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PREFACE

Convex polytopes—as exemplified by convex polygons and some three-
dimensional solids—have been with us since antiquity. However, hardly
any results worth mentioning and dealing specifically with the com-
binatorial properties of convex polytopes were discovered prior to Euler’s
famous theorem concerning the number of vertices, edges, and faces of
three-dimensional polytopes. Euler’s relation, hailed by Klee as “‘the
first landmark’ 1n the theory of convex polytopes, served as the starting
point of a multitude of investigations which led to the determination of
its limits of validity, and helped focus attention on the notion of convexity.
Additional 1deas and results came from such mathematicians as Cauchy,
Stemner, Sylvester, Cayley, Mobius, Kirkman, Schlafli, and Tait. Since
the middle of the last century, polytopes of four or more dimensions
attracted interest; crystallography, generalizations of Euler’s theorem,
the search for polytopes exhibiting regularity features, and many other
fields provided added impetus to the investigation of convex polytopes.

About the turn of the century, however, a steep decline 1n the interest
In convex polytopes was produced by two causes working 1n the same
direction. Efforts at enumerating the different combinatorial types of
polytopes, started by Euler and pursued with much patience and ingenuity
during the second half of the XIX™ century, failed to produce any
significant results even 1n the three-dimensional case; this lead to a
widespread feeling that the interesting problems concerning polytopes
are hopelessly hard. Simultaneously, the ascendance of Klein’s “Erlanger
Program™ and the spread of its normative influence tended to cast the
preoccupation with the combinatornal theory of convex polytopes into a
rather disreputable role—and that at a time when such ‘“‘legitimate”
fields as algebraic geometry and in particular topology started their
spectacular development.

Due to this combination of circumstances and pressures it 1s probably
not too surprising that only few specialized directions of research in
polytopes remained active during the first half of the present century.
Stretching slightly the time limits, the most prominent examples of those
efforts were: Minkowski’s fundamental contributions, related to his
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work on convexity in general, and applications to number theory 1n
particular; Coxeter’s work on regular polytopes; A. D. Aleksandrov’s
investigations in the metric theory of polytopes.

Nevertheless, as far as ‘‘main-line mathematics” 1s concerned, the
combinatorial theory of convex polytopes was ‘“‘out’”. Despite the
appreciable number of published papers dealing with isolated (mostly
extremal) problems, the whole area was relegated to the borderline
between serious research and amateurish curiosity. The one notable
exception 1n this respect among first-rank mathematicians was Ernst
Steinitz, who devoted a sizable part of his life and efforts to the com-
binatorial theory of polytopes. Unfortunately, his beautiful results did
not become as well known as they deserve, and till very recently did not
stimulate additional research.

It was mainly under the influence of computational techniques (in
particular, linear programming) that a renewed interest in the com-
binatorial theory of convex polytopes became evident slightly more than
ten years ago. The phenomenon of ‘“neighborly polytopes” was
rediscovered by Gale 1n 1955 (the rather involved history of this concept
1s related in Section 7.4). Neighborly polytopes, and Motzkin’s ‘“‘upper-
bound conjecture” (1957) served as focal points for many investigations
(see Chapters 9 and 10). Despite many scattered results on the upper-
bound conjecture and other combinatorial problems about convex
polytopes, obtained by different authors in the first few years of the
1960’s, the emergence of a theory proper began only with Klee’s work,
starting 1n 1962. Klee’s results on the Dehn—-Sommerville equations (the
interesting history of this topic 1s given in Section 9.8) and his almost
complete solution of the upper-bound conjecture were the source and
basis for many of the subsequent developments.

During the last three years, research into the combinatorial structure
of convex polytopes has grown at an astonishing rate. It would be
premature to attempt to give here even the briefest historic outline of this
period. Instead, detailed bibliographic references are supplied with each

topic discussed 1n the book.

The present book grew out of lecture notes prepared by the author for
a course on the combinatorial theory of convex polytopes given at the
Hebrew University of Jerusalem in 1964/65. The main part of the final
version was written while the author was lecturing on the same topic at
the Michigan State University in East Lansing during 1965/66. The
various parts of the book may be described briefly as follows:



PREFACE 1 X

The first four chapters are introductory and are meant to acquaint the
reader with some basic facts on convex sets in general, and polytopes 1n
particular; as well as to provide “‘experimental material” in the form of
examples.

Some basic tools for the investigation of polytopes are described in
detail in Chapter 5; most of them are used in different subsequent sections.
In Chapters 6 and 7 some of those techniques are applied to polytopes
with “few” vertices, and to neighborly polytopes.

Chapters &, 9, and 10 have as common topic the relations between the
numbers of faces of different dimensions. Starting with Euler’s equation.
the Dehn—-Sommerville equations for simplicial polytopes (and for certamn
other families) are discussed and used in the (partial) solution of the
upper-bound conjecture. Chapter 14 1s related to Chapter 9 by the
similarity of the equations involved.

Chapters 11 and 12 deal with problems of a more topological flavor.
while Chapter 13 discusses the much more detailed results known about
3-dimensional convex polytopes.

Chapter 15 contains a survey of the known results concerning the
representation of polytopes as sums of other polytopes.

A summary of the available results about graphs of polytopes and
paths 1n those graphs, as well as their relation to various problems that
arose 1n applications, forms the topic of Chapters 16 and 17.

Chapter 18 deals with a topic related to convex polytopes more by the
spirit of the problems considered than by actual interdependence:
partitions of the (projective) space by hyperplanes.

In the last chapter a number of unrelated areas i1s surveyed. Their
inclusion—at the expense of other topics which could have been included
—1s due to the author’s interest in them.

It 1s hoped that parts of the book will prove suitable as texts for a
number of different courses. On the other hand, the book i1s meant to
serve as a ready reference for research workers; hence an attempt at
completeness was made both in the coverage of the topics discussed, and
in the bibliography. While the author 1s confident that the current surge
of interest and research 1n the combinatorial properties of convex
polytopes will continue and will render the book obsolete within a few
years, he may only hope that the book itself will contribute to the
revitalization of the field and act as a stimulant to further research. (Some
of the results that came to the author’s attention after completion of the
manuscript m August 1966 are mentioned in the Addendum on

pp. 426-428.)
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It was the author’s good fortune to obtain the cooperation of his
friends and colleagues Victor Klee, M. A. Perles, and G. C. Shephard.
Professor Klee wrote Chapters 16 and 17, while Professor Shephard
contributed Chapter 15, Section 14.3, and part of Section 14.4. Professor
Perles permitted the inclusion of many of his unpublished results; they
are reproduced m Sections 5.1, 54, 5.5, 6.3, 11.1, 12.3, and 1n many
other places throughout the book. In addition, Perles corrected many of
the errors contained in the various preliminary versions, and contributed
a large number of exercises. The author’s indebtedness to Klee, Perles,
and Shephard, hardly needs elaboration.

Thanks are also due to many other colleagues who contributed to
the effort through discussions, suggestions, corrections etc. It would not
be feasible to mention them all here. Particular thanks are due to W. E.
Bonnice, L. M. Kelly, J. R. Reay, V. P. Sreedharan, and B. M. Stewart,
all colleagues at Michigan State University during 1965/66, whose
patience, encouragement and help during the most exasperating stages
are gladly acknowledged and deeply appreciated.

The author gratefully acknowledges the financial support obtained
at various times from the National Science Foundation and from the
Air Force Office of Scientific Research, U.S. Air Force. Much of the
research that 1s being published for the first time in the present book was
conducted under the sponsorship of those agencies. Professor Klee
acknowledges some helpful suggestions from David Barnette, and
financial support from the University of Washington, the National
Science Foundation, the RAND Corporation, and especially from the
Boeing Scientific Research Laboratories; Chapters 16 and 17 appeared
in a slightly different form as a BSRL Report.

The author’s most particular thanks go to his wife Zdenka; without
her encouragement and patience the book would have never been

completed.

University of Washington, Seattle
December 31, 1966 BRANKO (GRUNBAUM



Preface to the 2002 edition

There is no such thing as an “updated classic "—so this 1s not what you have
in hand.

In his 1966 preface, Branko Griinbaum expressed confidence “that the cur-
rent surge of interest and research in the combinatorial properties of convex
polytopes will continue and will render the book obsolete 1n a few years.” He
also stated his “hope that the book itself will contribute to the revitalization of
the field and act as a stimulant to further research.”

This hope has been realized. The combinatorial study of convex polytopes
1s today an extremely active and healthy area of mathematical research, and the
number and depth of 1ts relationships to other parts of mathematics have grown
astonishingly. To some extent, Branko’s confidence 1n the obsolescence of his
book was also justified, for some of the most important open problems men-
tioned 1n 1t have by now been solved. However, the book 1s still an outstand-
ing compendium of interesting and useful information about convex polytopes,
containing many facts not tound elsewhere.

Major topics, from Gale diagrams to cubical polytopes, have their begin-
nings 1n this book. The book 1s comprehensive in a sense that was never
achieved (or even attempted) again. So 1t 1s still a major reference for poly-
tope theory (without needing any changes).

Unfortunately, the book went out of print as early as 1970, and some of our
colleagues have been looking for “their own copy’ since then. Thus, respond-
ing to “popular demand”, there have been continued efforts to make the book
accessible again. Now we are happy to say: Here it is!

The present new edition contains the full text of the original, in the origi-
nal typesetting, and with the original page numbering—except for the table of
contents and the index, which have been expanded. You will see yourself all
that has been added: The notes that we provide are meant to help to bridge the
thirty-five years of intensive research on polytopes that were to a large extent
initiated, guided, motivated, and fuelled by this book. However, to make this
edition feasible, we had to restrict these notes severely, and there 1s no claim
or even attempt for any complete coverage. The notes that we provide for the
individual chapters try to summarize a few important developments with re-
spect to the topics treated by Griinbaum, quite a remarkable number of them
triggered by his exposition. Nevertheless, the selection of topics for these notes
1s clearly biased by our own interests.

X1
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The material that we have added provides a direct guide to more than 400
papers and books that have appeared since 1967; thus references like “Griin-
baum [a]” refer to the additional bibliography which starts on page 448a. Many
of those publications are themselves surveys, so there 1s also much work to
which the reader is guided indirectly. However, there remain many gaps that
we would have liked to fill if space permitted, and we apologize to fellow re-
searchers whose favorite polytopal papers are not mentioned here.

Principal refterences to “polytope theory since Griinbaum’s book™ that we
have relied on include the books by McMullen—Shephard [b], Brgndsted [a],
Yemelichev—Kovalev—Kravtsov [a], Ziegler [a], and Ewald [a], as well as the
surveys by Griinbaum—Shephard [a], Griinbaum [d], Bayer—Lee [a], and Klee—
Kleinschmidt [b]. Furthermore, we want to direct the readers’ attention to
Croft-Falconer—Guy [a] for (more) unsolved problems about polytopes.

We have taken advantage of some tools available in 2002 (but not in 1967),
in order to compute and to visualize examples. In particular, the figures that
appear 1n the additional notes were computed in the polymake framework
by Gawrilow—Joswig [a, b], and were visualized using javaview by Polthier
et al. [a)].

Moreover and most of all, we are indebted to a great number of very help-
ful and supportive colleagues—among them Marge Bayer, Lou Billera, Anders
Bjorner, David Bremner, Christoph Eyrich (I&IgX with style!), Branko Griin-
baum, Torsten Heldmann, Martin Henk, Michael Joswig, Gil Kalai, Peter Klein-
schmidt, Horst Martini, Jirka Matousek, Peter McMullen, Micha Perles, Julian
Pfeifle, Elke Pose, Thilo Schréder, Egon Schulte, and Richard Stanley—who
have provided information and assistance on the way to completion of this
long-planned *“Griinbaum reissue” project. |

Berlin/Seattle, September 2002,
Volker Kaibel - Victor Klee - Giinter M. Ziegler
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CHAPTER |

Notation and Prerequisites

1.1 Algebra

With few exceptions, we shall be concerned with convexity in R the
d-dimensional real Euclidean space. Lower case characters such as
a, b, x, y, z shall denote points of R¢, as well as the corresponding vectors;
0 1s the origin as well as the number zero. Capitals like 4, B, C, K shall
denote sets; occasionally single points, if considered as one-pointed sets,
shall be denoted by capitals. Greek characters «, 5, 4, u, etc.,, shall denote
reals, while n, k, i, j shall be used for integers. The coordinate representa-
tion of a point ae R? shall be a = (o) = (o¢y, &y, - - -, &y).

Sets defined explicitly by specifying their elements will be written in
the forms {a,,---,a.}, {a,,---,a,,---}, or {ae A|a has property &},
the last expression 1ndicating all those elements of a set 4 which have a
certain property .. Finite or infinite sequences (of not necessarily different
elements) will be denoted by (a,,---,a,) or (a,,---,a,, --); the first
expression will also be called a k-tuple. For the set-theoretic notions of
union, intersection, difference, subset we shall use the symbols U, N, ~,
and <. The empty set will be denoted by ¢, while card 4 will denote

the cardinality of the set A.
The algebraic signs are reserved for algebraic operations; thus

A+ B={a+blacA,be Bj
AA ={lalace A}.

If a set A consists of a single point a we shall use the simplified notation
a + Binstead of {a} + B = 4 + B. The set (—1)A will be denoted — A.

The set x + AB, for 4 # 0, 1s said to be homothetic to B, and positively
homothetic if A > 0.



2 CONVEX POLYTOPES

The scalar product {a, b) of vectors a, b € R is the real number defined
by

d

a,b) = z ;-

i=1

The most important properties of the scalar product are

{a,b) = (b, a)
{Aa,b) = AKa, b>

{a+ b,c)=<La,c) + {(b,c)
{a,a) > 0 with equality if and only ifa = 0 .

If <a,b) = 0 then a and b are said to be orthogonal to each other.
If {a,a> = 1 then a is called a unit vector. In the sequel, the letter u (with
or without indices) shall be used only for unit vectors.

A hyperplane H is a set which may bedefinedas H = {xe R?|{x, y) = a}
for suitable ye R?, y # 0, and «. An open halfspace [closed halfspace] is
defined as_.{xe R?|<{x,y) > a} [respectively {xeR*|{(x,y)> > «}] for
suitable ye R?, y # 0, and «. Clearly, {xe R*|{x,y> < «} is also an
open halfspace for y ¢ 0; similarly for closed halfspaces.
~ Each hyperplane has a translate which 1s (1somorphic to) a (d — 1)-
dimensional Euclidean space R~ !. For each hyperplane H which does
not contain the origin O there exists a unique representation
H = {xe R*|{x,u) = a} in which u is a unit vector and « > 0.

If x, x;e R, we shall say that x is a linear combination of the x,’s
provided

for suitable real numbers 4,;.
If x = Y% A;x;for reals A, satisfying ) ¥_ . A, = 1 we shall say that x is

an affine combination of the x;’s.
A set X = {x,---,x,; 18 linearly [respectively affinely| dependent

provided O is representable as a linear combination 0 = ) ¥_. 1;x; in

which some 4;# 0 [and ) ', A; = 0]. If a set X fails to be linearly
|affinely] dependent we call it linearly |affinely] independent. In any linearly
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laffinely] dependent set some point 1s a linear [affine] combination of the
remaining points. The d-dimensional space contains d-membered sets
which are linearly independent, but every (d + 1)-membered set 1n R is
linearly dependent. A set X = {xp, x;, -, %} Is affinely dependent
lindependent] if and only if the set (X ~ {xo}) — Xo = {X; — Xg, X5 — Xo,

., X, — Xo} is linearly dependent [independent]. For any x € R? the sets
X and x + X are simultaneously affinely dependent or independent.

The set of all affine combinations of two different points x, y € R? is
the line L(x,y) = {(1 — A)x + Ay|Areal}. If X',y € L(x,y) and x" # )’
then L(x', y') = L(x, y).

If a set H has the property that L(x, y) « H whenever x,ye H,x # y,
we call H a flat (or an affine variety). Clearly, the set of all affine [linear |
combinations formed from all finite subsets of a given set 4 1s a flat
subspace]; 1t is denoted by aff 4 [lin 4] and 1s called the affine hull
linear hull] of ‘A. The family of all flats in R? contains RY (J, all one-
pointed sets, all lines, all hyperplanes; also, 1t 1s intersectional: if all
H s are ﬁats SO 18 ﬂ H,. The affine hull aff 4 of a set A may equivalently

be deﬁned as the 1ntersect10n of all flats which contain 4. Similar state-
ments hold for linear hulls. The formation of the affine hull 1s translation
invariant, 1.e. aftf (x + A) = x + aff A.

Every nonempty flat H is a translate H = x + V of some subspace V
of RY and is therefore isomorphic to a Euclidean space of a certain
dimensionr < d;thedimensionof H (and of V)isthenr = dim H = dim V.
A flat of dimension r will be called an r-flat. We agreetoputdim & = —1.
In general, instead of saying ‘an object of dimension r° we shall use the
shorter term ‘r-object’; for example, d-space, r-subspace, etc. If 4 is any
subset of R, its dimension dim A is defined by dim A = dim aff 4.

Each r-flat contains r 4+ 1 affinely independent points, but each
(r + 2)-membered set of its points 1s affinely dependent.

If A= {a,a,, --,a}, where a; = {&;;, %5, -+, %4}, then the maximal
number of linearly independent members of 4 equals the rank of the
matrix

Xy1 g2 Kyg

Xy Xgp - Aoy

g1 Xz~ " Ug

while the maximal number of affinely independent members of 4 equals
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the rank of the matrix
lagy dgp - %yg

Loy 0yp - Ggy

rrrrrrrrrrrrrr

Loy g - Qg

A finite set X < RYis said to be in general position provided each subset
of X containing at most d + 1 members is affinely independent.

The following remark is sometimes useful : Given positive integers d
and k, there exists an integer n(d, k) with the property that whenever
A < RY satisfies card A > n(d, k), there exists a subset B of A such that
card B = k and the points of B are in general position in aff B.

Let a transformation T from R? to R? be defined by

B Ax + b
e, x> + 6

where A is a linear transformation of R? into itself, b and ¢ are d-dimen-
sional vectors, and ¢ 1s a real number, at least one of ¢ and 0 being dif-
ferent from 0. Any transformation of this type is called a projective trans-
formation* from R? into R%. Note that T is not defined for x in N(T) =
{y|<c,y> + 6 = 0}. The set N(T) may be empty (in which case T is an
affine transformation); i1f A 1s regular and ¢ # 0, N(T) 1s a hyperplane
(which, 1 the projective space, 1s mapped by T into the ‘hyperplane at
infinity’). The reader 1s invited to verify that collinear points are mapped
by projective transformations onto collinear points. A projective trans-

A b

c 0
A’ 1s the matrix of A, and b’ the transposed vector b); 1n this case T has
an inverse which 1s again a projective transformation. If (xq, -+, x4 )
and (y,, -, V44 1) are two (d + 2)-tuples of points in general position in
R, there exists a unique projective transformation T such that Tx; = y,
fori =0,---,d + 1; moreover, this T is nonsingular. If K is a subset of

R4, T is said to be permissible for K provided K " N(T) = ¢J. If K, <« R?

Tx

formation T is nonsingular provided the matrix( ) 1s regular (here

* In case of need, the reader should consult a suitable textbook on projective geometry.
However, he should bear in mind that we are dealing with Euclidean (or afline) spaces,
and nonhomogeneous coordinates, while the most natural setting for projective trans-
formations are projective spaces and homogeneous coordinates.
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and T; is a projective transformation permissible for K;, i = 1, 2, and if
T.K, < K,, then T, T, 1s a projective transformation permissible for K.

Subsets 4, B of R? will be called affinely [projectively] equivalent pro-
vided there exists a nonsingular affine [permissible for 4 projective]
transformation T such that T4 = B.

1.2 Topology

A set X 1s a metric space provided a real valued metric function (or distance)
p 1s defined for all pairs of points of X satisfying the conditions:

(1) p(x,y) > 0, with equality if and only 1if x = y;
() p(x,y) = p(y, x);
() p(x,y) < p(x,z) + p(z, y).
In the remaining part of this section X shall denote a metric space with
a given distance p.

For any x € X and o > 0 the open ball g(x . 0), the closed ball B(x ; ),
and the sphere S(x ; 8) with center x and radius 6 are defined by

B(x;0) = {ye X | p(y. x) < &)
B(x;0) = {ye X | p(y, x) < 6}
S(x;8) = {ye X | p(y, x) = 6}.

Aset A < X 1sopen provided every a € A4 is the center of some open ball

B(a; ) which 1s contained in A4. It is easily shown that open balls, the
whole space X, the empty set (J, are open sets. The union of any family
of open sets 1s an open set ; the intersection of any finite family of open
sets 1S open.

A set A < X is closed provided its complement ~A4 = X ~ A is open.
All closed balls, all spheres, all finite sets of points, ¢, and X, are closed.
The family of closed sets 1s intersectional, i.e. the intersection of any family
of closed sets 18 itself closed ; the union of any finite family of closed sets
1s closed. A set A < X 1s bounded provided there exists 6 > 0 and xe X
such that p(a, x) < o for all ae 4. The diameter diam 4 1s defined by
diam 4 = sup{p(x, y)| x,ye A}.

A sequence of (x,, x,, -+, X,, ) of points of X 1s said to converge to
xe X (or to have x as limit) provided lim p(x,,x) = 0. A sequence

n— oo

(X1, X9, ,X,, ") = X i1s a Cauchy sequence provided for every ¢ > 0
there exists k = k(¢) such that p(x;, x;) < ¢ whenever i,j > k. The metric
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space X is complete provided every Cauchy sequence in X converges to

some point of X.
An alternative definition of closed sets 1s: A set A < X 1s closed pro-

vided the limit of every convergent sequence of points of 4 belongs to 4.

A set A = X 1s compact provided every mfinite sequence of points of 4
contains a subsequence which has a point of 4 as limit.

The union of all open sets contained 1n a set A < X 1s an open set, the
interior of A ; 1t 1s denoted by int 4. The intersection of all closed sets
containing A 1s a closed set, the closure of 4 ; 1t 1s denoted by cl 4. The
boundary of A, denoted bd A4, 1s defined by bd 4 = cl 4 n cl(~ A). Clearly

bd A 1s closed (possibly empty) for every A.

- The metric space which will be most important in the sequel 1s the d-
dimensional real Euclidean space R?. For a, b € R? we define

d
pla,b) = | 3 (o — B! = (Ca = bya — b)),

It 1s easily shown that all flats and all closed halfspaces are closed sets,

and that open halfspaces are open sets.
The metric function of R? has also the following properties:

p(’laa Ab) — ‘)L' p(aa b)
pla+ ¢,b + c) = pla,b).

Using the notation || x|| = p(x, 0), this becomes p(a, b) = ||la — b||.

A set A < R?is compact if and only if A4 is closed and bounded.

If A, B < R? are closed sets and at least one of them i1s compact, then
A + B s closed; if both are compact, soi1s 4 + B.

If A < R%is open, then 4 + B is open for every B.

The distance 6(A4, B) between sets A, B < R? is defined by

o(A4, B) = inf{p(a,b)|ae A, be B}.

The family % of all compact subsets of R? is a metric space with the
Hausdorff distance p(A,, A,) defined by

p(Ay, Ay) = inf{a > 0|4, < 4, + aB, 4, < A; + aB},

where B = B(0; 1) 1s the closed ball of unit radius centered at the origin 0.
An equivalent definition 1s

p(Ay, A,) = max{ sup mf [[x; — x|, sup nf [x; — xl“}'

xjeAdy x2e A X264y x;e€ A
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S 1s a complete metric space, with the following local compactness
property:

Every subfamily of & which 1s bounded and closed in the Hausdorft
metric, 1S compact 1n this metric.

Convergence of closed subsets of RY may be defined by stipulating that
a sequence (4,, A,,---, A,,---) of closed sets in R? converges to a closed
set A provided

(1) for every a e A there exists a sequence a,€ A, such that a = lima,;
and

(1) for every convergent sequence (a,), where a,€A4,, we have
lima, € A.
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1.3 Additional notes and comments

The first sentence on page 1 is
“With a few exceptions, we shall be concerned with convexity in R%, the
d-dimensional Euclidean space.”

For the study of convex polytopes, this is justified by the observation that in
Euclidean d-space one encounters the same (combinatorial types of) polytopes
as those met in elliptic/spherical space or in hyperbolic space. Indeed, with
any polytope P C R one may associate the pointed cone Cp C R+ that is
spanned by all points (1,x) with x € P. The intersection of this cone with the
unit sphere S¢ = {x € R+l x% + - +x§ = 1} yields a spherical polytope;
furthermore, any spherical polytope (distinct from S%) may be transformed to
lie in the open hemisphere {x € §¢ : x, > 0}, and then determines a cone C,
and a convex polytope P = {x € R* : (1,x) € Cp}. (See pages 10 and 30 for
discussions of spherical convexity.) Similarly, if we scale P C R? to lie in
the interior of the unit ball B ¢ R?, then the intersection of the cone C p With
the hyperboloid H¢ = {x € R**+! . x% =14xt+.- +x§} yields a hyperbolic
polytope, and conversely any hyperbolic polytope (in the sheet of H given by
x, > 0) determines a Euclidean polytope contained 1n the unit ball.

One may also note that orthogonal transformations that keep a polytope in
the positive hemisphere of $¢ correspond to admissible projective transforma-
tions (as discussed on page 4). The use of homogeneous coordinates gives
correspondences between affine, spherical, and hyperbolic polytopes.

Nevertheless, 1t has turned out to be very useful at times to view polytopes
in spherical resp. hyperbolic space, for arguments or computations that would
exploit aspects that are specific to the geometry (metric, angles, volumes) of
spherical or hyperbolic space.

A remark on page 4.
Griinbaum’s “useful observation” may be proved by induction on k and d: One
obtains recursions of the type

n(d, k) < (k; 1) n(d —1,k),

based at n(1,k) = k. Here one may assume that the given set A has dimension d,
otherwise the claim is true by induction. Then we consider a d-dimensional
general position subset B C A of maximal cardinality card B < k — 1, 1f the
(d — 1)-flats it spans all contain fewer than n(d — 1,k) points from A, then
there are points from A that extend B.

The observation has been considerably strengthened: The subset B C A of
cardinality k can be found to lie on a curve of order d’ in d'-dimensional affine
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space; thus it will give a cyclic oriented matroid. For d' > 1 the set B will be
in convex position, forming the vertex set of a cyclic polytope C(k,d’)—this
i1s obtained by combination of Griinbaum’s remark with results of Duchet—
Roudneff [a, Cor. 3.8] and Sturmfels [a] (see also Bjomer et al. [a, pp. 398—
399])).

The observation 1s 1n essence a Ramsey-theoretic result, see Graham—Roth-
schild—Spencer [a]. Correspondingly, the bounds that follow from recursions
of the type given above grow extremely fast. More precise versions for small
corank are discussed in exercises 2.4.12 and 6.5.6.

The footnote on page 4 ...

asks the reader to consult, it necessary, “a suitable textbook on projec-
tive geometry”. Classical accounts of projective geometry include Veblen—
Young [a] and Hodge—Pedoe [a]. A treatment of projective transformations
using homogenization for the manipulation of convex polytopes, as suggested
by Griinbaum, is Ziegler [a, Sect. 2.6].



CHAPTER 2

Convex Sets

The present chapter deals with some fundamental notions and facts on
convex sets. It serves a double purpose: we establish certain properties
of convex sets which shall be used later in the special case of convex poly-
topes ; certain other properties are investigated which do not hold for
all convex sets but are valid (and important) for more restricted families
such as compact convex sets, polyhedral sets, or polytopes. We discuss
these properties 1n order to enable the reader to place the convex poly-
topes in a better perspective among all convex sets.

Though readers familiar with the theory of convex sets may omit
chapter 2, 1t 1s the author’s hope that some of the facts and approaches
presented will be of interest even for the specialist.

2.1 Definition and Elementary Properties

A set K < R?is convex if and only if for each pair of distinct pointsa, b € K
the closed segment with endpoints g and b 1s contained 1n K.

Equivalently, K 1s convex if its intersection with every straight line is
either empty, or a connected set.

Examples of convex subsets of R?: the empty set &F ; any single point;
any linear subspace (including R?) of R?; any flat (affine variety) and any
(closed or open) halfspace of R?; the interior of any triangle, or simplex
1n general ; the interior of a circle (or k-dimensional sphere), together with
any subset of the circle resp. sphere.

Using the vectorial notation, the definition of convexity may be re-
formulated as follows:

K isconvexifand onlyifa,beKand 0 < A <1 mmply Aa + (1 — A)b
e K.

The following statements are almost obvious (and should become
completely obvious after the reader proves them):

1. If{K,} is any (finite or infinite, denumerable or not) family of convex
sets in RY, then their intersection N K , is also convex.

A%

8
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2. If A and B are convex then A + B and A — B are convex, and for
any real A, the set AA is convex.

3. If Ais convex,aq;e Aand A, >0 fori=1,2,...,k,and

k K
Z ;{'f — ]., then Z /lfaie A
i=1 i=1

4. If A < R? is convex, the sets cl A and int A are also convex. (Hint

forcl A: Use exercise 2and cl 4 = N (4 + uB), where B 1s the unit ball
of R%) u>0

5. If A = RY is convex, xe A, and yeint A, then all points of the line
segment between x and y belong to 1nt A.

6. If T isanaffine transformation of R% into itself, andif A = R%is convex,
then T(A) is convex.

7. For a convex set A < R? let H = aff A be the affine hull of A. The
relative interior relint A of A as a subset of H is never empty, and relint cl
A < A < clrelint A. The relative boundary relbd A of A with respect to H
is empty if and only if A is an affine variety (i.e. A = H).

Exercises

1. For subsets A and B of R? let A ~ B mean: there exist xe R and
o« > 0 such that B = x + aA. (This symbol will be used only i1n the
present exercise.) This is an equivalence relation. Prove: The convex
subsets of R' (including ¢f and R') form eleven distinct classes with
respect to the relation ~. Describe these classes. How many classes are
there if in the definition of ~ the only restriction on a is a % 0? What 1s
the number of classes in R*?

2. Determine all subsets 4 of R! such that both A4 and its complement
~ A are convex ; the same for R* and R°>. Try to generalize to R".

3. Let {K,} be a family of convex sets in R’ If every denumerable
subfamily of {K,} has a non-empty intersection, then N K, # . (For

generalizations and a survey of related results see Klee [ 7}.)

4. For any pair of distinct points a, b € R let [a, b] denote the (closed)
halfline with endpoint a, passing through b. For any set K < RY, and any
ac R? we define the cone cone, K generated by K, with apex a, by

cone, K = U [a,b[. We also define cone, J = {a}. For convex K < R’

beK
b+#a

prove the following statements:
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(1) cone, K 1s convex ;

(1) if K is open, (cone, K) ~ {a} is open;

(1i1) the assertion ‘if K 1s closed then cone, K is closed’ is false:

(1v) 1f K 1s compact and if a ¢ K, then cone, K 1s closed.

5. Determine which of the statements in exercises 3 and 4 remain valid
1f K 1s not assumed to be convex.

6. Let S?7! be the unit sphere in R, centered at the origin 0. A set
A < S is spherically convex provided cone, A is a convex set. Prove
that this definition is equivalent with the following: 4 < S°~ ! is spherically
convex 1f and only if for every x, ye A, y # +x, the set A contains the
small arc of the great circle determined on S?~! by x and y.

7. Prove Blaschke’s ‘selection theorem’ (Blaschke [1], Eggleston {3];
compare p. 7): Every infinite sequence of compact convex sets which
1s bounded 1n the Hausdorfl metric, contains a subsequence which con-
verges (1n the Hausdorfl metric) to a compact, convex set.

8. Let (4,,---,A,, - ) be a sequence of closed convex sets in R°.
Show that the sequence (A4,) converges to the closed set 4 if and only 1f
for every sufficiently large A the sequence (4, " AB, A, " AB, - -, A4, N
/B, --) converges to A N AB (where B denotes the solid unit ball in RY).

2.2 Support and Separation

Let 4 be a subset of R?. We shall say that a hyperplane
= {xe R*|{x,u) = a}

cuts A provided both open halfspaces determined by H contain points
of A. In other words, H cuts A provided there exist x,, x, € 4 such that
(X, uy < aand (x,, ud> > a.

We shall say that a hyperplane H supports A provided H does not cut
A but the distance between 4 and H 1s 0, o(A4, H) = 0. In other words, H
supports A if either sup{<{x,ud|x € A} = o Or else nf{{x, u) | xe A} = a.

Since bounded and closed subsets of R? are compact, this implies:

A bounded set A < R? is supported by a hyperplane H if and only if
H doesnotcut A and HnclA # .

Two subsets 4 and A’ of R? are said to be separated by a hyperplane H
provided A 1s contained 1n one of the closed halfspaces determined by H
while A’ is contained 1n the other. The sets 4 and A’ are strictly separated
by H if they are separated and A " H = A" n H = (4. In other words,
A and A’ are strictly separated by H provided they are contained 1n
different open halfspaces determined by H.



CONVEX SETS l1

The tollowing results are of fundamental importance

1. If A and A’ are convex subsets of R® such that A'is bounded and
clAnclA" = &, then A and A" may be strictly separated by a hyperplane.

2. If A and A’ are convex subsets of R? such that aff(4 U A’') = R?
then A and A" may be separated by a hyperplane if and only if

relint A nrelint 4" = ¢,

PROOF OF THEOREM | Since the distance between two sets 1s the same
as the distance between their closures, it 1s obviously enough to consider
the case 1n which A and A4’ are closed sets. Let 6 = (A, A') be the distance
between A and A'; by the hypothesis 6 > 0. Clearly, the function
o(x, A") = inf{p(x, y)| ye A"} depends continuously on x. If B(¢) denotes
the closed d-dimensional ball centered at x, with radius ¢ + d(x, 4"),
then A" N B(e) 1s, for ¢ > 0, a nonempty compact set, and A" n B(e) =
A" " B(¢') whenever 0 < ¢ <¢'. Therefore N (4" N B(g)) = A" n B(0)

E>Q

# (5. In other words, there exists a point y = y(x) € 4" such that o(x, A’) =
p(x, y(x)). Moreover, the point y(x) 1s unique, since if there would exist
distinct y,, y, € A" with p(x, y,) = p(x, y,) = 6(x, A') then 3y, + y,)e A’
would satisfy p(x, 3(y; + y,)) < d(x, A'), contradicting the definition of
o(x, A).

Since o(x, A') 1s a continuous function of x, 1t assumes a minimum on
the compact set A ; thus there exists an x,€ A such that 0 = 0(x,, A') =
p(xg, ¥(xo)). The hyperplanes H, and H,, orthogonal to [x,, y(x,)] and
passing through x, respectively y(x,), have the following property: The
open slab Q of width 0 > 0, determined by H, and H,, contains no point
of A U A'. Indeed, let ze Q and consider the open intervals |z, x,| and
1z, y(xo)|. Each point of the first interval, sufficiently near to x,, 1s at a
distance less than o from y(x,) and thus can not belong to A; similarly,
each point of the second interval, sufficiently near y(x,) 1s at a distance
less than ¢ from x, and therefore does not belong to 4’. Since both A4
and A’ are convex, 1t follows that z belongs to neither of them. In other
words, we have established that H, (as well as H,) separates 4 and A’,
and each hyperplane parallel to H, and intersecting the open interval

|x0, y(xo)l strictly separates 4 and A’. This completes the proof of
theorem 1.

PROOF OF THEOREM 2 The ‘only 1f’ part 1s obvious. We shall establish
the other part of the theorem assuming, without loss of generality, that
A and A’ are closed. Let x,erelint A, y,erelint 4, and let 0 < ¢ < 1.
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Denoting by B the solid d-dimensional unit ball centered at the origin,
let

A, = xq + -i—B AL —e)(—xq + A))

and
A, = yo + (1 — &)(—yy + A).

Then A, 1s homothetic to A’, and A, is homothetic to a compact subset
of A. Note that for ¢ >¢" >0, A, < A, and A, < A.., and that
relintA = U Ad,andrelint4"'= U A,. Since A, crelint A and

0<egx 1 O0<egx1

A. < relint A', 1t follows that A, N A, = . By theorem 1, there exists a
hyperplane H, = {xe R*|{x,u,)> = a,} strictly separating A, and A..
Since each H, meets the segment [x,, y,], the set {a,|¢ > 0} is bounded.
The set {u, | ¢ > 0} being contained in the compact unit sphere $?~ 1, this
implies the existence of a sequence (¢, |n=1,2,--:) with ¢, > 0 and
lim ¢, = O such that the sequences (u, ) and (o, ) converge to u and «.

n—* oo

Let H be the hyperplane H = {x|{x,u) = a}; then H clearly separates
A and A’', and the proof of theorem 2 1s completed.

The reader 1s 1nvited to derive the following propositions from
theorems 1 and 2.

3. Each closed, convex subset of R is the intersection of all the closed (or
of all the open) halfspaces of R® which contain the set. Each -open convex
subset of R? is the intersection of all the open halfspaces containing it.

4. If K is a convex set in R and if C is a convex subset of bd K (in partic-
ular, if C is a single point of bd K) then there is a hyperplane separating K
and C. In other words, there exists a supporting hyperplane of K which
contains C.

Exercises

1. In the proof of theorem 1 the uniqueness of the point x, was not
asserted ; could it have been asserted? Is the boundedness of A essential
for the validity of theorem 17

2. If A is a bounded set in R? and if H is a given hyperplane, there
exists a supporting hyperplane of 4 parallel to H. If 4 1s, moreover,
convex and int A # J, there exist exactly two such hyperplanes. If A4 1s
convex and bounded, and x ¢ int A, there exists a supporting hyperplane
of A which contains x. Are all the conditions mentioned in the above

statements necessary?
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3. If A and A’ are disjoint compact convex sets in R then the set

= {H(u, o)} of all hyperplanes H(u, o) = {xe R*|{x,u) = «} which
strictly separate 4 and A’ is open in the sense that {(u, «) | H(u, @) € 3£} is
an open subset of the product S~! x R.

4. If Aisa closed subset of R? withint 4 s ¢4, such that each boundary
point of A 1s on a supporting hyperplane of A4, then A 1s convex.

5. Determine all the semispaces of RY, that is, the maximal (with respect
to inclusion) convex sets which do not contain a given point. (Motzkin [2],
Hammer[1, 2], Klee{1}). Prove:

(1) The complement (in R?Y) of a semispace is a convex set.

(i1) The family of all semispaces of R? is an intersectional basis for all
convex sets in R? (that is, every convex subset of R? is the intersection of
all the semispaces containing 1t).

(iti) The family of all semispaces in R? is a minimal intersectional basis
for the convex subsets of R (that 1s, none of its proper subfamilies i1s an
intersectional basis). It 1s a minimal intersectional basis for all bounded
convex sets.

6. Characterize those subsets of R? which are obtainable as intersections
of d-dimensional solid balls.

7. Let K = R? be a closed convex set and L< R? a flat such that
dimL < dand L n K = . Show that there exists a hyperplane H such
that K " H = ¢Jand L < H.

8. Let K = R? be a nonempty set. The supporting function H(K, x) of
K is defined for all x € R? by

H(K, x) = sup{<{y, x> |ye K}.
If for some nonzero x € R? we have H(K, x) < oo, the hyperplane

L(K,x) = {y e R |y, x> = H(K, x)}

1s obviously a supporting hyperplane of K ; L(K, x) is called the support-
ing hyperplane of K with outward normal x. The following facts will be
used mainly 1n Chapter 15; the reader i1s urged to provide their proofs,

or to look them up in the literature (see, for example, Bonnesen—
Fenchel [1}).

(1) The supporting function H(K, x) of a convex set K # ¢ 1s positively
homogeneous and convex, that 1s, 1t satisfies

H(K,ix) = AH(K,x) forallA >0, xeRY;
HK,x + y) < HK, x) + H(K, y) for all x, y € R°.
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On the other hand, if H(x) is any function defined on R? such that
H@©) = 0, H(Ax) = AH(x) and H(x + y) < H(x) + H(y) forall 4 > 0 and
x, y € R?, then there exists a nonempty closed convex set K such that
H(x) = H(K, x) for all x € R%.

(i1) If K is a nonempty set, if 1 > 0, and if y e R%, then H(y + K, x) =
{y, x>+ H(K, x), HAK, x) = AH(K, x), and H(cl K, x) = H(K, x) for all
x € R4

(i1i) If K, K, are nonempty and 0 ## xe RY, then H(K, + K,, x) =
H(K 1, x) + H(K; x)and (K, + K;) A LK, + Ky, x) = (K, ~ L(K,, X)) +
(K, n L(K,, x)).

(iv) If K,, K, are nonempty, closed convex sets in R? such that
H(K,, x) = H(K,, x) for every x e RY, then K, = K.

2.3 Convex Hulls

The space R is convex [and closed], and the intersection of any family of
convex [and closed] sets 1s again convex [and closed]. Therefore the

following definitions make sense:
The convex hull conv A of a subset 4 of R?is the intersection of all the

convex sets in R? which contain A. The closed convex hull clconv A of
A = R? is the intersection of all the closed convex subsets of R? which

contain A.
Clearly, if A 1s bounded so are conv 4 and clconv A.

An immediate consequence of the definitions is

1. For every A = R we have clconv A = cl(conv A).

Proposition 3 from the preceding section implies

2. clconv A isthe intersection of all the closed halfspaces which contain A.

A useful representation of conv A 1s given by

3. The convex hull conv A of a nonempty set A < R? is the set of all
points which may be represented as convex combinations of points of A;

that is, points which can be written in the form ) i_ | a;x; where x;€ A,
o; = 0,2?=1ai =1l,n=12---.

In many applications the following result of Carathéodory [1] 1s very
important.

4. If A is a compact subset of R then conv A is closed ; in other words,
for compact A we have clconv A = conv A.
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Using the results of the preceding section i1t 1s not hard to give a direct
proof of theorem 4, by induction on the dimension d. Since a much
simpler proof results from Carathéodory’s theorem, we defer the proof
of theorem 4 till we establish theorem 3.

The following theorem, known as Carathéodory’s theorem, 1s one of the
basic results in convexity, and has important application in other fields.

5. (Carathéodory [2]) If A is a subset of R® then every x econv A4 is
expressible in the form

d d
x= ) aX;  where x;€A,0;>0, and Y a; =1,
=0 =0

PrROOF Let x € conv 4 be given; let x = Y ?_ o;x; (with x;€ 4, o; > 0,
P_o® = 1) be a representation of x as a convex combination of points
of A, involving the smallest possible number p + 1 of points of 4. We shall
prove Carathéodory’s theorem by showing p < d. Indeed, assuming
p = d + 11t follows that the set {x,, -, x,} is affinely dependent. Thus

there exists f;,0 < i < p, not all equal to 0, such thatifzo B.x; = 0 and
P_o Bi = 0. Without loss of generality we assume the notation such that
B, > 0and o,/f, < a;/f; for all those i (0 < i < p — 1) for which §; > O.

ForO<i<p—1lety; =a; — («,/8,)B;. Then

p—1 p o0 P
yi= ) o — 4 ) Bi=1
] i=0 ﬁpi=0

=0

Moreover, y; > 0; indeed, if §; < O then y; > o; > 0;if 8, > 0 then

Thus

i YiXi = i (ai — %Eﬁi

P
X; = ) 04X; = X
i =0 i=0 i=0

1s a representation of x as a convex combination of less than p + 1 points
of A, contradicting the assumed minimality of p. This completes the proof
of Carathéodory’s theorem.

The proof of theorem 4 i1s now immediate. Indeed, if x € clconv A4 there
exists a sequence x, € conv A such that x = Iim x,,.

n— oo

By Carathéodory’s theorem x,=) ‘, 4,;X,;, Where Xx,;€A4,
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0<4,; <1,59 ,4,; =1 for each n. The compactness of [0, 1] and of
A guarantees the existence of converging subsequences (4, ;) and (x, ;)

such that lim 4, _; = A®and lim x,_; = x. Then obviously0 < A" < 1,
k — oo bﬁm
1 A0 =1, x(" e Aand x = _, AYx", as claimed.

A result closely related to Carathéodory’s theorem 1n the sense that
either 1s easily derived from the other, 1s Radon’s theorem :

6. (Radon [1]) If A is a (d + 2)-pointed subset of R®, it is possible to
find disjoint subsets A', A" of A such that conv A’ N conv A" # .

A direct proof of Radon’s theoremis very easy. Let A = {xq, -+, X441} 5

since d + 2 points in d-space are affinely dependent there exist «;, not

all equal 0O, such that fié o; = 0 and det) a;x; = 0. Without loss

of generality we assume the notation such that «,---,a, are positive,

0,41, "> %+ Non positive. Then 0 < p <d. Let a = Efzoai > 0, and
define . = a;/a for 0 <i<p,and ;= —a;/x for p+ 1 <i<d+ 1.
The affine dependence of A can be rewritten 1in the form

d+1

'go Bix; = Z ViXi-

i=p+1

Since f; > 0,y; > 0, and Zp o Bi = ZHPIH v: = 1, this relation expresses

conv {Xg, -+, X,} N conv{xX, 1, -, X441} # &, as claimed by Radon’s
theorem.

For far-reaching generalizations of Radon’s theorem see Tverberg [1]
and Reay [3].

Exercises

1. Show that a hyperplane H < R? supports [cuts] a set 4 < R? if
and only if H supports {cuts] conv A.

2. Proposition 4 states that the convex hull of a compact set 1s com-
pact; show that the convex hull of an open set 1s open. The convex hull
of a closed set 1s not necessarily closed ; find a closed set 4 # ¢J such
that conv A 1s an open proper subset of the whole space.

3. For A = R? let ©(A4) = {3(x; + x,)| x1, x, € A}; let T'(A) = t(A),
and for n> 1 let t""1(4) = 1(t"(4)). Denote t*(4) = U 1"(4). Show

n=1

thatcl t*(4) = clconv 4, althoughin general t*(A4) # conv A. If 4 = bd K
where K is a bounded convex set in RY,d > 2, show that cl K = t(A).

4. For A <R let A4) = {Ax; + (1 — A)x, |x;,x,€4,0< A < 1},
Define 3'(A4) = 3(4) and 3" (A4) = 3(3(A4)) for n > 1. Show that
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convA = U 9"(4). Characterize those convex sets K <« R? for which
n=1

K = 3(bd K).

5. Prove Steinitz’s theorem (Steinitz | 5] ; Rademacher—Schoenberg [ 1];
generalizations in Bonnice-Klee [1], Reay [1,2]): If xeintconv 4 = R,
there exists a subset 4" of 4, containing at most 2d points such that
x et conv A". Show that the number 2d may not be decreased In
general, and characterize those A and x for which 2d points are needed
in A'.

6. Let A = R? be a finite set. Then xerelintconv A if and only if
x 18 representable as a convex combination of all points of A4, with all
coefficients positive.

7. Show that in Radon’s theorem 2.3.6 the sets A" and 4" are unique
if and only if every d + 1 points of 4 are affinely independent. Show
also that 1n this case two points of A belong to the same set if and only
if they are separated by the hyperplane determined by the remaining
d points. (Proskuryakov | 1], Kosmak [1]).

8. Let A be a nonempty subset of R? and let #(A4) denote the family
of all subsets S of 4 with the property card S = 1 + dim S. Show that

convA = U relintconvS.
SeF(A)

9. Using the notation of section 2.2, show that for every nonempty set
A < R* and every x € RY,

H(A,x) = H(conv A, x)

and
conv(4 N L(A, x)) = (conv A) n L(A, x).

2.4 Extreme and Exposed Points; Faces and Poonems

Let K be a convex subset of R®. A point x € K is an extreme point of K
provided y,ze K, 0 <A< 1l,and x=Ay + (1 — A)z imply x = y = z.
In other words, x 1s an extreme point of K 1if it does not belong to the
relative interior of any segment contained 1n K. The set of all extreme
pomnts of K 1s denoted by ext K. Clearly, if xeext K then
x ¢ conv(K ~ {x}).

Let K be a convex subset of R%. A set F < K is a face of K if either
F=¢ or F =K, or if there exists a supporting hyperplane H of K
such that F = K n H. ¢ and K are called the improper faces of K.
The set of all faces of K 1s denoted by % (K). A point x € K 1s an exposed
point of K if the set {x} consisting of the single point x is a face of K.
The set of all exposed points of K is denoted by exp K. If K is a closed
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convex set, 1t 1s obvious that each F e #(K) is closed. Throughout the

sequel, the notations ext K, exp K, and #(K) will be used only for closed
convex sets K. |

The following statements result at once from the definitions:
1. If Fe #(K)andif K' < K is a closed convex set,then F N K' € #(K').

2. If Fe#(K) and if xeF, then xeextK if and onljz if xeextF;
thus, if Fe #(K) thenext F = F next K.

3. For every convex K < R? we have exp K < ext K.

4. Let K be a closed convex set in R?, let xe K., and let B be a solid
ball centered at x. Then xeext K if and only if x e ext(K n B), while
x € exp K if and only if x e exp(K n B).

The next two results explain the role of the extreme points.

5. Let K be a compact convex subset of R®. Then K = convext K.
Moreover, if K = conv A then A o ext K.

ProOF Clearly K = convext K. In order to establish K < conv ext K,
we use induction on the dimension of the convex set K, the assertion

being obvious 1n case dim K 1s — 1, or 0, or 1. Without loss of generality
we assume R? = aff K. Let xe K. If x¢ ext K, let L be a line such that
xerelint(L n K). Then Ln K is a segment [y, z], where obviously
y, z € bd K. Since through each boundary pomnt of the convex set K there
passes a supporting hyperplane, there exist faces F, and F, of K containing
y respectively z. Now, the dimensions of F, and F, are smaller than dim K ;
by the inductive assumption, F, = convext F, and F, = convext F,.
Using statement 2 (above) we have

x e conv{y, z} < conv(F, U F,) < conv(conv ext F, L conv ext F,)
< conv(ext F, U ext F,) < convext K,

as claimed. The last assertion of the theorem being obvious, this com-
pletes the proof of theorem 3.
An analogous inductive proof yields also

6. Let K be a closed convex subset of R®, which contains no line. Then
ext K # .

Regarding exposed points, we have

7. Let K = R? be a compact set and let H = {xe R*|(x,u) > a}
(where u is a unit vector) be an open halfspace such that H N K # .

Then H nexp K # .
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ProoF Let K'=H N K, let yeK', and denote by ¢ the distance
from y tobd H and by 6 the number 6 = max{p(x,y — eu)| xe K n bd H}.
Let z = y — Bu, where f is some fixed number satisfying f > (6* + &°)/2¢.
Denoting by B the solid unit ball centered at the origin, let
u=inf{l > 0|z + AB o K'}. Clearly u > . Then, by the compact-
ness of ¢l K', we have z'+ uB o> K’ and C = (cl K') n bd(z + uB) # .
We claim that C nbd H = J. Indeed, assuming the existence of a
point ve C N bd H, we would have 62 > (p(v, y — eu))* = u? — (B — ¢)*
> 2Be — &* which implies 2f¢ < 6% + ¢%, in contradiction to the choice
of . Therefore C = K'; but clearly each point of C is an exposed point
of z + uB and therefore also of ¢l K’ and of K, as claimed.

Lemma 7, together with theorems 4, 5, and 6 above, 3 from section 2.2,
and 4 from section 2.3, imply Straszewicz’ [1] theorem:

8. If K = R%is a compact convex set then cl convexp K = K.

Indeed, let K’ = clconvexp K; obviously K' = K. If K’ # K, then
there exists an xe K such that x¢ K'. Since the compact convex sets
x and K’ may be strictly separated, there exists an open halfspace H
such that HN K # ¢ and Hn K' = . But then Hnexp K #
by theorem 7, contradicting the definition of K'.

The reader is invited to prove

9. If K < R? is a closed convex set then ext K < clexp K ; therefore
if K is line-free then exp K # .

Regarding the family % (K) of all faces of a closed convex set K we
have:
10. The intersection F = N F; of any family {F;} of faces of a closed

=1

convex set K is itself a face of K.

PrROOF If F = ¢ the assertion 1s true according to our definitions;
thus we shall consider only the case F # ¢§. Without loss of generality
we may assume that the origin 0 belongs to F and that each F, 1s a proper
face of K. Then the face F; is given by F; = K n {x|{x, ;> = 0} where
u; 1s some unit vector such that K < {x|{x,u;) > 0}. Let

H = {x|{x,v) =0}  where v= ) u;
i= 1

then clearly K < {x|{x,v) > 0}. Since 0e K n H this implies that
H 1s a supporting hyperplane of K. Now, if xe F then {(x,u; )= 0 for
all i and therefore {(x,v> = 0; hence xe H " K and thus F <« H n K.
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On the other hand, if xe K ~ F then {(x,u j» > 0 for at least one j and
(x,v) > <{x,u;) > 0; thus x¢ Hn K. Therefore F = HN K and F is
a face of K, as claimed.

The family {F;} in theorem 10 may be infinite; in this case the face
of smallest dimension obtainable as intersection of finite subfamilies
of {F;} equals the intersection of all members of { F;}. |

[t is easy to find examples (in each R% d > 2) which show that the
situation 1s possible: K 1s a compact convex set, C € #(K) and F € Z(C),
but F ¢ Z(K).

This observation leads to the following definition:

A set F 1s called a poonem™* of the closed convex set K provided there
exist sets Fy,---,F, such that F, = F, F, = K, and F,_,e #(F,) for
i =1,---,k.

By this definition, each face of K is also a poonem of K, but the converse
1s not true in general. Clearly, each poonem F is a closed convex set,
and ext F = F n ext K. The set of all poonems of a closed convex set K

shall be denoted by 2(K).
The reader 1s invited to deduce from theorem 10 the analogous result

11. The intersection F = N F; of any family {F;} of poonems of a closed
convex set K is in P(K). i

12. If F € P(K) then P(F) = {Pe P(K)| P < F}.
13. If Fe #(K)and Pe P(K) then P " F e P(F) and P n F € #(P).

Exercises

1. A convex cone has at most one exposed point.

2. Let K denote a compact convex set. Show that i1f dim K < 2 then
ext K is closed, but exp K is not necessarily closed. Find a K < R?
such that exp K # ext K # clexp K.

3. If (4,) 1s a sequence of sets in R? let the set lim sup A, consist of
all x e R? such that for every open set V containing x, the intersection
V n A, 1s nonempty for infinitely many »n. Prove the following result
(Jerison [1]): Let (K,) be a sequence of compact convex sets in R?, and
let K be a compact convex set such that K = limsup K. If E, = ext K,
then K = conv(lim sup E,).

4. Extending the definition given above, a point x of a compact convex
set K 1s called k-exposed | k-extreme] provided for some j < k, x belongs

* ‘Poonem’ is derived from the Hebrew word for ‘face’. Klee [2] uses ‘face’ for this
notion: however, it scems worthwhile to reserve ‘face’ for the different notion considered
at the beginning of the present section.
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to a j-face [j-poonem] of K. Clearly, the case k = 0 corresponds to the
previously considered notions of exposed and extreme points. Denoting
the set of all k-exposed points of K by exp, K and that of all k-extreme
points by ext, K, the following generalization of theorem 2.4.9 holds
(Asplund [1]; See Karlin—Shapley [1] for some related notions): If K
1s a closed convex set and if k > 0, then exp, K < ext, K < clexp, K.

5. Let K be a closed convex set. Show that exp, K= U F and
ext, K= U F. dim F <k
Fe?(K)
dimF <k

6. If the family #(K) of all faces of a closed convex set K 1s partially
ordered by inclusion, then #(K) 1s a complete lattice. (For lattice-
theoretic notions see, for example, Birkhoff [1], Szasz [1].) The same 1s
true for the family 2(K) of all poonems of K. (In both cases the greatest
lower bound of a family of elements 1s their intersection.)

7. If K 1s a closed convex set and if C 1s a subset of K, show that
C € (K) 1s equivalent to each of the following conditions:

(1) C is convex and for every pair x, y of points of K either the closed
segment [x, y] 1s contained in C, or else the open interval |x, y| does
not meet C.

(1) C = Knaftf C and K ~ aft C 1s convex.

(1) C = K n L, where L 1s a flat,and K ~ L is convex.

(lv) There exists an x € K such that C 1s the maximal convex subset
of K satisfying x € relint C.

8. If F,e#(K) for 0<i<n and if F; « U F;, then there exists

i=1
ip» 1 < iy < n, such that Fy, < F; . The same 1s true 1if all F; belong to
P(K).

9. Let K; and K, be closed convex sets. Prove:

(1) f Fe#(K,)fori=1,2,then F; n F,e ¥(K; n K,).

(ii) If Fe 2(K,)fori=1,2,then F, " F, e (K, n K,).

(m) If Fe?P(K; nK,) there exist F; e (K,) and F,e P(K,) such
that F = F; n F,.

(iv) If relint K, nrelint K, # ¢f and if Fe#(K, n K,), there exist
Fie#(K,)and F, e ¥(K,)suchthat F = F, n F,.

(v) Find examples showing that (iv) is not true if relint K; n relint K,
= .

10. Let T be a nonsingular projective transformation,

Ax + b

B {e,x) + 6

Tx
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and let H™* be the open halfspace H* = {xe R*|{c¢,x)> + & > 0}. Prove:

(1) If A4 1s any subset of H™ then T(conv 4A) = conv T A.

(1) For every closed convex set K for which T 1s permissible,
F(TK) = {TF|Fe #(K)} and #TK) = {TF | F e #(K)}.

11. A Helly-type theorem (see Danzer—Griinbaum—Klee [1], p. 127) 1s
a statement of the following general type: A family of elements has a
certain property whenever each of its subfamilies, containing not more
than a fixed number of elements, has this property. Prove the following
Helly-type theorems (see also exercise 7.3.5):

(i) A compact set A = R? has the property A = ext conv A if and only
if for every B < A4 such that card B < d + 2 we have B = ext conv B.

(ii) A set A < R? satisfies 4 < bd conv A4 if and only if for every B A4
with card B < 2d + 1 we have B < bd conv B.

(ii1) Find examples showing that the ‘Helly-numbers’ d + 2 and
2d + 1 of (1) and (11) are best possible.

12. Show that if A = R?is any set of d + 3 points in general position,
there exists a B < A with card B =d + 2 such that B = ext conv B.
(See Danzer—Griunbaum-Klee [1], p. 119; for d =2 see Erdos—
Szekeres [1].) |

13. The following statement 1s a particular case of the result known
as Ramsey’s theorem (see Ramsey [1], Skolem [1], Erdés—Rado [1],
Ryser [1]): Given positive integers p,,p,,q there exists an integer
r(p., p,; q) with the property: If 4 1s a set of elements such that card 4
> r(py, p,;q) and if all the g-tuples of elements of 4 are partitioned
into two families &, and &7,, then either there exists in 4 a set 4; con-
taining p; elements such that all g-tuples of elements of A, are in &/,
or there exists a subset A, of A containing p, elements such that all
the g-tuples of elements of 4, are in o7,.

Use Ramsey’s theorem and exercises 11 and 12 to prove the following
results, which generalize a theorem of Erd6s—Szekeres [1]:

(1) Given mtegers d and v, with 2 < d < v, there exists an mteger
e(d, v) with the following property: Whenever 4 < R? consists of e(d, v)
or more points in general position, there exists B < A such that
card B = v and B = extconv B. (Hint: Apply Ramsey’s theorem, with
g=d+2,p, =v,p, =d + 3 taking as .7, the set of all (d + 2)-tuples
C with C = ext conv C.)

Exercise 12 shows that we may take e(d,d + 2) = d + 3; the least
possible values for e(d, d + 3) are not known except for d = 2, in which

case e(2, 5) = 9 (Erdos—Szekeres [1]); for additional results in this direc-
tion see Erdos—Szekeres [2].
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(i1) Given integers d and v, with 2 < d < v, there exists an-integer
e¢'(d,v) with the following property: Whenever A4 < R? satisfies
card 4 > ¢€'(d,v) and dimaff A = d, there exists B <« A such that
card B = v, dimconv B = d,and B < bd conv B.

Note that (ii) i1s a weaker version of exercise 7.3.5(i1); 1t would be
interesting to find a direct proof of (i1) paralleling that of (1); the only

direct proof known to the author uses (1) and the remark on p.4.

2.5 Unbounded Convex Sets

The present section deals with some important properties of unbounded
convex sets.

1. A closed convex set K < R? is unbounded if and only if K contains
aray.

PrROOF We shall consider only the nontrivial part of the assertion.
Let x,e K, and let S = bd B denote the unit sphere of R? centered at
the origin. For each 4> 0 we consider the radial projection
P, = n(K n (xo + AS)) of the compact set K N (x, + AS) onto x, + S,
the point x, serving as center of projectiont Since radial projection is
obviously a homeomorphism between x, + AS and x, + S, the set P,
1s compact. If K 1s unbounded then P, # J for every 4 > 0. Since K 1s
convex and x, € K, we have P, < P, for A* < A. Therefore N P, # .

4> 0
If y, is any point of this intersection, the ray {iy, + (1 — A)xo| 4 > 0} is
clearly contained in K. This completes the proof of lemma 1.

2. Let K = R? be closed and convex, let L = {Az|1 > 0} be a ray
emanating from the origin, and let x,y € K. Then x + L < K if and only
ify+ L < K.

PrROOF Let x+ L < K, and let y + Azey + L be given, 4 > 0.
For 0 < u < 1, consider the point v, = (1 — w)y + ulx + (A/p)z) e K.
Since p(v,,y + 4z) = p(0, u(x — y)), the distance between y + Az and v,
is arbitrarily small provided u > 0 is sufficiently small. But K 1s closed,
and therefore v, € K implies y + Aze K. Since x and y play equivalent
roles, the proof of lemma 2 i1s completed.

A convex set C < R? is a cone with apex 0 provided Ax € C whenever
xeCand A > 0. A set C 1s a cone with apex x, provided —x, + C 1s a

1 If x, € R, the radial projection n, with center of projection x,, of R? ~ {x,} onto the
unit sphere x, + S is defined by n{x + x,3) = x4 + x/{|x].
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cone with apex 0. A cone C with apex x, is pointed provided x, € ext C.
Let C be a closed cone with apex 0. The following assertions are easily
verified : “

(i) The apices of C form a subspace C n —C of R?; therefore either
C 1s pointed, or there exists a line all points of which are apices of C.

(i) C =C + C = AC for every 4 > 0.

Conversely, if a nonempty closed set C < R? has property (ii) then
C 1s a cone with apex O.

The intersection of any family of cones with common apex x, is a
cone with apex x,. Therefore it is possible to define the cone with apex
x, spanned by a set A = R? as the intersection of all cones in R? which
have apex x, and contain 4. Though this notion is rather important
in different investigations, we shall be more interested in another con-
struction of cones from convex sets.

Let K be a convex set and let xe K. We definecc, K = {y|x + Aye K
for all A > 0}. Clearly cc, K is a convex cone which has the origin as
an apex. Lemma 2 implies that for closed K we have cc, K = cc, K for
all x, ye K. Thus the index x is unnecessary and may be omitted. The
convex cone cc K 1s called the characteristic cone of K. Using lemmas 1
and 2 we obtain the following result :

3. If K < R? is a closed convex set then cc K is a closed convex cone;
moreover, cc K # {0} if and only if K is unbounded.

A closed convex set K shall be called line-free provided no (straight)
line 1s contained in K. Using this terminology, theorems 2.4.6 and 2.4.9
may be formulated as: If K is line-free then ext K # & # exp K. It 1s
also clear that every line-free cone 1s pointed.

Returning to lemma 2 we note that it immediately implies: If L 1s a
linear subspace of R? such that x + L < K for some x, theny + L « K
for every y € K. Therefore the following decomposition theorem results:

4. If K < R? is a closed convex set there exists a unique linear sub-

space L = R of maximal dimension such that a translate of L is con-
tained in K. Moreover, denoting by L* any linear subspace of R* com-
plementary to L, we have K = L + (K n L*), where K n L* is a line-free

set.
Some information on the structure of line-free sets is given by the
following theorem.

5. Let K = R? be an unbounded, line-free, closed convex set. Then
K = P + cc K, where P is the union of all bounded poonems of K.
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PrROOF We use induction on the dimension of K, the assertion being
obvious if dimK = 1. If dimK > 1 and if xe K, let yerelbd K and
zecc K be such that x = y + z. (Since K i1s line-free such a choice is
possible; indeed, for any tecc K, t # 0, there exists a A > 0 such that
x — At erelbd K.) Let F be any proper face of K such that ye F. If F 1s
bounded then F <« P and xe P + cc K. If F is not bounded, the 1n-
ductive assumption and dim F < dim K 1mply that y = v + w, where
wecc F and v belongs to P, the union of the bounded poonems of F.
Since PP« P, ccF <ccc K, and cc K 1s convex, it follows that
x=y+z=v+w+zeP +ccK +ccK <P+ ccK. Since obviously
K o> P + cc K, this completes the proof of theorem 5.

Since for each bounded poonem F of K we have ext F = F nextK
and F = conv ext F, theorem 5 implies

6. Let K < R? be a line-free, closed convex set. Then K = cc K
+ conv ext K.

Exercises

1. Show that lemma 1 is valid even without the assumption that K
1s closed.

2. If K is any convex set in RY show that x, yerelint K implies
cc, K = cc, K. Moreover, for x erelint K the characteristic cone cc, K
1S closed.

3. Show that the decomposition theorem 4 holds also if K is a
relatively open convex set.

4. Let K < R? be a closed convex set; then cc K is the maximal (with
respect to inclusion) subset T = R? with the property : For every x < K,
x+ T c K.

5. Let K = R?be a closed convex set; thencc K = {xe R*|{x,ud > 0
for all u such that there exists an « with K < {z| {x,u)> > a}}.

6. Let K = R?be a closed convex set such that O e relint K. Prove that

1
.
n

7. Using the notation of the decomposition theorem 4, let L** denote
another linear subspace of RY complementary to L. Show that L** n K
1s an affine image of L* n K.

8. If K — RYis a closed, convex, line-free set, then there exists a hyper-
plane H such that H n K 1s compact and dim K = 1 + dim (H n K).

Q0
ccK = 0N

n=1
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9. If K < R is a closed pointed cone with apex x,, there exists a
hyperplane H such that H n K 1s compact and K is the cone with apex
Xo Spanned by H n K.

10. Prove the following results converse to theorems 5 and 6.

(1) If K is an unbounded, line-free, closed convex setandif K = C + P,
where C 1s a cone with apex 0, then P contains all bounded poonems of K.

(1) If K 1s a line-free, closed, convex set and if K = C + P, where C
1s a cone with apex 0 and P i1s a closed, bounded convex set, then
C =ccKand P o convext K.

11. A convex set K 1s called reducible (Klee [2]; this notion
of reducibility will be used only in the present exercise) provided
K = conv relbd K. Prove the following results:

(i) If K 1s a closed convex set then K 1s the convex hull of the union
of all irreducible members of 2(K).

(1) Each 1rreducible closed convex set is either a flat, or a closed
halfflat.

12. Show that each d-dimensional closed convex set 1s homeomorphic
with one of the following d + 2 sets: (i) a closed halfspace of R?; (ii) the
product RY™* x B* for some k with 0 < k < d, where B* denotes the
k-dimensional (solid) unit ball.

2.6 Polyhedral Sets

A set K — R%is called a polyhedral set provided K is the intersection of a
finite family of closed halfspaces of R?.

Polyhedral sets have many properties which are not shared by all
closed convex sets. One of the most important such properties is

1. Each poonem of a polyhedral set K is a face of K.

Before proving theorem 1 we note a few facts about polyhedral sets.
Let H = {xeR*|{x,u;) > o;}, 1 <i < n, be halfspaces, and let

K=0NH ;. Without loss of generality we shall in the present section
i=1
assume that dim K = d; we shall also say that a maximal proper face of

K is a facet of K. (Note that if K 1s a flat, then K has no facets.) The family
{H |1 <i<n} is called irredundant provided K;= N H} # K

1<j<n
JFI

foreachi=1,2,.---,n
Denoting H; = bd Hf = {xe R*|{x,u;) = a;}, we have
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2. If K= N H;, where {H;|1<j<n} is irredundant, then
j=1
F, = H;n K is a facet of K.
This follows at once from the observation that H; nint K; =
which, in turn, is a reformulation of the irredundancy assumption. The
same assumption also implies

n

3. b dK = U F;, where ;=H;nK, i=1,---,n, are all the facets
i=1
of K.

In particular, for each proper face F of K there exists a facet F; of K
such that F < F; (see exercise 2.4.8).
Let F; = H; N K be a facet of K. Then

F,F=H,n( N H)=
<

n 1

(HinH;).

A

A
~JA
Heo )
~IA

L
"

Thus F; 1s a polyhedral set, namely the intersection of the sets H; n H7,
1 <j <n, each of which 1s either H;, or a halfspace of the (d — 1)-
dimensional space H;. Therefore, by theorem 3, each facet F of F; 1s of
the form

F=Fnrelbd(HinH)=FnH,nH;=KnH,nH;=FnF,

for a suitable j. Thus

4. Each facet of a facet of a polyhedral set K is the intersection of two

facets of K.
Now we are ready for the proof of the following theorem which, in view

of theorem 2.4.10, clearly implies theorem 1.

5. Every nonempty proper poonem F of a polyhedral set K is an inter-
section of facets of K.

ProOF We shall use induction on dim K, the assertion being obvious
if dim K = 1. I[f dim K > 1, let x e relint F. By theorem 3, there exists a
facet F; of K such that x € F;,1.e. F € F;,. Theorem 2.4.12 then implies that F
is a poonem of F,. Using the inductive assumption we see that F is an
intersection of facets of F;. Since each facet of F; is the intersection of 2
facets of K, this completes the proof of theorem 5.

We mention also the following immediate consequence of theorem 5:

6. If K is a polyhedral set then the family % (K) is finite.
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Exercises
1. (See theorem 2.5.4 for the notation.) Show that if K 1s a nonempty

polyhedral set, K = N {xe R*|<{x,u;) > «;}, then
i=1

L= N {xeR*<{x,u) = 0}.

i=1
2. Show that if K 1s as above, then

ccK= N {xeR<{x,u;) > 0}.

i=1
3. Show that if K 1s as above, and if p e K satisfies

{(p,u;» = qa, forl <i<m
and
(p,u; )y > a; form <i <n,

then

cone, K = N {xeR|{x,u;) > a,}.
i=1
4. Show that every affine map of a polyhedral set is a polyhedral set.
Find a polyhedral set K and a projective transformation T permissible

for K, such that TK 1s not a polyhedral set.
5. As converses of exercise 4, prove the following results:

(i) (Klee [3]) If K is a convex subset of R?, d > 3, and if all projections
of K into 3-dimensional subspaces of R? are polyhedral sets, then K is a
polyhedral set.

(i) (Mirkil [1], Klee [3]) If K is a convex cone in R?, d > 3, and if all
projections of K into 2-dimensional subspaces of R? are closed, then K
1s a polyhedral cone.

6. Let K., ---, K, be polyhedral sets in R? and let C be a convex set

such that C « U K,;. Prove that there exists a polyhedral set K such
i=1

that C <« K < _U K,.

=1

2.7 Remarks

An adequate account of the history of the main results on convex sets
would require much more room than we have at our disposal ; therefore
we shall limit ourselves to just a few remarks.
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Though quite a few notions and facts related to convexity have been
considered appreciably earlier, it was mainly through the pioneering
work of Minkowski (see Minkowski [2]) that convexity became a well-
known subject of research, applicable to many other disciplines. The scope
of research greatly expanded during the first quarter of the present cen-
tury ; most mfluential on the other workers were probably the papers of
Carathéodory [1, 2] and Steinitz [5], and the book of Blaschke [1]. An
extremely useful review of results on convexity up to 1933 is the book
Bonnesen—Fenchel [1].

A complete bibliography of papers dealing with various aspects of
convexity would contain several thousand entries. We shall mention here
as general references only some of the books published recently (though
some of them do not have much bearing on polytopes): Aleksandrov|2, 3],
Busemann [2], Eggleston [2, 3], Fejes-Toth [1, 3], Fenchel [4], Hadwiger
13, 5], Hadwiger—Debrunner [1], Klee [8], Kuhn—Tucker [1], Lyusternik
[1], Rogers [ 1], Valentine [1], Yaglom—Boltyanskii [1].

Most results of the present chapter are well known, though the formula-
tions used by different authors often vary, and various settings and degrees
of generality are considered. A survey of known results and an extensive
bibliography* on the material of sections 2.1, 2.2, and 2.3, may be found
in Danzer—Griinbaum—Klee [1]. For the facts dealt with in sections 2.4,
2.5, and 2.6, and for related material and additional references the reader
may consult, for example, Weyl [1], Motzkin [1, 2], Fenchel [4], Klee [4],
Gale—Klee [1], and, in particular, Klee [2].

With suitable changes, many results of the present chapter have vald
analogues for convex sets 1n vector spaces over any ordered field, or for
convex sets which are not necessarily closed (in Euclidean spaces). In
many cases, the proofs of such generalizations are much more elaborate

(see, e.g., Weyl [1], Motzkin [1], Klee [10].

Convexity has been studied—and 1s a natural and interesting notion—
In many settings different from the Euclidean (or affine) spaces. We shall
briefly explain two such variants, since they will be mentioned in the
sequel.

If PYis the d-dimensional (real) projective space, we shall say that a set
K < P?%is convex provided

* The reader should be aware of the fact that in some of the papers the presentations
of definitions or theorems are rather careless, to the extent of being ambiguous (e.g. the
definition of spherically convex polygons in Aleksandrov {2, p. 13]) or false (e.g. the

separation theorem in Karlin [ 1, p. 356)).
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(i) For each line L in P?, the intersection L N K is either empty, or else
a connected subset of L;

(i) There exists a (d-1)-dimensional subspace H of P? such that
Hn K= .

It is obvious that if K 1s a convex subset of P4 and if H is as in (ii), K
may be considered as a subset of the affine d-space obtained from P? by
assigning to H the role of the ‘hyperplane at infinity’. In this interpreta-
tion, K becomes a convex subset of the affine space. Hence most of the
notions and results of the present chapter may be reformulated for
convex subsets of projective spaces. One important exception derives
from the possibility that the intersection of two or more convex sets may
fail to be convex. (However, if {K_} 1s a family of convex sets such that
the intersection of each two sets 1s convex, then N K_ is convex.) This

implies that the convex hull of a set 4 = P (which exists only if some
hyperplane misses A) 1s in general not unique. For more detailed accounts
of convexity in projective spaces see, for example, Steinitz [5], Veblen—
Young [1], p. 386, Motzkin [2], Fenchel [4], Sinden [1]; additional
references are given in Danzer—-Griinbaum—Klee [1]. (In certain investiga-
tions it seems to be more convenient to define convex sets 1n projective
spaces by the single condition (1) (see, for example, Kneser 1], Marchaud
[1]; we shall not use this terminology.)

For subsets of the d-sphere S? a number of different definitions of
convexity are frequently used ; they coincide for sets contained in an open
hemisphere, but differ in the treatment of larger sets. For our purposes,
the most suitable definition results by taking S? as the unit sphere of
R*! with center at the origin 0 and calling a set K = S? convex if and
only if cone, K is a convex subset of R**'. For a discussion of other
definitions, and for references to the rather voluminous literature, see
Danzer—-Griinbaum—Klee [1].
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2.8 Additional notes and comments

An example.

In the figure below, the point x is an extreme point that is not exposed; also, {x}
1s a poonem (a face of a face) that is not a face itself. However, such simple
examples cannot display the full complexity of the facial/extremal structure
of general convex bodies. For example, Griinbaum (see Lindenstrauss—Phelps
[a]) produced a 3-dimensional body with uncountably many extreme points but
only countably many exposed points.

X

Face functions on general convex bodies.

Let K be a general d-dimensional convex body, let B be its boundary, and for
each x € B let F(x) denote the union of all segments in B that have x as an
inner point. The set-valued function F is called the face function of K, and
when K is a polytope it behaves very simply: It is lower semicontinuous at
each point of B, and is upper semicontinuous precisely on the relative interiors
of K’s facets. The analogue of this for a general K is as follows: F 1s lower
semicontinuous almost everywhere on B in the sense of Baire category (i. e., at
the points of a dense G 5 subset of B), and 1s upper semicontinuous on B almost
everywhere in the sense of measure (1. e., at the points of a subset of B whose
complement is of zero (d — 1)-dimensional measure). However, for d > 3 there
exists a d-dimensional K whose face-function is lower semicontinuous almost
nowhere in the sense of measure and 1s upper semicontinuous almost nowhere
in the sense of category. For these results, see Klee—-Martin [a] and Larman [b],
and also Corson’s paper [a] on which the example is based.

Convex bodies—geometric and algorithmic aspects.

In this chapter, general convex sets and their faces and poonems are presented
as foundational material, whose specific “pathologies” disappear in the much
more special, discrete setting of convex polytopes.

Nevertheless, the geometry of general convex sets 1s important, in particular
in view of the manifold connections and applications to fields such as func-
tional analysis (Banach space theory), the geometry of numbers, etc. Key refer-
ences to access this theory are the “Handbook of Convex Geometry” edited by
Gruber and Wills [a] and the book by Schneider [b]. We refer to Thompson [a]
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for the geometry of finite dimensional normed spaces, to Gruber—Lekkerkerker
[a] for the geometry of numbers, to Leichtweill [a] for the theory of atfine
convex geometry, and to Ball [a], MatouSek [b, Chap. 14], and Giannopoulos—
Milman [a] as guides to some recent developments such as the “concentration
of measure” phenomenon, which still waits for more impact on the combina-
torial theory of polytopes.

Algorithmic aspects have emerged and gradually become more influential
in the theory of convex bodies (i.e., full-dimensional, closed convex sets).
Thus, on the one hand, the geometry of convex bodies rules the field of con-
vex optimization—see Rockafellar [a] and Stoer—Witzgall [a]; on the other
hand, non-linear optimization concepts such as the ellipsoird method have had
tremendous impact on the “algorithmic model” of a convex set, starting with
the fundamental problem of how we can be ““given” a convex set. We reter to
Grotschel-Lovasz—Schrijver [a] and to the introduction by Lovasz [a].

Tverberg, Helly, Ramsey, and Erdds—Szekeres.
Tverberg’s theorem, pointed to on page 16, has turned out to be a driving force
for discrete geometry and combinatorial convexity. This led to new proofs (by
Tverberg and by others—see, e. g., Sarkaria [a]), to far-reaching extensions
such as the so-called “colored Tverberg theorem”, and to the development of
new tools and methods, in particular from equivariant topology. Zivaljevié [a]
1s a guide to the current discussion.

For Helly type theorems (as in exercise 2.4.11), surveys are Eckhott [a]
and ‘Wenger [a]. In exercise 2.4.13 one meets Ramsey theory and the ErdOs—
Szekeres theorem as an application. We refer to Matousek [b, Chap. 3].

Generalizations of convexity.

In addition to projective and spherical convexity (see pages 29-30), the case
of convexity in hyperbolic space has turned out to be particularly interesting
again and again. Highlights include the work by Sleator—Tarjan—Thurston [a]
on rotation distance of trees and triangulations of n-gons, and Smith’s [a] lower
bounds for the number of simplices needed to triangulate the d-cube.

We refer to Boltyanski—Martini—-Soltan [a] for a survey and geometric study
of various generalized convexity models. See also Coppel [a] [b], Edelman—
Jamison [a], and Prenowitz—Jantosciak [a].

A combinatorial model for the convexity structure of finite sets of points
(such as the vertices of a polytope) was provided by the theory of oriented
matroids (see Bjomner et al. [a], Ziegler [a, Lect. 6]), which emerged in the late
seventies and has produced substantial tools and results for polytope theory;
see 1n particular the notes in section 5.6 (on Gale-diagrams).



CHAPTER 3

Polytopes

The present chapter contains the fundamental concepts and facts on
which we rely in the sequel. Polytopes, their faces and combinatorial
types, complexes, Schlegel diagrams, combinatorial equivalence, duality,
and polarity are the main topics discussed.

3.1 Definition and Fundamental Properties of Polytopes

A compact convex set K < R is a polytope provided ext K is a finite set.
From the results of section 2.4 and theorem 2.3.4 it follows that polytopes
may equivalently be defined as convex hulls of finite sets. Also, if K 1s a
polytope then, by theorem 2.4.9, exp K = ext K ; in other words, each
point of ext K 1s a face of K. For a polytope (or polyhedral set) K, it is
customary to call the points of ext K vertices, and to denote their totality
by vert K; 1-faces of K are called edges, while maximal proper faces are
facets of K.

Clearly each face F of a polytope K 1s itself a polytope, and
vert F = vert K n aff F. We shall use d-polytope and k-face as abbrevia-
tions for ‘polytope of dimension d’ and ‘face of dimension k’. Since each
k-face of a d-polytope K contains k + 1 affinely independent vertices of
K, and since different faces of K have different affine hulls, it follows that
the number of different k-faces of a polytope is finite for each k. Moreover,
denoting by f,(K) the number of different k-faces of a d-polytope (or

Jo(K)

k +1
fi{K) = 0fork > dork < —1, this relation holds for all &.

The following theorem 1s of fundamental importance in the theory of
polytopes. It may be considered as a sharpening of theorem 2.2.3 for the
special case of polytopes, showing that polytopes are polyhedral sets.

polyhedral set) K, we have f,(K) < ( . with the plausible convention

1. Each d-polytope K < R?is the intersection of a finite family of closed
halfspaces,; the smallest such family consists of those closed halfspaces
containing K whose boundaries are the affine hulls of the facets of K.

31
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PrROOF Let & = {H;|1 <j < f,_(K)} be the set of hyperplanes
determined by the facets of K, and let a point y ¢ K be given. We shall
show that there exists an H; such that y does not belong to the closed
halfspace determined by H; and containing K. We denote by L the set of
all affine combinations of at most d — 1 points of vert K. By Cara-
théodory’s theorem 2.3.5 L contains all the faces of K which have dimen-
sion at most d — 2. Let M denote the cone spanned by L with vertex y;
then M 1s contained 1 the union of finitely many hyperplanes through
y. Since finitely many hyperplanes do not cover any nonempty open set,
int K is not contained in M. Let x be any point of (int K) ~ M ; we con-
sider the ray N = {Ax + (1 — A)y| 4 = 0} with endpoint y determined
by x; clearly NnintK # 5. Let Ao = inf{A > 0| iAx + (1 — A)ye K}.
Since K 1s compact and y ¢ K, the greatest lower bound 1s attained,
0 < 4y < 1l,and xu = Aox + (1 — Ay)ye bd K. It follows that x, belongs
to some proper face F of K ; but x ¢ M implies x, ¢ L and therefore F 1s
not of dimension less than or equal to d — 2. Thus F i1s a facet and the
hyperplane aff F has all the desired properties. The assertion about the
minimality of ¥ being obvious, this completes the proof of theorem 1.

A partial converse of theorem 1 is given by

2. Every bounded polyhedral set K is a polytope.

The proof follows at once from the previous results. Indeed, the
assumptions imply that K 1s compact and therefore (by theorem 2.4.5)
K = convext K. By theorem 2.6.1, ext K = exp K, and by theorem 2.6.6
exp K is a finite set ; hence K is a polytope.

The last two results may be combined to yield the following theorem.

3. A set P < R%is a polytope if and only if P is a bounded polyhedral set.

The reader is now invited to establish the following assertions which
provide a number of methods for generating new polytopes from given
ones: some of the proofs use theorem 3, others follow directly from the
definitions.

4. The convex hull, the vector sum, and the intersection of finitely many
polytopes is a polytope. The intersection of a polytope with an affine
variety, or with any polyhedral set, is a polytope. Any affine image, and any
permissible projective image of a polytope is a polytope.

We shall next consider 1n some detail the family % (P) of all (proper and
improper) faces of a polytope P.
Theorem 2.4.1 implies that the intersection of any family of faces of a
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polytope K 1is itself a face of K. Trivially, it is also true that if F, and F, are
faces of K and F, < F, then F, 1s a face of F,. Theorems 3.1.3 and 2.6.1

imply for polytopes the transitivity of the property ‘is a face of’:

5. If F is a face of the polytope P and if F, is a face of the polytope F |,
then F, is a face of P.

We find i1t interesting to give a direct proof of theorem 5, independent
of the results of section 2.6. For such a proof, it is clearly enough to
consider proper faces; without loss of generality we may assume that the
origin 0 belongs to F, and that P is a d-polytope in R®. Let u, and u, be unit
vectors such that, denoting H, = {xe R*|{(x,u;> = 0} we have: H, is a
supporting hyperplane of P with F, = H, n P and P < {x|{x,u;)
>0}; u,eH,, Fi c{xeH,|{x,u,y >0} and F, = F; n H,, where
H, 1s the (d — 2) — flat {xe H,|{x,u,> = 0}. Let H(e) = {xe R?| {x,
u, + eu,y = 0};then H(e) o H, o F, for every ¢. Let o = max{|{v, u, ||
vevert P ~ vert F;}and f = min{<{v,u,) |[vevert P ~ vert F;} > 0. We
claim that if ¢ satisfies 0 < ¢ < /2a (or just ¢ > 0 i1f « = 0) then H(e) 1s a
supporting hyperplane of P and F, = P n H(e). Indeed, if ve vert P
~ vert F; then {v;u; + eu,) =2 p — eax > B/2 > 0; if vevert F; ~ vert
F, then {v;u; + eu,) = &lv;u,) > 0 by the definition of u,; finally,
for vevert F, we have {v;u; + eu,y) = 0, 1e. ve H(¢). This completes
the direct proof of theorem 5.

Some remarks of a methodological nature seem indicated in view of
the proofs given in the present Section. It is hoped that readers who
worked their way through the proofs are by now ready to accept the
validity of the results proved. The author doubts, however, that the above
formal proofs give a good idea of why the proofs work. In a subject as
elementary and intuitively as comprehensible as the theory of polytopes,
1t seems a pity to obscure the simple idea of a proof by the—almost
necessarily—involved and complicated notation and symbolism. As an
example, consider the following formulation of the idea of the direct proof
of theorem 5. If H, 1s a hyperplane determining F,, and if H, isa (d — 2)-
subflat of H, determining F,, any sufficiently small rotation of H; about
H, in the proper direction (‘away’ from vert F; ~ vert F,) will yield a
hyperplane H(¢) whose intersection with P 1s F,.

In this context, as in many other cases, the 1dea of the proof becomes
clearly comprehensible with the help of a graphic representation of the
two- or three-dimensional case (see figures 3.1.1 and 3.1.2). The formal
proof is necessary as a guarantee that no unwarranted simplifications
have been made in the intuitive examination of the problem, and that
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all the choices, positions, and other aspects, are as imagined. But the formal
proof should be carried out after the idea of the proof has been found and
understood. The reader 1s most insistently advised to reread the proof of
theorem 1 and to formulate for himself the intuitive ideas involved.

H, &
H{&)
Figure 3.1.1

Hie)

Figure 3.1.2

In the opposite direction, the reader is invited to expand the ideas of the
direct proofs of the statements given below to formal proofs.

6. If P is a d-polytope, each (d — 2)-face F of P is contained in precisely
two facets F,and F, of P,and F = F, n F,.
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Indeed, if H 1s a hyperplane such that H n P = F, a rotation of H
about the (d — 2)-flat aff F yields the two (extremal) positions H; and H,
for which H,n P = F,.

Using theorems 5 and 6 it easily follows by induction that

7. If —1<h<k<d-—1and if Pis a d-polytope, each h-face of P
is the intersection of the family (containing at least k — h + 1 members)
of k-faces of P containing it.

The following statement 1s rather obvious, but nevertheless occasionally
useful :

8. If P is ad-polytope and if F is a k-face of P, there existsa(d — k — 1)-
face F* of P such that dim conv(F U F*) = d. (Then necessarily F n F*
= &)

Indeed, if k£ = O (that 1s, F 1s a vertex), let x be a point of bd P such
that the segment [ F, x] meets int P. Then any facet of P which contains
x can serve as F*. The proof is easily completed by induction.

Exercises

1. Let P be a polytope and let A < vert P. Then conv A4 is a face of P
if and only if aff A N conv((vert P) ~ A) = .

2. Let P be a d-polytope, F a proper face of P, and F, a proper k-face of
F. Prove that there exists a (k + 1)-face F; of P such that F, = F; n F.
Prove also the sharper result: If P 1s a d-—polytOpe, F an h-face of P, and
F, a k-face of F, where —1 < k < h < d, then there existsa (d — h + k)-
face F, of P such that F, = F~ F, and P = conv(F U F,).

3. Let F,_; be a (k — 1)face and let F,.; be a (k + 1)-face of the
d-polytope P, 0 < k < d. There exist precisely two distinct k-faces of P
each of which 1s contained in F,,; and contains F,_,. Does this result
remain valid if P 1s assumed to be a polyhedral set?

4. Let V be a vertex of a polytope P < R?and let H* be a closed half-
space with bounding hyperplane H, such that V € H and all the edges of P
which contain V are contained in H*. Prove that P <« H* and therefore
H 1s a supporting hyperplane of P.

5. Prove directly, or derive from theorem 3.1.8, the following fact:
If Pis a d-polytope and if k vertices V,---, V, of P are given, 1 < k < d,
there exists a (d — k)-face of P which contains none of the vertices V,,-- -, ¥,.

6. Let P be a polytope and T a projective transformation (not nec-
essarily regular) permissible for P. Let P’ = T(P)and let F’ be a face of P'.
We have seen in exercise 2.4.9 that there exists a face F of P such that
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F' = TF. Find examples which show that it is possible that every F such
that F' = T(F) satisfies dim F > dim F".

7. Let P < R? be a d-polytope and let L be an m-flat such that
P~ L # . Prove that F n L # (J for some (d — m)-face F of P. -

8. If P is a d-polytope then f,(P) > ( 4+ 1 forall k with —1 <k < d;
k+ 1
, d+ 1
if /o(P) > d + 1 then f(P) > ) whenever 0 < k <d — 1.
+ 1

9. Let 0 <i,j <d — 1; prove the existence of numbers ¢k, d) such
that every d-polytope P with f(P) < k satisfies f{P) < ¢,{(k, d).

10. Let (P;li = 1, 2,---)be a sequence of polytopes which 1s convergent
in the Hausdorff metric to the compact set K. Prove that if (fo(P)1i = 1,
2, - - -)isa bounded sequence then K is a polytope. (Hint: Use exercise 2.4.4).

11. Show that the results of theorems 6 and 7 and exercises 2 and 4
generalize to polyhedral sets (with the restrictions: d > 1 for theorem 6,
h > 0O for theorem 7, and k > O for exercise 2). Does theorem 8 generalize?

12. A set K < R?is called a quasi-polyhedral set provided KN P is a
polytope whenever P 1s a polytope. Show that each quasi-polyhedral set
is closed and convex, and that the results mentioned in exercise 11 are
valid for quasi-polyhedral sets. Prove that if K is quasi-polyhedral and
0 < card ext K < oo then K 1s a polyhedral set.

13. Let K be a convex set and let x € K. We shall say that K is polyhedral
at x provided there exists a polytope P such that xemt Pand KN Pisa
polytope. Y

(i) Show that K is polyhedral at x if and only if cone, K is a polyhedral
cone.

(i1) Show that if K is compact [closed] and polyhedral at each point,
then K is a polytope |[a quasi-polyhedral set].

14. Let K = R? be a polytope and let vert K = {v,,---,v,}. Then each
x € K 1s expressible—in general in many ways—in the form

X = i A{x);

with A(x) > 0 and ) __ A(x) = 1. Show that it is always possible to

choose the numbers A,(x) in such a way that all the functions A{(x),1 <i1<r,
depend continuously on x € K. (This is a result of Kalman [1]. Hint:
On 0- and 1-dimensional faces of P the functions A,(x) are uniquely deter-
mined. If the A(x) are already defined for x belonging to p-dimensional
faces for some p < d — 1, we extend the definition to (p + 1)-dimensional
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faces 1n the following manner. Let F be a (p + 1)-dimensional face -of K,
and w = (card vert F)™'-) v. Then werelint F and each xeF

vevert F

has a unique decomposition x = (1 — u)w + uy, where y erelbd F. By
assumption y = ) A{y)v; and therefore

vievert F

x=Y Ao = ¥ S A ) o

v evert F 1 Card vert F

Show that A(x) defined i this fashion satisfies all the requirements.)
Show also that the A(x) may be chosen so that they are all continuous
and that, for one preassigned i, A(x) i1s a convex function of xe K. (A
function @(x) is convex on the convex set K provided ¢p(Ax; + (1 — A)x,)
< Ap(x;) + (1 — A)ep(x,) whenever x;,x,€e K and 0 < 4 < 1)) Also, by
considering the case in which K is a square in R?, show that it is not always
possible to have all the A(x) convex. (This provides a negative answer to a
problem of Kalman [1]; compare Wiesler [1].)

15. The lattice % (P) of all faces of a d-polytope P has various interesting
properties (see Perles [1,2].) Let a tower in P be a family .# = {M(i)|0
< i < d — 1} offaces of P such that dim M(i) = i for all i, and M(i) < M(j)
for 0 <i <j<d— 1. Denote also M(i) = (J fori < 0 and M(i) = P for
i > d. For a tower .# define the tower T.# = A4 by putting N(—1) = &
and by taking as N(i), for 0 < i < d — 1, the unique i-face of P different
from M(i) which contains N(i — 1) and 1s contained imn M(i + 1).

(1) Prove that T is a one-to-one mapping of the set of all towers in P
onto itself; define the inverse mapping T~ .

(m) Let —co <r<s<owand 0 <k <d — 1. Prove that

T"Mk +s —r)= V T'M(k)

and

T*Mk — s +r)= N T'M(k).

i=r

If. moreover, s # rand s — r < d, then T"M(k) # T*M(k).

16. Let K < R? be a line-free polyhedral set. Show that there exists a
nonsingular projective transformation P permissible for K such that
cl(PK) is a polytope, (cl(PK)) ~ PK being one of its faces.

17. (Klee [2]) A compact [closed] set K < R? is a polytope [a quasi-
polyhedral set] if and only if cone, K 1s closed for every pe K.

18. Let P be a polytope and let T be a (not necessarily regular) projec-
tive transformation permissible for P. Prove that f(TP) < f,(P) for all k.
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19. If P is a polytope in R% prove that the supporting function H(P, x)
(see exercise 2.2.8) is a piecewise linear function of x (that is, R? is the
union of a finite number of convex cones C,,---, C,, such that for a
suitable a; and all xe C; we have H(P,x) = {(x,a;), for i=1,---,r).
Conversely, show that every piecewise linear function satisfying the con-
ditions given 1n exercise 2.2.8(1) 1s the supporting function of some

polytope.
20. If K ,, K, are polytopes show that

K. + K, = conv((vert K,) + (vert K,)).

21. (Motzkin [7]) Let P be a d-polytope, let d,, - - -, d, be nonnegative

integers such that k + Y¥_ d; = d, and let x € P. Prove that there exist
k

faces F; of P such that dim F;- =d.fori=0,---,k and xeconv U F;.
i=0

3.2 Combinatorial Types of Polytopes; Complexes

Two polytopes P and P’ are said to be combinatorially equivalent (or
isomorphic, or of the same combinatorial type) provided there exists a
one-to-one correspondence ¢ between the set {F} of all faces of P and
the set {F’} of all faces of P’, such that ¢ is inclusion-preserving (i.e. such
that F, < F, if and only if ¢(F,) < ¢(F,).) Equivalently, one could say
that the lattices % (P) and % (P’) are isomorphic. Clearly, combinatorial
equivalence is an equivalence relation; if P and P’ are combinatorially
equivalent we shall write P ~ P’.
The following assertions are easily established. ,

1. If P =~ P’ then dim F = dim @(F) and F =~ @(F), also, f,(P) = f.(P’)
for all k.

2. If P~ P and if {F,,---, F,} is any family of faces of P, then

¢ (‘nl Fi) = N @(F;) and ﬁo( -Vl Fi) = 'Vl (F)-

3. If T is a nonsingular affine map of R? onto itself and if P < R% is a
polytope, then P =~ TP. If T is a nonsingular projective mapping permissible
for P, then P =~ TP.

In particular, all d-simplices are of the same combinatorial type.

The concept of combinatorial equivalence of polytopes is of fundamen-
tal importance in many questions of the theory of polytopes, since many

properties of a polytope depend only on its combinatorial type. The
intrinsic difficulty of many problems on polytopes is intimately related to
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the fact that the combinatorial equivalence of polytopes is not endowed
with properties usually encountered when dealing with equivalence rela-
tions in other mathematical disciplines. For example, combinatorial
equivalence 1s neither a closed relation in the topological sense, nor an
open one (that is, a limit of polytopes, all of which are of the same com-
binatorial type, 1s not necessarily of the same type ; in every neighborhood
of a polytope there are polytopes of a different combinatorial type.) Also
it is impossible to define the ‘sum-type’, ‘intersection-type’, etc., of given
combinatorial types. Following the procedure useful in many other
disciplines, 1t would be desirable to find characteristics, easily computable
for every polytope, such that the equality of the characteristics of the
polytopes would indicate their combinatorial equivalence.* Unfortu-
nately no such invariants of combinatorial types are known. Accordingly,
very little 1s known about the combinatorial types of d-polytopes for
d > 3. For d = 1 the problem is trivial, since all 1-polytopes are segments.
For d = 2 the combinatorial types may be characterized by the number
of vertices, since two polygons are of the same combinatorial type if and
only if they have the same number of vertices. The number of different
combinatorial types of d-polytopes with v vertices shall be denoted by
c(v, d); the number of simplicial d-polytopes (see section 4.5) with v vertices
by c(v,d). For the known results on c(v,d) and c,(v,d) see chapters 6
and 13, and tables 1 and 2.

We shall return to some problems of classification of polytopes accord-
ing to combinatorial type later on; presently we turn to certain notions
belonging to combinatorial topology.

A finite family € of polytopes in R? will be called a complext provided

(1) Every face of a member of € 1s itself a member of € ;

(11) The intersection of any two members of € is a face of each of them.

If a polytope P 1s a member of a complex € we shall call P a face of ¢
and write P € ¢. The number of k-faces of € will be denoted by f,(%).

Among the simplest complexes we mention the following two which
are associated with a k-polytope P:

* For two given polytopes it is, in principle, easy to determine whether they are com-
binatorially equivalent or not. It is enough to find all the faces of each of the polytopes
and to check whether there exists any inclusion preserving one-to-one correspondence
between the two sets -of faces. However, this procedure is practically feasible only if the
number of faces is rather small.

T Note that we depart here from the usual topological terminology. Our ‘complexes’
are commonly referred to as ‘polyhedral complexes’, ‘convex complexes’, or ‘geometric
cell complexes’ (see, for example, Alexandroff-Hopf [1, p. 126], Lefschetz [1, p. 60]). When
considering the more general topological objects we shall specify that the reference is to
‘topological complexes’.
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(1) The boundary complex %(P) of P, which i1s the complex consisting
of all the faces of P which have dimension at most k — 1.

(2) The complex ¢(P) = #(P) v {P} consisting of all the faces of P.

Note that the complex ¢(P) contains the same elements as the lattice
% (P).

A complex € 1s said to be k-dimensional, or a k-complex, provided
some member of € 1s a k-polytope but no member of ¥ has dimension
exceeding k.

Obviously, if P is a k-polytope then #(P) is a (k — 1)-complex, and
¢(P) 1s a k-complex.

Let € be a complex and let C € ¥. We define:

The star st(C; €) of C in € is the smallest subcomplex of € containing
all the members of € which contain C.

The antistar ast(C; €) of C in € is the subcomplex of ¥ consisting of
all the members of ¥ which do not intersect C.

The linked complex link(C ;%) of C in € is the complex consisting of
all polytopes of st(C ; €) disjoint from C. Thus

lnk(C; €) = st(C;€) n ast(C; ).

Obviously, € = st(C; €) u ast(C; ¥) whenever C e ¢ 1s 0-dimensional.

In order to illustrate the above notions, let T¢ be a d-simplex, and V a
vertex of T? (see section 4.1). Then st(V; €(T?)) = €(T?), st(V ; B(T?) is
obtained from 2(T?) by omitting the (d — 1)-face T¢! of T? opposite
to V; ast(V, B(T?) = ast(V, €(T%) = €(T° " '); link(V; B(T?) = B(T* ™),
while link(V; €(T%) = €(T?*™1).

To a complex € in R’ there is associated the subset of R? consisting of
all the points of members of ¢; we shall denote it by set €. Thus
set¥ = U P.

Pe¥€

For example, if P = R? is a d-polytope then set%(P) = P and
set Z(P) = bd P.

It is easy to establish the following assertions, the second of which is a
refinement of the first and fits more naturally in the elementary-geometric
theory of complexes.

4. Let P be a d-polytope and Vevert P. Then setst(V;%(P)) and
set ast(V ; #(P)) are each homeomorphic with the (d — 1)-dimensional solid

ball B~ (and therefore with any (d — 1)-dimensional compact convex set.)
Also, set link(V ; B(P)) is homeomorphic with S°~2? = relbd B*~ .



POLYTOPES 41

S. Let P be a d-polytope and Vevert P. Then setst(V; #(P)) and
set ast(V'; B(P)) are piecewise affinelyt homeomorphic with the (d — 1)-
simplex T~ 1, also, set link(V; #(P)) is piecewise affinely homeomorphic
with relbd 79~ 1.

Substituting ‘member of € or ¢ for ‘face of P or P” the definition of
combinatorially equivalent polytopes may be generalized to that of com-
binatorially equivalent complexes. Clearly, properties 1, 2, and 3 hold for
combinatorially equivalent complexes.

Entities more general than complexes are obtained by substituting
‘polyhedral sets’ for ‘polytopes’ in the definition of complexes. We shall
not deal with those entities, though some of the results mentioned in the
sequel are valid for them (for example, exercise 3.2.6), while others have
to be only slightly modified (compare exercise 8.5.2).

Exercises

1. If P and P are line-free polyhedral sets, show that the definition of
P ~ P’ used for polytopes is suitable in the sense that it is intuitively
acceptable and satisfies properties 1, 2, and 3. Show that this 1s no longer
the case if P and P’ are allowed to be any polyhedral sets, but that even 1n
this case an acceptable definition is obtained if the additional requirement
dim F = dim ¢(F) is imposed. Show also that if K, and K, are polyhedral
sets in R® such that the lattices #(K,) and #(K,) are isomorphic, then
K, N L* ~ K, n L* where L* is a linear subspace of R complementary
to the maximal flat contained in K, (see theorem 2.5.4).

2. Let P and P’ be two polytopes and let ¥ be a biunique correspond-
ence between vert P and vert P° with the following property: For a set
A < vert P, there exists a face F of P such that A = vert F if and only if
there exists a face F’ of P’ such that W(A) = vert F'. Show that ¥ can be
extended to a brunique correspondence between all the faces of P and P/,
under which P =~ P’

3. Let P and P’ be two polytopes and let there exist a one-to-one
correspondence ¥ which maps vertices of P onto vertices of P’ and facets
of P onto facets of P’, in such a way that incidence relations between
vertices and facets are preserved (i.e. if V is a vertex of P and F a facet of
P, then Ve F if and only if ¥(V)e W(F).) Then P ~ P’

1 A mapping T defined on R? is piecewise affine [projective] if it is possible to represent

n

R? in the form R? = U K,;, where the K; are closed convex sets, so that the restriction
i=1

of T to each K, i1s an affine map [is a permissible projective map of K;]. For interesting

results and problems concerning piecewise affine, convex functions see Davis {4].
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4. Let (P;li=1,2,---) be a sequence of d-polytopes converging (in
the Hausdorff metric) to the k-polytope P, where k < d. Prove that the
sequence (bd P;|i = 1,2,---) converges to P.

5. Let (P;li=1,2,---) be a sequence of d-polytopes of the same com-
binatorial type, such that the corresponding vertices form convergent
sequences. Let P be the limit, in the Hausdorff metric, of the sequence
(P,), and let KT denote the union of all the m-faces of P;. Using exercise 4,
show that for every m, dim P < m < d, the polytope P is the limit of the
sequence (K7 |i =1,2,---). ‘*

6. Generalizing the above, prove the following: Let (K;|i = 1,2,---)
be a sequence of compact convex sets in R?, converging in the Hausdorff
metric to the compact convex set K. Let ext, K; be the set of k-extreme
points of K; (see section 2.4). For every k such that dim K < k < d, the
sequence (clext, K;|i =1, 2,---) converges to K.

7. If ¢, 9 are complexesin R then {C " D|Ce¥,De 2} is a complex.
If P is a polytope and L a flat, then ¥(P n L) = {F n L | F € €(P)}.

8. Let P and P’ be combinatorially equivalent polytopes in R? the face
of P’ corresponding to the face F of P being ¢(F). Show that there exists
a piecewise affine mapping T of R? onto itself such that TF = (F) for
every face F of P. Find examples which show that this assertion may fail
if P, P" are polyhedral sets, even if T is allowed to be piecewise projective.

9. Let K, K’ be unbounded, line-free polyhedral sets which are com-
binatorially equivalent under the mapping ¢ of #(K) onto #(K’). Show
the equivalence of the following assertions:

(1) There exists a piecewise projective homeomorphism T of K onto K’
such that TF = ¢(F) for each F € #(K).

(i1) There exists a piecewise affine homeomorphism T of K onto K’
such that TF = ¢(F) for each F € #(K).

(i11) If T, T’ are projective transformations permissible for K, K’, such
that TK and T'K' are bounded, there exists an isomorphism y between
F(cl TK) and Z(cl T'K’) such that y(cl TF) = cl T'(¢(F)) for each
F e #(K).

3.3 Diagrams and Schlegel Diagrams

Let P = R“ be a d-polytope, F, a facet of P, and let x, ¢ P be a point* of
R? such that among all the affine hulls of the facets of P only that of F,
separates x, and P. Let 2 denote the complex #(P) ~ {F,}. The projec-

tion of P onto aff F, by rays 1ssuing from x, yields, when restricted to

* Prove the existence of such x, by showing that for each yjerelint Fy all x,¢ P
sufficiently close to y, satisfy those assumptions.
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set ¥, a mapping of the (d — 1)-complex £ onto a (d — 1)-complex
contained in aft F,. The projection is a homeomorphism between set &
and set.%, and shows that % i1s combinatorially equivalent to . More-
over, obviously F, = set %,. The family & = {F,}u % is called a
Schlegel diagram of P, based on F,. (Schlegel [1]; Sommerville [2, p. 100}).

As 1llustrations of the formation of Schlegel diagrams, figure 3.3.1
represents a pentagon and its Schlegel diagram, while figures 3.3.2 and
3.3.3 represent a square pyramid and two of its Schlegel diagrams.
Figures 3.3.4 and 3.3.5 represent Schlegel diagrams of the 4-simplex and
the 4-cube, respectively.

Figure 3.3.1

Figure 3.3.3



44 CONVEX POLYTOPES

Figure 3.3.4

Schlegel diagrams are mainly used as a means of facilitating the repre-
sentation of 3- and 4-polytopes by complexes in the plane or in R’ ; but
they are useful in some ‘theoretical’ questions as well (see chapter 11.)

Schlegel diagrams are a special case of certain complex-like families
which we call diagrams.

A finite family 9 = {D,} U € of polytopes in R shall be called a
d-diagram provided

(1) € 1s a complex;
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(11) D, 1s a d-polytope such that D, = set € and each proper face of D,
1s a member of € ;

(ii1) C N bd D, 1s a member of € whenever C e ¥.
It is remarkable that even at the beginning of the present century, when

Schlegel diagrams were extensively used 1n the study of polytopes, no
distinction was made between Schlegel diagrams and d-diagrams (that 1s,
complexes which ‘look like’ Schlegel diagrams). It seems that the reason
for this attitude is to be found in the (usually tacit) assumption that every
d-diagram is (combinatorially equivalent to) a Schlegel diagram (see, for
example, Briickner (2, 3].) This is indeed trivially the case for 1-diagrams.
In what is probably the deepest result to date in the theory of polytopes,
Steinitz proved that every 2-diagram is combinatorially equivalent to a
Schlegel diagram of a 3-polytope. (We shall present a proof of Steinitz’s
theorem in chapter 13). However, already in the case of 3-diagrams the
situation is different. As we shall see in chapter 11, there exist 3-diagrams
(even simplicial ones—see section 4.5) which are not combinatorially
equivalent to any Schlegel diagram of a 4-polytope.

Thus we are presented with the problem how to define d-diagrams
‘correctly’ for d > 3. In other words, what conditions must a complex
satisfy in order to be identifiable with the Schlegel diagram of some
polytope.

Conceivably, some clues to the solution of the problem may be derived
from the observation that each Schlegel diagram has the following two
properties:

(1) it may be ‘inverted’ in the sense that any maximal face of the polytope
may be taken as the ‘basic’ face, into which the polytope 1s projected ;

(1) there exists a ‘dual’ Schlegel diagram (a Schlegel diagram of any
dual polytope; see section 3.4).

At present 1t is not known whether any or all of these properties may
be used in order to characterize Schlegel diagrams among diagrams.

Exercises

1. By considering 2-diagrams and by checking whether they are
Schlegel diagrams, show that there exist two combinatorial types of
3-polytopes with 5 vertices, and 7 types with 6 vertices. There exist 5
types of 3-polytopes with 7 vertices having as faces only triangles.

2. With reference to the Schlegel diagrams in figure 3.3.6 determine
which of them represent the same combinatorial type of 3-polytopes.
Find all the other Schlegel diagrams of these polytopes.



46 CONVEX POLYTOPES
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X

Figure 3.3.6 L

3.4 Duality of Polytopes

Two d-polytopes P and P* are said to be dual to each other provided
there exists a one-to-one mapping ¥ between the set of all faces of P and
the set of all faces of P* such that ¥ is inclusion-reversing (i.e. faces F;
and F, of P satisfy F;, < F, if and only if the faces W(F,) and W(F,) of P*
satisfy W(F,) o W(F,).) Clearly this implies ¥(J) = P*, W(P) = (J, and
in general dim F + dim W(F) = d — 1 for every face F of P.

It is also obvious that if P ~ P,, P* ~ P* and P is dual to P*, then P,
is dual to P*. Thus it 1s meaningful to define two combinatorial types to
be dual to each other provided there exist polytopes, one of each of the
types, which are dual one to the other.
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If P, is dual to P*, and if P, is also dual to P*, then it is immediate that
P, and P, are combinatorially equivalent.

As examples of dual 3-polytopes we mention: the cube and the octa-
hedron, and in general the n-sided prism and the n-sided bipyramid; the
n-sided pyramid is dual to itself; the dodecahedron and the icosahedron.
The d-dimensional simplex is dual to itself.

Later on we shall encounter different applications of duality. Now we
shall only settle ‘one question arising naturally m connection with the
notion of duality: Has each d-polytope a dual d-polytope? The answer
1s affirmative, and it may be deduced from various well-known geometric
constructions. We shall describe only one of them, which has well-known

analogues, variants and generalizations in many other fields.
Let A be a subset of R?; the polar set A* of A is defined by

A* = {yeR¥|{x,y) <1 forall xeA}.
It 1s easily verified that

1. If K < R%is a compact convex set such that Ocint K, then the polar
set K* is also a compact convex set and 0 € int K*.

2. If K, K, = R* are compact convex sets such that Oeint K, < K,,
then K¥ o> K%,
Using the notation K** = (K*)*, we have

3. If K = R%is a compact convex set with O e int K, then K** = K.

Indeed, it i1s immediate from the definitions that K < K**. On the
other hand, if x, ¢ K there exists a hyperplane H = {ze R?|{z, y,) = 1}
strictly separating x, and K, i.e. such that {(x, y,» < 1 for all xe K and
{xq, Vo> > 1. Therefore y,e K* and then {(x,,y,> > 1 shows that
Xo ¢ K**.

Let F be a face of K ; define the set F by
F={yeK*|{(x,y) =1 forall xeF}.

4. If K is a compact convex set with 0 € int K, the mapping ¥ defined

by W(F) = F is a one-to-one inclusion-reversing correspondence between
F(K) and #(K*),; moreover, Y(W(F)) = F for every face F of K.

ProOF Clearly 5 = K* and K = ¢J; thus we may restrict our
attention to proper faces F. We shall first prove that F is a face of K*.
Let x, € relint F and consider the face F* of K* defined by

F* = {ye K*|{(y,xo> = 1}.
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Obviously F <= F*; we shall show that F = F*. Indeed, assume y, e K*,
yo ¢ F. Then there exists x, € F such that {(x,, y,)> < 1. Since x, € relint F,
there exists x, € F such that x, = Ax; + (1 — A)x,, where 0 < 4 < 1.
Since y,e€ K* we have (x,,y,> <1 and therefore {(x,, yo> < 1. Thus
Yo ¢ F* and F = F* as claimed. This shows that ¥ maps faces of K onto
faces of K*; since the mapping is obviously inclusion-reversing the
theorem will be completely proved if we show that W(W(F)) = F. Now,
by the definition we have W(¥(F)) = {ze K**|{(y,z) = 1 for all ye F};
since K** = K, 1t 1s obvious that F <« W(W(F)). Let z, e K, z, ¢ F; since
F is a face of K there exists a hyperplane H = {xe R?|{x, yo> = 1} such
that F = K n H. This clearly implies that y, € F and {z,, y,> < 1; there-
fore z ¢ W(W(F)) and the proof of theorem 4 is completed.

In the special case that K is a d-polytope with 0 € int K, theorem 4
shows that the polar set K* 1s a polytope, and ¥ is a dual correspondence
between the faces of K and the faces of K*.

E xercises

1. Show that each combinatorial type of 2-polytopes is dual to itself.

2. Show that the 3-polytopes with at most 9 edges form 4 combinatorial
types. Determine those types and their duals.

3. Determine all self-dual types of 3-polytopes with at most 7 vertices.
(Hermes [1] has determined the number t(v) of different combinatorial
types of self-dual 3-polytopes with v vertices, for v < 9; by a different
method, these numbers were determined by JucoviC [1], who discovered
an error in Hermes’ work; Bouwkamp—Duijvestyn—-Medema [1] deter-
mined t(v) for v < 10. The known values of t(v) are: t(4) = t(5) = 1,
t(6) = 2, t(7) = 6, t(8) = 16, t(9) = 50, t(10) = 165.)

4. Let K = R?be a compact convex set with 0 eint K, and let p e int K.
Show that (—p + K)* is a projective image of K*, with ze(—p + K)*
if and only if z = y/(1 — {p, y)) for some y € K*.

5. Generalizing the properties of the polarity mapping 4 — A*
mentioned in the text, prove that if 4, B are any subsets of R? and if
A # 0, then:

(i) A** = clconv (4 v {0})
(11) A*** — A*
(i) if A = B then A* > B*

(iv) (A4)* = %A*

(v) (A v B)* = A* n B*
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(vi) A 1s bounded if and only if O e int A*

(vi1) A* 1s bounded if and only if O e int conv A

(viil) if 4 is a polyhedral set then A* is a polyhedral set

(ix) if A 1s a cone with apex 0 then 4* 1s a cone with apex 0
(x) if A and B are closed convex sets containing O, then (4 n B)*
= ¢l conv(A* u B¥*).

6. Let C = R? be a closed convex cone with apex at the origin; the
polar cone C* is defined as C* = {xe R?|{x,y)> <0 for all yeC}.
Establish the following assertions:

(1) This definition of C* coincides with the definition on page 47.

(1) If C is pointed and d-dimensional then C* has the same properties.

(111) More generally,

dim C* + dim(C~ —=C)=d and dim C + dim(C* n —C*) = d.

(iv) If C is a pointed polyhedral cone of dimension d, and if H, H' are
hyperplanes which do not contain O such that the sets P = H n C and
P* = H' n C* are bounded, then the (d — 1)-polytopes P and P* are
dual to each other. *

7. If the convex polytope P < R? is the intersection of the closed
halfspaces {x € R?| {x, y;» < 1}, where 1 < 1 < n, show that

P* = conv{y;, -, Vn}.
More generally, if K = {xeR|[{(x,y,0> <1, 1 <i<n {x2z;) <0,
1 < j < mj}, show that

J

K* = clconv [{0,y;, -, ¥yt U U R*zj)
j=1

-

m
Jj=1

= conv{0, y,, -+, ya} + conv( R*zj),
where R*z = {4z |0 < A}.

8. Let K « R?bead-polytope and Ve vert K. A vertex figure of K at V
(compare Coxeter [1]) 1s the intersection of K by a hyperplane which
strictly separates V from vert K ~ {V}.

(1) Show that any two vertex figures of K at V are projectively equivalent.

(11) Let O eint K. Show that any vertex figure of K at V is dual (in the
sense of duality of (d — 1)-polytopes) to the facet ¥ of K*.

9. Let P be a polytope. We shall denote by Z(P) the set of cones asso-
ciated with P,

A(P) = {—V + cone, P | Vevert P}.



50 CONVEX POLYTOPES

If P, and P, are polytopes we shall say that P, is related to P, provided
each member of Z(P,) 1s representable as an intersection of members of
R(P,); we shall say that P, and P, are related provided each of them is
related to the other.

(1) Show that for each d > 2 there exists d-polytopes P,, P,, P, such
that P,, P, are related to P, but none of P, and P; is related to the other.

(11) Show that polytopes P, and P, are related if and only if Z(P,)
= A(P,).

(iii) Show that if P, and P, are related, then they are combinatorially
equivalent.

(iv) Let P < R?bea d-polytope, P = {xe R |{(x,u;) < a;,1 < i <n}.
Show that there exists an ¢ = &(P) > 0 such that P 1s related to every P’
of the type P' = {xe R*|<{x,u;) < B;,1 <i<n}, where |a; — ;| <e¢
fori=1,2,---,n.

10. As in section 3.2, let & (K) denote the lattice of all faces of the com-
pact convex set K < R?.

(1) If O eint K show that #(K) is antiisomorphic to the lattice & (K*)
under the mapping Y(F) = F.

(1) If K 1s, moreover, a d-polytope show that dim F + dimy(F)=d — 1.

(i) Let K be a d-polytope, F,, F, € #(K), and F, < F,. Show that
{Fe #(K)| F, < F < F,}isasublattice of #(K), isomorphic to the lattice
F(P) of some polytope P of dimension d'=dimF, — dim F,; — 1,
and antiisomorphic to the lattice #(P’) of another d’-polytope P'.

(iv) Generalize (111) to the case where K is a quasi-polyhedral set.

11. The notion of duality of two polytopes in R? may easily be gen-
eralized to the notion of duality of two complexes in R?, by requiring the
existence of an inclusion-reversing correspondence between the nonempty
faces of the complexes.

(i) Find examples of (d — 1)-complexes in R? which have no dual com-
plexes.

(i1) Let a k-complex € be called boundary-free if every member of €
of dimension less than k belongs to at least two k-dimensional members of
€. Prove that if a (d — 1)-complex € in R% d > 2, has a dual then € is
boundary-free and each (d — 2)-dimensional element of ¢ belongs to
precisely two (d — 1)-dimensional elements of ¥. Find examples which
show that those properties are not sufficient for the existence of a dual

complex if d > 3.

12. Let A be a linear transformation from R? into R°. The adjoint
transformation A* from R® onto R? is defined by the condition: y* = A*y
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is that point of R? for which { Ax, y> = {x, y*) for all x e R%. Prove that
A* 18 a linear transformation.

13. Let K; « RY and K, « R® be compact convex sets such that
Ocint K, and Oeint K,, and let 4 be a linear transformation from R‘ to
R¢ such that AK, = K,. Show that the adjoint transformation A* 1is
one-to-one and maps K% onto KT n A*R®.

14. Using theorems 3.4.3 and 3.1.2, give a short proof of theorem 3.1.1.
(Compare Glass [1].)

3.5 Remarks

The use of the term ‘polytope’ in this book—as well as the use of some
other terms such as ‘polyhedral set’, ‘complex’, etc.—differs from the
generally accepted one (though Klee [18] uses ‘polytope’ in the sense
adopted here). Our ‘polytopes’ are in the literature mostly referred to as
‘convex polytopes’ (or ‘convex polyhedra’; compare the preface to the
second edition of Coxeter [1]); however, since the only ‘polytopes’
considered here are the convex ones, we felt that the omission of a few
thousands of repetitions of the word ‘convex’ is justified. The weight of
this decision was considerably lightened by the observation that in most
instances in which the term ‘polytope’ is used in the literature for not
necessarily convex objects of dimension exceeding 3, a precise definition
18 lacking (see, for example, chapter 7 of Sommerville [2]); and if given,
varies according to the author’s aims (compare, for example, Coxeter [1],
pp- 126, 288, and N. W. Johnson [3}).

The main aim of the present chapter was to obtain a number of fun-
damental notions and results on polytopes. All the results in the main text
and in most of the exercises are well known, though in some cases 1t 1s
rather hard to find definite references. The reader wishing to pursue the
historical aspect in more detail is referred, in a general way, to Schlafli [1],
Minkowski [2], Weyl [1], and Coxeter [1].

The justification for our use of the term ‘complex’ lies only in its brevity.
Though many books on topology define the objects we call complexes
(using various terms, such as ‘polyhedral complexes’, ‘geometric cell
complexes’, etc.), this appearance is mostly of marginal interest and con-
sequence. Indeed, a topologist’s aims are mostly invariant under sub-
division, hence the study of ‘polyhedral complexes’ may be reduced to the
study of ‘simplicial polyhedral complexes’; but every such entity 1s a
complex in our sense (See exercise 25 in section 4.8). In other words, the
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question whether a given topological complex is, or is no: representable
by a complex with convex cells 1s rather uninteresting from a topological

point of view, and has consequently received little attention (see chapter 11
for a more detailed discussion). For us, however, the complexes as defined
above are a natural generalization of polytopes. Moreover, even though
our main interest are polytopes, valuable insights are reached by studying
the more general case of complexes (see, for example, chapters 9, 11, 12, 13).

Polarity—for polytopes, or for more general sets—has been studied
by many authors. As references for various approaches and for additional
facts and references we mention Weyl [1], Motzkin [1,2], Fenchel [3,4].

Various notions of infinite-dimensional polytopes have been considered.
Though some of the results obtained have important analytic content,
there seems to be rather little that may be said about combinatorial
properties of such polytopes and they will not be considered in the sequel.

The interested reader should consult, for example, Choquet [1], Bastiani
(1], Eggleston—Griinbaum—Klee [1], Maserik [1}], Alfsen [1].

The notion of a polytope ‘related’ to another polytope (exercise 3.4.9)
1s rather recent (Griunbaum [11}); a similar concept was introduced some-
what earlier by Shephard [ 2] (see section 15.1; a polytope A4 is related to a
polytope B if and only if, in the notation of section 15.1, A4 < B for some
A > 0). This notion seems to be quite natural in various combinatorial
problems (see, for example, Hadwiger—-Debrunner [1], Asplund—Griin-
baum [1], Griinbaum [11], Rado [1]); probably many results known at
present only for some special families (such as parallelotopes having
parallel edges) may be meaningfully extended to families of polytopes
related to a given polytope.



POLYTOPES 52a

3.6 Additional notes and comments

The “main theorem”.

Theorems 3.1.1 and 3.1.2 together make up the “main theorem about poly-
topes”: Any polytope may be defined as the convex hull of a finite set of points
(i.e., by a ¥#-description), or as a bounded intersection of finitely many closed
half-spaces (an J€-description). In the case of a full-dimensional polytope, the
minimal such descriptions are in fact unique: The minimal ¥-representation
of a polytope 1s given by the vertices, while the minimal J#-representation
consists of the facet-defining halfspaces.

There are several different methods of proof available, some of which also
lead to algorithms for the conversion between #- and #¢-descriptions (see be-
low). Griinbaum’s argument of theorem 3.1.1 reminds one of the “ray shoot-
ing” techniques in computational geometry (de Berg et al. [a, Chap. 8]). Still
an alternative proof is from metric aspects, see Ewald [a, Sect. 11.1].

Rational Polytopes.
A polytope is rational if 1t has rational vertex coordinates or, equivalently, if
it has rational facet-defining inequalities. For every rational polytope the facet
complexity is bounded by a cubic polynomial of the vertex complexity, and
conversely; here facet complexity refers to the maximal coding size of a facet-
defining inequality, while vertex complexiry 1s the maximal coding size of a
vertex. See Schrijver [a, Sect. 10.2].

Under suitable magnification of coordinates, each rational polytope 1s equiv-
alent to one whose vertices all have integral coordinates. The theory of such
lattice polytopes 1s eXtensive, and makes many contacts with algebraic geome-

try and with the geometry of numbers. See Barvinok [b] for a short survey.
\

Algorithmic aspects.

From the algonthmic point of view of computational convexity (see Gritz-
mann-Klee [e]), it makes a great difference which type of representation of
a polytope 1s given: First, one representation may be very large even though
the other one 1s small—e. g. for the d-cube, which may be given by 24 half-
spaces or by 2¢ vertices. Moreover, even if this is not the case, the problem
of computing one representation from the other—known as the convex hull
problem—is non-trivial, both in theory and 1n practice.

In theory, an asymptotically optimal algorithm for polytopes in any fixed
dimension was provided by Chazelle [a]. Similarly, in the case of input “in
general position”, the reverse search techniques of Avis—Fukuda [a] solve the
problem in polynomial time. However, without any of these restrictions, the
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convex hull problem is not solved at all. Indeed, Avis—Bremner—Seidel [a]
have demonstrated that the known methods for the convex hull problem have
no polynomial bounds for their running times in terms of the size of “input plus
output” (see also Bremner.[a]). Check Fukuda [b] and Kaibel-Pfetsch [a] for
current discussions about polyhedral computation. ““
Non-trivial isomorphism problems are raised, e. g., by the footnote on p. 39,
where Griinbaum talks about a “given” convex polytope, and says that checking
combinatorial equivalence “is, in principle, easy”’; see Kaibel-Schwartz [a].
In practice, there are several reasonable algorithmic methods available to
attack convex hull problems of moderate size:
o Fourier-MotzKin elimination/the double-description method are described
in Ziegler [a, Lect. 1]; an implementation 1s cdd by Fukuda [a].
o Lexicographic reverse search is implemented in 1xrs by Avis [a].
These convex hull codes are integrated in the polymake system by Gawrilow—
Joswig [a] [b]. In most cases, a solution of the convex hull problem for a given
example is the first step for all further analysis of any “given” example. It is
also often the computational bottleneck: If the convex hull problem part can be
solved, then many other questions may be answered “easily”.

Further representations.

¥- and J€-descriptions are the standard ways to represent polytopes. However,
alternative representations have been studied; we describe two of them in the
following. -

A result of Brocker and Scheiderer on semi-algebraic sets (see Bochnak—
Coste-Roy [a] for references) implies that each d-polytope P C R? can be pre-
sented as the solution set of a system of d(d + 1)/2 polynomial inequalities;
for P’s interior, d polynomial inequalities suffice. These striking results are
nonconstructive, and it is at present unknown whether one can algorithmically
convert an J¢~description of a d-polytope into a polynomial representation in
which the number 1(d) of polynomials depends only on d. Grétschel-Henk
[a] show that for simple d-polytopes this can be done with 1£(2) =3, u(3) =6,
and in general, 1 (d) < d<.

In the oracle approach pioneered by Grotschel-Lovasz—Schrijver [a], a sup-
pliant attempts to determine the structure of a polytope P by means of the
answers to a sequence of questions posed to some sort of oracle. For a d-
polytope P whose interior 1s known to contain the origin, each query to the
ray-oracle consists of a ray issuing from the origin, and the oracle responds
by telling where the ray intersects P’s boundary. For this oracle, Gritzmann—
Klee—Westwater [a] show that the entire face lattice of a d-polytope P can be
reconstructed with the aid of at most f,(P) +(d — 1) f7_,(P)+(5d—4) f,_, (P)
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quenes. For similar results involving other oracles, see Dobkin—Edelsbrunner—
Yap [a]. Oracle representations are particularly important with respect to vol-
ume computation (see the notes in section 15.5).

Diagrams vs. Schlegel diagrams.

A review of diagrams and Schlegel diagrams appears in Ziegler [a, Lect. 5].
Schlegel diagrams of dimension 4 are most useful in the case of d = 3, where
they provide a tool to visualize 4-dimensional polytopes. Such 3-dimensional
diagrams may be visualized via cardboard or wire models, but also electroni-
cally using polymake by Gawrilow—Joswig [a] [b].

The decision whether a given d-diagram is a Schlegel diagram is easily re-
duced to linear programming. However, the question whether a given diagram
is combinatorially equivalent to a Schlegel diagram seems to be very hard in
general; see Richter-Gebert [b, Chap. 10]. A remarkable theorem, however,
states that all simple d-diagrams are Schlegel diagrams, for d > 3; for this we
refer to Rybnikov [a], who derives it from rather powerful, general critenia for
liftability of polyhedral cell complexes.

In view of the question posed on page 45, we now know many examples of
non-polytopal 3-diagrams. In particular, examples constructed and analyzed
by Schulz [a] [b] show that neither invertible nor dualizable 3-diagrams are
necessarily Schlegel diagrams. (Apparently it has not been proved explicitly
that the combination of both properties 1s not sufficient.)

“Related” polytopes and their fans.
For exercise 3.4.9 one can, equivalently, consider the normal fan of the poly-
tope, a concept that first arose in the theory of toric varieties (see Ewald [a],
Fulton [a]): A (complete) fan is a complex of pointed polyhedral cones in R?
whose union is all of R%. The normal fan A (P) of a d-polytope P C R con-
tains, for each non-empty face F C P, the collection C of all vectors a € R4
such that the linear function x — {a,x) on P is maximized by all points in F.
(Thus for each vertex V, the cone C,, 1s dual to the cone —V + coney, P con-
sidered by Griinbaum.) By exercise 3.4.9(i1), two d-polytopes are “related” if
their normal fans coincide. See also Ziegler [a, Lect. 7].

Related polytopes are also called strongly isomorphic, normally equivalent,
analogous, and locally similar (see Schneider [b, Notes for Section 2.4]).

Two exercises.
In exercise 3.1.14, continuous functions are most easily derived from a trian-
gulation (without new vertices) of the polytope.
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Exercise 3.4.3 is to enumerate self-dual 3-polytopes—nhere the study of Dil-
lencourt [a] has produced the following table:

6 7 8 o6 10 11 12 13 14
2 6 16 50 165 554 1908 6667 23556

n 4 5
f(n) |1 1

It seems to be a recent insight that for self-dual polytopes, a self-duality of
order 2 need not exist; we refer to a thorough discussion and survey by Ashley
et al. [a]. See also Jendrol’ [a].




CHAPTER 4

Examples

The aim of the present chapter 1s to describe in some detail certain
polytopes and families of polytopes. This should serve the double purpose
of familiarizing the reader with geometric relationships 1n higher-
dimensional spaces, as well as providing factual material which will be
used later on.

4.1 The d-Simplex

The simplest type of d-polytopes is the d-simplex T¢. A d-simplex is
defined as the convex hull of some d + 1 affinely independent points.
Since any affinely independent (d + 1)-tuple of points 1s atfinely equivalent
to every other (d + 1)-tuple of affinely independent points, and since
affine transformations commute with the operation of forming convex
hulls, 1t follows that each two d-simplices are nonsingular atfine images of
each other. Therefore, in particular:

1. All d-simplices are of the same combinatorial type.

Let T¢ be a d-simplex and V = vert T?. Each face of T? is obviously
the convex hull of some subset of ¥, and—being the convex hull of an
affinely independent set—is itself a simplex of appropriate dimension.
Since any d-pointed V' subset of V spans a supporting hyperplane of
T?, conv V' is a (d — 1)-simplex which is a face of T“. Using theorem
3.1.5, or a direct argument, there follows :

2. All the k-faces, 0 < k < d — 1, of the d-simplex T? are k-simplices,
and any k + 1 vertices of T? determine a k-face of T®. The number of

d + 1

k+ 1

The d-simplex TY — R? is clearly the intersection of the d + 1 closed
halfspaces determined by the d + 1 (d — 1)-faces of T and containing
T?. Thus the polytope dual to T? is again a d-simplex, and the com-
binatorial type of the d-simplex is self-dual. Evidently this implies that

k-faces of T? is therefore given by f,(T?) = ( for all k.

53
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each (d — k)-fice of T is the intersection of the k (d — 1)-faces of T*
containing 1it—a fact which can easily be proved also by a direct argument.

A particular d-simplex, often very convenient from a computational
point of view, 1s the convex hull of the d + 1 ‘unit points’ (1,0,---,0),

0,1,0,---,0),---,(0,--+,0,1) in R4*1,

4.2 Pyramids

The d-simplex T may obviously be considered as the convex hull of the
union of a (d — 1)-simplex T¢"! and a point 4 ¢ aff T?"!. In analogy to
the well-known solids 1n 3-space, this construction may be generalized as
follows.

A d-pyramid P? is the convex hull of the union of a (d — 1)-polytope
K?~ ! (basis of P*) and a point 4 (apex of P?), where 4 does not belong to
aff K¢~ 1.

Let F* be a k-face of P! determined by the hyperplane H, F* = P* n H.
Then there are two possibilities : either (i) A ¢ vert F¥, or (ii) A € vert F~.
In case (i), theorem 2.4.1 implies that F* is a k-face of K?~!. In case (ii),
the vertices of F* different from 4 arein K?~ !, and are exactly the vertices
of the (k — 1)-face H N P! n aff K~ ! of K4~ !. Hence F* is a k-pyramid
with apex 4 and basis H n K471,

On the other hand, theorem 3.1.5 mmplies that, for 0 < k < d — 1,
each k-face of K~ ! (including the improper face K4~ ! of K~ ') is a face
of P4; also, the convex hull of the union of any proper face of K¢~ ! and
A is a proper face of P?. Therefore we have

1. If PYis a d-pyramid with (d — 1)-dimensional basis of K~ then
fo(PY) = fo(K*™ 1y + 1
P = (KDY + fi_ (K™Y for 1<k<d-—2

faoiPH =1+ f1_(K*™ ).

Using the extended notation f_,(P%) = f(PY =1, f(PY) =0 for
k < —1 and k > d, the above relations can be formulated as

fPY = f(KY + f_ (K™Y for all k.

The above reasoning proves also that, as far as the combinatorial type
1s concerned, we may speak about the pyramid with a given basis. A
similar remark applies to most classes of polytopes mentioned 1n the
present chapter.
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If P?is a d-pyramid with basis P~ !, where P~ ! is a (d — 1)-pyramid
with (d — 2)-dimensional basis K¢~ 2, we shall say that P? is a two-fold
d-pyramid with basis K?~*. In general, for a positive integer r we shall
say that P? is an r-fold d-pyramid with ((d — r)-dimensional) basis K~ "
provided P? is a d-pyramid with basis P!, where P4~ ! is an (r — 1)-fold
(d — 1)-pyramid with basis K¢~". A d-pyramid as defined earlier is a 1-fold
d-pyramid. Any d-polytope is a 0-fold d-pyramid.

It 1s easily seen by mduction that

2. If PYis an r-fold d-pyramid with basis K°~" then
. r
fk(P ) — Z ( _

)fk_i(Kd"') for all k .

l

Note that a (d — 1)-fold d-pyramid has as basis a segment—which 1s
itself a 1-fold 1-pyramid; thus every (d — 1)-fold d-pyramid 1s also a
d-fold d-pyramid, or 1n other words, it is a d-simplex.

4.3 Bipyramids

Let K" ' bea(d — 1)-polytope and let I be a segment such that I n K¢~
is a single point belonging to relint I nrelint K" !. Then B? =
conv(K?~! U I) is called a d-bipyramid with basis K~ !. By a reasoning
analogous to that used in section 4.2, the numbers f,(B?) are easily deter-
mined. We have

1. If BY is a d-bipyramid with basis K~ ! then

fi(BY) = 2f_ (K4 Y + f(K4™Yy  forallk<d—2

and

fd— 1(Bd) — 2ﬁ:—2(Kd# 1)-

For a positive integer r we may define r-fold d-bipyramids 1n analogy
to r-fold d-pyramids. We shall not dwell here on the details of the general
case, but a few words seem to be called for 1n the extreme case of (d — 1)-
fold d-bipyramids which, again in analogy to pyramids, are necessarily
also d-fold d-bipyramids. The easiest way to study them is by considering
the simplest representative of the type—the d-dimensional crosspolytope
or d-octahedron Q. The d-crosspolytope Q° may be defined as the convex
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hull of d segments [v;; w;], 1 < i < d, mutually orthogonal and having
coinciding midpoints. As 1s easily checked, if 1 < k < d, for each k
different indices iy,---,i, and points z;e{v;,,w,}, the points
{z;|1 < j < k} are the vertices of a (k — 1)-face conv{z;} of Q°, and each
proper face of 0 may be obtained in this way. From this, or from the
observation that Q? is a d-bipyramid with basis Q¢ !, we find

2. Ford>1and —1 <k </ d,

d
Q) = 2"”( )
k + 1

4.4. Prisms

Let K be a (d — 1)-polytope and let I = [0,x] be a segment not
parallel to aff K~ *. Then the vector-sum P? = K9~ ! 4 [ is a d-polytope,
the d-prism with basis K?~*. Clearly P?is also definable as the convex hull
of K¢~ ' and its translate x + K% '. A k-face of P? is either a k-face of
K¢~ ' or of x + K71, or it is the vector-sum of I with some (k — 1)-face
of K4~ 1. Also, each face of K¢~ ' and of x + K% ! (including the improper
ones) is a face of PY, and the vector-sum of I with any face of K~ is a
face of P®. Therefore we have

1. If P4 is a d-prism with basis K%~ ! then
fo(PY) = 2f(K*™ 1)

and
fk(Pd) — 2fk(Kd*1) + fk.._l(Kdml) for k> 0.

Agreeing that 1-fold d-prism means the same as d-prism, we shall say
that a d-polytope P? is an r-fold d-prism with basis K?~" provided P? is
a prism with basis P4~ ', where P/~ ! is an (r — 1)-fold (d — 1)-prism with
basis K"

The (d — 1)-fold d-prisms coincide with the d-fold d-prisms; they are
the parallelotopes, a d-parallelotope being the vector-sum of d segments
with a common point, such that none is parallel to (i.e. contained in) the
affine hull of all the others. The simplest d-parallelotope is the d-cube C*
(also called the measure polytope (Coxeter [1])), which 1s the vector<sum
of d mutually orthogonal segments of equal length. In a suitable Cartesian
system of coordinates C* is the set of all points x = (x,, - -, x;) for which
O0<x;<lforl <i<d.
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Using theorem 1 1t 1s easily seen by induction (or directly from the
definition) that

d
k

Prismoids (Sommerville [2]) are a family of polytopes the definition of
which generalizes that of the prisms. If P, and P, are polytopes contained
in parallel, distinct (d — 1)-hyperplanes, and such that P? = conv(P; U P,)
is d-dimensional, then P? is called a d-prismoid with bases P, and P,. In
certain contexts (see, e.g., chapter 8) the d-prismoids are convenient build-
ing-blocks for the construction of all d-polytopes. Note that the number
of faces of a d-prismoid is not determined by the numbers f(P;) and
f{(P,), and not even by the combinatorial type of P, and P,, but depends
on the polytopes P; and P, themselves, and on their mutual position.

2. fk(cd)-:zd-k( ) for 0<k<d.

4.5 Simplicial and Simple Polytopes

In general, d + 1 points in R? are affinely independent ; similarly, a finite
subset of R? will ‘in general’ be in ‘general position’, that is, no d + 1
of 1ts points will belong to the same hyperplane.* In particular, consider-
ing a d-polytope P as the convex hull of its vertices, ‘in general’ nod + 1
vertices of P will belong to the same facet of the polytope. Thus all the
facets of P will ‘in general’ be (d — 1)-simplices. Any polytope not satisfy-
ing this condition 1s singular in the sense that it exhibits the ‘unusual’
incidence of more than d of its vertices in the same supporting hyperplane
of P.

Thus we are naturally led to the ‘general’ family 2¢ of simplicial d-
polytopes. A" d-polytope P i1s called simplicial provided all its facets are
(d — 1)-simplices.T As examples of simplicial polytopes we mention: the
d-simplex, d-bipyramids having as basis any simplicial (d — 1)-polytope,

* The aim of the present section being only to make the family of simplicial polytopes
appear a natural object of study, we do not wish to discuss the precise meaning of ‘general
position’. Such a meaning may easily be derived by considering the (d + 1)-tuples of points
of R? as elements of a d(d + 1)-dimensional space, and using an appropriate category
classification, or a measure on this space, 1n order to proclaim nowhere dense sets, or sets
of measure 0, as ‘special’ and their complements as general.

t It should be noted that in this class of polytopes the vertices do not necessarily form
a ‘general’ set of points. More than d vertices of such a polytope P may belong to the same
hyperplane provided the hyperplane does not support P. Thus, the regular 3-octahedron
Q°? is a ‘general’ polytope though it has quadruples of coplanar vertices.
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the d-octahedron. Additional examples shall be provided by the cyclic
d-polytopes (section 4.7).

In every d-polytope each (d — 2)-face 1s incident with two facets
(theorem 3.1.6); 1n a simplicial d-polytope each facet, being a (d — 1)-
simplex, is incident with d(d — 2)-faces. Thus, for each P e 24, we have
df;_, = 2f,—,. In chapter 9 we shall see that the numbers f,(P), for
P € 2?, satisfy additional linear relations.

The family 2¢ of simplicial polytopes is not only ‘natural’ but it turns
out to be rather important. Not only is the family of simplicial polytopes
from certain points of view more tractable than the family 2¢ of all
d-polytopes, but a number of results bearing on all polytopes are at
present obtainable only via simplicial polytopes (see, for example,
chapter 10).

It 1s to be noted, however, that the identification of ‘general’ polytopes
with the simplicial polytopes 1s quite arbitrary in at least one sense:
According to section 3.1 a polytope—that is, the convex hull of a finite
set of points—may as well be defined as a bounded intersection of finitely
many closed halfspaces. The ‘general’ position of d + 1 hyperplanes 1s
not to be incident with one point. Therefore, from this point of view, the
‘general’ polytope has at most, and thus exactly, d facets incident with
each of its vertices. In other words, ‘general’ from this point of view are
polytopes which are usually called ‘simple.’

The two points of view, and the classes of simplicial and simple poly-
topes, are obviously dual to each other and there is no intrinsic advantage
of one of them over the other. For different reasons (none very important)
we shall in chapters 8, 9, and 10 prefer to deal with simplicial polytopes.
Naturally, each of the results may be dualized to the corresponding
statement about simple polytopes. By reason of easier imagination some
problems about 3-polytopes are usually treated in the setting of simple

polytopes.

The notion of simple or simplicial polytopes may be generalized as
follows. Let k and h be integers such that 1 < k, h < d — 1. A d-polytope
P shall be called k-simplicial provided each k-face of P is a simplex; P
shall be called h-simple provided each (d — 1 — h)-face of P 1s contained
inh + 1facets of P. We shall denote by 24(k, h) the family of all d-polytopes
which are k-simplicial and h-simple ; such polytopes are also said to be of
type (k, h). Clearly 29(1,1) = 2, and the dual of a d-polytope of type
(k, h) is of type (h, k). The simplicial d-polytopes are obviously of the type
(d — 1, 1), the simple ones of type (1,d — 1). The d-polytopes of type
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(d — 2,1) are called quasi-simplicial, and their totality 1s denoted by
P: = PYd — 2,1). It is immediate that every 3-polytope is quasi-
simplicial, and so is every d-pyramid having as basis a simplicial (d — 1)-
polytope. We shall consider quasi-simplicial polytopes 1n section 9.3.

A complex € is called simplicial provided all its members are simplices.
Simplicial complexes are 1n many respects easier to manage than com-
plexes in general, 1n particular from the point of view of algebraic topology.

The definitions of simplicial complexes and of simplicial polytopes are
concordant 1n the sense that a polytope P is simplicial if and only if its
boundary complex #(P) is simplicial.

4.6 Cubical Polytopes

In section 9.3 we shall discuss the interesting family 2? of cubical d-
polytopes. A d-polytope P 1s called cubical provided each of 1ts (d — 1)-
faces is combinatorially equivalent to the (d — 1)-cube C?7 .

Here we shall describe some special cubical d-polytopes, the cuboids
C¢, where 0 < k < d. The cuboid C¢ may be imagined as obtained by
‘pasting together’ 2* d-cubes in the following fashion:

C¢ is the d-cube C?;

C9 is the union of two d-cubes which have a common (d — 1)-face;

C94 1s the union of two C{’s pasted together along a C{~' common to
both (this, naturally, requires that the C¢’s be deformed beforehand); and
so forth.

In figure 4.6.1 the four 3-cuboids are represented.

Alternatively, C§ may be described in terms of its boundary complex as
follows :

2B(C%)isisomorphic to the complex whichis obtained from the boundary
complex of the cube C? = {(x{,---,x)eR?| |x;| <1, 1 <i<d} by
subdividing all its cells along the k coordinate hyperplanes {(xy,- - -, xg) €
R*|x; =0} for j=1,---,k. Naturally, it is possible to give explicit
formulae for the coordinates of the vertices of Ci (see exercise 4.8.20), but
this approach is not very helpful for obtaining an intuitive picture of the
polytope.

Since for 0 < i < d — 1 an i-face of a d-cube 1s incident to d — i facets
of the cube, each i-face of the d-cubes forming C§ according to the above
description will be an i-face of C¢, provided i + k < d — 1. Therefore, for
i + k <d — 1 we have the recursion relation

C) = 2f(Ci~1) — FCLZH).
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d

Using this relation and the formulae f(C¢) = f(C%) = 2""1(
i

) from

section 4.4, i1t is easily verified by induction on k that:

1. Fori,k>0andi+k<d -1

%

=)
fCh =Y (—1)1( )( | )z

j=6 ] 1

This expression 1s, for i = 0, easily evaluated 1n closed form and yields
fo(C) = 297*3*for 0 < k < d — 1, aresult which may as well be obtained
directly from the definition of C. For k = d there results f,(C%) = 3¢ — 1.

4.7 Cyclic Polytopes

Though only a relatively recent discovery (see the historical comments in
section 7.4), the cyclic polytopes C(v, d) play a very important role in many
questions of the combinatorial theory of polytopes. Following Gale [4]
and Klee [9] they are defined by the following simple procedure:

In R? consider the moment curve M, defined parametrically by
x(t) = (¢, t%,---, 1. A cyclic d-polytope C(v,d) is the convex hull of
v >d + 1 points x(¢t;) on M,, witht, <t, <--- <t,.

Let V ={x(t)|1 <i<v}, wheret, <t, <--- <t,, be the v-pointed
subset of M, used in the definition of C(v, d), and let k be a positive integer
such that 2k < d. We shall now show that any k-pointed subset
V, = {x(t¥)|i=1,---,k} of V determines a face of C(v,d). In order to
find the equation of .a supporting hyperplane H of C(v,d) such that

H n C(v,d) = conv ¥, we consider the polynomial
k
plt) = (t — ) = Bo + Byt + -+ + Baut®™

1=1

where the coefficients fi; depend only on the ¢f’s. Let

b = (ﬁlsﬂZa“'aﬁstO’”"O)

H={xeR{x,b> = —B,}.

Then clearly x(t¥)e H for 1 < i < k, while for any x(t)e M, ~ V, we have

and

(x(t),b) = —fo + H (t — t¥)* > —B,.
i=1
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Thus H 1s a supporting hyperplane of C(v,d) and H n V = V|, as claimed.
It follows easily that

1. If k is a positive integer such that 2k < d, every k vertices of C(v, d)
determine a (k — 1)-face of C(v, d); therefore

fi(C(v, d)) = ( v ) for 0<i< [3d]
i+ 1

We shall show next that C(v, d) 1s a simplicial d-polytope. An easy way
to do this is by showing that every (d + 1)-tuple of points in M, is affinely
independent. It follows that each proper face of C(v,d) has at most
d vertices, and therefore C(v, d) e 2.

The afhne independence of d + 1 points x(t;))e My, to < t; < --- < tg,
1s equivalent with the non-vanishing of the determinant

2
1 to tO e t%
A 1 ¢, 8 -
2
1 t, ¢ tg
But, asis wellknown,A = || (t; — ;) > 0. This completes the proof
‘ O<i<j<d

of our assertion.

Let V,{x(tf)|1 <i<d}, where tf <% <.--t¥, be a subset of V.
We consider the polynomial

d d
p)=1lC—th= > 9t
i=1 j=0

and define ¢ = (y,,---, 7). Let H* be the hyperplane
H* = {xe R'|{x,¢) = —y,}; then V, c H*.

The function {x(t),c) + 7y, defined for x(t)e M,, i1s clearly different
from O for each x(t)¢ V, and 1t changes sign whenever the variable ¢
increases and passes through one of the values t¥. Therefore, since every
d-pointed subset of M, is aflinely independent, we have

2. A d-tuple V; of points of V < M, determines a facet conv V, of
conv V = C(v,d) if and only if every two points of V ~ V, are separated
on M, by an even number of points of V.

We shall call the criterion of theorem 2 ‘Gale’s evenness condition’.
It obviously makes the determination of f,_,(C(v,d)) quite easy. We
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state here only the final result, delaying the proof to Chapter 9 where
the expression for f,(C(v, d)) will be found for all k.

r'd+1] d + 2]
v — v — |- -
_.I_

3. f,-1(C(v,d)) = L 2 L 2 JJ.
v — d v — d
This may be reformulated as
W n) for even d = 2n,
v —n\ n
Ji-1(C(v,d)) =
v —n— 1
2( ) forodd d = 2n + 1.
n

Another consequence of Gale’s evenness condition 1s that each two
cyclic polytopes C(v,d) are combinatorially equivalent, the correspond-
ence between vertices being given by their order on M,. Thus we may
speak about the combinatorial type C(v, d).

An analysis of the proofs of the present section shows that the con-
struction of cyclic polytopes use only very few of the properties of the
moment curve M,. It is therefore not surprising that i1t 1s possible to
develop the theory of ¢yclic polytopes using other curves in their
definition; the curves have many other interesting properties. For
additional results and references see, for example, Derry [1], Motzkin [4],
Fabricius—Bjerre [1], and Cairns [4] (the curves used being distinguished
by their geometric properties), by Carathéodory {1, 2] and Gale [4] (using
the curve (cos t, sin t, cos 2t, sin 2t, - - -, cos nt, sin nt)), and by Saskin [1]
(using analytic conditions). For some related results see Karlin—Shapley
[1]. Some of the above authors have a number of other papers on moment
curves and their relatives ; we do not list them since their connection with
polytopes 1s rather tenuous.

4.8 KExercises

1. The definition of pyramids may be generalized in the following
fashion: Let P* and P' be two polytopes (of dimensions s and t, respect-
ively) in R, d = s+t + 1, such that aff P~ aff P' = ¢J. Let P? =
conv(P* U PY); if dim P? = d then P? is a d-pyramidoid (Sommerville [2],
p. 115) with bases P* and P‘. Show that 1n this case

P = 3 FP) fy—i= 1 (P,
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Show that each r-fold d-pyramid 1s a d-pyramidoid and that the above
formula for f,(P?) reduces to theorem 4.2.2 if P? is an r-fold d-pyramid.

2. Determine f(B? if B? is a 2-fold d-bipyramid with (d — 2)-
dimensional basis K?~ 2 generalize.

3. Show that for 1 < r < d — 2 there exist d-polytopes combinatori-
ally equivalent to an r-fold d-bipyramid, which are not r-fold d-bipyramids
themselves.

4. The construction of bipyramids may be generalized as follows:
Let P° and P' be polytopes of dimensions s respectively t,d = s + t,
with P°*n P' a single point belonging to relint P° nrelint P'. Let
P¢ = conv(P* U P); clearly, if P' is a segment then P? is a bipyramid
with basis P°. Determine the value of fi(P?) in terms of f;(P*) and f{P").

5. As a special case of the construction mentioned in exercise 4, let
T? denote the convex hull of the union of an r-simplex T” and a
(d — r)-simplex T?"", where T"n T?"" is a single point belonging to
relint 7" N relint 797", and 0 < 2r < d. Show that

i) f(TY = (" | 1)(‘” : "")

0 <i k+ 1 —i
d + 2
=(k——|l:l) for 0<k<r.
. d + 2
(11) f,.(Tf=(r , — 1 for O0<r<d-r.

2+ 2
" )—2.

(i) f(T7") = ( —_

Determine f(T?) forr < k < d.

6. Let P be the 4-polytope defined as the convex hull of the points
(—-1,—-1,—-2,0),(—1,—-1,2,0),(—1,0, —1,1),(—1,0,1, 1), (=1, 1, —2,0),
(—1,1,2,0), (1, —2, —2,0),(1, —2,2,0),(1,0,0, 2), (1,2, —2,0),(1, 2, 2,0).
Show that the vertices of P may be assigned symbols A, B, C, D, E, F, G,
H, 1 J, K, in such a way that its 3-faces have the following sets of vertices:
{A,B,C,D,E,F,G,H}, {A,B,C,D,I,K}, {A,B,E F,1,L],K}, {A,D,E,
H,L,J}, {B,C,F,GK}, {C,D,GH,LJ K}, {E,F,G,H,J K}. Con-
struct a Schlegel diagram of P.

7. Theorems 4.3.1 and 4.4.1 indicate some connection between bi-
pyramids and prisms. Elaborate this relationship.

8. Show that the d-octahedron Q9 is a d-prismoid.
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9. Show that the family of all d-prismoids 1s projectively equivalent
to the family of all ‘generalized d-prismoids’. A d-polytope P¢ < R“
is a generalized d-prismoid provided P = conv(P; u P,), where P; and
P, are polytopes contained respectively 1n hyperplanes H; and H, such
that H{n H,n (P, v P,) = .

10. Explain the relationship between d-pyramidoids and d-prismoids.

11. Show that if P is a d-polytope of type (k, h) with k + h > d + 1,
then P is the d-simplex.

12. Show that an i-face of a simple d-polytope P 1s contained in

(j B ;) j-faces of P whenever —1 <i<j<d — 1.
13. Consider the 3-polytopes Schlegel diagrams of which are given
in Figure 3.4.6. Determine which of them represent pyramids, k-fold
pyramids, bipyramids, k-fold bipyramids, prisms, k-fold prisms,
prismoids, pyramidoids ; consider the possibility of a polytope belonging
to more than one of the classes, and of belonging to the same class in
more than one way. Determine which types are dual to each other or to
themselves. Find the duals of those for which a dual is not given.

14. Draw, or better still, construct cardboard models of, the different
Schlegel diagrams of the 4-pyramid with basis a 3-prism based on a
triangle, on a square, or on a pentagon; how many different Schlegel
diagrams are there 1n each of the cases. Perform the same tasks for the
cyclic polytopes C(v, 4)wherev = 5,6, 7.

15. Determine the faces of the 4-polytope P < R*, defined as the
convex hull of the ten points (0,0,0,0), (0,1,0,1), (0,1,1,0), (0,0, 1, 1),
(+1,1,0,0), (+1,0,1,0), (+1,0,0, 1). Show that all facets of the poly-
tope dual to P are combinatorially equivalent; determine the type
(k, h) of P.

16. Let K§, where 1 < k < d and d > 3, denote the polytope

d+1

Kd: {(xls"'axd+l)ERd+l|0£xi£ 191: 15”"d+ ]" Z 'xi:k}'
i=1

Prove the following assertions (compare Coxeter [1]):

(i) K{e242,d - 2).

(ii) K¢is a translate of K9, ,_,.

(iii) K¢ is the convex hull of the centroids of (k — 1)-faces of a
d-simplex T°.

(iv) If the centroid of T is at the origin 0, then K¢ is combinatorially
equivalent to kT n(k — d — 1)T".
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(v) K% has 2(d + 1) facets, d + 1 combinatorially equivalent to K™/,
the others to K4_1.
17. Let

d
Md = {(xla"'axd)ERdl Z lxll gd— 23|'x1| < lal= ls”‘ad}'
i=1

Prove:

1) M4e2'(2,d — 2).

(1) M“ is the convex hull of the centroids of the 2-faces of a d-cube.

18. Let N? = {(xl,'--,xd)eRﬂZ?:l e1x, <d—2 for all ¢, ---,¢
such that ¢ = +1(i = 1,---,d), and the number of ¢; equal to +1 1s
odd}. Prove that N?e 243,d — 3).

19. A d-antiprism P 1s a d-prismoid in which the two bases P, and P,
are (d — l)-polytopes dual to each other, having such shapes and
position that the facets of P are precisely those obtained as conv(F; U F),),
where F; 1s a face of P; and F, 1s dual to F,. Construct a 3-antiprism
with basis P, a triangle, a square, or a pentagon. Construct the Schlegel
diagram of 4-antiprisms with basis a three- or four-sided 3-pyramid.
Determine 1n each case the number of faces of different dimensions.
It 1s remarkable that 1t i1s not known whether each combinatorial type
of (d — 1)-polytopes contains members which can serve as bases of
d-antiprisms ; the problem 1s open even for d = 4.

20. Let T§ denote the piecewise projective transformation mapping
x = (x{ -, X4 10tO

X

Ti(x) = n .
I + Z | x4

Show that for each k satisfying 0 < k < d, the image T C? of the ‘unit
cube’ C? = {xe R?||x;| < 1,1 < i < d} is the d-cuboid Ci.
21. Let0 <k <dand 0 <i<d— 1 Prove

d—1i d—k( k o o ( k
-Cd — 3d-—:—-—12k-—d+t+21_
JC ;0( j )d—i—j) d— i

22. Using Gale’s evenness condition show that each edge of the cyclic
polytope C(v,4), v > 6, 1s 1ncident with either three, or four, or v — 2
3-faces of C(v, 4), and that edges of all these types occur. Similarly, show
that each edge of C(v, 4) 1s incident with either 3, or 4, or v — 2 2-faces
of C(v, 4), and that edges of all these types occur.

2k“d+f
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23. Let p(t) = (cost, sint, cos 2t, sin 2t,---, cos nt, sin nt)e R*", and
let K = conv{p(t;)|1 < i < v}, wherev > 2n + 1 and
O0<t, <t, <---<t,<2m.

Prove that K is combinatorially equivalent to convi{x(t,)|1 <i < v},
where (as in section 4.7) x(t) = (¢, t%, - - -, t*"). (Hint: Use the identity

1 cost, sint, --- cosnt, sInnt,

1 cost,, sint,, --- cosnt,, SInnt,,

=4" ] sind(t; —t,),
O0<i<j<2n
due to Scott {1].)

24. Let C = C(2n + 2,2n). Prove that the vertices of C may be
divided into two groups, each containing n + 1 of the vertices, in such
a way that 2n vertices determine a facet of C if and only if n of them
belong to one group, and n to the other. Show that this criterion is
equivalent to Gale’s evenness condition.

25. Using cyclic polytopes and Schlegel diagrams give an elementary
proof of the following well-known theorem:

Every n-dimensional simplicial complex 1s combinatorially equivalent
to a complex in R*"* 1,

It will be shown in chapter 11 that this theorem remains valid even if
the complex 1s not assumed to be simplicial.

26. Let T = conv{x;|0 < i < 2n} be a 2n-simplex in R*" such that
Oeint T. Let € denote the family consisting of all sets C(I,J) = conv V(1,J),
where I and J are subsets of {0,1,---,2n}, cardI < n, cardJ < n,
InJ=,and V(I,J) = {x;|iel} U {—x;|jeJ}. Show that:

(1) € is a (2n — 1)-complex;

(11) O ¢set ¥ ;

(1) the radial projection from O establishes a homeomorphism
between set € and the (2n — 1)-dimensional unit sphere S~ .

Formulate and prove the analogous result for R*"* 1,

27. Let P be a d-polytope in R? which is not a d-simplex.

(1) Prove that there exists a nonsingular permisstble projective image
P’ of P with the following properties:

(@) P’ i1s the intersection of the f = f,_ ,(P’) closed halfspaces
Hy---,H,:
-1
(b) the intersection N H, 1s a bounded set.

i=1
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(1) Characterize the facets of P which may correspond to bd H .

(111) Show that for a suitable P’, already the intersection of some
d + 1 of the halfspaces H; 1s bounded. "‘

(iv) Show that if P has more than 2d facets, then i1t 1s possible to
choose P’ = P.

28. Let P be the convex hull of d segments having a common point
relatively interior to each of them, and such that none of the segments
is contained in the affine hull of the union of the other segments. Show
that P is projectively equivalent to Q.

29. Let V,,---, V, be linearly independent points in R let

T? = conv{0, V,,---, V,},

and let K be a polytope K = conv{O,V,,---,V,, W,,---, W} where
W: eintcone, T? for all i=1,---,n. Prove: For every A > 1 there
exists a projective transformation P; permissible for K, such that P,(0) = 0,
P(V) =V forj=1,---,d,and T < P,K < AT

30. Let a polytope P (and 1ts combinatorial type) be called pro-
jectively unique provided every polytope P’ combinatorially equivalent
to P is projectively equivalent to P. Show::

(1) The cartesian product T? x T" of two simplices i1s projectively
unique.

(11) The combinatorial type dual to a projectively unique combinatorial
type is itself projectively unique.

(i11) The combinatorial types of all 3-polytopes with at most 9 edges
are projectively unique.

(iv) No 3-polytope with 10 or more edges i1s projectively unique.
(The only proof of this fact known to the author uses Steinitz’s theorem
13.1.1; 1t would be of interest to find a more direct and elementary
prootf.)

No characterization of projectively unique d-polytopes, d > 4, is
known. Shephard [12] has established the existence of a projectively
unique polytope with 7 vertices, 17 edges, 18 2-faces and 8 facets; how-
ever, there exist 4-polytopes having the same numbers of faces of all
dimensions which are not projectively unique (for example, the 4-polytope
D* of figure 10.4.1).

31. Let P be a d-polytope and let Ve vert P. We shall say that P i1s
pyramidal at V provided conv(vert P ~ {V})e #(K). Establish the
following results:

(i) Let P be a polytope pyramidal at V, let F = conv(vert P ~ {V}),
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and let We vert F. Then F is pyramidal at W if and only if P 1s pyramidal
at W.

(1) A d-polytope P is pyramidal at r different vertices if and only if
P 1s an r-fold d-pyramid. |

32. Prove that simplicial polytopes are ‘stable’ in the following sense :
If P e 2¢ there exists an ¢ = ¢(P) with the property: If P’ is any polytope
with f,(P) = fo(P’) such that for each vertex ¥V of P there 1s a vertex V'
of P’ with p(V, V') < ¢, then P’ 1s combinatorially equivalent to P.

33. Let P? be a self-dual d-polytope. Prove that the (d + 1)-pyramid
with basis P?is self-dual. Prove also the self-duality of the (d + 1)-polytope
obtained as the union of a (d + 1)-pyramid over P with a (d + 1)-prism
over P, the prism and the pyramid intersecting in P.
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4.9 Additional notes and comments

Polytope theory 1s alive and well—this 1s demonstrated by its wealth of inter-
esting examples and constructions. Here are notes on some more.

(/1-Polytopes.

0/1-Polytopes are convex hulls of subsets of {0,1}¢. These polytopes have
gained enormous importance in view of combinatorial optimization. In par-
ticular, one 1s interested 1n the description of (large classes of) facets of such
polytopes, for specific families of incidence vectors, for use in cutting plane
approaches to 0/1-integer programming; this is the object of the field of poly-
hedral combinatorics, as surveyed succinctly in Schrijver [b].

Some specific subclasses of 0/1-polytopes have received special attention.
We refer to a few prototypical expositions that also demonstrate the setting
and use of such special classes in optimization: to Cook et al. [a] for match-
ing polytopes and variations, to Grotschel-Padberg [a] for travelling salesman
polytopes, and to Deza—Laurent [a] for cut polytopes.

Ziegler [b] provides a survey of general O/1-polytopes. A recent break-
through 1s by Barany-Pér [a], who showed that the maximal number of facets
of a d-dimensional 0/1-polytope grows super-exponentially in d: Certain ran-
dom 0/1-polytopes have more than c41°84 facets, for a constant ¢ > 1.

Hypersimplices.

The polytopes K¢ of exercise 4.8.16 appear in Coxeter [1, Ch. VII, esp. p. 163],
who refers to Stott [2]. They are interesting 0/1-polytopes of type (2,d — 2).
Due to promunent work by Gel’ fand—Goresky-MacPherson—Serganova [a] and
Gel’ tand—Kapranov—Zelevinsky {a] they also became known as hypersimplices.
See also De Loera—Sturmfels—Thomas [a].

k-Simplicial h-simple polytopes.

The polytopes of type (k,h) with k,h > 2 are very interesting, They are, how-
ever, hard to construct (see also the comments 1n section 5.6, and 1n section 9.9
on exercise 9.7.7), and their properties, such as their f-vectors, are not well
understood. The first interesting case 1s that of h = k = 2, where the 4-simplex,
the hypersimplex Kg and its dual, and the regular 24-cell (the polytope M*
of exercise 4.8.17) provide examples. Recently, Eppstein—-Kuperberg—Ziegler
[a] provided a construction (using hyperbolic geometry) of infinitely many 4-
polytopes of type (2,2); see also the notes in section 5.6. In contrast, it is not
clear whether d-polytopes of type (4,4) other than simplices exist for arbitrar-
ily large d—compare this to exercise 4.8.18.
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Cubical polytopes.

Interesting examples of cubical polytopes arose from several different direc-
tions. Cubical zonotopes correspond to generic linear hyperplane arrange-
ments; see the notes in section 18.4. The combinatorial types of cubical d-
polytopes with at most 241! vertices were completely classified by Blind—
Blind [b]. Joswig—Ziegler [a] constructed neighborly cubical polytopes: cu-
bical d-polytopes with the ([—g-] — 1)-skeleton of an n-cube for all n > d > 2
(see the notes 1n section 12.4).

Free sums of polytopes.

The generalized bipyramids P¢ = conv(P*U P*) of exercise 4.8.4 have later
been called free sums of polytopes (Henk et al. [a], Kalai [e]), and denoted
P4 = PS @ P'. The construction is dual to forming products.

Cyclic polytopes.
Forevend, C(d+2,d) is a generalized bipyramid; indeed, with exercise 4.8.24,
C(2n+ 2,2n) is equivalent to the generalized bipyramid T,*" of exercise 4.8.5.
For odd d, the cyclic polytope C(v,d) is combinatorially equivalent to a differ-
ent type of modified bipyramid conv(/UC(v— 1,d — 1)), where the interval I
meets the affine hull of the cyclic polytope C(v~1,d — 1) in a single point
that is in the relative interior of I but is a vertex of C(v —1,d — 1). This mod-
ified bipyramid construction is dual to forming “wedges’ over facets; for this
construction we refer to Klee—Walkup [a] and to Holt—Klee [a].

For the trigonometric moment curve of exercise 4.8.23 see Ziegler {a, Ex.
2.21(11)]. The trigonometric coordinates provide realizations of the cyclic poly-
topes of full symmetry, including a canonical “center”.

Computing explicit examples.
From the data of exercise 4.8.6, polymake together with javaview “automat-
1cally” yield rotating color 3D output, which in b/w print looks as follows:




CHAPTER 5

Fundamental Properties and Constructions

Despite the simplicity of the notion of a polytope, our understanding
of what properties a polytope may, or may not, have is severely hampered
by the difficulty of producing polytopes having certain desired features.
One example of such a difficulty will help to focus the problem. Let us
consider 4-polytopes with 8 vertices; with some patience, combining
the different types of polytopes considered in Chapter 4, the reader
will probably find 4-polytopes with 8 vertices and 16 edges, or with any
number of edges between 18 and 28. Now he may ask himself whether 1t
is possible to complete the list by a polytope with 17 edges. But how is
one to start looking for such a polytope?

The answer to this particular query is not too hard to come by (see
section 10.4), but there are many similar questions to which we still
do not have answers. In particular, there is no easy and direct pres-
cription as to what tack to take for the solution of a given problem.
The best we can do 1s to investigate some more or less general properties
of polytopes in the hope that one or another of them may be useful in
solving specific problems.

This chapter 1s devoted to a presentation of some such properties,
and of certain techniques for a ‘planned’ construction of polytopes.
Thus the spirit of this chapter is quite different from that of chapter 3;
there we mainly had one polytope and we were concerned about the
features it exhibits. The principal questions to be discussed in the present
chapter are: To what extent is 1t possible to obtain all polytopes (or all
polytopes of a certain kind) as sections, or as projections, of some
‘standard’ types of polytopes? How can we relate the structure of a
polytope P with the structure of a ‘smaller’ polytope, obtained as the
convex hull of some of the vertices of P? What happens to the faces of
different dimensions, and to their number, if we replace a given polytope
by a ‘sufficiently near’ one? Is it possible to devise an algorithmic pro-
cedure for the determination of all combinatorial types of polytopes?

Two techniques will be particularly important in the sequel: the
‘beneath-beyond’ method for construction of new polytopes from given
ones (section 5.2), and the Gale-transforms and Gale-diagrams which

70
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frequently allow a reformulation of a problem in more readily tractable
terms (section 5.4). As will become obvious in the following chapters,
many of the recently obtained results use one of these methods.

5.1 Representations of Polytopes as Sections or Projections

In the present section we shall discuss a number of results on repre-
sentations of polytopes as sections, or projections, of other polytopes.
(A section of a polytope P is the intersection of P with some flat; a pro-
jection of P 1s the transform TP of P under a (singular) affine map T.)
The first result is very simple, and should convey the flavor of this type
of results; the following group of results discusses to what extent variants
and generalizations have been considered in the literature. The last part
of the section deals with results obtained recently by M. A. Perles; they
are 1important because of the method used, as well as because of their
applicability to various other problems.

We shall prove only theorem 1 : for proofs of the other results the reader
may use the hints provided, or consult the original papers. We shall use
the term facet to denote the (d — 1)-dimensional faces of a d-polytope.
The first result 1s:

1. Every d-polytope with f > d + 1 facets is a section of an (f — 1)-
simplex. |

PROOF' Any permissible transformation of a section of a polytope may
be extended to a permissible projective transformation of the polytope
(the reader should prove this, using exercise 2.2.7), and every permissible
projective image of a simplex is i1tself a simplex. In order to prove theorem
1,1t is therefore enough to establish that every d-polytope with f > d + 1
facets 1s a permissible projective image of a section of an (f — 1)-simplex.

Since a section of a section of a polytope 1s itself a section of the poly-
tope, the last assertion shall be proved if we establish that every d-polytope
P with f > d + 1 facets is a permissible projective image of a section of a
(d + 1)-polytope P™ with f facets.

In order to prove this we note that P is not a d-simplex and therefore,
by exercise 4.8.27, there exists a permissible, regular projective image P,
of P with the following property: If H = aff P, 1s the d-flat spanned by
Po,and if H,---, H,are closed halfspaces of H suchthat P, = N H,,

1<i<yf

then P’ = H;1s a d-polytope. Let 4 be a point outside H and let

1<i<f—1
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A

Figure 5.1.1

P ™ be the pyramid with apex A and basis P’ (see figure 5.1.1). Then P~
is a (d + 1)-polytope with f facets. Denoting by L, the boundary of H , 1n
H, let L be the d-flat determined by L, and some relatively interior point
of conv({A} U P,). Then clearly P* n L is a projection from A of P,,.

This completes the proof of theorem 1.
The following result is dual to theorem 1 ; the reader is invited to find

a direct prootf for 1t.

2. Every d-polytope with v > d + 1 vertices is a (parallel) projection of a
(v — 1)-simplex.

Using prisms or bipyramids, respectively, instead of the pyramids used
in the proof of theorem 1, the following (mutually dual) theorems may

be proved :

3. Every centrally symmetric d-polytope with 2f > 2d facets is a (central)
section of the f-cube.

4. Every centrally symmetric d-polytope with 2v > 2d vertices is a
(parallel) projection of the v-dimensional octahedron.
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The above results have probably been known for a long time. The first
written appearance of theorem 2 seems to be in Motzkin [1]. Theorem 1
appears in Davis |1, 2], theorem 3 1n Klee |3]. The qualitative aspects of
theorems 1 to 4 were found also by Naumann [1]. Naumann’s proof is
much more mvolved, but his results are also somewhat stronger; for
example, he establishes

3*. Every d-polytope with f facets is obtainable as a section of a
2?-(d + 1)-f)-dimensional (regular) cube.

Results of this type have been used in the determination of the ‘projec-
tion constants’ of certain Minkowski spaces (see Grunbaum [4)).

Another related problem, which also arose from questions in the
geometry of Banach spaces, 1s due to J. Lindenstrauss. Its solution was
found by Klee |6 ] who proved the following results:

5. If Pisa centrally symmetric d-polytope,d > 2, there is a 2-dimensional
section of P, and an orthogonal projection of P into a 2-dimensional plane,
each of which has at least 2d vertices.

5*. If P is a d-polytope, d > 2, there is an orthogonal projection of P
into a 2-dimensional plane, and, through each point of int P, a 2-dimensional
section of P, each of which has at least d + 1 vertices.

It is easily seen that for d = 3, if P in theorem 5 1s neither a cube nor an
octahedron, a section and a projection exist which have at least 8 vertices.
It would be interesting to find extensions of this observation to higher
dimensions, and to find analogues of theorems 5 and 5* for higher-
dimensional sections and projections of P.

For other related results see Croft |2].

In the opposite direction one may inquire whether there exists a
(central) k-polytope such that among its (central) d-dimensional sections
occur affine images of all members of certain families of d-polytopes. A
problem of this type was first raised by S. Mazur in The Scottish Book
(Ulam [1]). Various results were obtained by Bessaga[1], Griinbaum [2],
Melzak [1,2], Naumann [1, 2], and Shephard [3]. Most far-reaching are
the results of Klee [3]; among them we mention only the followmg:

6. The least integer k such that some k-polytope has, for every d-polytope
P with at most f facets, a d-dimensional section affinely equivalent to P,
satisfies
d

d +

Jf+nskgf—1.
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Another line of research should be mentioned here. Let P be a compact
convex set in R?; as shown by Suiss—Kneser [1], if every (parallel) projec-
tion of P into 2-dimensional planes is a polygon with at most four vertices,
then P i1s the convex hull of four points. Bol [1] proved that if every
projection 1s a polygon with at most five vertices, then P 1s the convex
hull of at most six points. Bol [1] also obtained:

7. If every projection of a compact convex set P < R? into 2-dimensional
planes is a polygon, then P is a polytope. Moreover, if each such projection
of P has at most n vertices,n > 5, then P is either a pentagon, or each 2-face
of P has at most 2n — 6 vertices.

These investigations were generalized in many directions by Klee [2];

among analogous results dealing with various notions of polyhedral sets
he obtained:

8. A bounded convex subset K of E* is a polytope if and only if, for some
j with 2 < j < d, all the projections of K into j-dimensional spaces are
polytopes.

9. If K is a bounded convex subset of E* and if peint K then K is a
polytope if and only if every section of K by a 2-dimensional plane contain-

ing p is a polygon.
For a related result (in case d = 3) see Valentine (1], p. 142.

The proof of theorem 1 shows that a d-polytope P with ffacets may be
obtained in many different ways as the intersection an (f — 1)-simplex
and a d-flat. (See also exercise 3.) Therefore 1t may be asked whether this
representability still holds if additional restrictions are imposed on the
flats and simplices considered. The remaining part of the present section
deals with some interesting results in this direction. The results and their
proofs have recently been communicated to the author by M. A. Perles.

10. Let P = R? be a d-polytope with at most f facets, let T be an
(f — 1)-simplex in R’ ™', and let peint T. Then there exists a d-flat L in
R/~Y such that pe L and T n L is affinely equivalent to P.

The following are the main steps of the proof; the details are left to the
reader.

(i) No generality is lost in assuming that p = 0, the origin of R/ ™1,
and that P has exactly f facets.

(11) The flat L required by the theorem exists if and only if there exist
a point g € int P and a linear transformation 4 from R? into R/ ™!, such
that A(—g + P) = T n AR



FUNDAMENTAL PROPERTIES AND CONSTRUCTIONS 75

(i1) For a given g e int P, the above A exists if and only if there exists
a linear transformation A* from R/~ ! onto R? such that A* maps T¥*,
the polar of T, onto (—g + P)*, the polar of —g + P. (4* is the adjoint
of A ; see exercises 3.4.12 and 3.4.13.)

(iv) Let F;, i = 1,2,--- 7 f, be the facets of P; then F; = y, are the

vertices of P* (see section 3.4). Let y(q) = (—q + F;) be the vertices of
(—g + P)*; then yi{q) = y;/(1 —<{q,y;>) (see exercise 3.4.4). Let x;,
i =1,---,f, be the vertices of T*; there exists a unique f-tuple of numbers

il,1<z<f,suchthatzf Ax—O A; >0 for i=1,2,---,f, and

I A, =1

A lmear transformation A* from R/ ! to R maps T* onto (—q + P)*
if and only if (possibly after a suitable permutation of the indices i)
A*x, = y{g)fori =1, ---,f A necessary and sufficient condition for the

existence of such an A*is Y /_ 4,yi(q) = 0.

(v) So far, the question of existence or non-existence of a d-flat L as
required 1n theorem 10 has been reduced to the question whether there
exists a point g € int P such that ) /_ A,yi(q) = 0.

For an arbitrary g € int P we define

J
M(q) = {(x,- -, a )€ R7| Z o;y{q) = 0}

It follows (see (1v) above) that

M(q) = {(a1(1 — g ¥1)) s (1 — <q, y:))) \ (g, 0p) € M(O)} ,

and 1t 1s also easy to see that

U M(Q) = {(al(l o ﬁl)a“'aaf(l — ﬁf))l(ala‘“saf)EM(O)s

geint P
(ﬁla"'aﬁf)EM(O)la ﬂl<]’ for i=13"'af}a
where M(0)* denotes the orthogonal complement of M(0) in R”. Let

S
G= U M@n{(y,y)eR|Y y =1,
1=0

geint P

v > 0 for i=1,---,f}.
Then

G — {(C(l(l — ﬁl),"'aaf(l T ﬂf))l(alﬂ' ”aaf)EM(O)a

/
(Bla"'aﬁf)eM(O)-Laz ai=la ai>0 and ﬁ1<1 for l=laaf}
i=1
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By the above, the assertion of theorem 10 is true ifand only if (4,,---,4/) € G.
Consider the function

J
(p(ala” s Uy, ﬁla' o aﬂf) = _Z: ;Li log(ai(l _ ﬁ:)) for (ala"'aaf)eM(O)a

J
al'Z 05 Z ai — la(ﬁla”'aﬁf)EM(O)-Laﬁf < 15
1=1

where log 0 = — c0. Since ¢ 1s an upper semicontinuous function defined

on a compact set, 1t attains a finite maximum @ at some point

(@, - 00, B, -+, By witho; > 0, f; < 1. @ 1s the maximum value of the

function ) /_, A;logy;for (y,,---,¥,) € G. Assume, without loss of general-

ity, that f; = 0 for 1 < i < f (The pomnt («}(1 — B1),---, a1 — By)) lies

in M(q) for some g € int P, and we may replace P by —g + P, if g # 0.)
Fix a point (8,,---, B;) € M(0)*, and define

8(0) = @, -, Byt , Byb).

Then g'(0) = 0, since g(t) attains a maximum at t = 0. But an easy calcula-
tion shows that g'(0) = —) {_, A,;. It follows that (4,,---,1,)e M(0)~ =
M(0), and, by assumption, Z{zl A, =1and 4, > 0 for 1 <i </, hence
(A1, 54 €G.

The reader may verify, using a similar orthogonality argument, that
(@y,---,0ap) = (44, -+, 4;), and that the point (4,,-- -, 1,) cannot belong to
M(q) for more than one g € int P.

Theorem 10, and the method used i its proof, have many analogues,
variants, and applications in other proofs ; some of them will be mentioned
in the exercises. Here we shall dwell on one of them only. |

It i1s well known that the notion of convexity may be defined 1 vector
spaces over any ordered field, and that many of the usual properties of
convex sets remain valid 1 such more general settings (though some
definitions, and some proofs, have to be modified ; see, for example,
Weyl [1], Motzkin [ 2], Klee [10]). While other exceptions are known (see
section 5.5), the simplest known result on convex polytopes in R? which

fails in vectors spaces over ordered fields is probably theorem 10. Indeed,
we have

11. In vector-spaces over the field of rational numbers, theorem 10 is
not true.

For an example establishing theorem 11 see exercise 5.1.6.
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Exercises

1. Show that 1t 1s impossible to strengthen theorems 1-4 by decreasing
the dimension of the simplex (or cube, or octahedron).

2. Let P be a polytope, L, and L, two flats of the same dimension.
Show that L, n P and L, n P are combinatorially equivalent provided
L, and L, have O-dimensional intersections with the same faces of P.

3. Supply the details of the following proof of theorem 1. Let P — R?
be a d-polytope with ffacets, O e int P, and let v,, - - -, v, be the vertices of
the polar P* of P. Let «y, - - -, a, be positive numbers such that

J f
X;V; = 0 and Z X; = 1,
=1 i=1

and define for x € R?

Ax = (al(l o <vlax>)a n saf(l o <vfax>))€Rf'
Show that
S
(i) AR < {(yy,---,y)€eRI| > y, = 1};
i= 1

(11) A 1s one-to-one;
(iii) AK = AR N T, where T is the (f — 1)-simplex

f \
T ={(yy,-,y)eR | > yy=1 y, =20 for i=1,---,f}.
=1

4. Show that for given P, T, and p in theorem 10 there exist at most f'!
different d-flats L satisfying the conditions of theorem 10, with f = f,_ ,(P).
Their exact number i1s equal to f! divided by the order of the group of
affine automorphisms of P.

5. Let P = R? be a centrally symmetric d-polytope with 2f facets, such
that P = — P, and let C/ < R/ be the f~cube. Using a method analogous
to parts (1), (i) of the proof of theorem 10, show that there exists a d-
dimensional subspace L of R/, such that L n C/ is linearly equivalent to P.

6. Let T = R? be a 3-simplex with vertices at points having rational
coordinates; let p be the centroid of T, and let P < R* be the quadrangle
conv{(l,1),(1, —1),(—1, 3),(—1, —3)}. Show that P 1s not affinely equiv-
alent to any set of the type Tn L, where peL and L 1s a 2-flat
L = {xeR’|{x,y) = a} with « and the coordinates of y all rational.
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5.2 The Inductive Construction of Polytopes

In various problems it i1s important to know whether a given polytope
may be changed in such a way that the new polytope has some desired
properties. We shall encounter examples of such situations in chapters 6
and 7. The simplest case, which shall be discussed in the present section,
1s that in which the new polytope has at most one new vertex.

Let P < R?be a d-polytope, H a hyperplane such that H nint P = {J,
and let V € RY. We shall say that V is beneath H, or beyond H, (with respect
to P) provided V belongs to the open halfspace determined by H which
contains int P, or does not meet P, respectively. If ¥V € R? and F is a facet
of the d-polytope P = RY we shall say that V is beneath F or beyond F
provided V 1s beneath or beyond aff F, respectively.

Various 1deas and constructions related to the ‘beneath—beyond’
concepts have appeared in the literature since Euler’s times, mostly 1n
the (dual) variant of ‘cutting off’ vertices or larger parts of a given polytope.
(See, for example, Bruckner {1, 2, 3], Steinitz—Rademacher [1].) Neverthe-
less 1t seems that the systematic use of these notions, in particular for
higher-dimenstonal polytopes, is rather new. The terminology was used
first in Grinbaum {12]. We shall see important applications of theorem 1
in chapters 6 and 7, and 1n other sections of the book.

The relation between the facial structure of a polytope and that of the
convex hull of its union with one additional point i1s determined by the
following theorem.

1. Let P and P* be two d-polytopes in R%, and let V be a vertex of P*,
V ¢ P, such that P* = conv({V} U P). Then

(1) a face F of P is a face of P* if and only if there exists a facet F' of P
such that F < F' and V is beneath F';

(i) if Fisafaceof Pthen F* = conv({V} U F)isaface of P* ifand onlyif
either (Y)Y V eaff F; |
or (**) among the facets of P containing F there is at least one such
that V is beneath it and at least one such that V is beyond it.

M oreover, each face of P* is of one and only one of those types.

PrOOF Itis obviousthat a face of P* is either a face of P, or the convex
hull of the union of ¥V with some face of P. It is equally obvious that a
facet F of P i1s a facet of P* if and only if V 1s beneath F with respect to
either (and therefore both) P or P*, Therefore, if F,, 1s a face of P contained
in the facet F of P, and if V is beneath F, then F, 1s a face of P*. On the
other hand, if F§ 1s a face of P* such that V¢ F§ then F§ is a face of P
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and, since F§ 1s the intersection of all the facets of P* which contain F%,
there exists a facet F* of P* for which F§ < F*and V ¢ F*. Clearly V is
beneath F* and the proof of part (i) 1s completed.

Let now F be a face of P and F* = conv({V'} U F) a face of P*. Then
clearly F = Pn aff F*. We consider the intersection of the whole
configuration with the 2-dimensional plane E determined by the three
points V, x, and y,, where x, erelint F, and y,eint P. Then P, = En P
1S a 2-polytope, 1.e. a polygon (see figures 5.2.1 and 5.2.2). The line
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Figure 5.2.1 KFigure 5.2.2

L = aff{x,, V} is the intersection of E with aff F* and F, = L n P, is
either a vertex of P, or an edge of P,. In the last case, Veaff F, < aftf F,
and we have (*). If F, 1s a vertex of P,, V 1s (in E) beneath one and beyond
the other of the edges of P, incident with F,. Denoting by F, and F, any
pair of facets of P containing those two edges, it follows that V is (in RY)
beneath one and beyond the other of F; and F,, and we have (**).

There remains to be shown that if F is a face of P satisfying the conditions

(*) or (**), then F* = conv({V'} U F)is a face of F*. This is entirely trivial
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in case of (*). Let therefore F be a face of P such that F < F; n F,, where
F, and F, are facets of P, V being beyond F; and beneath F,. Let
H; = aff F;, and let H, be a hyperplane such that H, n P = F. Rotating
H; slightly about H; n H, towards H,, new hyperplanes Hf and HJ are
obtained such that H¥ n P = F, while V is beyond H¥ and beneath H%.

But then the hyperplane H* = aff{V} u (H¥ n H%)) contains ¥V and
satisfies H* " P = F. Thus

H* n P* = H* nconv({V} U P) = conv({V} U F) = F*

1s a face of P*, as claimed. This completes the proof of the theorem.

Let P = R? be a d-polytope and let V be a vertex of P. Let V'€ R? be
a point such that V' ¢ P and the half-open segment |V, V'] does not meet
any hyperplane determined by the vertices of P. If V belongs to the
interior of P’ = conv({V'} U P) we shall say that P’ is obtained from P by
pulling V to V.

The following result (see Eggleston—Griinbaum—Klee [1]) which 1s
useful in different problems, is clearly a special case of theorem 1.

2. Let P' = R be a d-polytope obtained from the d-polytope P by pulling
Vevert PtoV'. Then,for1 < k < d — 1, the k-faces of P’ are as follows:
(i) the k-faces of P which do not contain V; (ii) the convex hulls of the type
conv({V'} U G*™1), where G*™' is a (k — 1)-face not containing V of a
(d — 1)-face of P which does contain V.

We note in particular the following consequences of theorem 2.

3. In the notation of theorem 2, each k-face of P', for 1 <k <d — 1,
which contains V' is a k-pyramid with apex V'. Therefore fo(P') = fo(P),
and f(P) = f(P)for1 <i<d— 1.

4. If P* is obtained from P by successively pulling each of the vertices of
P, then P* is a simplicial d-polytope satisfying fo(P*) = fo(P), f{P*) = f{P)
for 1 <i<d— 1. Moreover, if some j-face of P is not a j-simplex, then
strict inequality holds for all i withj — 1 <i<d — 1.

We shall use theorem 4 in chapter 10. The idea to apply suitable ‘per-
turbations’ of the vertices 1n order to reduce questions about the maximal
possible number of faces of arbitrary d-polytopes (having a given
number of vertices) to the corresponding problems dealing with simplicial
polytopes only, has been frequently used. The case corresponding to
i =d — 1 in theorem 4 was employed (without proof) by Gale [5].
Klee [13] gave a justification of Gale’s assumption, for all i, by a process
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called ‘pushing’ (see exercise 16). As far as applications to extremal prob-
lems are concerned, ‘pulling’ and ‘pushing’ seem to have the same value;
the properties of the ‘pulling’ procedure, and its generalization contained
in theorem 1, seem to be more easy to establish, and to be intuitively
simpler.

A consequence of theorem 4 may be succintly formulated using the
following notion.

Let 2" and 2" be two families of d-polytopes in R’. We shall say that
P" 1s dense m ' provided for every ¢ > 0 and every P’ € #' there exists
a P” € 2" such that the Hausdorff distance p(P’, P") 1s less than ¢. Theorem
4 obviously implies:

5. The family 2¢ of all simplicial d-polytopes is dense in the family P*
of all d-polytopes.

Exercises

1. Find projectively equivalent d-polytopes P, and P, such that among
the d-polytopes of the form conv({¥V,} U P,) occur types not obtainable in
the form conv({V,} U P,), where ¥V, and V, are arbitrary points.

2. Determine all the combinatorial types of 4-polytopes with 6 vertices,
and construct their Schlegel diagrams.

3. In the notation of section 3.3, determine the set of points x, which
may serve as centers of projection for the formation of Schlegel diagrams
of a given polytope P.

4. Show that there are [3d] different combinatorial types of simplicial
d-polytopes with d + 2 vertices.

5. Formulate and prove the result dual to theorem 1.

6. If P and P* are related as in theorem 1, or 1n 1ts dual, what 1s the
relation between their Schlegel diagrams?

7. Determine under what conditions does f,(P') = f,(P) hold in theorem
3 for a given k.

8. Let P = R? be a d-polytope and let ¥V be a point of R which is
beyond (or on) the facet F of P and beneath all those facets of P which
intersect F 1n a (d — 2)-face. Show that V is beneath all the facets of P
different from F.

9. Let P = R?be a d-polytope, F afacet of P, and X, Y points such that
F is a facet both of conv({ X} LU P) and of conv({Y} U P). Show that F is
a facet of conv({X, Y} u P). Does this statement remain true if F is a face
of lower dimension?

10. Let P = R? be a d-polytope and let X be a point of R?, X ¢ P.
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Prove that the set U F;, where F; ranges over all the facets of P such that
X is beyond the facet, 1s homeomorphic to the (d — 1)-dimensional ball
B

11. Let P < R? be a d-polytope and let X, X, ¢ P. If the segment
conv{X,X,} 1s an edge of conv({X,, X,} U P) show that there exist
facets F; and F, of P such that X; 1s beyond or on F;, i = 1,2, and
dim(Fn F,)>d — 2.

12. Let P < R?Y be a d-polytope with facets F,,---,F r» where
f= f,_(P). Fori=1,---,f let X; be a point which 1s beyond or on F;,
and beneath all the other facets of P. Let P' = conv({X ,---, X} U P).
Then conv{X;, X;} nmtP # ¢ forall 1 <i < j< fif and only if each
k-face of P 1s a k-face of P',forall k =0,1,.--,d — 2.

13. It may be conjectured that whenever k + h < d, the family #4(k, h)
(see section 4.5)1s dense in 2°. Theorem 5 is clearly a particular case of this
conjecture. Prove the following additional partial results:

(i) The family of all simple d-polytopes is dense in 2“.

(1) 2%(2,2) i1s dense in 2*. (This conjecture of D. W. Walkup was
recently established by Shephard [7].)

14. Prove that the family 2¢ of all cubical d-polytopes is dense in 2.
(This i1s a result due to Shephard [ 9], who also proved a number of other
interesting results of a similar type. The proof uses exercise 4.8.29 and
theorem 5.)

15. Even for d = 3 1t is not known whether the family of all self-dual
polytopes is dense in 2.

16. Following Klee {13] we shall say that a d-polytope P’ is obtained
from the d-polytope P = R? by pushing the vertex V of P to the position V'
provided V' is a pomt of P such that the half-open interval |V, V'] does
not mtersect any (d — 1)-hyperplane determined by vertices of P, and
provided P’1s the convex hull of the set consisting of V' and of the vertices
of P different from V.

Find the analogue of theorem 2 if ‘pulling’ 1s replaced by ‘pushing’.

Show that theorems 3 and 4 remain valid if ‘pulling’ 1s replaced by
‘pushing’.

17. Let C < R? be a d-polytope with facets Gy, ---,G,, where
t = f;_,(C). For 1 <i<s, with 1 <5 <t let z; be a point which lies
beyond G; but beneath all other facets of C. Assume also that all the seg-
ments [z;,2;], 1 <i<j<s, intersect intC. For 1 <i <s, let P, be a
d-polytope which has a facet F;, such that F; is projectively equivalent to
G:. Prove:

(1) There exist nonsingular projective transformations T;, 1 <i < s,
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with T; permissible for F;, such that T.F; = G, and T,P; = conv(G; U {z;}).

(i1) If T; are such transformations, then the set K = C u .U TP 1s a
d-polytope, and =

F(K) = (K} 0 F(C)U U FTR) ~ (G-, Gy €}

(This construction is frequently used ; K 1s often said to arise by adjoin-
ing copies of Py, -- -, P, along their facets Fy, - - -, F; to the corresponding

> 8

facets G,,---, G, of C.}

5.3 Lower Semicontinuity of the Functions f,( P)

We saw 1n theorem 5.2.4 that every d-polytope P may be approximated
(in the sense of the Hausdorfl metric) arbitrarily closely by polytopes P’
such that f(P') = f,(P) for all k. Following Eggleston—-Grinbaum—Klee

1] we shall supplement this by showing that each of the functions f,(P)
1s lower semicontinuous in P.

1. Let P be a polytope in R®. Then there exists an ¢ = &P) > 0 such that
every polytope P' = R? for which p(P', P) < ¢ satisfies f,(P') > f.(P) for
all k.

Proor Let {P;|i = 1,2,---} be any sequence of polytopes converging
to P. It is clearly enough to show that lim sup{ fi(P;)} = fi(P). Now, if the

sequence { fo(P;)|i = 1,2,---} is unbounded, then {f(P;)| i =1,2,---} is
unbounded for each k (0 < k < dim P) and there 1s nothing to prove.
Thus we may assume that {f,(P;)|i = 1,2,---} is a bounded sequence.
Passing, if necessary, to subsequences we may without loss of generality
assume that:

(1) all P, have the same dimension d’, where dim P < d' < d;

(i1) fu(P) = fyforallk =0,1,---,d - landi=1,2,---;

(i11) forevery k =0,1,---,d" — 1, the k-faces of P. may be denoted by
Pi(j),j = 1,2,---, f, in such a manner that, for every k and j, the sequence
{PE()) |i = 1,2,---} be convergent to a polytope Pg(j), of dimension at
most k.

Clearly, bd P = U  Pg§( j). Let s satisfying 0 < s < dim P, be

O0<k<d’ ~ 1
1<j<fk

fixed ; let Q denote the union of all the sets P§(j) of dimension less than s.
Then Q obviously contains no s-dimensional subset.

Let now § > 0 be sufficiently small to ensure that for each s-face F of
P, the 36-neighborhood of the union of all the s-faces of P different from
F does not contain F. Then there is an s-dimensional (relatively open)
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subset F, of F which 1s at distance greater than 26 from the union of the
s-faces of P different from F. By the above, F, is not contained in Q; let
x(F)e F, ~ Q. Then x(F) belongs to some P{(j,) which is s-dimensional
and contained in F. It follows that there exists i(F) such that for all i > i(F)
the set P{°(j,) is contained in the §-neighborhood of P{(j,), and there-
fore 1n the é-neighborhood of F. By Exercise 3.3.5, the union of the
s-faces of P!(j,) also converges to Pt(j,). Since x(F)e P§(j,), for all i
(greater than or equal to a suitable i'(F) > i(F)) there exists an s-face of
P¥o(j,) which contains x(F) in its é-neighborhood. Let this face (or one
of them) be denoted by K,(F). We shall show that if the s-faces F, and F,
of P are different then K,(F,) is different from K (F,) for all i > i(P) =
max{i'(F)| F an s-face of P}. Indeed, assuming K,(F,) = K{(F,) it follows
that K,(F,) 1s 1n the o-neighborhood of F, ; but x(F,) 1s in the 5-neighbor-
hood of K(F,). Hence x(F,) is in the 2§-neighborhood of F,—contradict-
ing the definition of x(F,). Thus for i > i(P) to each s-face F of P there
corresponds an s-face K, (F) of P;, to different s-faces of P corresponding
different s-faces of P;. Therefore f(P;) > f(P)and the proof of the theorem
1s completed.

We shall see some applications of theorem 1 in chapter 10.

Without proof we mention an extension of theorem 1 to certain
complexes, due to Eggleston—Griinbaum—Klee [1].

A complex A 1s said to have property A(s) provided for each convex
subset C of set # such that C = relint C, and for each face F of £ with
dim F = s < dim C, the assumption C N relint F # ¢ implies C < F.

The result may be formulated as:

2. Let {A;} be a sequence of complexes in R® such that the sequence
{set A;} converges to set A" for a complex A~ which has property A(s).
Then Im inf f(X;) > f(X') if at least one of the following conditions is

satisfied -

(1) The sequence { fo(X;)} is bounded;

(11) for each point x belonging to some s-face of A there is a sequence
{x;} with limit x, such that x; belongs to an s-face of A;.

It should be noted that a satisfactory characterization of complexes
which possess the lower semicontinuity property is still lacking.

Exercises

1. Let P = R? be a d-polytope. Prove that there exists an ¢ = ¢(P) > 0
such that if P = R?is any polytope satisfying p(P, P') < ¢ and f{(P’') = f{P)
fori =0,1,---,d — 2, then P’ is combinatorially equivalent with P.
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Show by examples that 1t 1s impossible to drop the requirement
fa—(P) = f,_,(P) in this result. (An acquaintance with chapter 8 1s
desirable in solving this'exercise.)

2. Prove that for every polytope P the complex ¥(P) has property
A(s) for every s.

3. Find examples of complexes # which do not have property A(s),
such that

(1) theorem 2 holds for % ;

(11) theorem 2 does not hold for 1.

5.4 Gale-Transforms and Gale-Diagrams

The present section 1s devoted to the exposition of a powerful technique,
applicable to various problems involving polytopes. The method of
Gale-transforms and Gale-diagrams, to be discussed now, 1s rather
algebraic in character. Various special aspects of it, or of related i1deas,
may be found in different papers, such as Motzkin {2,4, 6], and in par-
ticular Gale [3,4,5]. (Compare also the proof of theorem 5.1.10.) Our
exposition follows a private communication from M. A. Perles. All
the new results obtained by this method and presented in different
parts of the book (sections 5.5, 6.3, etc.) as well as the very usetul notion
of coface (see below), are due to Perles. The reader will find 1t well worth
his while to become familiar with the concepts of Gale-transforms and
Gale-diagrams, since for many of the results obtained through them no
alternative proofs have been found so far. It is very likely that the method
will yield many additional results.

We turn first to a description of the Gale-transform and its properties.

Let X = (x4, ---,x,) be an n-tuple of points in R?, with dimaff X =r.
The set D(X) < R" of affine dependences of X consists of all points
a=(ay, - -,x,) € R" such that

and

It 1s obvious that D(X) is a linear subspace of R", and that for each
x € R? we have D(x + X) = D(X). More generally, it is easily checked
that for X, Y < RY we have D(X) = D(Y) if and only if X and Y are
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affinely equivalent with x; corresponding to y;, 1e., if y;, = Ax; for

some nonsingular affine transformation 4 and for i = 1,---.n. Let
xi —_— (xi’l,' .- ¢ ,xi,d) fOI‘ i — 1, * - s n; WC Shall CO]]SidCI' the n by d + 1
matrix
X1,1 X1,2 *° Xig4 l
X214 X222 rr Xaogyg 1
DO """ . . c e e .
xn,l xn,l " Xpd ]

The rank of D, clearly equals r + 1; therefore, among the columns
xM ... x4t of D,, considered as vectors in R”, there are r + 1 linearly
independent ones (the column x“* ") may be assumed to be one of them).
Hence the subspace M(X) = lin{x'",--. x“* P} of R" has dimension
r + 1. Its orthogonal complement M(X)* = {ae R"|{a,y) = 0 for all
y e M(X)} clearly coincides with D(X). It follows that

dim D(X)=dimMX)  =n—-dimMX)=n—r — 1.

Let the n — r — 1 vectors a'’,---,a" "1 of R" form a basis of D(X),
and let D, be then by n — r — 1 matrix having columns a'*), - .-, a7 "7 1)
X1 Xpp 7 Kpp—r—1
Dl — ixz*l ?(2*2 C ‘:3‘2,n—-r—- 1
Ep,1 X2 Xpn—r—1

The rows of D; may be considered as vectors in R"" "~ !: we shall denote

the jth row by X; = («; ,%; 5, -+, %) forj=1,--- n.
The final result of the above construction is the assignment of a point
X;e R"777 ! to each point x;€ X < R’ (or rather, to each je{l,---,n}),

where d > r,n = card X, and r = dim aff X. The n-tuple X = (x,,---, X,,)
— R" "~ ! is the Gale-transform of X. It should be observed that the
n-tuple X < R"™ "~ ', which linearly spans R" "', does not necessarily
consist of n different points, even if the n points of X are different. Hence
the set X may consist of less than n points, some of the points ze X
having a multiplicity greater than 1 and equal to the number of points
x; € X (or, more precisely, to the number of ie{l,---,n}) such that
X; = z. The Gale-transform X obviously depends on a factor which has
no geometric significance for X (namely the choice of the basis a"’ in
M(X)"), and it would be more proper to call it a Gale-transform of X.

Nevertheless, many geometric properties of X have as counterparts
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meaningful geometric properties of the Gale-transform X. The facts
listed below deal with some such properties; the reader i1s invited to
supply their proofs, which require only the basic results of linear algebra.

@ D', x =0, OerelintconvX, and X linearly (and even
positively) spans R* ™"~ 1.
(ii) If the n-tuple X' = x},---, x, is the Gale-transform of X obtained

by using a basis of D(X) different from a*),---,a® "1, then X' and X
are linearly equivalent. Conversely, whenever A 1s a regular linear trans-
formation of R"™ "~ ! into itself, the n-tuple Ax,,---, Ax, may be ob-
tained as the Gale-transform of X by a suitable choice of basis in D(X).

(iii) If M+ is an (n — r — 1)-dimensional subspace of R", d >,
orthogonal to the vector (1, 1,---, 1) e R", there exists an n-tuple X < R“
such that dimaff X = r and D(X) = M~+. Moreover, if Z = (z,,- -, z,)
is an n-tuple of (not necessarily different) points in R"™" ! such that

Y i_1z;=0and dimlin Z = n — r — 1, there exists an n-tuple X = R
with dim aff X = r such that X = Z.

iv) Let X =« RY; if J = {ij,---,i,} = {1,---,n} = N we shall write
X(J) for (x;, -+, x; ) and similarly X(J) = (X;,,---,X; ), assuming of
course that i, < i, <--- < i . If dimaff X = r, then X(J) (which 1s an
m-tuple in R™~ 97! where g = dim aff X(J)) is linearly equivalent to the
m-tuple obtained from X(J) by orthogonal projection onto the subspace
of R®~"~! which is orthogonal to lin X(N ~ J) < R"™" 1.

(v) The n points of X are in general position in R? if and only if the
n-tuple X consists of n points in linearly general position in R"™ 47!
(l.e., no (n — d — 2)-dimensional subspace contains n — d — 1 of them).

(vi) Let P be a nonsingular projective transformation of R? into
itself, permissible for X = (x,.---, x,) = R%(i.e. Px = (Ax + b)/({c,x) + 9),
and {c¢,x;) +6 #0 for x;eX). Let Y= (Px,,---,Px,). Then Y is
linearly equivalent to the n-tuple (({c,x,) + )X, - -, (e x,) + 9)X,).
Conversely, if X, Y < R? are two n-tuples such that there exist non-
zero numbers A,---, 4, with the property y;, = AXx; for i=1,---,n,
then there exist ce R and ¢ such that ., =<{¢,x;) + dfori=1,---,n,
and a linear transformation 4 and vector b € R? such that

Ax + b
Px =
{c,x> + 0
iIs a regular projective transformation permissible for X, satisfying
y; = Px; for i = 1,---,n. Moreover, P 1s permissible for conv X 1f and

onlyif 4, >0fori=1,--- ,n(or 4, <Ofori=1,---,n).
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Let X « RY and let Y = X(J) = X for some J = N. We shall say
that Y 1s a face of X provided conv(X ~ Y)naff Y = J (compare
section 2.4 and theorem 2.6.1; here, of course, X ~ Y means X(N ~ J).
Clearly, if X consists of n points in general position, or if X = vert P
where P 1s a polytope, then Y < X is a face of X if and only if conv Y 1s
a face of conv X. We shall say that Y <« X is a coface of X provided
X ~ Yisaface of X,1e.1fand only ifconv Y naff(X ~ Y) = ¢&.

The notion of coface permits an easy translation of some geometric
properties of X into properties of X, due to the following result:

1. Y= X(J) < X is a coface of X if and only if either Y = & or
0 € relint conv X(J).

PrROOF Assume that Y = X(J) = X < R? is not a coface of X ; then
Y # . Without loss of generality assume also that dimaft X = d.
The conv Ynnaff(X ~ Y) # ¢4, hence there exists an n-vector

b = (51, T ﬂn) such that Z?=1 ﬁixi = 0, Z?=1 ﬁi = 0, Zsej ﬁi = 1, and
B; = 0 whenever i€ J. Since b e D(X) there exist y,, -+, y,-4- Such that

. \("‘n—d—1 (J) :
b= "1 "va”. In other words, denoting

¢ == (yla s Vn—-d- 1)e R" 471

we have f; = (¢, Xx;) for i = 1,---,n. Thus {c, x;> > 0 for every i such
that x;e Y, with strict inequality for some of those i. Hence there exists
a hyperplane H separating 0 and conv X(J), with X(J) ¢ H. By the
separation theorem 2.2.2, this implies O ¢ relint conv X(J). Since all
the steps of the above argument are reversible, this completes the proot

of theorem 1.
The following results are immediate consequences of theorem 1 and the

properties of Gale-transforms mentioned above; their proofs are left to
the reader.

2. If X < R and aff X = R? then X = vert P for some d-polytope P
with n vertices if and only if either (i) X = O forall x € X (and P is a d-simplex),
or (ii) every open halfspace H' of R* %", such that 0ebd H™, satisfies
card {i| ;e H"} = 2.

3. If 0 X then conv X is pyramidal at every x;€ X such that X; = O.
Conversely, if conv X is pyramidal at x; and if x; # x; whenever i # j, then
x; = 0.

4. Let P = R? be a d-polytope, and V = (v,,---,v,) = vert P. P is
simplicial if and only if dim conv V(J) = dim conv V for every nonempty
coface V(J) < V.
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5. Let P and P' be d-polytopes in R and let V = (v, ---, v,) = vert P
and V' = (v},---,v,) = vert P'. The polytopes P and P' are combinatorially
equivalent under a mapping ¢ of % (P) onto % (P') such that vy = ov;
fori=1,--- nanda permutation 3 of 1,2,---, n, if and only if

(*) for every J < {1,---,n}, the condition O € relint conv V(J) is
equivalent to 0 € relint conv V'(3(J)), where 3(J) = {3(j)| je J}.

The Gale-transforms V and V' of two sets ¥V and V' shall be called
isomorphic provided (*) holds. Thus theorem 5 amounts to saying that
two polytopes P and P’ are combinatorially equivalent if and only if the
Gale-transforms of the n-tuples of their vertices are isomorphic.

6. Let P, P’ be d-polytopes in R?, and let (v,---,v,) = vert P and
(v, -+, v,) = vert P'. Then P and P’ are affinely equivalent by an affine
transformation A of R? onto itself such that vi = Av;,i = 1,---,n,if and only
if there exists a nonsingular linear transformation B of R"™“~ ! onto itself
such that v = Bv,fori=1,---, n.

7. Let P and P’ be d-polytopes in R and let (v,,---,v,) = vert P and
(v}, -, v,) = vert P. Then P and P are projectively equivalent by a
projective transformation A permissible for P and such that v; = Av;,

i = 1,---,n, if and only if there exist positive reals 1,,-- -, A,, and a regular
linear transformation B of R*™¢~ ! onto itself, such that v; = A;Bv; for all
1i=1,---,n

Let X = (x,,---,x,) and aff X = R% For any Gale-transform X of X
we define the Gale-diagram X of X by X = (£,,---, £,), where
ﬁi -— 0 iffl —_ 05
& =~ ifx. # 0,

1%

and | x| 1s the (Euclidean) length of the vector x.

Clearly X is a subset of {0} U S"~ 9”2, where S* denotes the k-sphere, i.e.
the boundary of the unit ball of R** ! (with center at 0).

Isomorphism of two Gale-diagrams 1s defined by the same condition
which was used 1 the definition of isomorphic Gale-transforms. The
reader may verify that theorems 1, 2, 3, 4, 5, and 7 are valid also if ‘Gale-
diagrams’ are substituted for ‘Gale-transforms’ throughout. It should be
noted that the Gale-diagram X of a set X coincides with the Gale-trans-
form Y of some Y if and only if Z’L X =051n this case Y is projectively
equivalent to X under a mapping permissible for conv X. Another impor-
tant property i1s: Whenever Z = (z,, - - -, z,,) 1s an n-tuple of (not necessarily
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different) points of {0} U §"7¢"2 such that aff Z = R*" ¢! and Q€ int
conv Z, there exists X = (x,,---,x,) = R? such that aff X = RY and
z;, = X;fori=1,---,n.

An additional property of Gale-diagrams is

8. Let X = (x,, -, x,) be an n-tuple of points in R%, and let X = (%,
..+, X,) be a Gale-diagram of X. Let H be a hyperplane which strictly
separates x, from xy, -, x,_(; let y;=Hn[x;,x,] for 1 <i<n—1,
and Y = (Y, Vu-1) Then the (n — )-tuple Y= (Ry,+--,%,_,) is a
Gale-diagram of Y. In particular, if X = vert P for a polytope P, and if all
[x;,x,],1 <i<n— 1,areedgesof P,then Y isa Gale-diagram of the vertex
figure H N P of P at x,,.

5.5 Existence of Combinatorial Types*

The combinatorial structure of a given d-polytope P 1s obviously deter-
mined by the scheme of P. The scheme of P is an enumeration of the vertices
of P, of the 1-faces of P, of the 2-faces, - - -, of the (d — 1)-faces of P, where
each face i1s designated by the subset of vert P contained 1n it. If the schemes
of two polytopes are given, it 1s obviously possible to decide whether the
two polytopes are 1isomorphic (or whether they are dual) to each other.
Unless the number of vertices is very small, the actual carrying out of the
task may be rather time-consuming; however, there is no question of
principle involved.

As a consequence, if we are presented with a finite set of polytopes it is
possible to find those among them which are of the same combinatorial
type. It may seem that this fact, together with theorem 5.2.1 which deter-
mines all the polytopes obtainable as convex hulls of a given polytope
and one additional point, are sufficient to furnish an enumeration of
combinatorial types of d-polytopes. By this we mean a procedure which
yields an inductive determination of all c(k,d) combinatorial types of
d-polytopes which have a given number k of vertices. However, from the
result of exercise 5.2.1 it follows that it may be necessary to use different
representatives of a given combinatorial type in order to obtain all the
polytopes having one vertex more which are obtainable from polytopes
of the given combinatorial type. Therefore it is not possible to carry out
the inductive determination of all the combinatorial types in the fashion
suggested above.

* The author is indebted to Professor M. O. Rabin for helpful discussions on the subject
of this section.
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This naturally leads to the question whether there is any algorithm which

would yield all the different combinatorial types of polytopes. The
answer 1s affirmative but—at least at present—the proof uses a theorem of

Tarski on the decidability of first-order sentences in the field of real
numbers. In order to avail ourselves this rather heavy tool, we start by
Introducing the notion of an abstract scheme.

An abstract scheme is a family ¥~ of nonempty subsets of a set V = {v,,
v,,- -+, U}, such that V¢ ¥~ but each singleton {v;}, 1 < i < k, belongs to
¥ Clearly, the scheme of a d-polytope P 1s an abstract scheme provided
V = vert P and the family ¥~ consists of the sets vert F for all proper
faces F of P. We shall say that an abstract scheme 1s realized by the d-
polytope P provided it is 1somorphic (in the obvious sense) to the scheme
of P.

The key step 1n the enumeration of d-polytopes is:

1. Thereexists analgorithm for deciding whether there exists ad-polytope
which realizes a given abstract scheme.

From this there results:

2. The enumeration problem for d-polytopes is solvable, i.e. there exists
an algorithm for the determination of all the different combinatorial types
of d-polytopes with k vertices.

Assuming, for the moment, the assertion 1, the proof of theorem 2 i1s
immediate. Clearly all abstract schemes with card V = k are easily
determinable. By theorem 1, those abstract schemes which are realizable
by d-polytopes may be singled out. Finally, as mentioned above, a single
representative of each combinatorial type may be chosen.

In order to prove theorem 1, we start by recalling some definitions from
mathematical logic. A statement in elementary algebra is any expression
constructed according to the usual rules and involving only the symbols
+,—-,.,=,<,0),1,],0, 1, V (disjunction), & (conjunction), ~
(negation), V (universal quantifier), 3 (existential gquantifier), and real
variables. The quantifiers V and 3 act only upon the real variables.

The part of Tarski’s theorem (Tarski [1], Seidenberg [1], Cohen [1])
which we need may be formulated as follows :

Every statement in elementary algebra containing no free variables (i.e.
such that each variable 1s bound either by V or by 3) 1s effectively decidable,
that s, there exists an algorithm for deciding whether any such statement
1s true or false. '

Now, given an abstract scheme the question of its realizability by a
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d-polytope may be put in the following form, in which Tarski’s theorem
becomes applicable.

The scheme will be realizable by a d-polytope if and only if it is possible
to find reals x; ;, where 1 < i< k=card Vand 1 <j < d, such that the
following statements are equivalent for every nonempty set W < V.

(1) Wev.

(i) Thereexistrealsy;and c,wherel < j < d,suchthat) _, yj > Oand

: = C if v,eW
X, jYj
=1

J

> C if v,¢W.

The above, obviously, expresses the quest for vertices such that
appropriate sets of them form proper faces of the polytope, while other
sets do not form faces. In this formulation, Tarski’s theorem shows that
the problem i1s effectively decidable, and the proof of theorem 1 is com-
pleted.

It would be rather interesting to have an elementary proof of theorem 2.
In case of 3-polytopes such a proof may be derived from Steinitz’s theorem
(see chapter 13). An elementary proof of theorem 2 would also be 1n-
teresting 1n connection with the solution of the following problem of
V. Klee:

Is every combinatorial type of polytopes rational, that is, does every
combinatorial type of polytopes have representatives all vertices of which
have rational coordinates 1n a suitable system of Cartesian coordinates?

In other words, mnstead of dealing with the real d-dimensional space,
one could consider polytopes in the rational d-dimensional space. Though
some of the proofs would have to be changed, many of the results on
polytopes contained in the preceding sections remain valid in the rational
space (see, however, theorem 5.1.11). But Tarski1’s theorem does not apply
to the field of rational numbers and therefore it does not lead to the
solution of the enumeration problem for rational polytopes.

As we shall see in chapter 13, a theorem of Steinitz leads to an affirmative
solution of Klee’s problem for 3-polytopes. For higher dimensions the
enumeration problem for rational polytopes is still unsolved ; however, a
negative solution to Klee’s problem in sufficiently high dimensions has
recently been obtained by M. A. Perles (see theorem 4 below).

By a slight modification of the proof of theorem 2 1t is possible to show
that the different combinatorial types of d-complexes with a given number
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of vertices are effectively determinable. Regarding complexes, however,
even the case of 2-complexes in R? of Klee’s problem is still unsolved.

An interesting side-light is shed on the above problems by the following
observation on configurations. A configuration is a finite set of points and
lines in a projective plane, with prescribed incidence relations. Since any
two points in a projective plane are on a line, we shall shorten the descrip-
tion of configurations by indicating only those lines which are incident
to at least three points of the configuration. (For the related notion of
arrangements see chapter 18.)

3. There exist configurations in the real projective plane which are not
realizable in the rational projective plane (or in any rational projective
space).*

A very simple configuration ¢ with this property consists of 9 points
and 9 lines.T Let the points of € be A, B, C, D, E, F, G, H, I, and let the
following sets of more than two points (and only those sets) be collinear :
ABEF, ADG, AHI, BCH, BGI, CEG, CFI, DEI, DFH. The realizability
of the configuration ¢ in the real projective plane is easily established on
hand of figure 5.5.1, which is derived in an obvious way from the regular
pentagon. On the other hand, the reader can easily verify that every
realization of ¥ 1n the real plane 1s projectively equivalent to the con-
figuration of figure 5.5.1 in one of the two ways: either as indicated in
figure 5.5.1, or as indicated 1n figure 5.5.2. The cross-ratio (A,B; E, F) 1s

A v [}

<K
PN

C
Figure 5.5.1

*For a similar difference between the projective geometries over the real and the
rational fields, see the notion of ‘accessible points’ in Coxeter [6, p. 126].
1 It may be conjectured that no configuration of less than 9 points has this property.
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.. -

(3 — ﬁ) in the first case, and (3 + \/5) in the second. Therefore € may
not be realized by points having rational coordinates—hence ¢ 1s not
realizable in the rational projective plane.

As a matter of fact,* if F 1s an ordered field such that every configuration
realizable in the real projective plane is realizable also 1n the projective
plane over F, then F contains a subfield isomorphic to the field of all real
algebraic numbers. The proof 1s very simple on observing that if on a line
L a projective system of coordinates i1s introduced by specifying points
0, 1, and oo, for any point x on L it is possible to construct the point

Y _,ux €L for each choice of rational numbers «;. To ‘construct’

means to draw appropriate lines in the plane, 1.e. to specify a suitable
configuration. But then an equation such as )?_ a;x' = 0 means that

a suitable line, obtained by a definite construction which starts at x,
itersects Lin 0. Therefore, if x,,- - -, x, form a complete set of conjugate,
nonrational, real algebraic numbers, there exists in the real projective
plane a configuration which 1s realizable in a projective plane over an
ordered field containing the rationals if and only if that field contains
X1,y Xy

Returning to Klee’s problem about rational polytopes, we shall show :

4. There exists an 8-polytope P with 12 vertices such that no polytope
combinatorially equivalent to P has all vertices at rational points.

Theorem 4 and the following proof of it are due to M. A. Perles (private
communication). It is easily seen that the construction of P could be
modified to yield polytopes of any dimension d > 8 having any number
v > d + 4 of vertices, which are not rationally realizable.

* For this remark the author 1s indebted to Professor H. A. Heilbronn.
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We shall first describe the construction of P. We consider. the con-
figuration € of 9 points shown in figure 5.5.1, and assume its plane to be
{(x;, x5, x3)€ R?| x5 = 1}. Using the 9 points of this configuration, we
form the 12-tuple

IAI’ 1Bl ICI 1DL LEIC IFIC UG VHI  IFI” |Gl
H I )
\H|” ]

V_(A B C D E F G H F G

It is easily checked that V satisfies the conditions (see section 5.4) sufficient
for 1t to be the Ga]e-diagram of the 12-tuple of vertices of some 8-polytope
P with 12 vertices vy, - - -, v{,. Let now P’ be an 8-polytope combinatoria]ly
equivalent to P, let V’ = vert P' = (v}, --, v},) and let v; correspond to
v; fori = 1,---,12. Considering the Gale-dlagram 7’ of V' we note that
the assumed 1som0rphlsm between V and V' implies that a subset of V
1s on a line, or in a plane, through the origin if and only if the corresponding
subset of V' has the same property. (The reader should check that this
property results from the manner in which plus or minus signs were as-
signed to the poklts of the configuration € used in defining ¥)) Therefore,
the 12 points of V'areon9lmnes L,,---, Ly through the origin 0. The inter-
sections A',---,I' of the lines L; with a surtable plane L (such that 0 ¢ L)
determine 9 pomts which yield a configuration equivalent to €. If 1t were
possible for P’ to have all vertices at rational points, the Gale-diagram %
could be chosen so that the lines L; have rational direction coefficients. If
L 1s then chosen 1n a similar manner, all the points A’,---, I’ would be
rational—which is impossible in view of theorem 3.

This completes the proof of theorem 4.

In a certain sense, the result of theorem 4 is best possible: As we shall
see In exercise 6.5.3, every d-polytope with at most d + 3 vertices i1s
rationally realizable. On the other hand, the dimension 8 1s probably too
high—but no lower-dimensional, rationally not realizable polytopes are
known.

Exercises

1. Prove the effective determinability of the (number of) different
combinatorial types of d-complexes with a given number of vertices.

2. Prove the assertion made about the realizations of the configuration
€ of figure'5.5.1.
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3. Show that the polytope P constructed in the proof of theorem 4 is
projectively unique (see exercise 4.8.30), but that P has a facet which 1s
F F )
\FII" IIFIl}
4. Show that the configuration of 11 points and 11 lines 1n figure 5.5.3
(the ‘projective construction’ of \/i) 1s not rationally realizable. Deduce

from 1t the existence of an 11-polytope with 15 vertices which 1s projectively
unique and not rationally realizable.

not projectively unique. (Hint : Consider the coface (

Figure 5.5.3
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5.6 Additional notes and comments

Sections and projections.
The representation of a polytope as a simplex or cube intersected with an affine
subspace is one of the basic steps in the construction and formulation of linear
programs, the transformation to (various kinds of) “standard form”. The key
idea for this is the introduction of slack variables (see Dantzig [1, Sect. 4-5]),
which here appears in thin disguise in exercise 5.1.3. The “is a section” in
theorem 5.1.1 may be interpreted as “is projectively equivalent to”, or more
restrictively as “is affinely equivalent to”.

Page 73 gives a glimpse of the now very powerful connections to func-
tional analysis (Banach space theory). We refer to Ball [a] and Matousek [b,
Chap. 14] for introductions. See also Giannopoulos—Milman [a].

Gale-diagrams.
On Perles’ theory of Gale-diagrams, for which this chapter 1s the original pub-
lished source, Griinbaum wrote: “The reader will find it well worth his while
to become familiar with the concepts of Gale-transtforms and Gale-diagrams,
since for many of the results obtained through them no alternative proofs have
been found so far. It is very likely that the method will yield many additional
results.” It did! Among them are:

o (Gale-diagrams can be formulated in terms of linear programming duality
(the Farkas lemma). They were interpreted in terms of oriented matroid
duality by McMullen [f] (see also Ziegler [a, Lect. 6]).

o Mnév’s [a] [b] universality theorem for d-polytopes with d +4 vertices is
a vast generalization and extension of Perles’ example of a non-rational 8-
polytope with 12 vertices: For every semi-algebraic variety V defined over
the integers, there is a d-polytope with d + 4 vertices whose realization space
is “stably equivalent” to V. Later, Richter-Gebert [b] [c] (with a different
method) achieved a stunning universality theorem for 4-polytopes with arbi-
trarily many vertices. (See also Richter-Gebert—Ziegler [a] and Giinzel [a].)

o Bokowski and Sturmfels [d] formalized “affine Gale-diagrams™ as a different
way to handle and visualize the (“linear’”) Gale-diagrams explained here;
these would augment figure 5.5.1 by the signs of the vector configuration V
that 1s derived from it in the proof of theorem 5.5.4.

No non-rational polytope with fewer than 12 vertices has been constructed yet.

However, Richter-Gebert’s results include the construction of non-rational 4-

polytopes (with roughly 30 vertices). An alternative construction method, the

“Lawrence construction”, (Billera—-Munson [a], Bjorner et al. [a, Sect. 9.3)),

produces non-rational (n + 2)-dimensional polytopes with 2n vertices from

non-rational configurations of n > 9 points in the plane (as in figure 5.5.2).
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Enumeration of combinatorial types.

Lindstrom [a] has shown that every combinatonal type of d-polytope 1s realiz-

able in the d-dimensional vector space over the field of algebraic numbers.
Enumerating combinatorial types by Tarski’s procedure for solving polyno-

mial inequalities i1s impractical. The same holds for Collins’ [a] “cylindrical

algebraic decomposition”. Nevertheless, one has enumerated and classified

o 4-polytopes with 8 vertices (1294 types: Altshuler—Steinberg [b] [c]),

o simplicial 4-polytopes with 9 vertices (1142 types: Altshuler—Bokowski—
Steinberg [a]; see also Engel [a)),

o neighborly 6-polytopes with 10 vertices (37 types: Bokowski—Shemer [a]),

o and partially the neighborly 4-polytopes with 10 vertices (exactly 431 types:
Altshuler [a], Bokowski—Sturmfels [a], and Bokowski—Garms [a]).

The general approach towards such results 1s explained in Bokowski—Sturmfels

[b]. The most successful strategy has three essential steps:

1. Enumerate the combinatorial types in a larger class (e. g., combinatorial or
shellable spheres).

2. For each type enumerate the compatible oriented matroids, i. e., orientation
data for a hypothetical realization of the vertices (it may be that none exist).

3. Find coordinates for these, or prove that none exist. (For this, there are
“final polynomial” proots, according to Bokowski—Richter—Sturmfels [a];
the special “biquadratic final polynomials™ of Bokowski—Richter-Gebert [a]
can be found efficiently by linear programming.)

Decidability of the existence of combinatorial types of rational polytopes is

open, related to Hilbert’s tenth problem: Is it decidable whether a given rational

polynomial in several variables has a rational solution? (See Sturmfels [b].)

Algorithmic aspects.

Both the inductive construction of polytopes with the “beneath-beyond” method
and the perturbation via “pulling” and “pushing’” of vertices (pages 80-82), are
essential for the algorithmic treatment of polytopes. For example, beneath-
beyond approaches appear in convex hull algorithms; see de Berg et al. [a], or
Bronniman [a]. Pulling and pushing are key tools for constructing of triangu-
lations (of the polytope, and/or of the polytope boundary); see Lee [b].

2-Simple 2-simplicial polytopes.

Exercise 5.2.13(11) was not established by Shephard [7]. In view of the dif-
ficulty in constructing 4-polytopes of type (2,2), as discussed in section 4.9,
the Walkup conjecture seems daring; it 1s still open. However, Problem 5.2.15
has a positive answer: It may be derived from theorem 5.2.5 using “connected
sums” (see Ziegler [a, Example 8.41]) of the form P#P*, for simplicial P.



CHAPTER 6

Polytopes with Few Vertices

The aim of the present chapter 1s a discussion, as complete as possible
at present, of polytopes with ‘few’ vertices. In séction 6.1 we deal with
d-polytopes having d + 2 vertices; Sections 6.2 and 6.3 present two
different approaches to the classification of d-polytopes with d + 3
vertices, while section 6.4 deals with a remarkable phenomenon con-
cerning centrally symmetric polytopes.

6.1 d-Polytopes with d + 2 Vertices

We start with a discussion of simplicial d-polytopes with d + 2 vertices.
Each d + 1 vertices of such a polytope P must be affinely independent,
since otherwise P would be a pyramid on a (d — 1)-basis different from
a simplex. Let v be a vertex of P. Then the remaining d + 1 vertices of P
determine a d-simplex T% and P = conv(T? v {v}). The vertex v is
beyond a certain number k of facets* of T¢ where 1 < k < d — 1. Since
all k-tuples of facets of T¢ are combinatorially equivalent, all polytopes
P for which v is beyond k facets of T? are equivalent. Let their com-
binatorial type, as well as any polytope of that type, be denoted by T¥.

We shall first show that the types T¢ and T9_, coincide. Let P be a
simplicial d-polytope with d + 2 vertices {vg, vy, -, 0444} Since each
d + 1 points v, are affinely independent there exists, by Radon’s
theorem 2.3.6, a unique k with 1 <k <[3d], and reals f;, y; for
0 <i<k<j<d+ 1, such that (possibly after a permutation of the
indices) we have

Z pivi = Z YiUj

0<i<k k+1<j<d+1

where

Z P = Z y; = 1

O0<i<k k+1<j<d+1

and 8; > 0,y; > Oforall i, j.

* The reader 1s reminded that a ‘facet’ 1s a (d — 1)-face of a d-polytope.

97
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In other words, 1t 1s possible to split the vertices of P into two groups
V, and V,, contaming k + 1 respectively d — kK + 1 of the vertices, in
such a way that the simplices conv V; and conv V, intersect in one single
point 0, relatively interior to both simplices.

Let us consider the facets of P. Each facet 1s determined by the two
vertices of P which do not belong to it. These two vertices may not belong
to the same V; since then the point 0 would be in the facet although it
belongs to the interior of P. Therefore each facet is the convex hull of
some k points of V; and some d — k points of V,. On the other hand,
for every choice of k points of V, and of d — k points of V,, the convex
hull of their union 1s a facet F of P since the remaining two vertices of P
are both in that open halfspace determined by aff F which contains 0.

Consequently, each v; € ¥ 1s beneath d — k + 1 facets of P, while each
v;€ V, 1s beneath k + 1 facets of P. If T, 1s the d-simplex determined by
the vertices of P different from v, by theorem 5.2.1 those facets of P
for which v, 1s beneath them are also facets of T . Therefore v, e V]
is beyond d + 1 — (d — k + 1) = k facets of T;, while v;e V, 1s beyond
d+1—(k+1)=d— k facets of T;. In other words, P 1s of the com-
binatorial type T; and also of the type T9_,, and therefore ‘the types
T¢ and T9_, coincide. This establishes

1. There exist [3d] different combinatorial types of simplicial d-polytopes
with d + 2 vertices. A polytope T% of the kth type, k = 1,2,---,[3d], is
obtained as the convex hull of the union of a d-simplex T with a point
which is beyond k facets of T®. A polytope of the same type results if the
point is beyond d — k facets of T°. The polytope Tt 4 is combinatorially
equivalent to the cyclic polytope C(d + 2, d).

In order to prove the last assertion, it is enough to note that if
Xo, X1, " s Xq, Xg41 are the vertices of C(d + 2,d) arranged according
to their order on the moment curve, Gale’s evenness condition (theorem
4.7.2) implies that any one-to-one correspondence between the points
of V, (respectively V,) and the x;’s with odd (respectively even) i estab-
lishes a combinatorial equivalence between T7,, and C(d + 2, d).

The proof of theorem 1 shows also that f,_,(T%) = (k + 1)(d — k + 1).
This shall be generalized in the next theorem.

2. For0 < m < d — 1, the number of m-faces of T} is

d + 2 k+1. d—k + 1
TY) = — . .
Jul T (d-——m+1) (d—-m+1) (d——m+1)
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ProoF The total number of (m + 1)-tuples of vertices of T9 is
(d+2 ( d+ 2
m+1 \d+1—m
determines an m-face of TY¢ if and only if there is a facet F of T¢ which
contains the (m + 1)-tuple V* Such a facet F exists, by the above, if

and only if neither V] nor V, 1is contained in V*. In other words, counting
d+ 2

m + 1
we have to exclude those which contain V; and those which contain V..

d—k + 1 )_(d—k+1
m+1—(Gk+1)] \d—m+1
the number of (m + 1)-tuples of the latter type 1s

. A given (m + 1)-tuple V* of vertices of T¢

the number of m-faces of T4, from the total of )(m + 1)-tuples,

, while

The number of the former 1s (

( k+ 1 )_( k+1)
m+1l—d—k+1) \d—m+1]

This completes the proof of theorem 2.

Because of the use we shall make below, 1t is worthwhile to amend the
expressions for f,(T4%) given in theorem 2 so as to remain valid for all m.
As easily checked, the formula yields the correct valuesf, = 1 form = —1,
f.=0torm < —land m > d + 1; the valuesform =dand m =d + 1
are too small by 1. Therefore an expression valid for all m 1s

d+2) k+1) d—k + 1
d—m+ 1 d — m+ 1 d—m+ 1

) T 5d,m + 5d+1,m'

fulT3) =

We turn now to the problem of finding the polytopes T¢ which have a
maximal or a minimal number of m-faces, m = 1,2,---.,d — 1. Since for
k < [3d] we have

( k + 2 ( k + 1 )_(k+1)<(d—k

d—m+ 1 d—m+1 \d—-—m|/ ~\d —-m
_‘d—k+w ( d—k)
\d=—m+1 d—m+ 1
ﬂ(d—k+1 (d—w+¢%+1
ld=m+1 d—m+ 1 ’

with strict inequality if and only if kK < m, 1t follows that

(i) for m < [1d]

FlT7) < fulT3) <o+ < fulT) < ST 1) = o Tms2) =+ = ful Tisa) 5
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(ii) for m > [3d]}

f(TY) < fuT3) <+ < fm(T?-%d])*

Hence we have

3. For every simplicial d-polytope P with d + 2 vertices, and for every
m=12---,d — 1.

FulT9) < [l P) < £l Ty a).

If f.(P) = f(T%) for some m with 1 <m<d— 1, then P=Tq. If
fu(P) = f(Tla)) for some m then: if [3d) — 1 <m<d— 1, P = Tiy;
if 1 <m<[id] — 1, P = T¢ for some k satisfying m + 1 < k < [d].

Let now P be a d-polytope with d + 2 vertices which 1s not simplicial.
Then all but one of the vertices of P are contained in a hyperplane; and
P is a d-pyramid having as basis a (d — 1)-polytope P; with d + 1 =
(d — 1) + 2 vertices. If P, is a simplicial (d — 1)-polytope then P, = T4 !
for some k with 1 <k < 3(d — 1); if P, is not simplicial then it is a
(d — 1)-pyramid with (d — 2)-basis P, which hasd = (d — 2) + 2 vertices.
Proceeding by induction we obtain

4. Each d-polytope P with d + 2 vertices is, for suitable r and k with
0<r<d-—2and 1 <k <[3{d —r)], an r-fold d-pyramid with (d — r)-
dimensional basis Ti ™. Denoting such P by T%" we have

d+ 2 )_(k+r+1) _(d—k+1

r + 1 )
—m + 1 d—m+ 1 d—m + 1

+(d—m+1

i = |,

for allm =0,1,---,d — 1. There are [1d?] different combinatorial types
of d-polytopes with d + 2 vertices.

ProorF Clearly Ti'° = T¢. In order to establish the expressions

given for f (T$"), it is enough to combine the values given above for
f (T%) (in the form valid for all m) with theorem 4:2.2. Thus

- AT

:;(:){(i_—::i) _(m—ifrzid+r)

_(d—r—k-l—l

m—i—k

i) = 3]

) + 5d-—r,m-l’ + 5d-r+1,m-i}
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(d+2 [ k+r 41 d—k + 1
m + 1 m4+k—d+r m — k

+ ' + '
r-l—m—d) (r—l—m—d—l)’

which equals to the expression given above. Since T%" is not of the same
combinatorial type as T49o" unless d = d*, r =r* and k = k*, the
number [+d*] of different combinatorial types follows easily from the
inequalities 0 < r <d —2and 1 < k < [3(d — r)].

From theorem 4 it follows that
(1) forr >0and 1 < k < [3(d — 1)],

Tl T2 1) < fulT3),

with strict inequality if and only if k < m + 1;
(i) forr >0and 1 < k < [3(d — 1]

ful TN < Sl T ),

with strict inequality if and only if d < m + k + r.
Hence we have

S. For every d-polytope P with d + 2 vertices and for every m with
l<m<d-—-1,

fu(P) = fu(TT472)

and

Jm(P) < fl T[%d]) = [l T[g-d]

For any m, 1 < m <d — 1, equality holds in the first relation if and only
if P=T9Y"% For any m satisfying [3d] — 1 <m < d — 1, equality
holds in the second relation if and only if P = T{;% = Ti.4

Combining theorems 3 and 5, an easy computation yields the following
theorem.

6. If r and k are such that T$" has maximal possible number of m-faces,
then r = 0 and k = [3d] provided at least one of the following conditions
is satisfied.

(i) dis even and m > [3d] — 1;
(ii) T is simplicial (i.e.,r = 0)and m > [3d] — 1;

(iii) m > [3d].
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6.2 d-Polytopes with d + 3 Vertices

The structure of d-polytopes with d + 3 vertices i1s much more complicated
than that of d-polytopes with d + 2 vertices, and our knowledge of it is
very recent. In the present section we shall restrict our attention to
simplicial d-polytopes with d + 3 vertices and we shall present here a
method of describing them which will enable us to solve questions about
maximal, or minimal, numbers of faces of difterent dimensions. A dif-
ferent method of investigation will be used in section 6.3 to determine
the possible combinatorial types of d-polytopes with d + 3 vertices, and
to solve some additional problems.

Let V = {vg,v,,---,0;4,} be the vertices of a simplicial d-polytope
P < R? Without loss of generality we may assume that every d + 1
points of V are affinely independent. Let V' = V ~ {v,.,} = {vg, V44 1}
and P’ = conv V'. Then there exists a unique decomposition V' = X v Y,
X n Y = ¢ such that conv X n conv Y is a single point, which we take
as the origin 0. Let us denote X = {x4,---, %}, Y= {Vo,- ", Vi }:-then
s>1,t>1,and s +t =d. Clearly, P* = convX and P** =convY
are simplices of dimensions s respectively t. Each facet F of P’ 1s the convex
hull of the union of a facet of P* and a facet of P**. Therefore the facets of
P’ may be labeled by a pair of integers (p, g), where 0 < p < 5,0 < g < t,
in such a way that F(p, q) = conv(V’' ~ {x,, y.}).

Let H* = aff X and H** = aff Y ; then R? = H* + H**, H* n H** = {0}.
Since X respectively Y are affine bases of H* respectively H**, there 1s
a unique relation of the form

S

{ {
p¥y,  where > AfF= ) p¥=1
=0 =0

i=0 ]

J

0 = Z A¥x, =
i=0

and AF > 0 and y7 > Oforalli and j.
Also, each z € R? has a unique representation

S l ) {
z= ) Axi+ Y wy;, with Y A=Y =1
=0 J=0 i=0 Jj=0

Since 0 € 1nt P’, z will be beyond a facet F(p, g) of P’ if and only if for some
kK, 0 < k < 1, we have kz e aft F(p, q). Using the above representation of
0 1t follows that




POLYTOPES WITH FEW VERTICES 103

and therefore the condition Az € aff F(p, g), 1.e. z € (1/x) aftf F(p, q), becomes

1 A 7 A 7

Iy i u:*) Y "u*) =2—(-£+-ﬂ-)

K Oﬂiﬁs( Ay oggr( Loy Ay Mg
i ¥£p J¥q

Since 0 < k < 1 1f and only if 1/k > 1, a necessary and sufficient condi-
tion for z to be beyond F(p, q) 1s A,/A} + p,/uy < 1. In other words, z 18
beneath F(p, g) if and only if 4 /A% + u /uF > 1.

Let us assume now that z = v, ,, and that the labeling of X and Y 1s
such that A,/A¢ > A /AT > A,/A% > .- > AJA¥ and uo/us > u /ut >
w/u% > --- > u/u¥. Then, clearly, if v,,, 1s beneath F(p, q) 1t 1s also
beneath every F(p', g ) with p' < p,q < g.

We shall represent the facial structure of P’ by a diagram 1n a (p; q)-
plane, consisting of the lattice points (p;g) with O < p < 5,0 < g < t, the
facet F(p, q) of P’ being represented by the point (p; gq). For the polytope
P = conv(P' v {v,,,}) we shall use the following representation in the
(p; q)-diagram of P': a point (p; qg) of the diagram shall be marked, e.g. by
a star, if and only if v, , 1s beneath F(p, q). For given P’, this star-diagram
of P 1s clearly determined by P in a unique way. From our conventions it
follows that if (p;q) 1s starred so are all (p';q’) with 0 < p’ < p and
0 < 4’ < g Thus the general appearance of a star-diagram 1s as 1llustrated
in figure 6.2.1.*

From the developments so far 1t is not clear whether every star-diagram
satisfying the above conditions is indeed the star-diagram of a polytope.
The answer to this query 1s affirmative (see theorem 6.3.4), but we do not
need 1t for the purpose of the present discussion. Our aim here 1s to deter-
mine the changes 1n the facial structure of P accompanying the addition
or deletion of certain stars in the star-diagram. Though 1t would require
a certain amount of technicalities we could (without reference to poly-
topes) define ‘faces’ of various dimensions of star-diagrams, investigate
changes 1n their number, and determine the extremal values. To solve the
extremal problem for polytopes we would only have to show that the
star-diagrams with an extremal number of ‘faces’ are indeed star-diagrams
of polytopes. Though not invoking theorem 6.3.4 (the proof of which 1s
independent of the present considerations), we shall refrain from this

* Note that for every polytope P the points (0; 0), (0; 1) and (1;0) of the star-diagram
of P are necessarily starred, while (s; t) is necessarily without a star.
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1
H
¥
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O * 3 3 ¥ ¥

1 O 1 2 3 4 §=5

Figure 6.2.1

complication; nevertheless, we shall explicitly indicate polytopes cor-
responding to the extremal values of f, .

Using theorem 5.2.1, we shall investigate the change of f,(P) resulting
from the addition of a star to a point (b; ¢) of the star-diagram. According
to the definition of star-diagrams the assumption that (b; c) may have a
star as well as be without 1t implies that (b; c) 1s a point of the star diagram
such that all points (p;c)and (b; c) with p < b, g < ¢, have stars, and those
with p > b or g > 0 do not have stars. If an (m + r + 1)-face F of P’ has

vertices {X; , -+, X; ;Vi,» ">V > then F is contained in all the facets
F(p,q) of P’ such that pé¢{iy---,i,,} and q¢ {jo,---,Jj,}- Now, if
F = convi{x;,, -, X; V> ""»Y;} is a face of P’ with the property that

vy, 15 beyond all the facets of P’ containing F 1f (b; ¢) is not starred, but
vy, , becomes beneath at least one facet (namely F(b, ¢)) of P’ containing
F if (b; c) 1s starred, then necessarily

bé{ioailﬂ'”’im} — {0= 13"'a(b_ 1)}

and

C¢anj13'”3jr} — {Oa 13"'5(C — 1)}

Therefore, putting m + r + 1 = k, 1t follows that there are

( s — b )( t — ¢ )
m+1—->bl\r+1—c¢
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such k-faces with given m and r, and thus there are altogether

s — b ( I — C
r+ 1 —c¢

m+r+1:k(m -+ ] — b
k-faces of P’ which are faces of P if (b; ¢) 1s starred, and are not faces of P
if (b;c) 1s not starred.

Unless m=s — 1 and r =t — 1, the same k-faces of P’ will serve as
bases of pyramidal (k + 1)-faces of P with apex v,,, 1f (b;c) 1s starred,
and not be bases of such faces if (b; c) 1s not starred. On the other hand,
a similar counting argument shows that the starring of (b; c) will disqualify

S
m+r§l=k m+1—(G-=—5bl\r+1—(t—c)

such k-faces of P’ to serve as bases of (k + 1)-faces of P containing v, ,,
while they are such bases 1if (b; ¢) 1s not starred.

Therefore, the increase A,(b, ¢) in the number of k-faces of P which
results from the starring of (b; ¢) equals

N el B

m+r+1=k\M+ 1 —>bl\r +1 —c¢

el b
+m+r+§=k“1 m+1—0> r+1—c

b C
- m+r+21:=k—-1(m + 1 — (s — b))(r + 1 —(t — c))

=§(mi—1b_b)(k_t;0_c)+;(mi—1fib)

t—C b C
| =2l |
k—1—m—c m\s—m—1/\t —k+m+ 1

New R R

k—b—c+ 1 k—b—c s+ t—k
r+t+1—w+d) (b+c)
- s+t —k s+t — k|
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Hence
Ab,c)y>01itandonlyifb+c<k+1land2(b+ c)<d+ 1;
A(b,cy<Otfandonlyfb+c>d—kand 2(b +¢) >d + 1;

Ab,c) = Oifand only ifeitherk + 1 <b + c<d — k,or2(b +¢c)=d + L.
Taking 1into account that b < s and ¢ < t, 1t follows that f,(P) will be

maximal provided s = [3d], t = d — [3d] = [3(d + 1)}, and all the points
(b;c) with b + ¢ < 3(d + 1) are starred. That such a star-diagram may
be realized by a d-polytope is shown by the cyclic d-polytope C(d + 3, d)
with d + 3 vertices. Using Gale’s ‘evenness condition’ (section 4.7) it 1s
easy to see that this is indeed the star-diagram of C(d + 3,d); for even
d = 2n the d + 3 points of the moment curve should appear in the order

xoﬁynﬁxlﬁ ynmla x23' | ayla xna y03za

while for odd d = 2n + 1 they should be preceded by y,. ;.
This proves

1. For every k, 1 < k < d — 1, and every simplicial d-polytope P with
d + 3 vertices,

fi(P) < fil(C{d + 3,d)).

Taking into account the lower semicontinuity of f,(P) as a function of
P (see theorem 5.3.1) this implies

2. For every k, 1 <k <d— 1, and every d-polytope P with d + 3
vertices,

[ilP) < fillC(d + 3, 4d)).

The proof of theorem 1 may be strengthened in case d = 2n 1s even.
In this case
Ayb,c) > 0ifandonlyif b + c <k + land b + ¢ < n;
Ab,c) < Oifandonlyif b + c>2n—kandb+c>n+1;
Ab,c) =0ifandonlyifk + 1 <b +c<2n—k
If. moreover, k > n — 1 then these criteria simplify and yield :
Ab,c) >01fand onlyif b + ¢ < n;
A b,c) < 0ifand onlyif b + ¢ > n.
Thus in case d = 2n and k > n — 1 the star-diagram maximizing f,(P) 1S
uniquely determined by the condition that s = t = n and all points (b; ¢
with b + ¢ < n are starred. Hence
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3. For even d = 2n, if P is a simplicial d-polytope with d + 3 vertices
such that f,(P) = f.(C(d + 3, d)) for some k satisfyingn — 1 < k <2n — 1,
then P is combinatorially equivalent to C(d + 3, d).

Our next aim 1s to strengthen theorem 3 by showing that it remains
valid for all d-polytopes with d + 3 vertices. Let P be a nonsimplicial
d-polytope with d + 3 vertices; we shall derive a contradiction from the
assumption that f,(P) = f,(C(d + 3,d)) for some k satisfying n — 1 <k
< 2n — 1. By theorem 5.3.1, without loss of generality we may assume
that P has only one nonsimplicial facet F, such that f{,(F) =d + | and F
1s a simplicial (d — I)-polytope. Let V be a vertex of F and let Q be the
convex hull of the vertices of P different from V. Using the notation from
pages 102 and 103, let

XuY=vertQ, XnY=¢ convXnconvY = {0},

andlet V = )3_ Ax; + Z‘,: iy, with )34 = Z;zl u; = 1. Without
loss of generality we may assume that 4,/AF # A, /AF and p;/u7 # w/ui for
i # k # j. Let L be a straight line such that L n P = {V}, and such that L
is not contained in the affine hull of any proper face of P. Let V', V™ be
points of L strictly separated by V, and let P* = conv(Q u {V*}) and
P~ = conv(Q U {V 7}). By the lower semicontinuity of f,(P) we shall have
fi(P) < f(P™) and f(P) < f,(P7) for all V™, V™~ sufficiently near to V.
Assuming, without loss of generality that Q 1s simplicial it follows that
P* and P~ are simplicial. Since the difference between P™ and P~ 1is
that, relatively to Q, V™ and V™~ differ in their position (beneath or
beyond) with respect to some facets of O, by theorem 3 1t 1S not possible
that both P™ and P~ have the maximal number of k-faces, for some k
with n — 1 <k < 2n — 1. But f,(P) < min{ f(P7), f(P~)} and thus we
established

4. For even d = 2n, if P is a d-polytope with d + 3 vertices such that
f(P) = f(C(d + 3.,d)) for some k satisfying n — 1 <k <2n — 1, then P
is combinatorially equivalent to C(d + 3, d).

This clearly implies the case v = d + 3 of theorem 7.2.3.
In order to find the minimal value of f,(P) for simplicial P we note that

Ak(b, C) + Ak(b’, C’) — 0

whenever (b + ¢) + (b + ¢’) = d + 1. It follows easily that (for given s
and t) f,(P) 1s minimal if and only if either only (0;0) 1s starred or if all
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points except (s;t) are starred. Since the first case does not yield a poly-
tope with d + 3 vertices, the polytope P minimizing f,(P) for given s and

t is the convex hull of T¢ with a point which is beyond one and only one
facet of T¢. Since in this situation

d
fulP) = fil(TS) + (k) ~ Op.d—15

£.(P) will be minimal (for variable s, t) if and only if T¢ minimizes f,(T%).
By theorem 6.1.3 this happens if and only if s = 1. Hence

5. For every simplicial d-polytope P with d + 3 vertices, and for each k
satisfying 1 < k <d — 1,

. (d+2) d) ( d ) s
Ji(P) = . +(k_ — 20y 4—1-

Equality holds for some k,1 < k < d — 1, if and only if P is combinatorially
equivalent to the convex hull of TG with a point which is beyond one and only
one facet of T4.

6.3 Gale-Diagrams of Polytopes with Few Vertices

In the present section we shall see how the Gale-diagrams, discussed 1n
section 5.4, may be used to solve problems about d-polytopes with d + 2
or with d + 3 vertices. The new results of this section are due to M. A.
Perles (private communication).

Let, first, P be a d-polytope with d + 2 vertices, and let VV = vert P.
The Gale-transform V is a (d + 2)-tuple of points in R! = R (since in
this case n =d + 2 and thus n —d — 1 = 1). The Gale-diagram V is
contained in the 3-point set {0, 1, —1} < R, those points having multi-
plicities my, m,, m_ , assigned in such a way that m, > 0, mg>2,m_,; =2,
and my, + m; + m_,; = d + 2 (see theorems 5.4.2 and 5.4.3). If P and P’
are two such polytopes, (m,, m,,m_,) and (mj;, m’;, m"_,) being the associ-
ated multiplicities, then P and P’ are combinatorially equivalent if and only
if either (my, m;, m_,) = (my, my,m_,) or (mg, my, m_,) = (my, m_ , my).
P is simplicial if and only if m, = 0. It is rather easy to deduce from these
observations all-the results of section 6.1; this task 1s left to the reader as
a useful exercise.



POLYTOPES WITH FEW VERTICES 109

We turn now to the much more interesting discussion of d-polytopes P
with d + 3 vertices. Their Gale-diagrams are contained in the set
C* = {0} U C, where C denotes the unit circle centered at the origin.0
of R”.

For ease of explanation and pictorial representation, when drawing a
Gale-diagram V of V = vert P, we shall show the circle C as well as all
the diameters of V, that is, diameters of C which have at least one end-
point in V. Points of V shall be shown in the illustrations by small circles,
and if a point of ¥ has multiplicity greater than 1, its multiplicity will be
marked near the point.

The reader 1s invited to verify (using theorems 5.4.1 and 5.4.5) that the
seven 3-polytopes with 6 vertices, shown by their Schlegel-diagrams in
figure 6.3.1, have Gale-diagrams 1somorphic to those shown beneath the
Schlegel diagrams. (The letters in the diagrams should help the identifica-
tion.)

Using theorem 5.4.5 it is easy to verify that if V, V" are Gale-diagrams
of two d- polytOpes P, P" with 4 + 3 vertices each, and if the only dif-
ference between V and V' is in the position of one of the diameters—its
position 1n 2 being obtained by rotating the corresponding diameter 1n
1% through an angle sufficiently small not to meet any other diameter—
then V and V' are 1somorphic (and P and P’ are combinatorially equiva-
lent). For example, the Gale-diagrams 1n the last row of figure 6.3.1 are
1Isomorphic to those above them.

By a repeated application of this remark we see that each combinatonal
type of d-polytopes with d + 3 vertices has representatives for which the
consecutive diameters of its Gale-diagram are equidistant. We shall call
such Gale-diagrams standard diagrams.

Another change which may be performed on a Gale-diagram ¥V and
results 1n an 1somorphic Gale-diagram 1s as follows:

If D, and D, are consecutive diameters of the Gale-diagram V, each of
which has only one endpoint in ¥, and these two points of ¥ are not
separated by any other diameter of ¥, we may omit D, n V and D, if
we simultaneously increase the multiplicity of D; n ¥ by the multiplicity
of D, n V. For example, the first four Gale-diagrams in figure 6.3.2 are
1Isomorphic (but the fifth is not isomorphic to any of them). Clearly, the
change opposite to the one just described also yields a Gale-diagram
isomorphic to the given one. It follows that each combinatornal type of
d-polytopes with d + 3 vertices may be represented by Gale-diagrams
which are either contracted, or else distended—the first meaning 1t has
the least possible number of diameters among all isomorphic diagrams,
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Vo 2

Figure 6.3.2

the latter indicating the largest possible number of diameters.
Using the above notions and the facts mentioned in section 5.4, 1t 1s
easy to establish the following result.

1. Two d-polytopes with d + 3 vertices are combinatorially equivalent if
and only if the contracted (or else, the distended) standard forms of their
Gale-diagrams are orthogonally equivalent (i.e. isomorphic under an
orthogonal linear transformation of R* onto itself).

Theorem' 1 clearly enables one to determine, with relatively lhittle
effort, all the combinatorial types of d-polytopes with d + 3 vertices.
This task 1s particularly simple for simplicial polytopes; in this case
0¢ V, and no diameter of V has both endpoints in V. Therefore the
contracted Gale diagram has an odd number (= 3) of diameters, the points
of V being situated on alternate endpoints of the diameters. The dif-
ferent possible contracted standard Gale-diagrams for d = 4, 5, and 6 are
shown 1n figure 6.3.3.

Counting the distended standard Gale-diagrams, Perles established
the following general formula for the number c/(d + 3,d) of different
combinatornal types of simplicial d-polytopes with d + 3 vertices.



Ficure 6.3.3. Standard contracted Gale diagrams of simplicial
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2. Let d + 3 = 2%p§ - - pi* where the p/s are distinct odd primes,
og=> 0,0, >1fori=1,---,k Thenc(d + 3, d)equals

k ~ 1
2[d/2] _ [d +4} 4+ 2—ao-*2 Z l—ll p;yj l—[ Bf’-———-2g
j=

2 V15" Yk jetilyi <aj pj
O0<y; <ay, -, 0<yk<ay

K
where g = 2% [ ] p¥.

Jj=1

A simpler form of this formula, using Euler’s ¢-function, 1s

d + 4 |
cfd + 30 =20 | |+ plh)- 24+
2 Hd + 3) hodd diviszomfdﬂ

2

&
%
&

DB
SR E
DR B E
B BB E

Figure 6.3.4. Standard contracted Gale diagrams of nonsimplicial,
nonpyramidal 4-polytopes with 7 vertices



114 CONVEX POLYTOPES

(Euler’s ¢-function 1s defined by

oy =h ] (1 _ 1).

p prime divisor of h P

For small values of d, the values of c(d + 3, d) may be found 1n table 1.

Similarly, for small d 1t 1s not hard to determine all the different combina-
torial types of d-polytopes with d + 3 vertices. Contracted standard
Gale-diagrams of the 19 combinatorial types of non-simplicial 4-polytopes
with 7 vertices which are not 4-pyramids over 3-polytopes with 6 vertices,
are shown 1n figure 6.3.4. The numbers c(d + 3,d) of different com-
binatorial types of d-polytopes with d + 3 vertices (reproduced for d < 6
in table 2) have been determined by Perles for d = 4, 5, 6. No general
formula for ¢(d + 3, d) has been found so far, but Perles established

3. There exist positive constants ¢, and ¢, such that

y’ a
€17 <cd+3,d) < €27
2 4+ 6f + 12p°
where y = 2.83928676--- is the algebraic number y = 1_:_ 2ﬁﬂ — 4’£ ,

B denoti‘ng the only real root of the equation

44p° + 48 — 1 = 0.

Using distended Gale-diagrams it 1s easy to prove the following result
(see section 6.2 for the notation):

4. Every star-diagram in which (0;0), (0; 1), (1;0) are starred, and (s;t)
is not starred, is the star-diagram of some simplicial d-polytope with d + 3
vertices.

The proof of theorem 4 is left to the reader. The idea 1s obvious on hand
of figure 6.3.5, which shows a star-diagram (with s = Sand t = 4) and a
distended Gale-diagram of the same combinatorial type (the points
2,%X0," - » X5 Were first chosen on C).

6.4 Centrally Symmetric Polytopes

A polytope P e 2° is centrally symmetric provided — P is a translate of P.
In the sequel we shall usually make the tacit assumption that the center
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Figure 6.3.5

of the centrally symmetric polytope P 1s at the origin O, 1.e. that P = — P.
The centrally symmetric d-polytopes form an interesting and important
subclass 29 of 24

The requirement of central symmetry imposes certain natural and
obvious restrictions on the polytopes and on the numbers f,(P) of their

k-faces. The most obvious property is the evenness of f(P) for all P € 24
and 0 < k <d — 1.
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It 1s the aim of the present section to discuss a less obvious restriction
to which centrally symmetric polytopes are subject, a restriction which
implies that in general there do not exist centrally symmetric analogues of
the neighborly polytopes.*

Let P be a centrally symmetric d-polytope, d > 2, with 2v vertices.
Then P obviously has at most 320(2v — 2) = 2v(v — 1) edges, this number
being achieved only if every pair of different vertices with non-zero sum
determine an edge. Since no 3-polytope F with f,(F) > 4 satisfies

o(F)
fl(F) — (f )

fo(P) = 2v, only 1if P 1s simplicial. We shall prove, however, that this 1s
altogether impossible if v > 6. Clearly, this results from

, it follows that f{(P) = 2uv(v — 1) is possible for P e 2%,

1. No centrally symmetric 4-polytope with 12 vertices has 60 edges.

Note that since 2f5(P) = f,(P) = 2f;(P) — 2f,(P) for every simplcial
4-polytope P (see chapter 9), the above assertion is equivalent to the non-
existence of a centrally symmetric 4-polytope with 12 vertices and 43
facets, or with 96 2-faces.

PROOF Assuming the assertion false, let P be a centrally symmetric
4-polytope with 12 vertices and 60 edges, and let ¥~ = {+ V|1 < i < €}
be the vertices of P. No four of the points V,, - - -, V are linearly dependent,
since no centrally symmetric 3-polytope with 8 vertices has 24 edges.
Every four pairs of opposite vertices from ¥ determine therefore a
4-octahedron (with 24 edges) while every five such pairs form a centrally
symmetric polytope with 40 edges and 30 facets.

The proof will consist of the following parts:

(1) We shall show that centrally symmetric 4-polytopes with 10 vertices
and 40 edges have a uniquely determined combinatorial type, exemplified
by the polytope with vertices +e,, +e,, +e3, +e,, +<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>