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Pretace

Textbooks, even excellent ones, are a reflection of their times. Form and
content of books depend on what the students know already, what they are
expected to learn, how the subject matter is regarded in relation to other
divisions of mathematics, and even how fashionable the subject matter is. It
1s thus not surprising that we no longer use such masterpieces as Hurwitz and
Courant’s Funktionentheorie or Jordan’s Cours d’Analyse in our courses.

The last two decades have seen a significant change in the techniques used
in the theory of functions of one complex variable. The important role played
by the inhomogeneous Cauchy—Riemann equation in the current research has
led to the reunification, at least in their spirit, of complex analysis in one and
in several variables. We say reunification since we think that Weierstrass,
Poincare, and others (in contrast to many of our students) did not consider
them to be entirely separate subjects. Indeed, not only complex analysis
in several variables, but also number theory, harmonic analysis, and other
branches of mathematics, both pure and applied, have required a reconsidera-
tion of analytic continuation, ordinary differential equations in the complex
domain, asymptotic analysis, 1iteration of holomorphic functions, and many
other subjects from the classic theory of functions of one complex variable.
This ongoing reconsideration led us to think that a textbook incorporating
some of these new perspectives and techniques had to be written. In particular,
we felt that introducing 1deas from homological algebra, algebraic topology,
sheaf theory, and the theory of distributions, together with the systematic use
of the Cauchy—Riemann J-operator, were essential to a complete under-
standing of the properties and applications of the holomorphic functions of
one variable.

The idea that function theory can be integrated into other branches of
mathematics is not unknown to our students. It 1s our experience that under-



Viil Preface

graduates see many applications of complex analysis, such as the use of partial
fractions, the Laplace transform, and the explicit computation of integrals and
series which could not be done otherwise. Graduate students thus have a
powerful motivation to understand the foundation of the theory of functions
of one complex variable.

The present book evolved out of graduate courses given at the universities
of Maryland and Bordeaux, where we have attempted to give the students a
sense of the importance of new developments and the continuing vitality of
the theory of functions. Because of the amount of material covered, we are
presenting our work in two volumes.

We have tried to make this book self-contained and accessible to graduate
students, while at the same time to reach quite far into the topics considered.
For that reason we assume mainly knowledge that 1s found in the under-
graduate curriculum, such as elementary linear algebra, calculus, and point
set topology for the complex plane and the two-dimensional sphere S°.
Beyond this, we assume familiarity with metric spaces, the Hahn-Banach
theorem, and the theory of integration as it can be found in many introductory
texts of real analysis. Whenever we felt a subject was not universally known,
we have given a short review of it.

Almost every section contains a large number of exercises of different levels
of difliculty. Those that are not altogether elementary have been starred.
Many starred exercises came from graduate qualifying examinations. Some
exercises provide an insight into a subject that is explained in detail later in
the text.

In the same vein, we have made each chapter, and sometimes each section,
as independent as possible of the previous ones. If an argument was worth
repeating, we did so. This is one of the reasons the formulas have not been
numbered; when absolutely essential, they have been marked for ease of
reference in their immediate neighborhood. There are some propositions and
proofs that have also been starred, and the reader can safely skip them the
first time around without loss of continuity. Finally, we have left for the
second volume some subjects that require a somewhat better acquaintance
with functional analysis.

Let us give a short overview of this volume. Some of the basic properties
of holomorphic functions of one complex variable are really topological in
nature. For instance, Cauchy’s theorem and the theory of residues have a
homotopy and a homology form. In the first chapter, we give a detailed
description of differential forms (including a proof of the Stokes formula),
homotopy theory, homology theory, and other parts of topology pertinent to
the theory of functions in the complex plane. Later chapters introduce the
reader to sheaf theory and its applications. We conclude Chapter 1 with the
definition of holomorphic functions and with the properties of those functions
that are immediate from the preceding topological considerations.

In the second chapter we study analytic properties of holomorphic func-
tions, with emphasis on the notion of compact families. This permits an early
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proof of the Riemann mapping theorem, and we explore some of its con-
sequences and extensions. The class S of normalized univalent functions is
introduced as an example of a compact family. A one-semester course in
complex analysis could very well start in this chapter and refer the student
back to selected topics as necessary.

In the third chapter we consider the solvability of the inhomogeneous
Cauchy—Riemann equation. As a corollary we obtain a simple exposition of
ideal theory and corresponding interpolation theorems in the algebra of
holomorphic functions. We also study the boundary values of holomorphic
functions in the sense of distributions, showing that every distribution on R
can be obtained as boundary value of a holomorphic function in C\R. (An
appendix to this chapter gives a short introduction to the concepts of distribu-
tion theory.) The Edge-of-the-Wedge theorem, an important generalization of
the Schwarz reflection principle, 1s proven. These 1deas lead directly to the
theory of hyperfunctions to be considered in the second volume. We conclude
this chapter with a totally new approach to the theory of residues.

In the fourth chapter we develop the theory of growth of subharmonic
functions in such a way that Hadamard’s infinite product expansion for
entire functions of finite order is generalized to subharmonic functions. We
give a.proof due to Bell and Krantz of the fact that a biholomorphic map-
ping between smooth domains extends smoothly to the boundary. This 1s
used to prove simply and rigorously properties of the Green function of a
domain.

In order to develop fully the concept of analytic continuation, Chapter 5
has a short introduction to the theory of sheaves, covering spaces and Rie-
mann surfaces. Among the applications of these ideas we give the index
theorem for linear differential operators in the complex plane. This chapter
also contains an introduction to the theory of Dirichlet series.

In the second volume the reader will find the application of the ideas
and methods developed in the present volume to harmonic analysis, func-
tional equations, and number theory. For instance, elliptic functions, mean-
periodic functions, the corona theorem, the Bezout equation i1n spaces of
entire functions, and the Leroy—Lindelof theory of analytic continuation
and 1ts relation to functional equations and overconvergence of Dirichlet
series.

This being a textbook, it 1s impossible to be entirely original, and we have
benefited from the existence of many excellent monographs and even un-
published lecture notes, too many to give credit to all of them in every instance.
The list of references contains their titles as well as those of a number of
research articles relevant to the subjects we touched upon. In a few places we
have also tried to steer the reader into further lines of study that were naturally
related to the subject at hand, but that, due to the desire to keep this book
within manageable limits, we were compelled to leave aside.

Almost everything that the reader will find in our book can be traced in
one¢ way or another to Ahlfors’ Complex Analysis. When 1t appeared, it
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changed entirely the way the subject was taught. Although we do not aspire

to such achievement, our sincere hope is that we have not let him down.
Finally, we would like to thank Virginia Vargas for the excellent typing and

her infinite patience. A number of our friends and students, among them, F.

Colonna, D. Pascuas, A. Sebbar, A. Vidras, and A. Yger, have gladly played
the role of guinea pigs, reading different portions of the manuscript and offering

excellent advice. Our heartfelt thanks to all of them.

Carlos A. Berenstein Roger Gay
Bethesda, Maryland Saucats, La Brede
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CHAPTER 1

Topology of the Complex Plane and
Holomorphic Functions

§1. Some Linear Algebra and Differential Calculus

The complex plane C coincides with R* by the usual identification of a
complex number z = x + iy, x = Re z, y = Im z, with the vector (x, y). As such
it has two vector space structures, one as a two-dimensional vector space over
R and the other as a one-dimensional vector space over C. The relations
between them lead to the classical Cauchy-Riemann equations.

Let ZRr(C, R) be the space of all R-linear maps from C into R. These maps
are also called (real) linear forms. It 1s clear that Z,(C, R) 1s an R-vector space.
Moreover, since {1,i} forms an R-basis for C, the pair of linear forms

dx:h—Reh and dy:h—Imh

constitutes a basis for Z(C, R).

Let £Rr(C)denote the space of all R-linear maps of C into itself. It is a vector
space of dimension 4 over R and dimension 2 over C. One way to see this is
the following. The inclusion R < C allows us to consider Z,(C, R) as an

R-linear subspace of £R(C). We can decompose a form L € ¥,(C) as L =
Re L 4+ iIm L. Hence, as real vector spaces

Zr(C) = Zg(C, R) ® i ZR(C, R),

and we see immediately that dimz %R(C) = 4. Moreover, any R-basis of
Zr(C, R) 1s a C-basis of #,(C) and, conversely, any C-basis of Z,(C) consist-
ing of real-valued mappings is an R-basis for Z,(C, R). In particular, the pa:r
{dx,dy} is a C-basis for F(C).

We shall consider now the complex subspace Z(C) of #x(C) consisting

of those linear forms which are C-linear. Observe that a linear form L =
Pdx + Qdy e Lx(C) 1s C-linear if and only if
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L(ih) = iL(h)
foreveryh e C. Writingh = h, + ih,,h,,h, € R,wefindih = —h, + ih, and
L(ih) = — Ph, + Qh,,
while

iL(h) = i(Ph, + Qh,) = iPh, + iQh,.

Therefore, L € ¥:(C) if and only if Q = iP. Define the linear form
dz .= dx + idy,

dz e Y:(C)and L = Pdz whenever Q = iP. In particular, Z(C) has complex
dimension 1 and real dimension 2.

Finally, let us denote by Z¢(C) the subspace of ¥(C) of C-antilinear
transformations. That is, L(ah) = aL(h)for every a,h € C. The involutionz —» z
can be extended from C to ¥(C), and it exchanges the subspaces #¢(C) and
Zc(O). It provides a direct sum decomposition (as real vector spaces):

gR(C) — g’c(@) D ,Sf’c(([:).

The linear form dz = dx — idy is in %(C and it is usually denoted dz. It
is immediate to vertify that {dz,dZ} is also a C-basis of Z(C).

As an illustration of this, let us consider the formulas for the change of
basis. When we write an element L € Z,(C) in terms of those two bases we
have

L=Pdx+ Qdy =Adz + Bdz,
where P, Q, A, B € C are related by the equations
A=3P—iQ), B=3P+iQ)
P= A+ B, O =i(A — B).

The transformation L is C-linear, i.c., L € £¢(C), if and only if B = 0. This i1s
the familiar Cauchy-Riemann condition found earlier:

1
P="l"Q.

When we identify C to R?, then L correpsonds to a 2 x 2 real matrix [Z ZJ,
related to the preceding representation by

P =a + ib, Q=c+id

The Cauchy-Rieman condition takes the more familiar form of the pair of
equations:
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Thus, the C-linear transformation of multiplication by P = a + ib € C has the

. . a —b
matrix representation [ L ]
a

It is also clear from these computations that #(C) n Zx(C, R) = {0}, i.e.,
the only real-valued C-linear transformation of C is the identically zero map.

We denote by Z(R* x R?, C) the complex vector space of the alternating
R-bilinear mappings from R? x R? into C.

Recall that if h = (h,h,) e R?, k = (k,,k,) € R%, and B e #(R* x R?, C)
then h - B(h,k) and k — B(h,k) are R-linear and B(h,k) = —B(k,h). An
example of such a map is:

hl kl
h2 k2
We can generate other R-bilinear maps by the following procedure: If

#,0 € LR(C), then we define the wedge product (or exterior product) ¢ A 0,
as the element in Z(R? x R?2,C) given by

¢(h) 0O(h)
p(k) 0O(k)

In this notation the previous example is simply dx A dy.

Let us see that {dx A dy} is a C-basis for #(R* x R? C) and hence,
dim.%(R* x R? C) = 1. It is evident that dx A dy # 0. Moreover, elemen-
tary calculation shows that for any B € #(R* x R?, C) we have

B = B(e;,e,)dx A dy,

where e; = (1,0) and e, = (0, 1).
One verifies that the mapping

Za(C) x Zg(C) > B(R? x R?,C)
(9,0) 9 A O

is also R-bilinear and alternating. This proves the distributivity of the wedge
product with respect to the sum and shows ¢ A ¢ = O for every ¢ € FR(C). In
particular,

B(h, k) = det( ) — h,k, — h,k,.

(@ A 0)(h,k) = det( ) = ¢(h)0(k) — ¢(k)0(h).

dx Ndx =dy Andy=dz Andz=dzZ A dZ =0,

dx A dy = —dy A dx,
and

dz ANdZ = —dzZ AN dz = —2idx A dy,

which shows that {dz A dZ} is also a C-basis for Z(R* x R?, C).

Let 2 be an open subset of C and E a normed space defined over R. A
mapping f:Q — E 1s said to be differentiable at a € Q if there 1s a linear
transformation L € ¥R(C, E) (the space R-linear transformations from C into
E) such that for every h € C of absolute value sufficiently small we have



4 1. Topology of the Complex Plane and Holomorphic Functions

fla + h) = fla) + L(h) + |h|e(h),

where lim ¢(h) = 0. If such an L exists, it is unique and one calls it the derivative
h—0

of f at the point a. It 1s denoted Df(a).

If f 1s differentiable at every point a e Q we can define a function
Df:Q —» Z,(C, E) by a+—> Df(a).

Recall that Z(C, E) 1s also a normed space with the norm

|ull = sup [[u(h)|g,

lh} <1

where ||z 1s the norm 1n E. Since every R-linear map u : C — E is continuous
due to the finite dimensionality of C, it follows that |u| is well defined for
every u € Lg(C, E).

It 1s easy to see that if f: Q — E is differentiable (everywhere in Q) 1t is
continuous. One says that f is continuously differentiable, or f is C' (or
f e CY(Q)), if f is differentiable and Df is continuous. One says that f is twice
differentiable if f i1s differentiable and its derivative Df: Q — Z(C, E) is also
differentiable. It is clear that if f is twice differentiable then it is C!. One says
that f is twice continuously differentiable, or f is C?, if Df is itself C'. These
notions can be recursively extended to any integer kK > 1, and even k > 0 if
one agrees to say f is C° when f is continuous. One says f is C*®, or infinitely
differentiable, if f is C* for every k > 0.

Let f:Q—>E, a=a, + ia, €). We say f has a partial derivative with
respect to x at the point a if the function %2 (x) := f(x, a,) is differentiable, as

of

a function of the real variable x, at a,. Denote by I ——(a) the R-linear trans-

formation D(f“?)(a,). In the same way we can define the partial derivative

%, 0
with respect to y. One has: —a—£ (a) e ZR(R, E) and f(a) e Zr(R, E). We can

identify (R, E) to E, and with this 1dentification in mlnd one can verify that
if f 1s differentiable at the point a, then it admits both partials at a and

0 0
Df(@) = o (@) o dx + £ (@) o dy

f(a)dx + —f(a)dy,

where we allow the multiplication of the vectors in E by (real) scalars to take
place also on the right. The reader should recall that a sufficient condition for
the function to be differentiable at a 1s that both partial derivatives are
continuous at the point a.

EXERCISES 1.1

1. Write down the 2 x 2 real matrix corresponding to the C-linear transformation
z— ez (0 € R). Compute its determinant.
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2. Let f: C - C be defined by f(0) = 0, f(z) = —-for z # 0. Show fis C! and find the
points where Df 1s C-linear.

3. Is the function f(z) = z°|z|™* (z # 0), f(0) = 0, continuous at z = 0? Is it differenti-
able at z = 0?

§2. Differential Forms on an Open Subset Q of C

1.2.1. Definitions

1. A differential form of degree 0 and class C*in Q (k e N U {o0}) is a function
f:Q — C which is C* in Q. We will denote by &7 (Q), for simplicity &, (Q), the
set of all differential forms of degree 0. If k = co we will omit it from the
notation.

2. A differential form of degree 1 and class C* in Q is a function
w: Q- Zr(C)of class C*in Q. We denote by &; (Q) the set of these differential
forms, omitting the index k if k = oo.

A differential form of degree 1 in 2 can be written in a unique way as

w=Pdx+ Qdy=Adz + Bdz

where P, Q, A, and B are complex-valued functions in Q of the same class as w.
3. Let f:Q — C be a differentiable function. One denotes by df, the differ-
ential of f, the differential form of degree 1 given by

o f
df = -—-—dx + — 6y
If we express df in terms of the basis dz, dz, its coefficients will be denoted
0
65 and po= by analogy with the previous expression:
df = fdz + -—-[
62

The elementary calculation of change of basis mentioned in §1 gives the
relations

of (af 1 af)
2

0z 2\0x i Oy
of 1(of 1of
oz 2\ox iody)

Note that —f- and — g

- P are not partial derivatives of f with respect to the
Z Z
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“variables” z and z, but rather the result of applying to f the differential

operators.
0 _1(0 120 0 1(da 10
gz 2\ox iady) 0z 2\ox idy)

One verifies easily the following relations (all the functions appearing here
are assumed to be differentiable):

0 - Ou 0v 0(Au) , ou
52‘(“"‘1})—&"‘5‘2", az —)wé—z- (AEC),
0 ov ou 0 o oa_gOU
a—z-(u v)—ué—5+v&, a—z-(u ) = nu P (n € Z2),
auv B uav
0 (u) 0z 0z
oz\v) ve
. 0 . o .. .
all of which hold when e 1s replaced by P Similarly,
d(u + v) = du + dv, d(u-v) = udv + vdu,
d(u") = nu"! du, d(g) = vduv—z- udv, and

0 0
d(fog) = (-—é-gog)dgl T (a—io )d92,

where f:Q - C and g: Q" — Q are differentiable, QQ and Q' are open subsets
of C,and g = g, + ig,. Furthermore, one has

d(fog)= (go g)dg + (—(go g)dﬁ-

Writing { = & + in as the variable in Q' and z = x + iy the variable in {2, and

usingdg, = 56961 d¢ + %in dn and a similar expression for g,, one can also write
0 0 0 0
oo (4 (50) %)
of 091 of 09,
(o)t (500) %)
and
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Occasionally we will need to use the relations

ou Ou L ou Ou

oz 0z 0z 0z
4. A differential form of degree 1, type (1,0), and class C* in Q, is a function
w: Q - Z:(C) of class C*. The space of these forms is denoted &;'°(Q). The

differential forms of type (0, 1) are the functions w : Q — £:(C). The corre-
sponding space is denoted &} (Q2). We evidently have

Ex(Q) =& Q) @ & ()

Every element w e &:'°(Q) (resp. &2'1(Q)) can be written as w = Adz
(resp. w = Bdz) with A, B complex-valued functions of class C* in Q.

5. A differential form of degree 2 and class C* in Q is a mapping
w: Q- B(R* x R? C)of class C*. The space of all these forms will be denoted
&7 (Q) (omitting k when it is c0). By the preceding remarks, a differential form
of degree 2 and class C* can be written in a unique way

w=Cdx Andy=Ddz A dz,

where C, D : Q — C are functions of class C~.

Later on we will consider differential forms with coefficients less regular
than continuous. For instance, one can speak about differential forms with
coefficients that are locally integrable (with respect to the Lebesgue measure)
in Q. We will denote these spaces (Li .(Q))°, (L. (Q)*, (Li,.(Q)'°, (L (Q))%!
(L;..(Q))*. In other cases we will use corresponding notations without further
comments.

We have already introduced the differential form df, the differential of a

differentiable function f. The differential defines, for k > 1, a mapping:
d:&(Q) - & _(Q)
fdf,
which can be decomposed into the sum of two mappings
0: 6, (Q) > &5

fr0f = ggdz

and
0:&0(Q) - &1 (Q)
_ 0
fro0f = ——édf
0Z

so thatd = 0 + 0.
One extends to the space of 1-forms of class C* the operation of wedge
product
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8, (Q) x 8, (Q) - &L (Q)
(w1, W)Wy A Wy,

where (0, A ®,)(2) ;= w,(2) A w,(z) for all ze Q. If w, = P;dx + Q,dy =
A;dz + B,dz and w, = P,dx + Q,dy = A,dz + B, dz then

601 N\ COZ — (P1Q2 — Ple)dx AN dy — (A1B2 — AzBl)dZ AN dE.

One can also introduce the exterior differential, or differential for short. It
is a mapping, still denoted d, d : & (Q) = &7_,(Q) (k > 1) defined by

dw :=dP A dx + dQ A dy,

if w = Pdx + Qdy. Since w can also be written as Adz + Bdz we have the
relations

P
dw =dA A dz + dB A dzZ = 6Q_6 dx A dy = aB—af_l dz A dz
ox 0Y 0z 02

and, for any function f of class C¥,
d(fw) =df A w + fdw.
Let us also consider here operators 8, 0 for which d = ¢ + 9, where:
0:84(Q)— &1 (Q)

W 0A /\dz+6B/\dE=gBdZ/\dE
Z

and
0:8L(Q) - &2_,(Q)

w—0A Adz + 0B A dzZ = -——g;dz A dzZ.

For k > 2 it makes sense to consider the composition of the mappings:
ENQ) S &, (Q) > 67,(Q)
One has d* = d o d = 0 since

of )_( o oy
6y - \0xdy Oydx

which is zero by the theorem of Schwarz on the identity of the mixed partials.
Therefore, a necesssary condition for w = Pdx + Qdy € &;_,(Q) (k > 2)
to be of the form w = df for some fe&(Q) is that dw =0 (that is,

@0 d () = ) = a L ax + Jax n ay

%, OP

88 — 3y = (). This condition is not suflicient as shown by the well-known
dy — vd d |

example: = C\{O} and o = - J; yzx (01' W = —-——Z-). See Exercise 1.2.6

herein. X“ Ty z
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6. Letw e &L(Q) (j = 1,2, and k > 0). A differential form a € &3 () such
that w = da 1s called a primitive of w.

7. A differential form w € &, (Q) (k > 1) such that dw = 0 is called a closed
form. A form admitting a primitive is called on exact form. The previous
remarks indicate that every exact 1-form of class C! is closed.

Recall that an open set Q is called star-shaped (with respect to the origin)
if for every z € Q the line segment [0,z] = {tz:t € R,0 <t < 1} is completely
contained 1n Q.

1.2.2. Propositon (Poincare’slemma). Let € be a star-shaped open set. We have:

(@) every w € & (Q) (k > 1) that is closed is exact.
(b) every a € £2(RQ) (k > 0) is exact.

PROOF. (a) Let w = Pdx + Qdy and define

1

f(x,y) = xf P(tx,ty)dt + y fl Q(tx,ty)dt.

O

It 1s legitimate to take derivatives under the integral sign due to the differenti-
ability hypothesis assumed on w (hence on P and Q). One obtains

1 1 9P 1 5
iﬁj{(x, y) = J P(tx,ty)dt + x f 0 (tx,ty)tdt + y J Q(tX, ty)t dt.
0X X 0X

0 0o O 0
0Q 0P

Since dow = 0 means that
ox 0y

, we have

of 1 L/ AP OP
3 6 Y) = J P(tx,ty)dt + f (x 7 U6t +y 5y (£, ty))tdt-

O 0

L. . d
The expression 1n brackets can be rewritten as d_t(P(tx’ ty)). Therefore

if_(x, y) = J | P(tx,ty)dt + f | ti(P(tx, ty))dt,
0X o dt

O

which we can simplify by integrating by parts the second integral, so

a 1 1
I (x,3) = f P(tx, ty)dt + (tP(tx, 1Y)} — f P(tx, ty)di = P(x, y)
0 0
. of . .
One shows in the same way that 3y = (. This proves (a). Note the essential

way the geometric hypothesis on Q was used to define f.
(b) Let a = Cdx A dy, set

0(x, y) = (—y Jl tC(tx, ty)dt) dx + (x Jl tC(tx, ty)dt) dy.

0 0
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We can again differentiate under the integral sign and obtain

1 1 aC
do(x,y) = (2 J tC(tx, ty)dt + x J t> = (tx,ty)dt

O O

1
+ yJ t* ac(tx, ty) dt) dx A dy
o Oy

1 1
= (2 J tC(tx,ty)dt + J tZ%(C(tx, ty))dt) dx A dy
0

0
1

1
= (2 J tC(tx,ty)dt + (t*C(tx,ty))s — 2 J tC(tx,ty) dt) dx A dy

O O

= C(x,y)dx A dy = a. ]

We will return to the problem of deciding when a closed 1-form is exact in

§1.9 later.
We shall now define the pull-back or inverse image of a differential form by

a differentiable mapping. For simplicity, we will always assume the mapping
to be of class C®. In order to proceed we need to consider the notion of a
differential form on an open subset U of R. A differential form of degree O and
class C*is simply a function f: U — C of class C*. A differential form of degree
1 and class C* is a function w: U - Z(R, C) of class C¥, where ZR(R,C) is
the space of R-linear transformations of R into C. The space ZR(R,C) 1s a
complex vector space isomorphic to C. In fact, it has the basis {dt}, dt (s) = s
for s € R. A differential form w of degree 1 can be written w = gdt,g: U —» C
of class C*. An example is the differential df = f’'(t)dt of a differentiable
function f on U.

We consider three separate cases in order to define the inverse image of a
differential form.

1.2.3. Inverse Image: The case of a Mapping y: Q, — Q,
of Class C* Between Two Open Subsets of R

The inverse image by y of a differential form of degree 0, g: Q, — C, 1s the
form of degree O:

y*g:Qy - C
Y*g:=goy.

The inverse image by y of a differential form of degree 1, w = g dt, is the
differential form of degree 1:

y*w:=(goy)dy =(govy)y dt

defined in Q, . Note that if {a, h) denotes the action of the map « on the vector
h, then for h e R,
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y*oo(t), h) = {w(y(t),y'(E)h).

If g is of degree 0 and class C*, k > 1, one verifies that
y*(dg) = d(y*9g).

1.2.4. Inverse Image: The Case of a Mapping y: Q, —» Q,, Q,
Open Set1in R, €2, Open 1n C, y of Class C®

For a differential form of degree 0, g : Q, — C, the definition is the same as in
§1.2.3, y*g=goy. If w = Pdx 4+ Qdy, then its inverse image by y 1s the
differential form of degree 1 in 2, given by

y*w = (P oy)d(xoy)+(Qoy)d(yeoy)
Ify=(y,,y,) =7y, + iy, we then have

Y*w = ((P o y)y; + (Q o y)y3)dt.

One can also verify that d(y*g) = y*(dg)for g : Q, — C of degree 0 and class
C* (k > 1). One also has for he R

Y*ro(t), hy = a(y(®),y' () (h)).

1.2.5. Inverse Image: The Case of a Mapping y: Q, — (),
of Class C®, Where Q),, QQ, are Open Subsets of C

We continue defining y*g = g o y for g : 2, — C a differential form of degree
0. For a 1-form w = Pdx + Q dy we have

y*w = (Poy)d(xoy)+ (Qoyd(yory)

B 074 07, 074 07,
—((P ) 5 +(Q o) ag)di + ((P ) o +(Q o) o an
where y =7y, + iy, and { = & + in denotes the variable in ;. A formula

similar to that in §1.2.4 can be obtained if we represent w by Adz + Bdz (see
Exercise 1.2.3).

For a differential form w of degree 2, w = Adx A dy, y*w is defined by

0y, 0 0y, 0
Yo = (Aoy)dy, Ady,=(Ao 7)( ayg ay’; — aynl ayg) dé A dn.

One can see that if J(y) denotes the Jacobian determinant of y, as a map
R? —» R?, then

y*w = (Ao y)J(y)dS A dn.
It 1s now possible to verify that if the degree of w 1s 0 or 1 then

d(y*w) = y*(dw).
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It is also true that if w has degree 1 and h, k are two vectors in R?, then

Y*a(C), hy = <w(y(£)),y'(C)(h)),

where 7y’ 1s the derivative of y. If w has degree 2, then {y*w({),(h, k)) =
Lo((0)), (y'(O)(h), y'({)(k))). In the same vein, it 1s not hard to see that

y¥(@) A @) = y*0; A YR,

As an example, let us verify d(y*w) = y*(dw) for a form w = Pdx + Qdy of
degree 1. We assume the distributivity of the inverse image with respect to
the wedge product and that the formula has been verified for degree O.

We have:

d(y*w) = d((P o y)dy, +(Q ° y)dy,)
=d(Poy) Ady, + (Poy)d?y; +d(Qoy) A dy, +(Qoy)d?y,
= d(y*P) A d(y*x) + d(y*Q) A d(y*y)

= Y*(dP) A y*(dx) + y*(dQ) A y*(dy)
= y¥(dP A dx + dQ A dy) = y*(dw).

In summary, the inverse mapping y* is a linear transformation between
differential forms of the same degree, which commutes with the operations of

exterior derivative d and wedge product.

1.2.6. Example (Polar Coordinates). Consider 2, = ]0, o[ x R as an open
subset of R* with variables denoted (p, 6), Q, = C* = C\{0}. Lety:Q, - Q,
be given by

y1(p,0) =pcosf  and  y,(p,0) = psind,

hence y(p, 0) = pe'’. We remind the reader that if z = x + iy = pe®, then

p=|z| = \/xz + y? = \/Z_f is the absolute value of z and 6 = argz 1s the
argument of z. When we can choose 6 € ]—=n, n[, we denote it by Argz, the
principal value of the argument.

xdy — ydx

x* + y?
y*w = db and d(y*w) = 0.

For w = . we have

1.2.7. Remark. The notion of inverse image makes sense for forms of class C*
if y is of class C’, j > k.

1.2.8. Definitions. 1. Let Q be an open subset of C. A pathin Q is a continuous
function c: [0, 1] — Q. The point ¢(0) is called the starting point of the path.
The point ¢(1) is the endpoint.

2. The set of all paths in Q is the set ([0, 1], Q) of all continuous functions
in [0, 1] with values in Q.
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3. We say a path c is piecewise-C’ (j > 1) if there is a partition ¢:0 =
to<t;<--<t,=1 of the segment [0,1] such that all the functions
¢, .= c|[t._q, ] are of class C’. (This means that all the derivativesin Jt,_, [
extend continuously to [t,_,,t, ]. Equivalently, there is a C’ function in an
open interval which restricts to ¢, in the closed interval.)

4. Let w € & (Q) and let ¢ be a piecewise-C’ path in Q (j > 1). Then we can
define the integral of w along c by:

J W .= Z Jk cr(w) = g Jk {a(c(t)), ci(t)) dt.

1<k<n Jt, Lic— 1

One can verify without any difficulty that the value thus obtained is indepen-
dent of the chosen partition ¢ of c. In fact, by introducing an extra point
T € Jt,_, ;[ we have

[ o[ o "o

If 0, and o, are two partitions associated to ¢, one compares the value
associated to each of them with the value corresponding to the partition
o, U 0,.

5. A path can also be defined as a continuous (or piecewise-C’) map
c:[a,b] = Q. A change of parameterization is a strictly increasing C' map
¢:[c,d] - [a,b]. We obtain a new path ¢p*c whose image 1n €, starting point,
and endpoint coincide with those of c. Clearly we can define the integral of a
form w along ¢ in the same way as earlier and we find without difficulty that

J’ a) B J a),
C Q*c
that is, the value of the integral 1s independent of the parameterization.

1.2.9. Proposition (Barrow’s Rule). Let ¢ be a piecewise-C' path in Q and
f e &L (Q). Then

J df = f(c(1)) — f(c(0)).

PrOOF. Let us choose a partitiono: 0 =t, < :-- < t, = 1 such that the corre-
sponding ¢, = c|[t,_,,t; ] are continuously differentiable. We have

de= 5 f )= Y f d(fo c)

1<k<n L1 1 <k<n Lic—1

| |
&
IA A
- -
o’ L——ﬁ
= -
pr}
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p ——— O
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j ———
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Let ¢ be a piecewise-C* path in Q. We recall that such a path is rectifiable
and its length Z(c) is given by

£(c) = J | c'(8)] dt.

O

The parameterization of ¢ such that [c¢'(s)| = 1, s € [0,£(c)], 1s called the arc
length parameterization. The integral of a function g defined on the image of
c using arc length parameterization i1s denoted indistinctly by

£(c)
J gds = J gldz| .= L g(c(s))ds.

With this notation we have /(c) = j dz|.

Let now w € &, (Q). For each z € Q denote ||w(z)| the norm of the linear
map w(z) e Lr(C). The following simple inequality will have very important

applications:
[ o

Infact,leto:0=t, <t, <--- <t, =1 be a suitable partition for the path c.

We have
j 0

< Z(c): sup [lw(c(®))l.

0<t<1

1 <k< jk Gl < 2 jk Ko(c(t), c'(t))] dt

Ly
< sup [aw(c(®)l- j [c¢(¢)| dt
0<t<1 1<k<n Jg_,
= sup [la(c(t))] -£(c)
0<t<l1

EXERCISES 1.2

1. Let Q be an open connected subset of R?, f € C}(Q) such that df = 0. Show that
f 1s a constant.

2. In the situation of §1.2.4, verify that if w = Adz + Bdz, then

y*w = (A oy)dy + (Boy)dy = ((4°7)(y1 + iyz) + (Boy)(y; — iys))dt.
3. In the sttuation of 1.2.5, compute y*w when w = Adz + Bdz.
4. In the situation of 1.2.5, verify that if w = Bdz A dz, then

07 | |6y

0¢ il4

. Let y(p,0) = (pcos b, psinB) as in Example 1.2.6. Show that if f i1s a differentiable
function 1n C*, then

2 —_—
)dC A dC.

'y*w=(B°y)(
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10.

11.

. Let o« > 0 be a parameter, Q = C* and w =

Partitions of Unity 15

a(foy)=l( of af)oy

op o\ ox Yoy
e _ (9 _,9),,
00 oy ~o0x)
%, o(f o In6@ o(fo
Y (pcost, psing) = cos 82U N, gy SO oM gy
0X op 00
0 0 0
and find corresponding formulas for ——[- o, —f o v, and —{ o 7.
dy ' 0z 0z
, , xdy — ydx . ,
. In this exercise we show that the form w = — 2 1s not exact in C*. In fact,
X y

if w = df for some f e C'(C*), show that foy = 0 + ¢, for some constant ¢ € C.
Conclude from this that f cannot be continuous. Find another proof that w is not
exact using Proposition 1.2.9.

(x — y)dx + (x + y)dy

(x* + y?)°
values of « 1s w closed? For which values of « 1s w exact?

. For which

. Let Q be an open subset of C, f € £°(Q), « = df, and suppose a(z) # 0 for every

z € Q. For w € £%(Q) solve the equation
AAp=w
with 8 € &' (Q).
0 0

. Letne Z, compute —(z") and —(z"), where z # 0 if n < 0.

0z 0z
Compute d|z|?> and dlog?|z| (where z # 0).

%, 0
Let m, n e N, compute —(z™z") and —(z™z").
0z 0z

§3. Partitions of Unity

One can easily verify that the function ¢ defined on the real line by

~ Jexp(—1/(1 —¢%)) if|t] <1
7= {0 it > 1,

1s of class C” 1n R, even, and strictly positive on ]—1, 1[.

Let us denote supp f, the support of a continuous function f (i.e., supp f =

{x: f(x) # 0} = the closure of the set of points where f is different from zero).
Then we see that supp ¢ is exactly the compact set [ —1, 17.
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Consider the function 6 defined in R” by
_ Jkyexp(=1/(1 — [Ix[?)) ifflx] <1
O(x) := .
0 it [[x[| = 1,

where k, is chosen so that J O(x)dx = 1. (Here x =(x,...,X,), |x] =

R

n 1/2
(lejl") 1s the Euclidean norm.) It 1s a C* function in R", radial (1.e.,
1

depends only on || x||), nonnegative, has integral 1, and its support is contained
in the closed unit ball B(0, 1). A function 0 with these properties will be called
standard. In that case, for ¢ > 0 we will denote by 6, the function given by
6.(x) = ¢ "0(x/¢). This new function will have the same properties as 6 except
that its support will be contained in B(0, ¢).

Let Q be an open set in R”, we will denote 2(Q2) the complex vector space
of all C*® functions in R" with compact support contained in €. The existence
of standard functions shows this space is nontrivial.

1.3.1. Proposition. Let 2 be an open set of R" and # a basis of open sets in Q.
There is a sequence (U;);», of open sets in # such that
m Jy=0

j=>1

(2) For every compact set K in Q the set { j: K n U; # (&} is finite.

The first condition means that (U;);.; 1s an open covering of Q. The second
means that this covering is locally finite.

Proor. Let (K;);>_; be an exhaustion of by compact sets, where K_; =
K, = & for convenience. That is

(i) K;< K, forj>1,
j=1
Consider W,:= K., ,\K,_,, V.:= K\K,_, for r > 1. Hence, each W, is
open, each V, is compact, V, = W,,and Q = | ) V..

r=1
For every x e V, there 1s U, ,e€ # such that xe U, , = W,. Since V, is

X, r —

compact, there exist finitely many points x, 4, ..., x, ; € V, such that

V. U U, .,cW,.
1<i<k,. '
The collection (U, ,),»1,1<i<k, 18 countable and satisfies (1) and (2) since
any compact K in  intersects only a finite number of W.. []

1.3.2. Proposition (C* Partition of Unity, I). Let Q be a nonempty open subset
of R". Let (£););.; be an open covering of Q. There exists a sequence (a;);>; of
elements o; € Y(QQ) such that
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(1) for every j > 1 there is an i = i(j) € I such that suppo; < Q;. The family
(supp @;);>, is locally finite.
2 0< ;<1 for everyj > 1.
3) D aix) =1 for every x € Q.
j>1
This sequence (®;);», is said to be a C* partition of unity subordinate to the
covering (£2,); . ;.

ProoFr. For every x € Q there is r, > 0 such that B(x,r,) = Q; for some i, € I.
The family £ of all the balls B(x,r), xe Q,0 <r <r_, is a basis of open sets
of Q. Therefore, there 1s a sequence B(x;,r;),j = 1, satistying the properties (1)
and (2) of Proposition 1.3.1. For j > 1 we have

B(x;,1;) S B_(xj, ;) < €

i)

where we have set i(j) = i, . Let 0 be a standard function and define functions
p; € 2(?) by pi(x) = 06, (x — x;). The family (supp f;);>, 1s locally finite by
construction. Hence the function

s(x) = Z ﬂj(x)
j=1

1s a C* function 1n Q. Furthermore, s(x) > 0 everywhere in Q. Let o; = f5;/s.
This sequence has the desired properties. []

1.3.3. Corollary. Let K be a compact subset of an open set Q) in R". Let V be
an open neighborhood of K, V < Q. There is a function ¢ € 2(V) such that

(1) 0< o <1,
(2) @ =1 in a neighborhood of K.

ProOF. For & > 0, denote V(K,e) = {x € R": dist(x, K) < &}. Choose & > 0
so that K = V(K,¢) = V(K,2¢) = V. We apply §1.3.2 to the covering of €
consisting of the two open sets 2, = V(K, 2¢) and Q, = Q\ V(K, ¢), and define

Q= Z’ oL,
J

where the prime indicates the sum takes place over only those indices j for
which suppa; < Q,;. The function ¢ 1s clearly in 2(Q), and its support 1is
contained 1n V' (K, 2¢). It is also identically equal to one on a neighborhood of
K, since if the index k does not appear in the sum defining ¢ we must have
supp o, & Q,. Therefore supp o, < Q,. It follows that o, = 0 on V(K ¢). Hence

o|V(K,¢e) = ( ). cxj)IV(K,s) = 1.

j>1

This ends the proof of the corollary. []

Such a function ¢ 1s called a plateau function.
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1.3.4. Proposition (C® Partition of Unity, II). Let (U;);.; be a covering of an
open set Q) by nonempty open sets. For every i € I there is a; € (€2) such that
0 < a; < 1andsupp a;isarelatively closed subset of U;. Furthermore, the family

(supp &;); s is locally finite and ) o; = 1.

iel

Proor. We already know that there is a sequence (f;);>; & 2(Q2) with the
properties (1), (2), and (3) of §1.3.2. For everyiel let I, = {j:i(j) =i} and
define

X; = Z B;.

jeI;

The family (supppB;);», 1s locally finite, hence it follows that o; € £(£2),
0<a;<1,and suppa; < | | supp f; is a relatively closed subset of Q con-
tained in U.. Jeli

We need to show that (supp «;); . ; is also a locally finite family. In fact, each
z € Q) has a neighborhood V, such that

E={jeN*:suppfinV, # &}

is finite. Let i(E) = {i(j) : j € E}. If i ¢ i(E), then one must have suppa, NV, = &,
otherwise there 1s a j with i(j) = i such that supp ;" V, # . This implies
that j € E and hence i € i(E). Therefore, #{i:suppa; NV, # &} < #(i(E)) <
#(E) < 0.

Finally, it is clear that

> = -Z,( 2 ﬁ,-) =2 B=1 ]

In the sequel to this volume, we will need more precision on the behavior
of the derivatives of the function ¢ obtained in Corollary 1.3.3. This precision
is given by the following proposition originally due to H. Whitney. The reader
can safely skip its proof for the moment.

*1.3.5. Proposition. Let (J #F < Q< R", F closed and Q open. Define
d(x) := max{d(x, F),d(x,Q°)}. There is a C* function ¢ in R" such that

(i) o =1o0nF,
(1) supp ¢ < Q, and
(i11) for some constants c, > 0 (independent of F and Q), any derivative of ¢ of
order k satisfies the estimate

ak

(9| < d(x)™

everywhere. (Here o € N*, o0 = (a(,...,0), o] = oty + - + o, = k.)

Moreover, if F is compact then ¢ can be taked in 2(R").
If Q = R", replacing d(x) by a positive constant, the same statements hold.
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ProOOF. First note that one can easily verify that d(x) > 0 everywhere and

d(x) —d(y)| < [[x — yll.

Using Zorn’s lemma we can now construct a maximal sequence of
points x, in R" such that the balls B(x,,, {5d(x,,)) are pairwise disjoint. We
claim that the balls (B(x,,2zd(x,))),.~; form an open covering of R" ie.,

| ) B(x,3d(x,,)) = R" Infact,if xo ¢ | ] B(x,,10d(X,)) then there must exist

m2>1 m>1
an integer m such that

i 1
B (xm, l_dd(xm)) N B (xo, I_Gd(xO)) #* .

Otherwise the sequence (x,,),, would not be maximal. Let y be a point in the
intersection. Then

1 1
(X0 — Xl < llxo — Il + [[y — xpll < l—dd(xo) + l_dd(xm)

2 | 2

|
= l_d(d(xO) — d(x,)) + 1_6d(xm) < 10 [ X0 — Xmll + l—dd(xm)-

Hence 35 xo — x,.|| < &d(x,) and x, € B(x,,,5d(x,,)) < B(x,,,xd(x,)). A for-
tiori, the balls of center x,, and radius 3d(x,,) also form a covering of R". Let
us verify that the number of such balls that can have a common point x, is
bounded by a constant that depends only on the dimension n. Namely, let us
consider M = {m: x, € B(x,,, 5d(x,,))} be nonempty. Then for m € M we have

d(05) = dn) — (%) + () < %0 = ol + dx0) < 5d(x,) + d(xo),

hence
d(xm) S 2d(x0 )9

and therefore

B (xm,%d(xm)) < B(x,,2d(x,)).

The same reasoning shows that

3
d(xO) < 5 d(xm)a (*)

and therefore

B (xm,l—ldd(xm)) > B (xm,%d(xo)).

The disjointness of the balls B(x,,, 75d(x,,)) (m € M) implies that the sum of
their volumes cannot be bigger than the volume of B(x,, 2d(x,)), whence the
inequality
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#(M)( - d(xo)) < (2d(x,))",

Oor
#(M) < 30"

The last property of these balls that we will need 1s that no I_?(xm, 3d(x,)) can
simultaneously intersect F and Q°. In fact, if there are x, € B(x,,, 3d(x,,)) N F

and x;, € B(x,,, 1d(x,,)) N Q°, then
1
d(x,, F) < [|[xg — x|l <= d(xm)

and

1
(s ) < x5 = Xl < 5,

which contradicts the definition of d(x,,).
Let 0 be a standard function and consider the function

Y(x) = j 6)1/2(3'5 — y)dy.
Iy|<1.5
(This function is in fact the convolution product of the characteristic function

of the ball E(O, 1.5)and 0,,,.) Itis easy to verify thaty € 2(R"),y = 1 on B(0, 1),
supp¥ < B(0,2), 0 <y <1, and we have some constants c¢; > 0 such that

<¢ (k=]lal).

Now we adapt the function ¢ to the balls B(x,,%d(x,)) introducing the
functions

w = 0“6 "), men

It is clear that 0 <y, < 1, ¢, = 1 on B(x,,,3d(x,,)), supp ¥, < B(x,,1d(x,)),
and that for x e supp ¥, the following inequalities hold:

gl
Yl

< cidd(x,)7* < cj12%d(x)7*.

The last inequality is a consequence of the above inequality (). Finally, for
every x € R",
1 <¥P(x):= ) y,(x) <30

m>1

The lower bound is a consequence of the fact that (B(x,,,5d(x,,))),> iS a
covering of R"; the upper bound, from the bound on the number of balls of

radius 3d(x,,) intersecting at a single point.



§3. Partitions of Unity 21

Let My, = {m: B(x,,, 3d(x,)) N F # &}. We define the required function ¢
by the formula

@(x) :=( ). l//m(x))/‘l’(x)-

meMo

It is easy to verify that ¢ has all the properties stated in the proposition.
L]

EXERCISES 1.3
1. Let ¢, ¥ be functions in Z(R), with supp ¢ and supp Y contained the interval [a, b].

Let o = J o(x)dx, p = j Y (x)dx. Show that the function

— Q0

X

x(x) = o r W(t)dt — B j p(t)dt

— Q0

1s also in Z(R), supp(y) < [a, b].
2. Let f e L .(Q), Q open in R". Show that if

J fodx =0

for every ¢ € 9(€)), thenf = 0 a.e. 1n Q. (Hint: Show first that for every hypercube
Q,Qgﬂ,onehasj fdx =0.)

Q

*3 (Borel’s Lemma). Let (a,),~, be an arbitrary sequence of complex numbers. Show
that there is a C* function f in R such that f™(0) =a,,n =0, 1, 2, ... . (Hint: Let
o € Y(]—1, 1[)such that ¢(x) = 11n a neighborhood of 0. Let o, be a conveniently

. . A
chosen increasing sequence, a, — 00. Define f(x) = ) ay— ¢(2,x).)
n=0 n.

4. Let f be a C® function defined in an open set Q = R? such that the differential
df(z) # 0 foreveryze Q. Let S = {z € Q: f(z) = 0}. Show that
(1) For every ze S there 1s an open set V, = Q and a C® diffeomorphism
©:V.->]1-1,1[ x 1—1,1[ such that (fo ¢ ')(u,v) = v.
(1) If g 1s a C* function in the square ]—1,1[ x ]—1, 1[ which vanishes on the
axis v = 0, then there 1s a C* function h such that g(u, v) = vh(u, v) in the square.
(i11) If G e &(Q), G = 0 on S, then there 1s H € £(Q) such that G = fH in Q.

*5. The goal of this exercise is to construct, without appeal to Zorn’s lemma, the
maximal sequence {x,,}.>; found in the proof of Proposition 1.3.5. We keep the
notation from that proposition. Pick an arbitrary point x, € R" and proceed by
induction. Assume you have already found the first m — 1 points x, ..., x,,_; of
the sequence, and let us try to find the point x,, as follows:

(i) Show that the set

E, = {x € R": B(x,d(x)/10) n B(x;,d(x;)/10) = &,j=1,...,m — 1}

1S not empty.
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(i) Let r,, := inf{||x — x,||: x€ E,,}. Prove there is a point x, € E,, such that
| X — X1 || = T
(iif) Show that that sequence of positive real numbers {r,,}, , is unbounded.
Deduce that the sequence {x,},>; 1s maximal for the property that the balls
B(x,,, d(x,,)/10) are pairwise disjoint.

6. Show that a compact subset K of an open set £ 1s the support of a function ¢ € Z(Q)
if and only if K = K.

*7. Show that every closed subset F of an open set QQ = C coincides with the set of
zeros of a function of class C® in Q.

§4. Regular Boundaries

1.4.1. Definition. Let Q be an open subset of R%. We say that Q has a regular
boundary of class C* (k > 1) if for every p € 0Q there is a neighborhood U, of
p and a diffeomorphism ¢, of class C* from U, onto a neighborhood V,
of 0 in R? such that ¢,(p) = 0, 0,(U,n Q) = V, " {(x,y) € R?: x < 0}, and the
Jacobian determinant J(¢,)1s > 01n U,

One can assume without loss of generality that V, = ]—1,1[ x ]—-1,1[
and that ¢, 1s still a diffeomorphism in a neighborhood of U,

Figure 1.1

1.4.2. Remarks. (1) If ¢, = (p,,0,) then the function p,: U, — R is such that
UnQ={{eU,:p () <0} and U,noQ = {{eU,:p,({) =0} Further-
more, ¥, := 6,|(U,ndQ):U,ndQ -V, n{(x,y) e R*:x =0} is a homeo-
morphism onto ]—1,1[ such that y,':]—1,1[ >Q is of class C*. Let { =
(&,n) and y = y,({). Since p,oy, ' =0 in ]—1,1[ one sees that the vector

grad p,({) = (2’3? (€), (Zf () | is orthogonal to (i, ) (y), the tangent vector to
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the curve U, n 0Q parameterized by i, *. As we mentioned earlier, we can
suppose that ¥, is a homeomorphism of the closed interval [ —1,1] onto
y, ' ([—1,1]) < 0Q. Moreover, the conditon detJ(¢p,) > 0 means that the
basis of R* given by {grad p,({), (), *)'(y)} is a basis defining the usual orienta-
tion of R2.

2) fU,n U, # & for two points p, q € 0€2, then the map

®y,° @07 o U,nU,): 0, (U,nU)— ¢, (U,nU,)

is a diffeomorphism of class C*.

...................

.................................
e AT

Figure 1.2

(3) There is a map p: R* - R of class C* such that Q = {{: p({) < 0},
0Q = {{: p({) = 0} and, furthermore, dp({) # 0if { € 0Q. To see this, consider
a covering of 0Q by open sets U, (p € 0QQ) as those obtained earlier and let
(Bos B1,2,: p € Q) be a C* partition of unity subordinate to the covering
{Q,R*\Q, U, (pedQ)} of R?, as given by Proposition 1.3.4. Hence, supp f, =Q,
supp f; < R*\Q, and suppa, < U,. Set

p(C) = —Po(C) + p1(C) + ; 0(C) Pp(C),

which is evidently of class C*. By (1) if { € 0Q all the dp,({) for which a,,({) # O
are different from zero and proportional to each other with a positive constant
of proportionality. It follows that dp({) # O for every { € 0Q. It i1s clear that if
{ € Q then p(¢{) < 0. Conversely, if ¢ ¢ Q one can easily see p({) > O.

One can also see without difficulty that, given p : R? - R of class C* (k > 1)
such that when Q is defined by Q := {{: p({) < 0} one has dp({) # Ofor { € 0Q,
then Q is an open set with regular boundary of class C*. We remark that if p,
and p, define the same €, then p, = hp, for some strictly positive function h
(see Exercise 1.3.4).

Finally, we note that one can also consider an open subset @ of an open
set (), and say that o has a regular boundary relative to Q, if the relative
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boundary d,w is regular in the preceding sense. Since we are only going to
use this for w relatively compact in Q, the two notions coincide.

1.4.3. Proposition. Let Q be a relatively compact, open set with regular bound-
ary. Then, the number of connected components of 0€) is finite.

PROOF. Let us suppose that the set (C,);.; of connected components of 0€ 1s
infinite. Choose z; € C.. The family (z;); . ; admits an accumulation point z € 0Q.
By definition of regular boundary, we can choose a neighborhood U, of z such
that 0Q N U, is a connected set. Therefore z cannot be an accumulation point

of (z;);c1- [ ]

1.4.4. Proposition. Let Q be arelatively compact, open set with regular boundary
of class C* (k > 1). Every connected component I" of 0Q is a Jordan curve of
class C*.

*PROOF. Let us recall that a subset K of C is said to be a Jordan curve
(resp. of class C*) if there is a continuous (resp. C*) map ¢ :[0,1] — C such
that o|[0,1[ is injective, ©(0) = ¢(1) (0¥ (0) = ¢¥(1), 0<j<k), and
¢([0,1]) = K.

Let p be a C* function defining Q. Since 0Q is regular, we know that I'" can
be represented as the finite union of a family of open arcs I'y, ..., I'y, N > 2,
of the form I';, = ¢, (] —1, 1[), where each ¢; is the restriction to ]—1, 1] of an
injective function, still denoted ¢, o.:[ —1,1] - I' which 1s not surjective.
Moreover, for any t € [ — 1, 1], the pair (grad p(¢;(t)), ¢;(t))} is an orthogonal
basis of R* with the canonical orientation. We can also assume that
I £ | TI;(1 <i< N)and that every p € I has a neighborhood U, such that

J#i
if p e I'; then

Upﬂri=Upﬂr. (*)

We shall show by induction on N that I' is a Jordan curve of class C*.

Consider first the case N = 2. Then I' =T, uT,; the connectedness of I'
implies I, " T, # &. Thus ¢;'(I',) is a nonempty open proper subset of
]1—1, 1[. Therefore ¢{*(I}) is a countable union of disjoint, nonempty open
intervals, o' (I;) = | ) Ja,, b,[.

n>1

Supposea, > — 1. Weshall show that b, = 1. Since neither ¢, (a,) nor ¢, (b,)
belongs to I',, we have that ¢,(]a,,b,[) = ¢,([a,,b,])NT,. Hence ¢,(]a,, b,[)
1s a closed subarc of I,. If b, < 1, then ¢, (]a,, b,[) would also be open in I,
whence I, = ¢,(]a,, b,[). It would follow that I, = I';, which is impossible.
This argument shows that b, = 1 when a, > — 1. A similar argument shows
that if b, < 1, then a, = — 1. We conclude that ¢;*(I’,) is the union of at most
two disjoint nonempty intervals ]—1,b[, Ja, 1[, with b < a. The set ¢ '(I,)
is relatively open in [ — 1, 1] and both points ¢,(—1) and ¢, (1) belong to T,.
Therefore @' (I',) must have exactly two components.
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Clearly we also have that ¢, '(I';) is the union of two disjoint intervals
1—1,p[ and ]Ja, 1[, with —1 < f < a < 1. Therefore, I'; N I, 1s the disjoint
union of the arcs ¢,(]—1,b[) and ¢,(]a, 1[), and 1t 1s also the disjoint union
of the arcs ¢,(]—1, B[) and ¢,(]a, 1]). We claim that

¢ (J—1,b[) = @a(]o, 1[) and ¢1(Ja, 1[) = @,(1—1, B[).

Otherwise, ¢1(]1—1,b[) = ¢,(1—1, f[) and ¢,(]a, 1[) = ¢,(]a, 1[). Hence
o, o @, is a diffcomorphism from ]—1,b[ onto ]—1, B[, and from Ja, 1]
onto Ja, 1[. This function is strictly increasing because its derivative is
positive. In fact, for te ]—1,b[ U]a, 1[ and s = ¢, '(¢,(t)), we have that
{grad p(¢,(t)), ¢, (t)} and {grad p(@,(s)), p;(s)} are bases of R* with the same
orientation. Since ¢, (t) = @,(s), this implies that ¢;(t) = (¢, ' ° ¢, ) (t)P,(s) is
a positive scalar multiple of ¢, (s), i.e., (¢, ' o ¢,)(t) > O.

By continuity, we obtain ¢,(—1) = @,(—1), ¢,(1) = @,(1), 1(b) = @,(B),
®,(a) = @,(a). A quick look at Figure 1.3 will convince the reader that this is
a contradiction with the assumption (x) at the point p = ¢, (b).

01(=1) = ¢,(~1)  Y¢4(b)

Figure 1.3

In conclusion, ¢,(]1—1,b[) = ¢,(Ja, 1[) and ¢,(Ja, 1[) = @,(1—1, B[).
Moreover, since ¢; ' o ¢, is strictly increasing, ¢,(—1) = @,(a), @,(b) = ¢,(1),

¢,(a) = p,(—1), and ¢,(1) = ¢,(B). From Figure 1.4 we seec now that I is a
Jordan curve.
Now it is not difficult to show that I is a C* Jordan curve. For that purpose

Figure 1.4
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we will reparameterize I'; and I', using arc length parameters in such a way
that we can patch these parameterizations into a C* map defining a C* Jordan

curve.
First consider s,, the arc length parameter for I';, defined by

s1(t) = J [ @1(x)| dx.

Thens,:[—1,1] - [0,/ ], where

Ly = J [p1(x)| dx = £(I).

Let 7, be the inverse of s, and Y, : [0,7,] = I" given by ¥, (s) = @,(t,(5)).
We also consider the arc length parameter for I',, defined by

$,(t) = L |@2(x)] dx;

s,:[—1,1]1 - [¢3,£32], where

-1 1
5 = L o, (x)|dx < 0 < 7 = L |, (x)| dx.
Let 7, be the inverse of s, and ¥, : [£5,£5] = I be given by ¥, (s) = @,(7,(s)).

Denote 7 := s,(a), £, = s,(a), and £, = s,(b) (cf. Figure 1.4). Observe that
W1+ s),1— ¢, <s<0,and y,(s), /5, < s <0, are both arc length param-
eterizations of the arc ¢, ([a,1])=o,([ — 1, B 1), with Y, (£,) = @,(1) = @,(p) =
WV, (0). Therefore, these two parameterizations must coincide. Hence /] — £, =
£5 and Y, (£, + s) = Y,(s), for £5 <5 < 0. A similar argument shows that
lo=¢7—¢,and Y,(s) = yY,(£{, + s),for0 < s < 7¢,.

Definenow L =7, + ¢/, andamap W :[0,L] —» C by

_)Ya(s) if0 <s </,
) = {wz(s —¢,) if{, <s<L.

This map is of class C¥, ¥|[0, L] is injective, ¥V (0) = PV(L) for 0 < j < k,
and W([O,L]) =T.

Consider now the case N > 3. Then ¢,(1) e I, u - -+ U I'y. After relabeling,
if necessary, we can suppose that ¢, (1) e I,.

By the previous reasoning we know that o;'(I,) (resp. ¢, (I})) is the
union of at most two disjoint intervals of the form ]—1,b[ and ]a, 1 (resp.
1—1,B[ and ]Ja, 1]). This time one of them must be necessarily empty.
Since ¢,(1)eI,, ]1b,1[ # . The argument given for N = 2 shows that
¢1(1b, 1[) = @2(1—1,a[), ¢, (b) = @,(— 1), and ¢,(1) = @,(a). If ] -1, a[ were
not empty, it would follow that I'; U I, 1s a Jordan curve. Since I' # I'; U I,
there 1s i # 1, 2 such that I'n(I;ul,)# & and I, £ I, UT,. Consider
an arc y; < I,n(I; ul}), one of its extreme points p belongs to I;. This

contradicts (x) (see Figure 1.5).
Therefore, using the same method as in the case N = 2, we can construct
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Figure 1.5

an injective C* function ¥, ,:[—1,1] » T'suchthat ¥, ,(1—1,1[) =T; u T,
and {grad p(¥, ,(t)), ¥; ,(t)} is an orthogonal basis of R* with the canonical
orientation for every t e [ —1,1]. Applying now the inductive hypothesis to
Iul,, I,,..., Iy, we conclude that I" is a C* Jordan curve. []

1.45. Remark. If p:C > R is a function of class C* defining Q and if
¢ :[0,1] - C is a parameterization of a component I" of 0Q of class C* (i.e.,
¢|[0, 1[ injective, @ (0) = ¢Y(1), 0 < j < k), then one can choose ¢ so that
for every point p e I the pair {grad p(p), ¢'(¢~'(p))} is an orthogonal basis of
R? with the canonical orientation. This determines an orientation for I,
independent of the choice of p and ¢.

We also note that Proposition 1.4.4 does not really use that Q is relatively

compact.

1.4.6. Definition. An open subset Q has a piecewise regular boundary (of class
C*, k > 1) if, for every point p € 0Q, there is a neighborhood U, of p and a
difffomorphism ¢, of class C* from U, onto ]—1,1[ x ]—1,1[ such that
@,(p) = 0, J(9,) > 0, and ¢,(U, N Q) 1s one of the following sets:

(1) @(U,nQ)=1-1,0] x ]-1,1[
(2) (pp(Upmg__z) — ]_190] X ]_190]
3) 9 (U, n Q)= (1—-LI1[ x 1=1,1D\UO, 1L x 10, 1[)

1.4.7. Proposition. Let Q be a relatively compact, open subset of C with piece-
wise regular boundary (of class C* > 1). There is only a finite number of
connected components of 0Q and each of them is a Jordan curve (piecewise C*).

ProoOF. The proof is analogous to the proofs of 1.4.3 and 1.44. ]
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1.4.8. Remark. One can give an orientation to 0Q in the case of Proposition
1.4.7 in the same way as 1t was done for a regular boundary.

§5. Integration of Differential Forms of Degree 2
The Stokes Formula

1.5.1. Definition. Let Q be an open subset of C, w a (Lebesgue) measurable
subset of Q and a« = fdx A dy a 2-form 1n Q with measurable coefficient f. If
f 1s integrable over w (with respect to the Lebesgue measure dm) we define the

integral of « over w as the complex number given by

J oc:=ffdm.

1.5.2. Proposition. Let ¢ : Q, = Q, be a diffeomorphism of class C' between
two open subsets of C such that J(¢) > 0, let w; be open subsets of Q.(i = 1, 2)
such that ¢(w,) = w,, and let o = fdx A dy be a 2-form with f measurable on

Q), and integrable over w,. Let o({,n) = (x, y), then *(a)=(f o @)J(p)d A dn,
(f o @)J (@) is measurable on Q,, integrable over w,, and J o* (o) = J 0.

Proor. In fact, the formula of change of variables for the Lebesgue integral
becomes here

J f dm =f (f o p)J(p)dm,

which can be translated into

J o =f o* (). []

l
1.5.3. Proposition (The Stokes Formula). Let Q be an open subset of C, and w
a relatively compact, open subset of € with piecewise regular boundary. Let
be a 1-form of class C! in Q. We have the relation

o0
W Ow

where f y represents ) f Y, the I; being the connected components of Ow,
Ow I;

l1<i<n

canonically oriented.

PRrOOF. For each p € dw we can find an open neighborhood U, of p in Q and
a diffeomorphism ¢, of U, onto ]— 1, 1[ x J—1,1[ = V such that ¢,(U, " @)
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is of one of three types indicated in §1.4.6. We can find a finite number of
points p,, ..., pysothat U, , ..., U, 1s a covering of dw. Hence the family of
open sets Q\aw, w, U, , ..., U, 1s a covering of Q. Let (a;);»,; be a C™ partition
of unity subordinate to that covering. Wehavey = ) a;yanddy = ) d(a;7).

Jjz1 j=1
In order to compute | d(a;y) we need to consider three cases.

@

(1) First case: suppo; = w. We have here | d(o;y) = | d(oyy). If oy =
C

Pdx + Qdy, one can write @
00 OP
) d(o;y) = \ox "3 dx dy
o * 90 ° ((® 9P
=7 . . P dx dy — » . ay dy dx = 0,

since P, Q are C' functions of compact support. Therefore, in this case, have

0= d(“j?) = a &Y,
since the form o;y vanishes on Jdw.
(2) Second case: there 1s an index k such that suppa; = U, .
There are three subcases depending on the type of ¢, (U, n @) according

to §1.4.6.
(1) ¢, (U, n®)=]1-1,0] x ]—1,1[ = V' (see Figure 1.6).
We have

d(oy) = d(o;y) = J 5 (@, )* (7)) = 5 dl (e, )* ()]

0 U pkm

Figure 1.6
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Writing (¢, ')*(¢;y) = Pdx + Qdy, the preceding expression becomes

1 O a a
|, o= |41 (G - 5) oo
1 O a 0 1 aP
- J—q {J~1 agdx}dy - J—q {.[~1 0y dy}dx
= L Q(0,y)dy.

If Y denotes ¢, ' restricted to {0} x ]—1,1[, one has
y*(7|(U,, N ow)) = Q(0, y)dy

and hence

[ e[ venianoan= [ oo

J d(o;w) =J 0Ly =J 0;.
w Upknaw Jw

2) ¢, (U, n®)=]1-1,0] x ]—1,0] = V" (see Figure 1.7).
Here we have

Therefore one has

f (%)) = f ()= f (o3 = f | dLloa! o)

Again writing (¢, ' )*(a;y) = P dx + Q dy, this expression becomes

N 0P
- (- s

Figure 1.7
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0O 0 aQ O 0O aP
= dx |dy — dy |dx
~1\J -1 0x ’ ~1\J-1 0y ’
0 0
-1 -1

If Y denotes ¢, '|{0} x ]—1,1[ and 6 denotes ¢,'|]—1,1[ x {0}, then
V*(a;7|(U, Nnow))= Q0(0,y)dy and 6*(a;7|(U,, N ow)) = P(x,0)dx. Therefore

O O

Q(Oa y) dy T P(xa O) dx = %;7s

J
-1 -1 ow

as shown earlier.
3) ¢, (U, no)=V\(]0,1[ x ]JO,1[) = V" (see Figure 1.8).
We leave this subcase to the reader.
(3) Third case: supp a; < Q\ @. Here we immediately have

o;y = | d(o;y) = 0.

0w w

Therefore, in every case we have the identity | d(o;y) = o;7. The prop-
osition follows by summation over j. @ Oco

1.5.6. Corollary (Ostrogradski’s Formula). Let z+— A(z) = (A,(z), A,(2)) be a

C'-vector field on an open set Q in C (i.e., the coordinates Ay(z) of the vector
A(2) are functions of class C'). Let w be a relatively compact open subset of
with piecewise regular boundary of class C!. One has the relation

divAdxdy = (A(z)|n(z))|dz|,

w 0w

Figure 1.8
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0A 0A
6x1 + 6y2 is the divergence of the vector field A, n(z) denotes

the exterior unit normal to 0w at the point z € 0w, and (A|n) denotes the scalar
product of the two vectors.

where div A =

If the component of dw is parameterized near z by ¢ :[0, 1] — Q, then one
has that n(¢(t)) can be identified to the complex number —i¢p'(t)/|0’(t)|,
dz| = |¢'(t)| dt, and

A1(p(1)) Im @'(t) — A,(p(2))  Re ¢’ (1)
(A(@@))In(p(1))) = = o ) -
[o(t)]
Also note that n(z) is well defined with the possible exception of finitely many
z € 0w.

PROOF. If (I}); <;<, 15 the family of connected components of dw, and ¢; =
x; + iy; is their piecewise-C' parametric representation (with the canonical
orientation), one has

f (A@)In@)ldz| = ¥ J (A(9;())In(9;(9)))| dz(,(0))]
Jw <j<n JT;
1
= 3 | Aue0)j0) — Ao 0)x;(0)d:
<Jsn JO
1
— Z J (A1dy—A2dx)=J Vs
1<j<n JO ‘w
where we have introduced the 1-form y = A, dy — A, dx. This form has the
property that dy = (a(,;il + 6;/ 2) dx A dy. Therefore, by Stokes’ formula,
J divAdxdy =J dy =J Y =J (A(z)|n(z2))|dz|. []
W W 0w Ow

1.5.7. Corollary (Green’s Formula). Let Q be an open subset of C and f,
g € &,(Q). For any w relatively compact open subset of Q with piecewise regular
boundary of class C*, we have the identity /

0 0
J (9Af — fAg)dxdy = J (9(2)5(2) — f(Z)a—i-(Z))leI,

0

where g(z) and ig—(z) denote the partial derivatives of f and g with respect to

on on

the exterior normal n(z) at the point z € dw. They are defined by

g_f(z) — ; f(z + tn(2))|,=0 = (grad f(2)|n(2))
n [

d

0
a_i_(z) = - 9(z + tn(2)|,=0 = (grad g(2)|n(2))
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The symbol A represents the Laplace (differential) operator,
0% 07 0°

A = =4 .
ox? T 0y> 0z 0z

PrOOF. Use §1.5.6 with A = g-grad f — f-gradg. []

1.5.8. Corollary (Gauss’ Formula). With the same hypotheses as in §1.5.7, we

have (
0

I Afdxdy = L a—i(z)\dz\.

1.5.9. Corollary. Let Q be an open set in C, o. € & (Q) a 1-form of class C* with
compact support in . Then
j do. = 0.
0

Proor. The form o can be considered as an element of & (C) (extended to be
zero outside (), as we have done before). For R > O sufficiently large we have

j do = j do = j oo = 0. []
Q B(O, R) dB(0, R)

We will denote by 27(Q), or for simplicity 2,(Q), the set of 0-forms (i.e.,
functions) of class C* and compact support in Q. Similarly one denotes 2; (Q)
(and 2(Q)) the set of 1-forms (and 2-forms) of class C* and compact suport
1in Q). We omit the subscript kK when k = oo.

We are going to consider the following two sequences of C-linear mappings:

£°(Q) S £1(Q) S £2(Q),
2°Q) 5 21(Q) S 2%(Q),

where d denotes the differential of functions or 1-forms, according to case.
Recall that d* = 0, hence the image of the first d is contained in the kernel of

the next one. One says the sequence 1s exact 1f these two spaces coincide. To
measure how much these sequences deviate from exactness one introduces the

following vector spaces:

Z1(Q) := Ker[d: &'(Q) - £%(Q)], space of the I-cocycles.

B'(Q):=Im[d: &°(Q) - &' (Q)], space of the I-coboundaries.

H'(Q) := Z'(Q)/B*(Q), the first de Rham cohomology vector space of Q.

Z%(Q) := &*(Q).

B*(Q):= Im[d: £'(Q) - &£*(Q)], space of the 2-coboundaries.

H?(Q) := Z*(Q)/B*(Q), the second de Rham cohomology vector space of Q.

H°(Q) := Z°(Q) := Ker[d: £°(Q) = &' (Q)], the zeroth de Rham cohomol-
ogy vector space of ).
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Note that the elements of H°(Q) are locally constant functions, therefore

H®(Q) can be identified with the Cartesian product | | C;, where J is the set
ieJ
of connected components of Q2 and C; 1s a copy of C.

One defines analogously the spaces Z/(Q), B/(Q), H!(Q), by replacing & with
2 everywhere. One calls them the same way, adding “with compact support.”
Note that H>(Q) = 0.

The dimension (as a vector space over C) of H°(Q) is denoted by b, and
called the zeroth Betti number of Q. It is exactly the number of connected
components of Q. Similarly, the jth Betti number of Q is defined to be
b, ;= dimc H'(Q) (j = 1, 2).

It 1s standard to call domain a nonempty connected open set in C (later
we will use this name for subsets of the sphere S2.)

It i1s easy to see that if ¢ : Q — Q' 1s a C* diffeomorphism between two open

subsets of C, the inverse image maps ¢* induce isomorphisms
¢* H(Q)->H(Q (j=0,1,2),

by passage to the quotient. One needs only to recall the commutation relations
©*d = dop* established in §1.2.

We shall see later that the space H'(QQ) plays a fundamental role in the
theory of holomorphic functions. For the time being though, we shall concen-
trate on studying the spaces H>(Q) and H*(Q).

As we have seen in Corollary 1.5.9 the linear map “integration over Q”

1:2°(Q)->C

IS ZEero on d(2'(Q)) and hence induces a linear map I in the quotient space,
I: H>(Q) — C. This map is surjective: if A € C, and B(z,, R) < Q, one can easily
find a 2-form w = fdx A dy with f € 2(B(z,, R)) such that

f W = f fdxdy = A.
QO B(zo, R)

One can make this statement more precise.

1.5.10 Proposition. Let Q be a connected open set of C. The map I is an
isomorphism. In other words, dimg H>(Q) = 1. Equivalently, in order for a
2-form of class C* with compact support to be exact, it is necessary and sufficient

A

that its integral vanishes. |

Proor. We already know that if o € d(2'(Q)) then f oo = 0. To show the
converse we first need the following lemmas: {2

1.5.11. Lemma. Let o, B € 2%(B(z,, R)). In order that o and 8 be cohomologous
(i.e., 0 — B € d(2'(B(z,y, R)))) it is necessary and sufficient that

B(ZOs R) B(an R)
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PRrROOF. Since B(0, 1) 1s diffeomorphic to C by the orientation preserving
diffcomorphism

z
1 —|z|?

and B(z,, R) 1s dil‘{eomorphic to B(0, 1) by the orientation preserving diffeo-
morphism

¢(z) =

z — Zg

0(z) := R

it is clear that we only need to prove the following:

1.5.12. Lemma. Let a, B e 2%(C). Then oo — Be d(2'(C)) if and only if

1

PrOOF. It is enough to show that if y e 2%(C), y = gdx A dy, is such that
I(y) = j Y = j gdxdy = 0 then y e d(2*(C)). For that, it is enough to show
that for gvery (pce 2*(C) there exists A(p) € 2'(C) such that

d(A(9)) = ¢ — 1(9)p;

where p € 2%(C)is a conveniently fixed 2-form. In fact, if we take ¢ = 7y in this
formula 1t follows that d(A(y)) = v.

Let k € 2(R) be such thatj k(t)dt = 1 andset p := k(x)k(y)dx A dy.For
@ = fdx A dy, we define the 1-form A(¢) by:

a@=1{|" [sen—ko | fonis|afa
— k(x) {J‘y [Jw f(s,u)ds — I((p)k(u)] du} dx.

One verifies easily that 4(¢p) € 2 (C) and d(4(p)) = ¢ — I(¢)p. ]

1.5.13. Lemma. For every we 2*(Q) and B(z,, R) = Q there is o.c 2*(B(z4, R))
such that w — o € d(2*(Q)).

PROOF. Let (B(z;,7;)); <;<», D€ @ covering of supp w. For a C*® partition of unity
(#;);, subordinate to the covering {(B(z;,7;)); <i<n> Q\supp @} of Q, we can

write @ = ) a;0, with supp(a;w) contained in one of the disks B(z;,r;) if
j=1
o, # 0. Since the set of j for which a;w # 0 1s finite, it sufficies to prove the

lemma for a 2-form w with compact support in a disk B({,r) < Q.
Since € is connected, we can find a finite family of disks (B((;, R;)); <<«
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such that: (1) B((y,R) = B(zq, R), (2) B((x, Ry) = B((, 1), and (3) B({;, R;) N
B((;+1,Ri41) # Jlorl1 <j<k—1.

If we can find differential forms w;e 2*(B({;,R;) N B({j+15Ri41))s
B, € D' (B((;sy, R;+1)) such that

(1) o = wy-y + df;—,and
(ii) (Dj+1 — (DJ + dﬂ_Pj — 1, 2, e ooy k — 2,
then we willhavew = w; + ),  df;. Setting o = w, will prove the lemma.

1<j<k-1
Let us show how to find w,_,, df, _; the rest of the proof is a repetition of

this step.
We know we can find w,_, € 2%(B({,, R;) N B({;-;, R,_,)) such that

\[ wk'—l —_ J‘ Q).
B(lx, Ry )NB(L—1, Ryc—1) B(ex, Ry)

Hence w — w,_, = df,_, for some B,_, € 2*(B((,,R,)) by Lemma 1.5.11.
L]

Let us now go back to the proof of Proposition 1.5.10. Given w € 2%(Q)
with f w = 0 we want to show that w is of the form dy with y € 2*(Q). Choose
VE 92?9) such that J v =1 and the support of v is contained in some
disk B(z,,R). The forflzn o given by Lemma 1.5.13 is cohomologous to
U= ( f cx) v, since both have the same integral. Therefore oo — u = dy
for somBe(Z(:/;Re)s 2'(B(zy,R)) = 2'(Q), and w is also cohomologous to u in
Q, ie, w — u = dy for some y € 2'(Q). The hypothesis f w = 0 now gives
f oo = 0, hence u = 0 and w = dy. " ]

B(zo, R)

1.5.14. Proposition. For every open set Q in C one has H*(Q) = 0.

PrROOF. We can assume without loss of generality that Q i1s connected. Let
(B(z;,1;));~1 be a countable, locally finite covering of Q by disks B(z;,r;) cc
such that B(z;,r;) N B(z;.1,7;+1) # & for every i. Let (¢,);-., be a C® partition
of unity subordinate to the covering. We can assume ¢, € Z(B(z;,r;)).

If « € Z*(Q), then every o; = @,o has compact support inside B(z,, r;).

Using Lemma 1.5.11 and induction, one can see that for every i 2\]1 there
exist forms a; ;€ D*(B(z;,r;)NB(zj-1,7-1)) and B; ;€ D' (B(zj-1,1j-1))sj =i+ 1,
i + 2,...such that

(A) o; = 0 i+1 T dﬁi,i+1
(B) O j = 0 j41 T dﬂi,jﬂ,j >1i+4 1.

The family (supp B; ;);>i+1 18 locally finite and one has a; = dy;, with y;, =
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j>i+1
) B(z;,r;). It follows that the family (supp y;);»; is also locally finite and

j>i+l

o« = dy with y = ) ;. This proves the proposition. ]

i>1

Y B whicl< is a 1-form of class C® having its support contained in

1.5.15. Proposition (Mayer-Vietoris). Let U and V be nonempty open subsets
of an open subset Q in C such that Q = U U V. Denote A; the linear maps
A:8I(Q) > 8 (U)D &' (V),j=0, 1, 2, defined by A(w) := (w|U,w|V). Let y,
be the linear maps p;: &'(U) @ &' (V) - (U N V),

ui(a, ) == (@|(U n V) — (BI(U N V)).
Then:
(1) The sequences
0 Q)3 WU)DEWV)E (U NV)50

are exact.
(2) If U NV is connected, passing from A, and u, to the quotient maps A, fi,
induces an exact sequence

0 H(Q 3 H(U)® H' (V) B HY(U A V) > 0.

PROOF. (1) The only thing that needs to be shown 1s the surjectivity of u;. Let
{oy, oy} be a C® partition of unity subordinate to the covering {U, V} of Q.
If o € &(U N V) then @, a € &(U)and ¢, a € & (V). For example, o, o € &(U)
since it 1s obtained by putting together the form identically zero in U \ supp ¢y
and the form ¢, a, whichis C* in U n V (recall U = (U \supp ¢y) U (U N V)).
It 1s clear that a = u;(pya, — @yo).

(2) If U n V 1s connected let us show that the map

HY(Q) 5 H Uy @® H\(V)

induced by 4, :Z'(Q) - Z'(U)® Z'(V) (which passes to the quotient since
4,1(B*(Q)) = B'(U) @ B'(V)) is injective. Denote by & the class of a closed
form w. If 4;(®) = 0 then w|U = df, for some f € &U), and w|V = dg, for
some g € &(V). Therefore f — g is constant 1n the connected open set U N V,
say f — g = c. It follows that the function h defined by h=f in U and
h=g+ cin Visin &(Q) and dh = w. Hence & = 0.

Let now (a, B) € Z1(U) @ Z'(V) be such that i, (&, ) = 0. This means that
() (UNV))— (PI(UNV))=dy, for some ye E(U N V)). Since u, 1s surjec-
tive, y = yy — Yy With y, € &(U), v, € &(V). It follows that

(@|(Un V) = (BI(U V) =dyy|(UnV))—dyy|(UnT)),

hence (a|(UNV)) —d@yy|(UnV))=(B|(UNV))—d@yy|(UnV)). In other
words, @ — dy, and B — dy, define a single 1-form 6 e &'(Q) such that

5 e Z1(Q) and 4,(d) = (&, B). This shows the exactness at H(U) ® H (V).
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Finally, let us prove that ji, is surjective. Let w € Z* (U N V), set w, =
oy € &1(U) and wy = oy € &' (V) as earlier, so that u, (wy,, —oy) = w.

We have do, = doy A o, d(—wy) = —doy A o, but since ¢, + ¢y = 1
we also have doy, = —dg,. Therefore dwy, = d(—wy) iIn U NV, which
implies that the pair dwy, d(— w,) defines a global form » € &%(Q). Since
H?*(Q) = 0, there is 0 € £ (Q) such that n = df. Hence w, — (0|U) € Z*(U),
wy — (0|V)e Z' (V) and

i ((wy — (0|U))7, —(wy — (0]V))") = @.
This ends the proof of Proposition 1.5.15. []

1.5.16. Corollary. Let Q be an open subset of C which is C* diffeomorphic to
C, py, ..., Pp, distinct points of Q, and Q' = Q\{p,,...,p,}. Then H* () is
isomorphic to C" and one can take as a basis the classes @;, corresponding to

1 d
theformscoj=2i- ‘ , 1 <j<n.
Tl Z — Dp;

PrROOF. Let us first note that an elementary computation shows that
w; € Z'(Q'). Let ¢ : C - Q be a C* diffeomorphism, a; € C such that ¢(a;) = p;
and denote by «a,,...,a, the 1-forms ¢p*(w,), ..., o*(w,). Recall that ¢* induces
an isomorphism between H'(Q') and H'(C\ {a,,...,a,}).

We are going to argue by induction on n.

Case n = 1. We need to show that H'(C\ {a,}) ~ C and that the 1-form «,,
which is certainly a nonzero cocycle, gives in fact a generator &, of H'(C\{a, }).
We can clearly assume that a, = 0 and drop the index for «;.

For B e Z'(C\{0}) let I(B) = f B, where y is the circle t— e*™ (0 < t < 1).
4

Consider the auxiliary expression

v(f):=p — I(p)a.
We are going to show that I(x) = 1, and hence I(v(f)) = 0. We have

1 d
I(o) =J o =J (@™ )* () = 2m‘f . _Zpl-

Let us choose R > 0 sufficiently large so that ¢ o y ([0, 1]) < B(p,, R), and the
open set D = B(p,, R)\ ¢(B(0, 1)) has a regular boundary. Recall p, = ¢(0),

hence p, ¢ D. Therefore d ( 4z ) = 0 in a neighborhood of D and oD is
2 — Pq
composed of dB(p,, R) and of ¢ o y traced in the opposite sense. Using the

Stokes formula we obtain

1 J dz 1 J dz 1 \1
— . — 1. /
27 Jpoy 2 — P1 2T Jop(p,,R) Z — P1

Hence I(a) = 1.
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Let us now introduce U, = C\]—00,0] and U, = C\[0, oo[. For z e U,
consider the segment o, which joins 1 toz(0,(t) =1+ t(z — 1),0 <t < 1). For
ze U,, let 7, be the segment that joins —1toz(t,(t)=—1+t(z+1),0<t<1).
Define two functions F,, F, by

Fi(z) := j v(p), zeUj,

F,(z) := j v(p), z e U,,

which one can verify are of class C* and satisfy dF; = v(f) in their respective
domains of definition. Since U, n U, is disconnected it i1s not at all clear that
G(z) = F,(z) — F,(z)1s independent of z. This 1s evident though, for the upper
half-plane and lower half-plane, respectively, since dG = 0. (One can also
obtain this result applying the Stokes formula to convenient quadrilaterals.)
Let us now take any two points, one in each half-plane: to fix ideas let them
be +iand —i. Then the definition of G, F,, F, indicates that

G(i) — G(—1) = L v(P),

where I is the quadrilateral of vertices 1, i, — 1, —i with the counterclockwise

orientation. Since dv(f) = 0 outside the origin, we can apply Stokes’ formula
twice and obtain

*L "= L?B(o 2) V(P) = j v(p) =1(v(p)) =0

(recall y = 0B(0, 1)). Hence, G(z) = ¢ € C throughout U, n U,, and the func-
tions F, in U; and F, + c in U, define jointly a C* function Fg in C\ {0} such
that dF; = v(p). It follows that

and = I(B)&. This ends the proof for n = 1.

Casen > 2. Itis clear that one can find an index j, and an open strip S whose
boundary is formed by two parallel lines L, and L, such that g, is in one of
the components of C\ S and all the other g; are in the other one. Let us call
IT the open half-plane defined by the line L, (closest to a; ) which does not
contain a; (see Figure 1.9).

Similarly, let IT" be the open half-plane defined by L; which contains a; .
Hence, S = II " IT" and {q;},,;, < II. By induction we see that:

(1) H*(IT\{a;};.;,)) ~ C"" and {®,},,;, is a basis for this vector space.
(2) H'(IT'\{a, }) ~ C and {®, } is a basis for this vector space.

Let U =1I\{4;);4;, V=1I'\{a, }. Then U NV = §, which is connected,
and H'(S) = 0 by Poincare’s lemma 1.2.2(a) (since S is star shaped). By
Mayer-Viétoris we have
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Figure 1.9

H'(C\{a,,...,a,})~H'(U)® H' (V) ~ C".

In this isomorphism the class @; in the left-hand side of w; corresponds to the
class of w; in H'(U) (j # j,) and the class @;_ to that of w; in H'(V). This
proves the last statement of the corollary. ]

EXERCISES 1.5

1. Let y be a piecewise C! path in C and y* its complex conjugate, i.e., Y*(t) = y(¢).

Let f be continuous in a neighborhood of Imy and f*(z) = f(z). Show that

ff(z)dz =f f*(2)dz.

Conclude that if y(t) = e*™ (0 < t < 1), i.e., the unit circle traversed in the positive

sense, then
d
f f@)dz = - f @

. Prove the formula area({2) = f x dy, for an open set 2 with piecewise regular

o0
x2 y2

boundary. Compute the area of the ellipse ) + 7= 1.

. Let Q) be a domain with piecewise regular boundary, symmetric with respect to

the origin in C. Compute

JA (yx + e’)dx + (xy> + xe’ — 2y)dy.
Q.

. Let Q be a domain as in the previous section. Let 0(z) be the angle between the

exterior normal n(z) to 0S2 at the point z, and the positive real axis. Compute

j (xcos 0(z) + ysin6<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>