself a compact subset of 2, then every continuous function from
E into 4 is compact.

The following lemma will be needed in the proof of Schauder’s Theorem.

94. Lemma. If K is a compact subset of the normed space &, € > 0, and A
is a finite subset of K such that K C U{ B(a; ¢): a € A}, define ¢,: K > &
by

> {m,(x)a:ac A)
> (my(x):ac )

$q(x) =
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where m (x)=0if||x —a|| 2eandm (x)=¢— ||x —a| if ||x — a|| <.
Then ¢, is a continuous function and

lpq(x) — x|l <&
for all x in K.

PrROOF. Note that for each a in 4, m (x) =2 0and L{m_(x): a€ A} >0
for all x in K. So ¢, 1s well defined on K. The fact that ¢, is continuous
follows from the fact that for each a in A, m_: K — [0, €] is continuous.
(Verify!)
If x € K, then
Y {m (x)a—x]:aec 4}
d {m,(x):ac 4) |

If m_(x)> 0, then ||x — a]| < e. Hence
2 {m,(x)la—x|;ac 4} 3
2. {my(x); ac 4)

$q(x) — x =

E.

lp(x) — x| <
This concludes the proof. u

9.5. The Schauder Fixed-Point Theorem. Let E be a closed bounded convex
subset of a normed space Z. If f: E - % is a compact map such that
f(E) C E, then there is an x in E such that f(x) = x.

PrROOF. Let K= cl f(F), so K C E. For each positive integer n let 4, be a
finite subset of K such that K € U{B(a;1/n): a € A,}. For each n let
¢, = ¢, as in the preceding lemma. Now the definition of ¢, clearly implies
that ¢, (K) C co(K) C FE since E is convex; thus f, = ¢, o f maps E into
E. Also, Lemma 9.4 implies

9.6 If,(x) —f(x)|| <1/n forxin E.

Let 2 be the linear span of theset A, andput £, = ENZ,.So %, isa
finite-dimensional normed space, E, is a compact convex subset of £, and
f.. E,— E_(Why?) is continuous. By Corollary 9.2, there is a point x, in
E_such that f (x,) = x,,.

Now { f(x,)} is a sequence in the compact set K, so there is a point x,
and a subsequence { f(x, )} such that f(x,)— x,. Since f, (x,)= x,,
(9.6) implies j j b j

1%, = Xoll < Ify (%, ) = £ )+ (5, ) = Xl

1
< n “f(xnj) o xOH'
J
Thus x, — x,. Since f 1s continuous, f(x,) = lim f(x,) = X,. u

/

There 1s a generalization of Schauder’s Theorem where 4 is only assumed
to be a LCS. See Dunford and Schwartz [1938], p. 456.
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EXERCISE

1. Let E = {x € ’(N):||x||<1} and for x in E define f(x) = (1 —|x||*),
x(1), x(2), ...). Show that {(E) € E, f is continuous, and f has no fixed points.

§10 *. The Ryll-Nardzewski Fixed-Point Theorem

This section begins by proving a fixed-point theorem that in addition to

being used to prove the result in the title of this section has some interest of

its own. Recall that a map 7 defined from a convex set K into a vector

;pace is said to be affine it T(La,x;)=2aT(x;) when x, €K, a. > 0, and
a; = 1.

10.1. The Markov-Kakutani Fixed-Point Theorem. If K is a nonempty
compact convex subset of a LCS & and % i1s a family of continuous affine

maps of K into itself that i1s abelian, then there 1s an x4 in K such that
T(xy) =xy forall Tin &.

Proor. f 7T € % and n >

1, define T": K > Kby

n) 111'1 k
T = — 3 Tk,
-0

If Sand T€ % and n, m > 1, then it is easy to check that ST (") =
TS Let = {T( )(K): T €S8t n>1}. Each set in )¢ is compact
and convex. If 7T3,. h? €% and ny,...,n = 1, then the commutativity
of # implies that T\ .. T\"(K)CN?_T")(K). This says that X’
has the finite intersection property and hence there is an x,in N{ B:
B €X' }. It is claimed that x, is the desired common fixed point for the
maps in #.

If Te# and n > 1, then x, € T (K). Thus there is an x in K such
that

x0=T (x) =%[x+T(x)+-.._|_Tn—l(x)]_

Using this equation for x, it follows that

T(x0) = %o = +[T(x) + -+ T"(x)]

-—%[x + T(x) +~-+T"_1(x)]

= —[17(x) - ]

c—-|K- KJ.
n
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Now K is compact and so K — K is also. If U is an open neighborhood of O
in &, there is an integer n> 1 such that n~[K — K] cU. Therefore
T(xy)—x,€U for every open neighborhood U of 0. This implies that
T(x,)— x5 = 0. _

If pis a seminorm on 2 and A C %, define the p-diameter of A to be
the number

p-diamA=sup{ p(x—y):x,y € A}.

10.2. Lemma. Zf £ is a LCS, K is a nonempty separable weakly compact
convex subset of &, and p is a continuous seminorm on &, then for every
e > () there is a closed convex subset C of K such that:

(a) C # K;
(b) p-diam(K\ C) <e.

ProOOF. Let S = {x €Z: p(x) <e/4} and let D = the weak closure of the
set of extreme points of K. Note that D C K. By hypothesis there 1s a
countable subset A of K such that D C K C U{ a+ S: a€ A). Now each
a + 5 1s weakly closed. (Why?) Since D 1s weakly compact, there 1s an a in
A such that (a + §) N D has 1interior 1n the relative weak topology of D
(Exercise 2). Thus, there 1s a weakly open subset W of & such that

10.3 (a+S)YNDDODWND =+

Let K, = 65( D\ W) and K, = EB(DH W). Because K, and K, are

compact and convex and K, u K, contains the extreme points of K, the
Krein-Milman Theorem and Exercise 7.8 mmply K = co( K, U K,).

10.4. Claim. K,# K.

In fact, if K, = K, then K = co( D\ W) so that ext K € D\ W (Theo-
rem 7.8). This implies that D CD\W, or that WN D = 0O, a contradiction
to (10.3).

Now (10.3) implies that K, C a + S; so the definition of S implies that
p-diam K, <e/2. Let 0 <r< 1 and define f:K, X K, X [r, 1]> Kby
f(x1,X%5,8) = tx, + (I —t)x,. So f. is continuous and C.= f(K,; x K, x
[r, 1]) is weakly compact and convex. (Verify!)

10.5. Claim. C,# K for 0 <r < 1.

In fact, if C. = K and ¢ € ext K, then ¢ = tx, + (I —t)x, for some ¢,
r<tr<l, X; in K,. Because ¢ 1s an extreme point and ¢ # 0, e = x,. Thus
ext K C K, and K = K|, contradicting (10.4).

Let y € K\ C.. The definition of C, and the fact that K = co(K;u K,)
imply y = #&x, + (1 —#)x, with x, in K, and 0 <¢<r. Hence p(y— x;)
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= p(t(x; — x,)) =tp(x;—x,)< rd, where d = p-diam K. Therefore, if

y =tx{+ (1 —tHxj,€ K\ C, then p(y—y ) <p(y—x,)+ p(x,—
x))+ p(x5—y ) <2rd + p-diam K, < 2rd + £/2. Choosing r = ¢/4d
and putting C = C,, we have proved the lemma. n

10.6. Definition. Let £ be a LCS and let Q be a nonempty subset of &. If
& 1s a family of maps (not necessarily linear) of Q into Q, then & 1s said to
be a noncontracting family of maps if for two distinct points x and y in Q,

0 €cl{T(x)— T(y): T € &#}.

The next lemma has a straightforward proof whose discovery 1s left to the
reader.

10.7. Lemma. IfZ isa LCS, Q C %, and & is a family of maps of @ into
R, then & is a noncontracting family if and only if for every pair of distinct
points x and y in Q there is a continuous seminorm p such that

inf{ p(T(x)— T(y)): T €FL}> 0.

10.8. The Ryll-Nardzewski Fixed-Point Theorem. Zf % is a LCS, Q is a
weakly compact convex subset of X ,and & is a noncontracting semigroup of
weakly continuous affine maps of Q into Q, then there is a point x,in @ such
that T(xy)= x4 for every Tin Y.

Proor. The proof begins by showing that every finite subset of % has a
common fixed point.

10.9. Claim. If {T},..., T,} €%, then there is an x, in Q such that
I, xy=x5tor 1 <k < n.

Put T, =(T,+--- +T ))/n;s0 1,: Q@ = Q and T, 1s weakly continuous
and affine. By (10.1), there is an x, in Q such that T,(x,) = x,. It will be
shown that T,(x,)= x5 for 1 <k <m. In fact, if T, (x,)# x, for some %,
then by renumbering the 7,, it can be assumed that there is an integer m
such that T, (xy)# x5 for 1 <k <m and T,(xy)=xy for m <k <n. Let
Iy=(T, + --- +1,)/m. Then

X0 = To(xo)

L)+ T+ ()

Hence

Ty(xo) = = [Ty(xo) + -+ +T,(x,)]

= Z2[Ty(xg) + -+ + (o))

7o~ ("5 )%

Xg-

—
———
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Thus it may be assumed that 7,(x,)# x, for all k, but 7y(x,) = x,- Make

this assumption.
By Lemma 10.7, there is an €> 0 and there is a continuous seminorm p

on X such that for every T in % and 1 <k < n,

10.10 P(T(T(xy)) — T(x,)) > &.
Let &, = the semigroup generated by {7},7,,...,T,}. So ¥, C% and
S=A(T,, --- T,:m=1, 1</ <n} Thus & is a countable subsemi-

group of %. Put K = EB{ T(x,): T €%,}. Therefore K is a weakly

compact convex subset of Q and K is separable. By Lemma 10.2, there is a

closed convex subset C of K such that C # K and p-diam(K \ C) <e.
Since C # K, there is an § in &% such that S(x,)€ K\ C. Hence

S(xq) = ST,(x,) = %[STl(xO) + ~--+STn(x0)]e K\C.

Since C is convex, there must be a k, I <k <n, such that $T,(x,)€ K\ C.
But this implies that p(S(T,(xy))— S(x()) < p-diam( K\ C) <&, con-
tradicting (10.10). This establishes Claim 10.9.

Let % = all finite nonempty subsets of L. If F €%, let Qr = {x € Q:
T(x) = x for all T in F). By Claim 10.9, Q- 0O for every F in %#. Also,
since each T in % is weakly continuous and affine, Qp is convex and
weakly compact. It is easy to see that {Q i FF €% } has the {inite intersec-
tion property. Therefore, there is an xgin ({ Qr: F € % }. The point X, is
the desired common fixed point for .%. n

The original reference for this theorem is Ryll-Nardzewski [1967]; the
treatment here is from Namioka and Asplund[1967]. An application of this

theorem 1s given in the next section.

EXERCISES

1. Was local convexity used in the proof of Theorem 10.17?

2. Show that if X is locally compact and X = U F,, where each F, is closed in
X, then there is an integer »n such that int F,# 0. (Hint: Look at the proof of the

Baire Category Theorem.)

§11*. An Application: Haar Measure on a
Compact Group

In this section the operation on all semigroups and groups 1s denoted by
multiplication.
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11.1.  Definition. A topological semigroup is a semigroup G that also is a
topological space and such that the map G X G — G defined by (x, y)— xy

1S continuous. A topological group 1s a topological semigroup that is also a
group such that the map G — G defined by x — x ! is continuous.

S0 a topological group is both a group and a topological space with a
property that ties these two structures together.

11.2. Examples

(a) N and R _ , are topological semigroups under addition.

(b) Z,R, and € are topological groups under addition.

(¢c) dD is a topological group under multiplication.

(d) If X is a topological space and G = {f € CX): f(X) ¢ dD}, define
(fe)x)=f(x)g(x)for f, g in G and x in X. Then G is a group. If G is
given the topology of uniform convergence on X, G is a topological
group.

(e) For n> 1, let M (C) = the n X n matrices with entries in €; O(n) =
{A €M (C): A is invertible and A7 = A*}; SO(n) = {A € O(n):
det A=1}. 1t M (C) is given the usual topology, O(n) and SO(n) are
compact topological groups under multiplication.

There are many more examples and the subject is a self-sustaining area of

research. Some good references are Hewitt and Ross [1963] and Rudin
[1962].

11.3.  Definition. If S is a semigroup and f:S — [, then for every x in S
define f:S —F and | f: 8§ ->Fby f.(s) = f(sx) and . f(s) = f(xs) for all
sin S. If S is also a group, let f*(s)= f(s~ ') for all s in S.

11.4.  Theorem. If G is a compact topological group, then there is a unique
positive regular Borel measure m on G such that

(a) m(G) = 1;

(b) if U is a nonempty open subset of G, then m(U) > 0;

(c) if A is any Borel subset of G and x € G, then m(A) = m(Ax) = m(xA)
= m(A 1), where Ax = fax: a € A}, xA= {xa: a € A}, and A~ ' =
fa- | a€ A}.

The measure m is called the Haar measure for G. If G is locally compact,
then it is also true that there is a positive Borel measure m on G satisfying
(b) and such that m(Ax) = m(A) for all x in G and every Borel subset A of
G. It is not necessarily true that m(A) = m(xA4), let alone that m(A) =
m(A~ ') (see Exercise 4). The measure m is necessarily unbounded if G is
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not compact, so that (a) is not possible. Uniqueness, however, is still true in
a modified form: if my, m, are two such measures, then m, = am, for
some o> 0,

By using the Riesz Representation Theorem for representing bounded
linear functionals on C(G), Theorem 11.4 is equivalent to the following.

11.5. Theorem. If G is a compact topological group, then there exists a
unique positive linear functional I:. C(G) —F such that

() Z(1) = 1;
(b) iff € C(G), f = 0, andf # 0, then I(f) > 0;
(c) iff € C(G) andx € G, then I(H = I(f)=I(.f)=I(f7)

Before proving Theorem 11.5, we need the following lemma. For a
compact topological group G, if x&€ G, define L, M(G) —» M(G) and R,:
M(G) - M(G) by

(f s L)y = [ Sy,

(iR A(B)) = [fodp

for fin C(G) and p in M(G). Define S;: M(G) — M(G) by

(f s So(m)y=[f* dp

for fin C(G) and u in M(G). It is easy to check that L _,R_, and Sy are
linear isometries of M(G) onto M(G) (Exercise J).

11.6. Lemma. Zf G is a compact topological group, p€ M(G), and p:
G x G > (M(G),wk*) is defined by p(x,y) = L, R, (1), then p is continu-
ous. Similarly, if py: G X G = (M(G),wk*) is defined by po(x, y) =
SoL R (), then p is continuous.

Proor. Let T € C(G) and let €> 0. Then (Exercise 10) there is a neighbor-
hood U of e (the identity of G) such that If (x) —f(y)|<& whenever
xy~'eU or x 'y €U. Suppose {(x,, y,)} is a net in G X G such that
(X,, ¥,) = (X, y). Let iy be such that for izio,xix_leU and yflye U.
If x € G, then |f(x,2y,) = f(xzy)| < If(x,25,) — fxzp)| & f(x2p,) —
f(xzy)|. But if i 2i, and z € G, (x;zy,)xzy,) ' = x,x €U and
(xzy) Y xzy) = y~ 'y € U Hence |f(x,zy;)— f(xzy)|<2e for i =i, and
for all z in G. Thus hm,[f(x;zy,)dp(z) = [f(xzy)dp(z). Since fwas
arbitrary, this implies that p(x;, y,) = p(x, y)wk* in M(G). The proof for
Py 1S simular. u
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Proor oF THEOREM 11.5. If e = the identity of G, then

(L,R, =R,L,
L.L _-L,
11.7 { R,R, = Rx,

Sy =L, =R, =the identity on M(G)
\SoL R, = L,1R 1§,

for x, v in G. Hence
(SOLny)(SOLuRu) = (Ly_le_lSO)(SOLuRu)
=L, «R L,R,
— Ly—lLqurlRU
=L,,-1R,-1,.
Hence if S; = the identity on M(G),
S = {SiLny: i=0,1;x,y€ G)

is a group of surjective lincar isometries of M(G). Let Q = the probability
measures on G; that is, Q = {p€ M(G): p=0and u(G)=1}. So Q is a
convex subset of M(G) that is wk* compact. Furthermore, T(Q) € Q for
every T in <.

11.8. Claim. If p&€ M(G) and p# 0, then 0 4 the weak™ closure of {T(p):
Te%).

In fact, Lemma 11.6 implies that {T(p): T €%} is weak* closed. Since
ecach T in & is an isometry, T(p) # O for every T in &.

By Claim 11.8, % is a noncontracting family of affine maps of Q into
itself. Moreover, if T =8,L R, and {p;} is a net in Q such that u;
p(wk*), then for every f in C(G), (f, T(u,)) = [f(xs™y)ydu,(s)—
ff(xs™Yy)du = {f, T(n)). So each T in & is wk* continuous on Q. By the
Ryll-Nardzewski Fixed-Point Theorem, there is a measure m in Q such
that T(m) = m for all T in &.

By definition, (a) holds. Also, for any x in G and f in C(QG),
[f(xs)dm(s) = {(f, L.(m)) = [fdm. By similar equations, (c) holds. Now
suppose f€ C(G), f= 0, and f# 0. Then there is an > 0 such that
U= {x € G: f(x) >¢€} is nonempty. Since U is open, G = U{ Ux: x € G},
and G is compact, there are xy,X,,...,X, in G such that G € U}_,Ux,.
(Why is Ux open?) Define g,(x)= f(xx;') and put g = X7_,g,. Then
g € C(G) and jgdm = X;-,/8.dm = n jfdm by (c). But for any x in G
there is an x, such that xxk_l € U, hence g(x) =2 g,(x) = f(xx;1)>e.
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Thus

ffdm=%-fgdm2 eh > 0.

This proves (b).
To prove uniqueness, let ¢ be a probability measure on G having
properties (a), (b), and (¢). If f € C(G) and x € G, then [f du = [, f du.

[rdu=[| [10)du()| dm(x)
= [| [100) au()] am(x)
= [| f1Co) ()| ()
- J| f7Ge) dm(x) | )
= [dm.

Honce p=m.  ®

For further information on Haar measure see Nachbin [19635].

What happens if G is only a semigroup? In this case L _and R, may not
be isometries, SO {Lny: X, y& G} may not be noncontractive. However,
there are measures for some semigroups that are invariant (see Exercise 7).

For

further reading see Greenleaf [1969].

EXERCISES

1.

Let G be a group and a topological space. Show that G 1s a topological group if
and only if the map of G X G — G defined by (x, y)— x" 'y is continuous.

Verily the statements in (11.2).
Show that Theorems (11.4) and (11.5) are equivalent.

Let G be a locally compact group. If m i1s a regular Borel measure on G, show
that any two of the following properties imply the third: (a) m (A x) = m(A) for
every Borel set A and every x in G; (b) m(xA)=m(A) for every Borel set A
and every x in G; (¢) m(A) = m(A~ ") for every Borel set A.

Show that the maps S;, L., R, are linear isometries of M(G) onto M(G).
Prove (11.7).

. Let S be an abelian semigroup and show that there is a positive linear

functional L:[*(S)—F such that (a) L(1) = 1, (b) L(/f,) = L(I) for everyt
in [<(S).
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8. Show that if S and L are as in Exercise 7, and § is infinite, then L(f) =0
whenever {s € S: f(s) # 0} 1s finite.

9. If § = N, what does Exercise 7 say about Banach limits?

10. If G is a compact group, f: G — F is a continuous function, and ¢ > 0, show
that there is a neighborhood U of the identity in G such that |[f(x) — f(y)| < ¢
whenever xy~! € U. (Note that this says that every continuous function on a
compact group is uniformly continuous.)

11. If G is a locally compact group and f € C,(G), let O(f) = the closure of { /. :
x € G} in C,(G). Let AP(G)={f€ C,(G): O(f) is compact}. Functions in
AP(G) are called almost periodic. (a) Show that every periodic function in
C,(R) belongs to AP(R). (b) If G is compact, show that AP(G) = C(G). (¢)
Show that if f € C,(R), then f € AP(R) if and only if for every ¢ > 0 thereis a
positive number 7" such that in every interval of length T there is a number p
such that |[f(x) — f(x + p)| < e for all x in R. (d) If G is not compact, then
the only function in AP(G) having compact support is the zero function. (¢)
Prove that there is a bounded linear functional L: AP(G) — F such that
L)=1, L(f)>201if f>0, and L(f, )= L(f) for all f in AP(G) and x
in G.

§12*. The Krein—Smulian Theorem

Let 4 be a convex subset of a Banach space 4. If A4 is weakly closed, then
for every r > 0, A N {x € X ||x|| < r} is weakly closed; this is clear since
each of the sets in the intersection is weakly closed. But the converse of this
is also true: if 4isconvexand 4 N { X € X: ||x|| < r} is weakly closed for
every r > 0, then A4 is weakly closed. In fact, because A 1s convex 1t suffices
to prove that A is norm closed (Corollary 1.5). If {x,} € 4 and ||x, — x|
-> 0, then there is a constant r such that ||x, || < r for all n. By hypothesis,
AN {x€X: ||x|]| <r}) is weakly closed and hence norm closed. Thus
Xy € A.

Now let A4 be a convex subset of ' *, £ a Banach space. If 4 N {x* €
Z*: [|x*|| <r} is weak-star closed for every r > 0, i1s 4 weak-star closed?
If & is reflexive, then this is the same question that was asked and answered
affirmatively in the preceding paragraph. If 2 1s not reflexive, then the
preceding argument fails since there are norm-closed convex subsets of £ *
that are not weak-star closed. (Example: let x** € 2 **\ 2 and consider
A = ker x**) Nevertheless, even though the argument fails, the statement 1s
{rue.

12.1. The Krein—Smulian Theorem. If 2 is a Banach space and A is a
convex subset of * such that AN {x* € L *: ||x*|| < r} is weak-star
closed for every r > 0, then A is weak-star closed.

To prove this theorem, two lemmas are needed.
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12,2, Lemma. Zf & is a Banach space, r > 0, and %, is the collection of all
finite subsets of {x €X:||x||<r™ '}, then

NFO: FeZ } ={x*ex* |x* <r)

PrOOF. Let E = ([ F°: F€ % }; it is easy to see that r(ball & *)C E. If
x* & r(ball & *), then there is an x in ball & such that |{x, x*)|> r.
Hence [(r 'x,x*)|> 1 and x*¢& E. _

12.3. Lemma. Zf A and X satisfy the hypothesis of the Krein-Smulian
Theorem and, moreover, A N ball X *=L1 L then there is an x in X such that

Re{x, x*)> 1
for all x* in A.

ProOFE. The proof begins by showing that there are finite subsets Fy, Fi,...
of Z such that

(i) nF, Cball &;

12.4 .
(i) n(ballZ*) n NIZLF2 N A =

To establish (12.4) use induction as follows. Let Fy = (0). Suppose that
Fy,...,F, _; have been chosen satisfying (12.4) and set Q = [(n +
Dball Z*] n NI_{F’ N A. Note that Q is wk* compact. So if @ n F%=+#0
for every finite subset F of n”'ball %, then O+ Q N N{ F% Fis a finite
subset of n = (ball )} =0 n [n(ball X *)] by the preceding lemma. This
contradicts (12.4ii). Therefore there is a finite subset F, of n~'(ball &) such
that @ n F” = 0. This proves (12.4).

If { F,}>_, satisfies (12.4), then A N N_,F,’ = 0. Arrange the elements
of U®_, F, in a sequence and denote this sequence by {x, }. Note that
lim||x, || = 0. Thus if x*€ Z*, {{x,,x*)}€ ¢,. Define T:Z*—> ¢, by
T(x*) = {{x,,x*)}. It is easy to see that T is linear (and bounded, though
this fact is unnecessary). Hence T(A) 1s a convex subset of ¢y. Also, from
the construction of {x,} = U;_F,, for each x* in A, ||[T(x*)|| =
sup,|{(x,,x*>|> 1. That is, T(A) n balle;=0 . Thus Theorem II1.3.7 ap-
plies to the sets T(A) and int[ball ¢y] and there is an fin {' = ¢* and an «
in R such that Re(¢, /) <a <Re{(T(x*), f) for every ¢ in int[ball ¢4] and
x* in A. That is,

12.5 Re T (n)f(n) < a < Re ¥, (x,, x*)f(n)

n=1 n=1

for every ¢ in ¢y with {{¢||< 1 and for every x* in A. Replacing fby f/||f|
and a by a/||f]|, it is clear that it may be assumed that (12.5) holds with
Ifl = 1. If dEcy,lioll< 1, let p€ IF such that |g| = 1 and (o, f) =
|{$,f) |- Applying this to (12.5) and taking the supremum over all ¢ in
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int[ball ¢,] gives that 1 <ReX® (x,, x*)f(n) for all x* in A. But fell
so X = 2*_,f(n)x,€ X and 1 <Re(x, x*) for all x* in A. _

Where was the completeness of X used in the preceding proof?

Proor oF THE KREIN-SMULIAN THEOREM. Let xJ € X* \A; it will be
shown that xg & wk* — cl A. It is easy to see that A is norm closed. So
there is an r> 0 such that {x*& X*: ||x*—xJ||<r} N4 =0 But this
implies that ball X * n [r (A —xZ¥))=0. With this it is easy to see that
r (A —xZ) satisfies the hypothesis of the preceding lemma. Therefore
there is an x in X such that Re{x,x*)> 1 for all x* in 7 }( A —x¥). In
particular, 0 & wk* — cl[r (4 — x*)] and hence x¥ 4 wk* —cl A. m

12.6. Corollary. If X is a Banach space and Y is a linear manifold in X *,
then Y is weak-star closed if and only if %(ball X * is weak-star closed.

12.7. Corollary. Zf X is a separable Banach space and A is a convex subset
of X * that is weak-star sequentially closed, then A is weak-star closed.

Proor. Because X is separable, r(ball X *) is weak-star metrizable for every
r >0 (Theorem 35.1). So if A is weak-star sequentially closed, A N
[r(ball X *)] is weak-star closed for every r> 0. Hence the Krein-Smulian
Theorem applies. B

This last corollary is one of the most useful forms of the Krein-Smulian
Theorem. To show that a convex subset A of X * is weak-star closed it is

not necessary to show that every weak-star convergent net from A has its
l[imit in A; it suffices to prove this for sequences.

12.8. Corollary. If X is a separable Banach space and F: X * —»F is a
linear functional, then F is weak-star continuous if and only if F is weak-star
sequentially continuous.

Proor. By Theorem IV.3.1, F'is wk™* continuous if and only if ker Fis wk*

closed. This corollary is, therefore, a direct consequence of the preceding
one. o

There i1s a misinterpretation of the Krein-Smulian Theorem that the
reader should be warned about. If A is a weak-star closed convex subset of
ball X *, let # =U{ rd:r> O}. It is easy to sec that # is a linear
manifold, but it does not follow that 4 is weak-star closed. What is true is
the following.

12.9. Theorem. Let X be a Banach space and let A be a weak-star closed

subset of X *. If Y = the linear span of A, then Y is norm closed in X * if
and only if Y is weak-star closed.
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The proof will not be presented here. The interested reader can consult
Dunford and Schwartz [1958], p. 4209.

There is a method for finding the weak-star closure of a linear manifold
that is quite useful despite its seemingly bizarre appearance. Let £ be a
Banach space and let # be a lincar manifold in £ *. For each ordinal
number a define a linear manifold # _ as follows. Let A, = #. Suppose «a
is an ordinal number and A has been defined for each ordinal B<a.If «
has an immediate predecessor, a— 1, let A4 _, be the weak-star sequential
closure of A, _;.If a is a limit ordinal and has no immediate predecessor,
let #,=U{ M4 B <a}. In each case A is a linear manifold in £ * and
My M, i B < a.

12.10. Theorem. If & is a separable Banach space, M is a linear manifold
in *, and M , is defined as above for every ordinal number a, then M , is
the weak-star closure of M, where 8 is the first uncountable ordinal. More-
over, there is an ordinal number a <§2 such that M = M .

Proor. By Corollary 12.7 it suffices to show that 4, is weak-star sequen-
tially closed. Let {x)} be a sequence in A such that x}— x* (wk*).
Since M 5=U{ A, a<$8}, for each n there is an a, <& such that
xy € M,. But a =sup,a, <$§. Hence xy& A, for all n; thus x € A,
C My and A is weak-star closed.

To see that A o= A, for some a<§, let {x*} be a countable wk*
dense subset of ball .# . For each n there is an a, such that x*€ A,. Put
a = sup,a,. So {x¥} c ball #,. Put ball #, is a compact metric space in

the weak-star topology, so {x}} is wk* sequentially dense in ball 4,
Therefore ball #,C ball&,+, and A og=HA ., ;. _

When is A weak-star sequentially dense in £ *? The following result of
Banach answers this question.

12.11. Theorem. Zf & is a separable Banach space and M is a linear
manifold in & *, then the following statements are equivalent.

(a) A is weak-star sequentially dense in & *.
(b) There is a positive constant ¢ such that for every x in 4,

xll < sup{|{x, x*)|: x* € A, |x*||< c}.

(c) There is a positive constant ¢ such that if x* € ball £ *, there is a
sequence {xf}in M, ||xF||< ¢, such that xF— x* (wk*).

Proorv. It is clear that (¢) implies (a). The proof will consist in showing that
(a) implies (¢) and that (b) and (¢) are equivalent.

(a) = (¢): For each positive integer n, let A, = the wk* closure of
n(ball ). If x*€Z*, let {x}} be a sequence in A such that x}— x*
(wk*). By the PUB, there i1s an n such that ||xf||<n for all & Hence
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x*e A,. That is, U¥_,4, = Z*. Clearly each A, is norm closed, so the
Baire Category Theorem implies that there 1s an A, that has interior in the
norm topology. Thus there is an xF in A, and an r > 0 such that
A, D{x*e Z* ||x*— xF||< r). Let {xf}Cn(ball.Z) such that x} —
xF (wk*). If x*eballZ*, then xF + rx* € A,; hence there is a sequence
{y*¥Yin n(ball #) such that y*— x} + rx* (wk*). Thus r '(y¥—x})
— x* (wk*) and r~}(y¥—x})ec(ball #), where ¢ = 2n/r is indepen-

dent of x*.
(c) = (b): If x € X, then Alaoglu S Theorem implies there is an x* in
ball X * such that (x,x*) = [|x||. By (c), there is a sequence {x}} in

c(ball.#) such that x} — x* (wk*). Thus (x},x)—||x|| and (b) holds.

(b) = (¢): According to (b), ball Z2°[c(ball #)]. Hence ball X * =
(ball X) °C°[c(ball #)]°. By (1.8),°[c(ball #)]° = the weak-star closure
of ¢(ball #). But bounded subsets of X * are weak-star metrizable (5.1)
and hence (¢) follows. |

EXERCISES

1. Suppose & is a normed space and that the only hyperplanes 4 in £ * such that

M N ball £* is weak-star closed are those that are weak-star closed. Prove that
4 is a Banach space.

2. (von Neumann) Let A be the subset of I? consisting of all vectors {X,,:
| <m<n<cwo)wherex,  (m)=1,x,,(n)=m,and x,,(k)=01f k # m, n.
Show that 0 € wk —cl A but no sequence in A converges weakly to O.

3. Where were the hypotheses of the separability and completeness of 2 used in the
proof of Theorem 12.117

4, Let  be a separable Banach space. If # is a linear manifold in £* give

necessary and sufficient conditions that every functional in wk* — cl A be the
wk* limit of a sequence from 4.

5. Let £ be a normed space and let 7 be a locally convex topology on & such that
ball & is J~compact. Show that there is a Banach space % such that % is
isometrically isomorphic to #*. (Hint: Let ¥={x*€ X *:x*|ballZ is Fcon-
tinuous} .)

§13*. Weak Compactness

In this section, two results are stated without proof. These results are among
the deepest in the study of weak topologies.

13.1. The Eberlein-Smulian Theorem. If X is a Banach space and A € Z,
then the following statements are equivalent.

(a) Each sequence of elements of A has a subsequence that is weakly conver-
gent.



168 V. Weak Topologics

(b) Each sequence of elements of A has a weak cluster point.
(c) The weak closure of A is weakly compact.

The proof can be found in Dunford and Schwartz [1958], p. 430. The
serious student should examine Chapter V of Dunford and Schwartz [1958]
for several results not presented here as well as for some of the history
behind the material of this chapter.

The following is an easy consequence of the Eberlein-Smulian Theorem.

13.2. Corollary. If & is a Banach space and A C X, then A is weakly
compact if and only if A N M is weakly compact for every separable subspace

M of Z.

It X is a Banach space and A 1s a weakly compact subset of X, then for
each x* in X* there is an xgy in A such that |[(x4, x*)| = sup{|{x, x*)|:
x € A). It is a rather deep fact due to R. C. James [1964a] that the converse
1S true.

13.3. James S Theorem. If X is a Banach space and A is a closed convex
subset of X such that for each x * in X * there is an X, in A with

(X0, x*Y| = sup{|{x,x*)|: x € A},

then A is weakly compact.

Another reference for a proof of this theorem as well as a number of
other equivalent formulations of weak compactness and reflexivity is James
[1964b]. Also, if X is only assumed to be a normed space in Theorem 13.2,
the conclusion is false (see James [1971]).

The next result, presented with proof, is also called the Krein-Smulian
Theorem and must not be confused with the theorem of the preceding
section,

13.4. Krein—-Smulian Theorem. If X is a Banach space and K is a weakly
compact subset of X, then co(K) is weakly compact.

PrRoOOF. Case 1: X is separable. Endow K with the relative weak topology:;
so M(K) = C(K)* 1If w€ M(K), define F: X* —»F by

Fp(x*) = fK(x, x*y du(x).

It is casy to sec that F, is a bounded linear functional on X * and
IF0l < [lnlisup{llx]]: x € K }.

13.5. Claim. FP:X*——avU—" 1S weak-star continuous.
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By (12.8) it suffices to show that F, is weak™ sequentially continuous. Let
{x¥} be a sequence in X * such that x}— x* (wk*). By the PUB,
M = sup,||x}|]|< co. Also, (x,x,*) = (x, x*) for every x in K. By the
Lebesgue Dominated Convergence Theorem, F (xF)= [{x,x7)du(x)—
F;u( X*). So (13.5) is established.

By (1.3), F, € Z. That is, there is an x, in X such that F ( x *) =
(x,,x*). Define T: M(K) =% by T(p) = X,.

13.6. Claim. 7. (M(K), wk*) = (%, wk) is continuous.

In fact, this is clear. If p;— 0 weak* in M(K), then for each x* in X *,
x¥|K € C(K). Hence (T(p;), x*) = [{x,x*)dp(x)— 0.

Let 2 = the probability measures on K. By Alaoglu S Theorem &£ is
weak* compact. Thus T(£) is weakly compact and convex. However, if
x € K, (T(8,), x*) = (x, x*); that is, T(8,) = x. So T( #)2 K. Hence
17(9) Dco(K) and co(K) must be compact.

Case 2: X is arbitrary. Let {X, } be a sequence in co(K). So for each »
there is a finite subset F, of K such that x,€co( F,). Let F = UY_; F, and
let #4 = VF. Then K, = K N.# is weakly compact and {x,}CSco( K,).
Since # is separable, Case 1 implies that co( K,) is weakly compact. By the
Eberlein-Smulian Theorem, there is a subsequence {x, } and an x in
co(K;) S co(K') such that x, — x. Thus co(K') is weakly compact. u

EXERCISES

1. Prove Corollary 13.2.

2. It & is a Banach space and K is a compact subset of Z°, prove that co(K) is
compact.

3. In the proof of (13.4),if & = the probability measures on X, show that 7(%)
= co(K).

4. Prove the Eberlein-Smulian Theorem in the setting of Hilbert space.



CHAPTER. VI

Linear Operators on a Banach Space

As has been said before in this book, the theory of bounded linear operators
on a Banach space has seen relatively little activity owing to the difficult
geometric problems inherent in the concept of a Banach space. In this
chapter several of the general concepts of this theory are presented. When
combined with the few results from the next chapter, they constitute
essentially the whole of the general theory of these operators.

We begin with a study of the adjoint of a Banach space operator. Unlike
the adjoint of an operator on a Hilbert space (Section II.2), the adjoint of a
bounded linear operator on a Banach space does not operate on the space
but on the dual space.

§1. The Adjoint of a Linear Operator

Suppose & and % are vector spaces and T: F —% is a lincar transforma-
tion. Let %’ = all of the linear functionals of % - F.If y '€ % ’, then

y oT: —F is casily seen to be a linear functional on Z. That is,
y’'oT € Z’. This defines a map

79" >

by T ( y) = y’oT. The first result shows that if Z and % are Banach
spaces, then the map 77 can be used to determine when 7 i1s bounded.
Another equivalent formulation of boundedness is given by means of the
weak topology.
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1.1, Theorem. If & and Y are Banach spaces and T:-Z — Y is a linear
transformation, then the following statements are equivalent.

(a) T is bounded.
(b)) T (Y *YC X *.
(c) T:(Z, weak) = (¥, weak) is continuous.

ProoF. (a) = (b): If p*€ Y * then T (y*) €Z’; it must be shown that
T(y*)eZ* But |[T'(y*Nx)| = p*eT(x)| = ((T(x), y*)| =<
IZCOIHY* < Ny il So T (y*) € £+

(b) = (¢): If {x,;} is a net in £ and x,— O weakly, then for y* in %*,
(T(x,), y*>=T"(y*Nx;,)—> 0 since T (y*) €Z* Hence T(x,)— O
weakly in Y.

(c) = (b): If y*€ Y * then y*oT:Z —F is weakly continuous by (c).
Hence T'(y*)=y* T €Z* by (V.1.2).

(b) = (a): Let y*€ Y* and put x*=T7T"(y*). So x*€Z* by (b). So
if x €ballZ’, (T(x), y*>| = |{x,x*)| <||x*||. That is, sup{|{T(x), y*>|:
x € ball £ }< cc. Hence T(ballZ) is weakly bounded; by the PUB,
T(ball Z) is norm bounded and so || 7| < o0. _

The preceding result is useful, though strictly speaking it is not necessary
for the purpose of defining the adjoint of an operator A in Z(Z, Y), which
we now turn to. If A € Z(Z,%) and y*€ Y * then y*o A = A(y*) e
& *. This defines a map A*: Y * - Z*, where A* = A’|% *. Hence

1.2 (x, A*(y*)) = (A(x), y*)

for x in & and y*in Y *. A* is called the adjoint of A.

Before exploring the concept let S see how this compares with the defini-
tion of the adjoint of an operator on Hilbert space given in § 11.2. There is a
difference, but only a small one. When J¢ is identified with £ *, the dual
space of S, the identification is not linear but conjugate linear (if F = C).
The isometry A — L, of ¥ onto J*, where L,,(f) = {f, h), satisfies |,
L,, = alL,. Thus the definition of A* given in (1.2) above is not the same as
the adjoint of an operator on Hilbert space, since in (1.2) A* is defined on
Y * and not some conjugate-linear isomorphic image of it. In particular, if
the definition (1.2) is applied to a matrix A acting on €¢ considered as a
Banach space, its adjoint corresponds to the transpose of A. If C9 is
considered as a Hilbert space, then the matrix of A* is the conjugate
transpose of the matrix of A. This difference will not confuse us but it will
serve to explain minor differences that will appear in the treatment of the
two types of adjoints. The first of these occurs in the next result.

1.3. Proposition. I£ % and Y are Banach spaces, A, B € (%, Y), and
a, BEF, then (aA + BB)* = aA* + BB*.
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Note the absence of conjugates. The proof 1s left to the reader.

If AeZB(Z, Y), then it is easy to see that A* € B(¥ *, & *). In fact, if
y*€ball%* and x € ballZ, then [{x, A*y*)| = |{(Ax, y*)| < ||4x|| <
|A]l. Hence ||[A*y*|| < ||4]|| if y* € ball¥*, so that ||A*|| <||All. This
implies that (A*)* = A** can be defined,

AJ'I'-'J'I'-': Q’** - @**’
<A**x**,, y*> — <x**’ A*y*>
for x** in A? ** and yp* in Y*.

Suppose x €Z and consider x as an element of Z ** via the natural
embedding of Z into its double dual. What is A**(x)7 For y*in Y *,

(A**(x), y*) =(x,A%y*)
= (Ax, y*>.
That is, A**|Z& = A. This is the first part of the next proposition.

1.4.  Proposition. Zj & and Y are Banach spaces and A € B(Z, Y), then:

(a) A**| ¥ = A;

(b) |IA*)} = [l4]l;

(¢) ifA is invertible, then A* is invertible and (A*)™' = (A7 1)*;
() if & is a Banach space and B € (%, %), then (BA)* = A*B*¥,

Proor. Part (a) was proved above. It was also shown that [|A*| <[4}
Thus ||A**|| < ||A*|l. So if x € ball.%, then (a) implies that |[Ax|] =
|A**x)] < |A**|| < {j4*||. Hence ||4]] < ||4%)}.

The remainder of the proof is left to the reader. _

1.5. Example. Let (X, §,p) and M. LP(u)— LP(p) be as in Example
111.2.2. If 1 <p <oo and I/p + l/q = 1, then Mp:L9(p) = L(p) is
given by MJf = ¢f. That is, M} = M,.

1.6. Example. Let K and & be as in Example 111.2.3. If 1 <p <00 and
I/p + l/q = 1, then K ¥ L4un)— L9u) is the integral operator with
kernel k *( x, y) =k( v, x).

1.7. Example. Let X,Y, 7, and A be as in Example 111.2.4. Then A *:
M(Y) - M(X) is given by

(A*u)(4) = p(771(4))
for every Borel subset A of X and every p in M(Y).

Compare (1.5) and (1.6) with (11.2.8) and (11.2.9) to see the contrast
between the adjoint of an operator on Banach space with the adjoint of a
Hilbert space operator.

1.8. Proposition. Zj A € B(X, Y), then ker A* = (ran A) * and ker A =
L (ran A #).
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The proof of this useful result is similar to that of Proposition 11.2.19 and

1s left to the reader.
This enables us to prove the converse of Proposition 1.4c.

1.9. Proposition. ZfFAEXB(Z, Y), then A is invertible if and only if A* is
invertible.

Proor. In light of (1.4¢) it suffices to assume that A* is invertible and show
that A 1s invertible. By the Open Mapping Theorem, there i1s a constant
¢ > 0 such that A¥(ballY *) D{x*e€Z*|x*||< c}. So if x € X, then

|Ax|| = sup{|{Ax, y*)|: y* € ball¥ * }
= sup{|(x, A*y*)|: y* € ball ¥ *

zsup{|(x,x*)|:x*e X* and ||x*||< c}

= cf|x]|.
Thus ker A = (0) and ran A is closed. (Why?) On the other hand, (ran A) *+
= ker A* = (0) since A* is invertible. Thus ran A is also dense. This implies
that A is surjective and thus invertible. u

This section concludes with the following useful result that seems to be
somewhat unfamiliar to parts of the mathematical community.

1.10. Theorem. Zf X and Y are Banach spaces and A € B(Z, Y), then the
following statements are equivalent.

(a) ran A is closed.
(b) ran A* is weak* closed.
(c) ran A* is norm closed.

Proor. It is clear that (b) implies (¢), so it will be shown that (a) implies (b)
and (c) implies (a). Before this is done, it will be shown that it suffices to
prove the theorem under the additional hypothesis that A is injective and
has dense range.

Let &= cl(ran A). Thus A: X — £ induces a bounded lincar map B:
Z/ker A > Z defined by B(x + ker A) = Ax. If Q: > Z/kerA4 is the
natural map, the diagram

X AN K — 9

Q N\ /' B
Z/ker A

commutes. (Why 1s B bounded?) It 1s easy to see that B is injective and that
B has dense range. In fact, ran B = ran A, so ran A is closed if and only if
ran B is closed. Let s examine B*: Z*—> (Z/ker A)*. By (V.2.2),
(Z/ker A)* = (kerA)+ = wk*cl(ran A*) C X* by (1.8). Also by (V.2.3),
since <Y, F*=Y*/&F+=Y */(ran A) = Y */kerA* by (1.8). Thus,

B*: %* /ker A* — (l(erA)JL .
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1.11. Claim. B*(y* + ker A*) = A*y* for all y* in % *.

To see this, let x€ Z and y*€ % *. Making the appropriate identifica-
tions as in (V.2.2) and (V.2.3) gives (x + kerA, B*(y* + ker A*))
= (B(x + ker A),y* + ker A*) = (Ax,y* + (ran A) ) = {(Ax,y*)
= {x, A*y*) = (x +* (ran A¥), A*Y*) = (x + ker 4, A*Y*), Since x was
arbitrary, (1.11) is established.

Note that Claim 1.11 implies that ran B* = ran A*. Hence ran A* is
weak* (resp., norm) closed if and only if ran B* is weak* (resp., norm)
closed.

This discussion shows that the theorem is equivalent to the analogous
theorem in which there is the additional hypothesis that A is injective and
has dense range. It is assumed, therefore, that ker A = (0) and cl(ran A) = ¥%.

(a) = (b): Since ran A is closed, the additional hypothesis implies that A
is bijective. By the Inverse Mapping Theorem, 4~ '€ (¥, Z). Hence A *
is invertible (1.4c¢). Since A* is invertible, ran A* = Z * and hence is weak*
closed.

(¢) = (b): Since ran A is dense in ¥, kerA* = (ran A) ~ (1.8) = (0). Thus
A*: % * — ran A* is a bijection. Since ran A* is norm closed, it is a Banach
space. By the Inverse Mapping Theorem, there is a constant ¢ > O such that
HA*y*|| = clly*|| for ail y* in ¥*,

To show that ran A* is weak* closed, the Krein-Smulian Theorem
(V.12.6) will be used. Thus suppose {A*y*} is a net in ran A* with
lA*y*||< 1 such that A*y* - x*o(Z *, Z) for some x* in *. Thus
ly*||< ¢! for all y*. By Alaoglu S Theorem there is a y*in % * such that
y, > y*o(¥*%). Thus (1.1c), A*y* > A*y* o(ZX*, Z), and so
x*= A¥y* € ran A* By (V.12.6), ran A* is weak* closed.

(b) = (a): Since ran A* is weak* closed, ran A* = (kerA)* =% *. Also,
ker A* = (ran 4)* = (0) since A has dense range. Thus A* is a bijection

and 1s thus invertible. By Proposition 1.9, A is invertible and thus has
closed range. W

EXERCISES
1. Prove Proposition 1.3.

2. Complete the proof of Proposition 1.4.
3. Verity the statement made in (1.5).

4. Verify the statement made in (1.6).

3. Verity the statement made in (1.7).

6. Let 1 < p < oo and define S: I = I7 by S(a;, a5, ...) = (0, ¢, a,, ...). Com-
pute S*.
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7. Let A €%(cy) and for n> 1, define e, in ¢; by e,(n) = 1 and e,(m) = O for
m #n. Put a,,,, = (Ae,)(m) for m, n> 1. Prove: (a) M =sup,2%_,l«a,, |< co:

(b) for every ", a,,, = 0 asm —oo. Conversely, if {a,.: m,n>1} are scalars
satisfying (a) and (b), then

(Ax)(m) = ¥ ()

defines a bounded operator A on ¢y and ||4|| = M. Find A *

8. Let A E.@(ll) and for n> 1 define e, in I by e,(n) = 1, ¢,(m) = 0 for
m #n. Put a,,, = (Ae,)(m) for m, n> 1. Prove: (a) M =sup L _,la,,,| <o0;

m=1

(b) for every m, sup,|a,,|< cc. Conversely, if {a,,,,; m,n>1} are scalars
satisfying (a) and (b), then

(AN() = L apf ()

defines a bounded operator A on I and ||4]| =M. Find A *

9. (F. F. Bonsall) Let & be a Banach space, Z a nonempty set, and u: Z - Z . If
there are positive constants M; and M, such that (i) ||u(z)||< M, for all z in Z
and (ii) for every x* in &, sup {|<u(z),x*>|:z€ Z} > M,]||x*||; then for
everyx in & thereisan [ in '(Z) such that (*)x = L{f(2)u(z):z€ Z} and
M, inf ||All; < |1x|| < M, inf ||f}l;, where the infimum is taken over all fin /'(Z)
such that (*) holds. (Hint: define T:I'"(Z)—>Z by Tf = L{f(2)u(z):z € Z)}.)

10. (F. F. Bonsall) Let m be normalized Lebesgue measure on 0D and for |z|< |
and |w| = 1 let p,(w) = (1 —|z|*)/|1 —2zw|. So p, is the Poisson kernel. Show
that if f€ L'(m), then there is a sequence {z, }CD and a sequence {A,}inT

such that (*)f = E;io)\npzn, Moreover, ||f]j; = 1nfX>_;|A,|, where the intimum
is taken over all {A,}in /' such that (%) holds. (Hint: use Exercise 9.)

§2*. The Banach-Stone Theorem

As an application of the adjoint of a lincar map, the isometries between
spaces of the form C(X) and C(Y) will be characterized. Note that if X
and Y are compact spaces, 7: Y — X is continuous map, and Af = f o7 for
f in C(X), then (111.2.4) A is a bounded linear map and [|4] = 1.
Moreover, A is an isometry if and only if 7 is surjective. If A is a surjective
isometry, then 7 must be a homeomorphism. Indeed, suppose A is a
surjective isometry; it must be shown that 7 is injective. If y,, y; € Y and
Yo * ¥1, then there is a g in C(Y) such that g(y,) = 0 and g(y;) = 1. Let
f€ CX) such that Af = g. Thus f(7(yp)) = 8&(¥p) = 0 and f(7(y,)) = L.
Hence T(¥o) # 7()1)-
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So if :Y—> X is a homeomorphism and a: Y —=F is a continuous
function, with |a( y)|= 1, then 7: C(X) — C(Y) defined by (7 )(y) =
a( y)Yf(7( y)) is a surjective isometry. The next result gives a converse to this.

2.1. The Banach-Stone Theorem. If X and Y are compact and T: C( X) —
C(Y) is a surjective isometry, then there is ¢ homeomorphism .Y — X and a
function «a in C(Y) such that|a(y)| = 1 for ally and

(TF)(y) = a(y)f(7(»))
for all f in C(X) andy in Y.

Proor. Consider T *: M(Y) — M(X). Because T'is a surjective isometry,
T *is also. (Verify.) Thus T *is a weak®* homeomorphism of ball M(Y)
onto ball M(X) that distributes over convex combinations. Hence (Why?)

T*(ext[ball M(Y)]) = ext[ball M( X)] .

By Theorem V.8.4 this implies that for every y in Y there is a unique 7(y)
in X and a unique scalar a( y) such that |a( y)| =1 and

T4(8,) = ()8,

By the uniqueness, a: Y = F and 7: Y —» X are well-defined functions.

2.2. Claim. a: Y —F is continuous.

If {y;} is a net in Y and y,— y, then 8, =8, weak* in M(Y). Hence
()0, ,,=T* 8 )>TH34,)=a(y)d, , weak* in M(X). In particular,

a(y;)=(1,T*@,))— (1, T*(3,)) = a(y), proving (2.2).
2.3. Claim. 7: Y — X 1s a homeomorphism.,

As in the proof of (2.2),1f y, —» y n Y, then a(y,)d, ,, = a(y)6,
weak * in M(X). Also, a(y;)— a(y) in F by (2.2). Thus §,,,=
a(y) " e y)8,,,]1 = 8., By (V.6.1) this implies that 7(y,)—>7(y), so
that 7: Y — X 1s continuous.

If y,y,€ Y and y,+# y,, then af yl)ﬁylaka( ¥, )8, . Since T#* is injec-
tive, it is easy to see that 7(y,)# 7(y,) and so 7 is one-to-one. If x € X,
then the fact that 7% is surjective implies that there is a p in M(Y) such
that 7' *y = §_. It must be that p € ext[ball M(X)] (Why?), so that u = Bﬁy
for some y in Y and B in F with |B] = 1. Thus 8, = T*(B6,) = Ba(y)9d,,)-
Hence B =a(y) and 7(y) = x. Therefore 7: Y — X is a continuous
bijection and hence must be a homeomorphism (A.2.8). This establishes
(2.3).

If f€ C(X) and y €Y, then T(f)(y) = (Tf,ﬁy) = (f,T*Sy) =
(fra(p)o. ) = a(¥)f(7(y). =
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§3. Compact Operators

The following definition generalizes the concept of a compact operator from
a Hilbert space to a Banach space.

3.1. Definition. If X and Y are Banach spaces and A :Z —> ¥ is a linear
transformation, then A is compact if ¢l A(ball X) is compact in Y.

The reader should become reacquainted with Section 11.4.
It is easy to see that compact operators are bounded.

For operators on a Hilbert space the following concept 1s equivalent to
compactness, as will be seen.

3.2. Definition. If X and Y are Banach spaces and A € #(Z, Y), then A

is completely continuous if for any sequence {x,} in X such that x,— x
weakly it follows that |[|[Ax,— Ax||— 0.

3.3. Proposition. Let X and Y be Banach spaces and let A € B(Z,Y).

(a) If A is a compact operator, then A is completely continuous.
(b) Zf X is reflexive and A is completely continuous, then A is compact.

Proovr. (a) Let {x,} be a sequence in X such that x,— 0 weakly. By the
PUB, M =sup,||x,| <o0. Without loss of generality, it may be assumed
that M < 1. Hence {Ax,} Ccl A(ball X). Since A is compact, there is a
subsequence {xnk} and a y in Y such that {|4x, — y|[[— 0. But x, =0
(wk) and A: (X, wk) = (%, wk) is continuous (1.1c). Hence Ax, — A(0) =
0 (wk). Thus y = 0. Since 0 1s the unique cluster point of {Ax,} and this
sequence is contained in a compact set, |[|Ax,||— 0. ‘

(b) First assume that X is separable; so (ball Z', wk) is a compact metric
space. So if {x,} is a sequence in ball X there is an x in X and a
subsequence { x, } such that x, — x weakly. Since A is completely con-
tinuous, ||4x, — Ax|| — 0. Thus A(ball X) is sequentially compact; that is,
A 1s a compact operator.

Now let X be arbitrary and let {x,}C ball X. If Z, = the closed linear
span of {x,}, then &, is separable and reflexive. If A, = A|%Z,, then A,:
4, — Yis easily seen to be completely continuous. By the first paragraph,

A, is compact. Thus {Ax,} = {A;x,} has a convergent subsequence. Since
{x,} was arbitrary, A is a compact operator. _

The fact that in the proof of (3.3b), A(ball X) was shown to be compact,
and hence closed, 1s a consequence of the reflexivity of A.
By Proposition V.5.2, every operator in #(/') is completely continuous.

However, there are noncompact operators 1in B(1Y) (for example, the
identity operator).
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There has been relatively little study of completely continuous operators
that I am aware of. Most of the effort has been devoted to the study of
compact operators and this 1s the direction we now pursue.

3.4. Schauder § Theorem. If A SHA(Z,Y) then A is compact if and only if
A* 18 compact.

PROOF. Assume A is a compact operator and let { y*} be a sequence in
ball Y *. It must be shown that { A*y*} has a norm convergent subsequence
or, equivalently, a cluster point in the norm topology. By Alaoglu S The-
orem, there is a y* in ball Y * such that y* —5> y™* (weak*®). It will be
shown that A*y* —> A*y* in norm.

Let €e> 0 and fix N > 1. Because A(ball X) has compact closure, there
arc vectors yi,..., ¥, in Y such that AallX) cU7_{rye€ Y: |y — yl
<¢e/3}. Since y¥ cl_ y* (weak*), there is an n> N such that [{y,,
y*¥—y*¥|<e/3for 1 <k<m Let X be an arbitrary element in ball X
and choose y, such that |JAx— y,||<e/3. Then

[, A%y* — A%y = [(Ax, y* =yl

S-KAx_yka * = Y >‘ l(yk&y ~ Vn >|
<2|[Ax — y,l| + /3 <e.

Thus ||A*y — A*y*|| <E
For the converse, assume A* 1S compact. By the first half of the proof,

A**. I** - @** s compact. It 1s easy to check that A = A**|Z is
compact. B

For Banach spaces X and %, %,(Z, Y) denotes the set of all compact
operators from X into ¥;%,( X) = #( X, X).

3.5. Proposition. Let Z,%, and & be Banach spaces.

(a) B Z,Y) is a closed linear subspace of B( X, Y).
b) If KERBN(Z,¥)and A€ B(¥,Z), then AK € B (X, Z).
Y IfKeB(Z,Y) and A € B(Z, X), then KA€ B,(Z, Y).

The proof of (3.5) 1s left as an exercise.

3.6. Corollary. If X is a Banach space, #,(Z) is a closed two-sided ideal in
the algebra S?(X).

Let Z4(Z, Y) = the bounded operators T: X = Y for which ran T is
finite dimensional. Operators in %oo( X, Y) are called operators with finite
rank. 1t is easy to see that Bp(Z, Y) T H,(Z, Y) and by (3.5a) the closure
of Boo(Z,%) is containedin By(Z,% ). Is By (X, % )densein B,(Z,¥ )?
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It was shown in (11.4.4) that if 5# is a Hilbert space, then %,(5#) is
indeed the closure of %Z,,(5¢). Note that the ability to find an orthonormal
basis in a Hilbert space played a significant role in the proof of this
theorem. There 18 a concept of a basis for a Banach space called a Schauder
basis. Any Banach space £ with a Schauder basis has the property that
Bo(Z) 1s dense in Z,(%Z). Enflo [1973] gave an example of a separable
reflexive Banach space 2 for which %,,(%) 1s not dense in #,(%), and,
hence, has no Schauder basis. Davie [1973] and [1975] have simplifications
of Enflo $ proot. For the classical Banach spaces, however, every compact
operator 1s the limit of a sequence of finite-rank operators.

The remainder of this section 1s devoted to proving that for X compact,
#B.,o(C( X)) 1s dense in Z,(C( X)). This begins with material that may be

familiar to many readers but will be presented for those who are un-
acquainted with 1t.

3.7. Definition. If X 1s completely regular and #C C(X), then & is
equicontinuous 1f for every € > 0 and for every x, in X there 1s a neighbor-

hood U of x, such that If(x) — f(x,)l<e for all x in U and for all f
in #.

Note that for a single function f in C(X), #={1} 1s equicontinuous.

The concept of equicontinuity states that one neighborhood works for all f
in &.

3.8. The Arzela-Ascoli Theorem. If X is compact and F C C(X), then % is
totally bounded if and only if % is bounded and equicontinuous.

PROOF. Suppose % is totally bounded. It is easy to see that & 1s bounded.
If e> 0, then there are fi,..., f, in & such that FcU;_ {f€ CX):
f — fil<e/3}. I x,€ X, let U be an open neighborhood of x, such that
for 1 <k<nand x in U,|f,(x)— f.(x,)|<e/3.If feF, let f, be such
that ||f — f.ll<e/3. Then for x in U,

lf(x)_f(xo)|~<—-lf(x)_fk(x)| + Uie(x) = fi(xp)l
+fi(xg) = f(x0)]

< E,

Hence & 1s equicontinuous.

Now assume that % is equicontinuous and % C ballC( X). Let > 0.
For each x in &, let U, be an open neighborhood of x such that
IHf(x) —fl y)<e/2for fin & and y in U,. Now {U,:x € X} 1s an open
covering of X. Since X 18 compact, there are points x,,...,x, 1n X such
that X = U7_,U, .

Let {af,...,a,} CD such that c1DCcU7_{a:|la—a,<e/2}. Let
B = all ordered n-tuples of scalars (B,,...,8,) such that { 8,,..., B8,}C
{ay,..., a}. (So B has m"” elements.) Let ¢,,...,¢, be a partition of unity
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subordinate to the cover {U,,...,U, } (V.6.5). For b=(By,...,B,)in B,
let g, = E?=lﬁj¢j'

3.9. Claim. FC U, £ |If —gll<e).

Note that (3.9) implies that % is totally bounded.

Forf in %, {f(x)),..., f(x,)}CclD. Pick b = (B,,...,B,)in B such
that |B,— f(x,)|<e/2 for 1 <j<n. If x €X, then L;¢(x) = 1 and so

£(x) = g,(x)) = If(x) - gﬁj%(xn

= é | f(x)_ B;] ¢j(x)

-

< 2L 1f(x) = Blle,(x)I.
Jj=1
Now if ¢,(x)> 0, x €U and so [f(x) - Bl <1f(x) = f(x)|+f(x;)—
B,| < e Hence |f(x) — g,(x)| < e for all x in X. That is, ||f — g8,/ <e.
N

3.10. Corollary. Zf X is compact and % C C(X), then & is compact if and
only if % is closed, bounded, and equicontinuous.

3.11. Theorem. Zf X is compact, then %,,(C(X))is dense in #,(C(X)).

Proor. Let T € #,(C( X)). Thus T(ball C( X)) is bounded and equicon-
tinuous by the Arzela-Ascoli Theorem. If e> 0 and x € X, let U, be an

open neighborhood of x such that |( Tf Jx) — (If } y)|<e for all fin
ballC( X) and y in U_. Let {xi,. .., x,}C X such that X QU;;lUxJ. Let
{®1,.-.,9,} be a partition of unity subordinate to {U,,...,U, }. Define T:
C(X) = C(X) by

0 = £(17)(x)e,

Since ran T, C V{ ¢,..., ¢, },T,€ B ,,(C( X)).
If f&€ ball C( X) and x € X, then

(T.f )(x) = (TF )(x)] = g[(Tf)(x;)—(Tf)(x)]qu(x)

n

< 2 WTF )(x,) = (Tf )(x)l9;(x)

j=1
< E

by an argument like the one used to prove (3.9). u
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If X is locally compact, then the operators on C,(X) of finite rank are

dense in H,(Cy( X)). See Exercise 18.

EXERCISES

L.
2.

10.

11.

12,

13.

14.

15.

16.

+*

If & is reflexive and A € B(%, %), show that A(ballZ) is closed in %.

Prove Proposition 3.5.

If A€ B,(Z,%), show that cl[ran A] is separable.

3
4. 1t A e€B,(Z,%) and ran A is closed, show that ran A is finite dimensional.
5.
6

If A €%B,(Z) and A is invertible, show that dim % < co.

. Let (X, £,pn) be a finite measure space, 1| <p<co,and 1/p+l/q=1.1f k:

X x X = IF is an £ x O-measurable function such that sup{ [|k(x, ¥)|?du(y):

x € X} <oo, then (Kf)( x) = fk(x,y)f(y)dp(y) defines a compact operator
on LZ(u).

Let (X, §,u) be an arbitrary measure space, | <p <co, and I/p + I/q = 1. If
ER: XX X > F is an § x Q-measurable function such that M =

1k (x, WP dp(x)P dp(3)]9 <00 and if (KFXX) = [k(x, ) f(¥)du(y),
then K € #,(L”(pn)) and || K| < M.

Let X be a compact space and let u be a positive Borel measure on X. Let
TeRB(LP(p),C(X)) where 1 < p< co. Show that if A: L?(p)—> L7(p) is
defined by Af = Tf, then A is compact.

. (B. J. Pettis) If & is reflexive and T€ Z(Z, I ), then T is a compact operator.

Also, if % is reflexive and T € #(cy, %), T is compact.

If X is compact and {fy,..., [1s&1,---» 8} © C(X), define k(x,y) =
2 1f;(x)g,(y)forx,y € X. Let p be a regular Borel measure on X and put
Kfix) = [k(x,y)f(y)dp(y). Show that K € Z(C(X)) and K has finite rank.

If X is compact, 2 € C( X X X), and ¢ is a regular Borel measure on X, show
that Kf (x) = (k(x, v) f (y) dp(y) defines a compact operator on C(X).

Let (X, £,p) be a u-finite measure space and for ¢ in L™(u) let M,
L?(p)— L?(p) be the multiplication operator defined in Example IIL.2.2. Give
necessary and sufficient conditions on (X, &, u) and ¢ for M¢ to be compact.

Let 7:[0,1] — [0, 1] be continuous and define 4A: C[0,1] — C[0,1]by Af = fo .
Give necessary and sufficient conditions on 7 for A to be compact.

Let A € #(c,) and let (a,,) be the corresponding matrix as in Exercise 1.7.
Give necessary and sufficient conditions on (a,.,,,) for A to be compact.

Let A 6.9?(11) and let (a...,,) be the corresponding matrix as in Exercise 1.8.
Give a necessary and sufficient condition on (a,) for A to be compact.

If (X, d) is a compact metric space and F C C(X), show that % is equicon-
tinuous if and only if for every &> O there is a § > 0 such that If(x) — f (y)|<e
whenever d( x,y) <8 and f€ 9.
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17.If X is locally compact and #C (,(X), show that & is totally bounded if and
only if (a) # is bounded; (b) # is equicontinuous; (¢) for every >0 there is a
compact subset K of X such that [f(x)] < e forall f in &% and x in X\ K.

18. If X is locally compact and A € #Z,(C( X)), then there i1s a sequence {A,,} of
finite-rank operators such that ||4, —A||— 0.

19. Let & be a Banach space and suppose there is a net { F } of finite-rank
operators on % such that (a) sup,||F]||<oo; (b) ||F,x—x||— O for all x in Z.
Show that if A € B,(%), then |FA— A||— 0 and hence there is a sequence
{A,} of finite-rank operators on % such that ||4,—A||— 0.

20, Let I < p <ooand let (X, £, 1) be a u-finite measure space. If A € B,(L7(n)),
show that there is a sequence {A,} of finite-rank operators such that ||A4, — A ||
— (. (Hint: Use Exercise 19.)

21. Let X be compact and let  be the collection of all pairs (C, F) where
C= {U,,...,U,} is a finite open cover of X and F={x,...,x,}C X such
that x, €U for 1 <j<n. If (G, F)) and ((,, F,) €%, define (C,, F)<
(C,, F,) to mean: (a) C, is a refinement of Cj; that is, each member of C, is
contained in some member of C,. (b) FCFK.If a = (C, F) € % let
{¢$,,.,9,} be a partition of unity subordinate to C. If F = {x,,., x,}/,
define 7 : C(X) — C(X) by

(T.)(x) = T 1(5)9/(x),

Then: (a) T, € By (C(X)); ®) IT )= L; (c) (%, is a directed set and {7:
ac} is a net; (d) [|T,f— f||— O for each f. Now apply Exercise 19 to
obtain a new proof of Theorem 3.11.

§4. Invariant Subspaces

4.1. Definition. If £ is a Banach space and T € #(XZ), an invariant
subspace for T is a closed linear subspace # of & such that Tx € #
whenever x € A. 4 is nontrivial if A # (0) or &. Lat T = the collection
of all invariant subspaces for 7. If &/ C #A(Z), then Lat &=} LatT:
T e},

This generalizes the corresponding concept of invariant subspace for an
operator on Hilbert space (11.3.5). Note that the idea of a reducing subspace
for an operator on a Hilbert space has no generalization to Banach spaces
since there 1s no concept of an orthogonal complement in Banach spaces.

4.2. Proposition.

(a) If #,, #,cLatT, then M N My = (M, + #,)ELatT and A,
NMH =M, NM, € LatT.
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b) Zf { A i€ Z}CLat T, then V{ M ;i€ Z}, the closed linear span of
J. M, and Af ;i€ Z}=N.H, belong to Lat T.

The proof of this proposition 1s left as an exercise. The proposition,
however, does justify the use of the symbol Lat to denote the collection of
invariant subspaces. With the operations v and A, Lat 7 1s a lattice (a)
that 1s complete (b). Moreover, Lat 7 has a largest element, X, and a
smallest element, (0).

The main question 1s: does Lat T have any elements besides (0) and X7
In other words, does 7T have a nontrivial invariant subspace? C. J. Read
[1984] has given an example of a bounded operator on /! that has no
nontrivial 1nvariant subspaces. This deep work does not completely settle
the matter. Which Banach spaces X have the property that there 1s a
bounded operator on X with no nontrivial invariant subspaces? If X 1is
reflexive, is Lat 7T nontrivial for every T in Z(%)? The question is un-
answered even 1f X 1s a Hilbert space. However, for certain specific
operators and classes of operators it has been shown that the lattice of
invariant subspaces 1s not trivial. In this section it will be shown that any
compact operator has a nontrivial invariant subspace. This will be obtained

as a corollary of a more general result of V. Lomonosov. But first some
examples.

43. Example. If X is a finite-dimensional space over C and T € #(%),
then Lat 7" is not trivial. In fact, let X = C¢ and let 7 = a matrix. Then
p(z) = det(T —z7I) 1s a polynomial of degree d. Hence it has a zero, say a.
If det(T —al) =0, then (T —al) is not invertible. But in finite-dimen-
sional spaces this means that 7 —«f is not injective. Thus ker(T —al) #

(0). Let A < ker(T —al) such that A # (0). If x € #, then Tx = ax €
M, s0 M < Lat T,

4.4, Example. If T[= (1)“1 on R?, then Lat 7 is trivial. Indeed, if

Lat 7 is not trivial, there is a one-dimensional space . in Lat 7. Let
M= {ac: a€R}. Since A € Lat T, Te = Ae for some A in R. Hence
T = T(Te) = ATe = N%e. But T? = —1, so -e = Ne and it must be that
A =—11if e # 0. But this cannot be if A is real.

It d > 3, however, and TEQ(R"), then Lat 7°1s not trivial (Exercise 6).

45. Example. If V:L?[0,1]— L?*[0,1] is the Volterra operator, Vf(x) =
[f(t)d:, and 0 <a< 1, put #_ = {f €L*[0,1]: f(f) = Ofor 0 <t<ga}.
Then A ,& Lat V. Moreover, it can be shown that Lat V ={.# 0 <a<
1}. (See Donoghue [1957), and Radjavi and Rosenthal [1973], p. 68).

46. Example. If S: /? —/[? i1s defined by S(a;,a,,..)=0, a,a,,...),
and A, = {x €l”. x(k)=0for1 <k <n}, then #, € LatS§.
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4.7. Example. Let (X,§2, p) be a uvu-finite measure space and for ¢ in
L=(p) let M, denote the multiplication operator on L7P(p), 1 < p<oo.If
Ae let #£,={fELP(p)f =0 ae [p]off A}. Then for each ¢ in
L=(p), My € Lat M,.

It 1s a difficult 1if not impossible task to determine all the invariant
subspaces of a specific operator. The Volterra operator and the shift
operator are examples where all the invariant subspaces have been de-
termined. But there are multiplication operators M, for which there 1s no
characterization of Lat M, as well as some M, for which such a characteri-
zation has been achieved. One such example follows: let u = Lebesgue area
measure on D and let (Af Y z) = zf( z) for f in L?*(p). There is no known
characterization of Lat A.

It 1s necessary at this point to return to the geometry of Banach spaces to
prove the following classical theorem.

4.8. Mazur S Theorem. If & is a Banach space and K is a compact subset of
Z, then co(K) is compact.

Proorvr. It suffices to show that E(K ) 1s totally bounded. Let €> O and
choose x;,...,x, in K such that K CcU7_;B(x;;e/4). Put C =
co{ xi,. .., x,}. It is easy to see that C is compact. Hence there are vectors
Yir-++s YV, in C such that C C U™ B(y;e/4). If w € co(K), there is a z in
co(K) with ||w—z||<e/4. Thus z = E;=1apkp, where k, € K, a, > 0,
and Xa, = 1. Now for each k, there is an x, , with ||k, —x, ,||<e/4.
Therefore

|
1 ] ~
o’
-
—
>~
g
|
v
<
B
" r—

!
2 = E apxj(p)
p=1
< 2 allk, = x|l

< &e/4.
But X a x,, € C so there is a y, with | a x;  —yl <e/4. The

triangle inequality now shows that co(K) CU’_ B( y,; E) and so EE(K) 1S
totally bounded. ®

The next result 1s from Lomonosov [1973]. When 1t appeared it caused
great excitement, both for the strength of its conclusion and for the

simplicity of its proof. The proof uses Schauder § Fixed-Point Theorem
(V.9.5).

4.9. Lomonosov § Lemma. Zf .« is a subalgebra of #(Z) such that 1 € o/

and Lat & ={(0),Z } and if K is a nonzero compact operator on %, then
there is an A in & such that ker( AK — 1) # 0.
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Proor. It may be assumed that ||K]| = 1. Fix x4 in £ such that [|[Kxy||> 1
and put S= {x € Z:||x —x4||<1}. It is easy to check that

4.10 0 & S and0 4 cl K(S).

Now if x €Z and x # 0, cl{ Tx: T € &/} is an invariant subspace for &/

(because 7 1s an algebra) that contains the nonzero vector x (because
1 € /). By hypothesis, cl{ Tx: Te«/}=%2. By (4.10) this says that for
every Y in ¢l K(S) there is a T in & with ||Ty — x,||< 1. Equivalently,

A K(S)cU {y: 1Ty — x,ll < 1}.
Texw

Because ¢l K(S) is compact, there are 73,...,7 in & such that
4.11 AdK(S)Yc U {y: 1Ty — x| <1}.
j=1
For y in ¢l K(S) and 1 <j<n, let a;(y) = max{0,1—||T y — x|}
By (4.11), ):;?=1aj.( y) > 0 for all y in cl K(S). Define bj: cl K(S) =R by

bj()’) = :j(y) ,

Z_: a,(y)

anddefine ¢:S8 = % by

P(x) = 'glbj(Kx)Y}Kx.

It1s easy to see that a It cl K(S) = [0, 1] is a continuous function. Hence bj
and ¢ are continuous.

If x €8, then Kx € K(§). It b;,(Kx)> 0, then a,(Kx)> 0 and so
|7,Kx — x4|{ < 1. That is, TKx& § whenever b,(Kx) > 0. Since S is a
convex set and L7_b,( Kx) =1 for x in S,

Y(S)C s.

Note that T,K € 4,(Z) for each j so that U7_,T;K(S) has compact
closure. By Mazur § Theorem, co(U’_;T;K(S)) is compact. But this convex
set contains Y ( S) so that cl Y (S) is compact. That is, ¥ 1S a compact map.
By the Schauder Fixed-Point Theorem, there is a vector x; in S such that
Y(x;) = x,.

Let B, =b(Kx,) and put A = L7_,B8T. So A € & and AKx; = Y(x;)

J

= x,.9ince x; ¥ 0 (Why?), ker(AK — 1) # (0). _

4.12. Definition. If T € Z(Z), then a hyperinvariant subspace for T is a
subspace # of £ such that A4 C # for every operator A in the
commutant of 7T, [T}, that is, AL C # whenever AT = TA.

Note that every hyperinvariant subspace for T is invariant.
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4,13. Lomonosov S Theorem. If Te #(Z), T is not a multiple of the
identity, and TK = KT for some nonzero compact operator K, then T has a
nontrivial hyperinvariant subspace.

Proor. Let &= {T }. We want to show that Lat &/ # {(0), 2 }. If this 1s
not the case, then Lomonosov S Lemma implies that there 1 an operator A
in & such that #'= ker(AK — 1) # (0). But #°€ Lat(4K) and AK|A" is
the identity operator. Since AK € Z,(Z), AK|AN € By(A"). Thus dim A
<o0. Since AK € &= [T} , for any x in A", AK(Tx)=T(AKx) = TX;
hence TA'C A", But dim A" < c¢c so that T|4” must have an eigenvalue A.
Thus ker(T —A)= A # (0). But # #2Z since Tis not a multiple of the
identity. It 1s easy to check that A 1s hyperinvariant for 7. _

414, Corollary. (Aronszajn-Smith [1954).). If K € B,(% ), then Lat K is
nontrivial,

The next result appeared in Bernstein and Robinson [1966], where 1t 1s
proved using nonstandard analysis. Halmos [1966] gave a proof using
standard analysis. Now 1t 1s an easy consequence of Lomonosov 8 Theorem.

4.15. Corollary. If X is infinite dimensional, A € (%), and there is a

polynomial in one variable, p, such that p(A) € B,(Z), then Lat A is
nontrivial.

PrROOF. If p(A) # 0, then Lomonosov S Theorem applies. If p(A) = 0, let
p(z) = «ay + ayz+ --.+a,z" a,# 0. For x # 0, let # =
V{x, Ax,..., A" 'x}. Since A = —a oy + a4+ - +a, A" x]
M € Lat A. Since x € #, # + (0), since dim A4 < o0, M + X . _

b

416. Corollary. If K|, K, € B,(Z) and KK, = K,K,, then K, and K,
have a common nontrivial invariant subspace.

E XERCISES

l. Let A, B, T'€ (%) such that TA = BT. Show that graph (T) € Lat(A & B).

2. Prove that A4 € Lat T if and only if # +€& Lat T*. What does the map A& — A+
of Lat 7 into Lat 7% do to the lattice operations?

3. Let {e, e, e;} be the usual basis for F3 and let a;, a,, 0, €F. Define T:
F’'->F° by Te, = ae,, | <j< 3. (a) If a,, a,, a; are all distinct, show that
A € LatT if and only if # = VE, where E C {e,,e,,e5)}. (b) If a, = a, # a;,
show that A& € Lat T if and only if # = A"+, where #'< V{ e,,e,} and

L< {ae;: a € F}.
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4. Generalize Exercise 3 by characterizing Lat T, where T is defined by Te, = a e,

| < j<d, for any choice of scalars a,., a; and where {e,, , e;}isthe
usual basis for F¥.
5. Let {e},...,e,} be the usual basis for F“,let {a},...,a, |} CF.IfTe,=aye,,,

for 1 <j<d—1and Te, =0, find Lat T.
6. 1f T € B(R?) and d > 3, show that 7 has a nontrivial invariant subspace.

7. Show that if 7T € (%) and £ is not separable, then 7 has a nontrivial
invariant subspace.

8. Give an example of an invertible operator 7 on a Banach space Z and an
invariant subspace 4 for T such that .# is not invariant for 7.

9. Let K € #,(%Z) and show that if € is a maximal chain in Lat K, then & is a
maximal chain in the lattice of all subspaces of I

§5. Weakly Compact Operators

5.1.  Definition. If X and % are Banach spaces, an operator 7 in Z(Z,% )
is weakly compact if the closure of T(ball X) is weakly compact.

Weakly compact operators are generalizations of compact operators, but
the hypothesis 1s not sufficiently strong to yield good information about
their structure.

Recall that in a reflexive Banach space the weak closure of any bounded
set 18 weakly compact. Also, a bounded operator 7: X -> Y 1s continuous 1f
both X and % have their weak topologies (1.1). With these facts in mind,
the proof of the next result becomes an easy exercise for the reader.

J.2. Proposition.

() If either X or Y is reflexive, then every operator in B(XZ, Y) is weakly
compact.

(b) If T: ¥ — Y is weakly compact and A € B(¥,%), then AT is weakly
compact.

(c) If T: &> Y is weakly compact and B € B(Z, X), then TB is weakly
compact.

This proposition shows that assuming that an operator 1s weakly compact
is not that strong an assumption. For example, if X 1s reflexive, every
operator in Z(Z') is weakly compact. In particular, every operator on a
Hilbert space is weakly compact. So any theorem about weakly compact
operators 1s a theorem about all operators on a reflexive space.

In fact, there 1s a degree of validity for the converse of this statement. In a
certain sense, theorems about operators on reflexive spaces are also theo-
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rems about weakly compact operators. The precise meaning of this state-
ment 18 the content of Theorem 5.4 below. But before we begin to prove
this, a lemma 1s needed.

Let Y be a Banach space and let W be a bounded convex balanced
subset of Y. For n> 1 put U, =2"W + 27 "int[ball#]. Let p, = the gauge
of U, (IV.1.14). Because U, 22 "int[ball% ], it is easy to check that p, is a
norm on Y. In fact, p, and }|-|| are equivalent norms. To see this note that
if ||y||< 1, then 27"y €U, so that p,(y) < 2 . Hence p,(y) <2"||y||- Also,
because W is bounded, U, must be bounded; let M >sup{|y|:y €U,}.
Soif p (v) <1, |yl < M. Thus ||y]| < Mp,(y),and JT , II and p, are
equivalent norms.

5.3. Lemma. For a Banach space Y let W,U,, and p, be as above. Let
R = the set of ally in Y such that |yll| =X, p,(¥)?]"? <. Then

@ W < {y il <1}

(b) (2, |l-l) is a Banach space and the inclusion map A: X — Y is
CORLINUOUS,

(c) A*¥: R** > Y** is injective and (A**)- (Y) = 9K,

(d) £ is reflexive if and only if cl W is weakly compact.

Proor. (a) If w €W, then 2"wE€ U,. Hence 1 > p, (2"w) = 2"p (W), so
p,(w) <277 Thus ||w]|’<X, (2" ")*< 1.

(b) Let %, = Y with the norm p, and put =D ,%, (111.4.4). Define @:
R—->Z by P(y)=(y,y, -..) It is easy to sec that @ is an isometry,
though it is clearly not surjective. In fact, ran @ ={(y,)€Z:y, =y, for
all n, mj). Thus % is a Banach space. Let P; = the projection of £ onto the
first coordinate. Then A = P;o® and hence A is continuous.

(¢) With the notation from the proof of(b), it follows that Z ** = @ % **
and @**: A** > F** 15 given by Q*F*(p**) = (A*¥*p** g**px* ).
Now the fact that @ is an isometry implies that ®* is surjective. (This
follows in two ways. One 1s by a direct argument (see Exercise 2). Also,
ran@%* is closed since ran@ is closed (1.10), and ran@* is dense since
L (ran@%*) = ker @ = (0).) Hence ker @** = (ran@%*) *+ = (0); that is, @**
i1s 1njective. Therefore A** 1s 1njective.

Now let y**& A** Y(#). 1t follows that P**y**=x € Z. Let {y,} be
a net in % such that ||y)||<|[y**|| for all i and y,— y** o(RB**, £*)
(V.4.1). Thus @**(y) —> @**(y**) o(Z **, & *). But ¢**(y,)=P(y,)e X
and @**(y**) = x. Hence ®(y,) = xo(Z,Z*). Since ran ¢ is closed,
X € ran@; let ®(y) = x. Then 0 = ¢**(y** — y). Since P** is injective,
Y = y & R,

(d) An argument using Alaoglu § Theorem shows that A*{ball #**) =
the o(% **, Y *) closure of A(ball #). Put C = A(ball ). Suppose ¢l W is
weakly compact. Now C C2%l W+2""ball Y ** and this set is
o(%** Y *) compact. From the preceding paragraph, A**(ball #£**)C
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2%l W + 27 "ball % **. Thus,

A**(ball Z**) C (Y[2%] W + 27 "ball ¥ **]

n=1
c () [#+2 "ball % **]
n=1

= %,

By (€), Z** = X and # is reflexive.
Now assume 2 is reflexive; thus ball £ is a( #, £ *)-compact. Therefore
C = A(ball #) is weakly compact in Y. By (a), cI Wis weakly compact.
|

The next theorem, as well as the preceding lemma, are from Davis, Figel,
Johnson, and Pelczynski [1974].

5.4, Theorem. If &, Y are Banach spaces and T € B(XZ, Y), then T is

weakly compact if and only if there is a reflexive space X and operators A in
B(R,Y) and B in B(X,X) such that T = AB.

Proor. If T = AB, where A, B have the described form, then 7T 1s weakly
compact by Proposition 5.2,

Now assume that 7 is weakly compact and put W = T(ball ). Define %
as in Lemma 5.3. By (5.3d), # is reflexive. Let A: 92— Y be the inclusion
map. Note that if x € ball £, then Tx € W. Hence 2"Tx €U, and so
1 >p (2"Tx) = 2"p (Tx). Thus p,(Tx)<2~" for x in ball . Hence if
x| < 1, | Tx|I? =X, p,(Tx)*< X4 " = ¢. So B: - R defined by Bx =
Tx1s a bounded operator. Clearly AB = T. n

The preceding result can be used to prove several standard results from
antiquity.

5.5. Theorem. If Z,Y are Banach spaces and T € B(Z,Y), the following
statements are equivalent.

(a) T is weakly compact.
(b) T**(fi’**)g Y.
(c) T * 1s weakly compact.

Proor. (a) = (b): Let # be a reflexive space, A EZB(R, %), and B €
B(L,X) such that T = AB. So T** = A**B¥** But A¥*%: % — Y**
since Z** = A. Hence A**¥ = A. Thus T** = AB** and so ranT ** C
ran A C Y.

(b) = (a): T*¥*(ballX**) is o(¥ ** Y *) compact by Alaoglu S Theorem
and the weak* continuity of T **. By (b), T**(ballZ **)=C is o(¥, % *)
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compact in Y. Hence T(ballZ)C C and must have weakly compact
closure.

(c) = (a): Let & be a reflexive space, C €EZ(¥*, ), D € B(F,X*)
such that T* = DC. So T** = C*D* D*. &** > ¥* and C*. ¥£*-
@ ** Put = cl D¥Z) and B = D*|Z; then B: £—> % and Z# is
reflexive. Let A = C*|%; so A: Z—>%** But if x€Z,ABx = C*D*x
=T**x =Tx €Y. Thus A: - Y. Clearly AB = T.

(a) = (c¢): Exercise. _

EXERCISES
1. Prove Proposition 5.2.

2. If # and & are Banach spaces and @: ¥ — % is an isometry, give an elementary
proof that @* is surjective.

3. Let & be a Banach space and recall the definition of a weakly Cauchy sequence
(V.4.4). (a) Show that every bounded sequence in ¢; has a weakly Cauchy
subsequence, but not every weakly Cauchy sequence in ¢; converges. (b) Show
that if 7€ %(c,) and T is weakly compact, then 7' is compact.

4, Say that a Banach space & is weakly compactly generated (WCG) if there is a
weakly compact subset K of £ such that & is the closed linear span of K. Prove
(Davis, Figel, Johnson, and Pelczynski, [1974]) that £ is WCG if and only if
there is a reflexive space and an injective bounded operator 7% — % such that
ran T is dense. (Hint: The Krein—Smulian Theorem (V.13.4) may be useful.)

5. If (X, £,p) is a finite-measure space, ke L*(X X X, £ X £,p X p), and K:

L'(p)— L'(p) is defined by (Kf)x) = [k(x,y)f(y)dp(y), show that K i s
weakly compact and K? is compact.

6. Let Y be a weakly sequentially complete Banach space. That is, if {y,}is a
sequence in Y such that {{y,, y*)} is a Cauchy sequence in F for every y* in
%> then there is a y in Y such that y, — y weakly [see (V.4.4)]. (a) If
T €eZB(X, Y) and x**e Z** such that x** is the o(Z**, Z*) limit of a
sequence from %, show that T**(x**)e . Let X be a compact space and put
& = all subsets of X that are the union of a countable number of compact G;
sets. Let = the linear span of {xy: FE # } considered as a subset of
M(X)* = C(X)**, (b) Show that if Te Z(C(X),¥), then T**(F)C Y. (¢
(Grothendieck [1953]) If T € Z(C(X), Y), then T is weakly compact. [Hint
(Spain [1976]): Use James S Theorem [(V.13.3)].



CHAPTER VII

Banach Algebras and Spectral Theory for
Operators on a Banach Space

The theory of Banach algebras 1s a large area in functional analysis with
several subdivisions and applications to diverse areas of analysis and the
rest of mathematics. Some monographs on this subject are by Bonsall and
Duncan [1973] and C. R. Rickart [1960].

A significant change occurs in this chapter that will affect the remainder
of this book. In order to prove that the spectrum of an element of a Banach
algebra is nonvoid (Section 3), it is necessary to assume that the underlying
field of scalars F is the field of complex numbers C. It will be assumed from
Section 3 until the end of this book that all vector spaces are over C. This
will also enable us to apply the theory of analytic functions to the study of
Banach algebras and linear operators.

In this chapter only the rudiments of this subject are discussed. Enough,
however, 1s presented to allow a treatment of the basics of spectral theory
for operators on a Banach space.

§1. Elementary Properties and Examples

An algebra over [ is a vector space & over [F that also has a multiplication
defined on it that makes & into a ring such that if a €F and a, b € ¥,
a(ab) = (aa)b = a(ab).

1.1. Definition. A Banach algebra is an algebra & over [F that has a norm
|- || relative to which & is a Banach space and such that for all a, & in &,

1.2 labl| < |lal] 1IB]|-
If o/ has an identity, e, then it is assumed that |le|| = 1.
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The fact that (1.2) is satisfied is not essential. If & is an algebra and has a
norm relative to which &/ 1s a Banach space and is such that the map of
A X of = defined by (a, b) — ab is continuous, then there is an equiv-
alent norm on &/ that satisfies (1.2) (Exercise 1).

If o7 has an identity e, then the map a> ae is an isomorphism of [ into
&/ and ||ael| = |a|. So it will be assumed that FC &/ via this identification.
Thus the identity will be denoted by 1.

The content of the next proposition is that if % does not have an identity,

it is possible to find a Banach algebra 2/, that contains <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>