


(Graduate Texts in Mathematics 230

Editorial Board
S.Axler EW. Gehring K. A.Ribet



A

LA

O 00 ~Jd ON

10

11

12
13

14

15

16
17
18
19

20

21
22

23
24

25
26
27
28
29
30
31

32

33

Graduate Texts in Mathematics

TAKEUTI/ZARING. Introduction to
Axiomatic Set Theory. 2nd ed.

OxTOBY. Measure and Category. 2nd ed.
SCHAEFER. Topological Vector Spaces.
2nd ed.

HILTON/STAMMBACH. A Course In
Homological Algebra. 2nd ed.

MAc LANE. Categories for the Working
Mathematician. 2nd ed.

HUGHES/PIPER. Projective Planes.

J.-P. SERRE. A Course in Arithmetic.
TAKEUTI/ZARING. Axiomatic Set Theory.
HUMPHREYS. Introduction to Lie Algebras
and Representation Theory.

COHEN. A Course in Simple Homotopy
Theory.

CoNnwAY. Functions of One Complex
Vanable I. 2nd ed.

BEALS. Advanced Mathematical Analysis.
ANDERSON/FULLER. Rings and Categories
of Modules. 2nd ed.
(GOLUBITSKY/GUILLEMIN. Stable Mappings
and Their Singularities.

BERBERIAN. Lectures in Functional
Analysis and Operator Theory.

WINTER. The Structure of Fields.
ROSENBLATT. Random Processes. 2nd ed.
HALMOS. Measure Theory.

HALMOS. A Hilbert Space Problem Book.
2nd ed.

HusemMOLLER. Fibre Bundles. 3rd ed.
HUMPHREYS. Linear Algebraic Groups.
BARNES/MACK. An Algebraic Introduction
to Mathematical Logic.

GreUB. Linear Algebra. 4th ed.

HorLMES. Geometric Functional Analysis
and Its Applications.
HEwITT/STROMBERG. Real and Abstract
Analysis.

MANES. Algebraic Theories.

KELLEY. General Topology.
ZARISKI/SAMUEL. Commutative Algebra.
Vol.l.

ZARISKI/SAMUEL. Commutative Algebra.
Vol Il

JACOBSON. Lectures in Abstract Algebra 1.
Basic Concepts.

JACOBSON. Lectures in Abstract Algebra 11

L.inear Algebra.
JACOBSON. Lectures in Abstract Algebra

III. Theory of Fields and Galois Theory.
HirscH. Differential Topology.

34

35

36

37
38

39
40

41

42
43
44
45
46
47
48
49

50
51

52
53
>4
33
36
37
38

39
60

61

62

63

SPITZER. Principies of Random Walk.
2nd ed.
ALEXANDER/WERMER. Several Complex

Vanables and Banach Algebras. 3rd ed.
KELLEY/NAMIOKA et al. Linear

Topological Spaces.

MONK. Mathematical Logic.
GRAUERT/FRITZSCHE. Several Complex
Variables.

ARVESON. An Invitation to (*-Algebras.
KEMENY/SNELL/KNAPP. Denumerable
Markov Chains. 2nd ed.

ArosToL. Modular Functions and
Dirichlet Series in Number Theory.

2nd ed.

J.-P. SERRE. Linear Representations of
Fintte Groups.

GILLMAN/JERISON. Rings of Continuous
Functions.

KENDIG. Elementary Algebraic Geometry.
LOEVE. Probability Theory I. 4th ed.
LOEVE. Probability Theory II. 4th ed.
MoIsE. Geometric Topology in
Dimensions 2 and 3.

SAcHS/Wu. General Relativity for
Mathematicians.

GRUENBERG/WEIR. Linear Geometry.

2nd ed.

EpwARDS. Fermat's Last Theorem.
KLINGENBERG. A Course in Ditterential
Geometry.

HARTSHORNE. Algebraic Geometry.
MANIN. A Course in Mathematical Logic.
GRAVER/WATKINS. Combinatorics with
Empbhasis on the Theory of Graphs.
BROWN/PEARCY. Introduction to Operator
Theory I: Elements of Functional Analysis.
MaAssey. Algebraic Topology: An
Introduction.

CrROWELL/FoX. Introduction to Knot
Theory.

KoBLITZ. p-adic Numbers, p-adic
Analysis, and Zeta-Functions. 2nd ed.
LANG. Cyclotomic Fields.

ARNOLD. Mathematical Methods 1n
Classical Mechanics. 2nd ed.
WHITEHEAD. Elements of Homotopy
Theory.

KARGAPOLOV/MERLZIAKOV. Fundamentals
of the Theory of Groups.

BoLLoBAs. Graph Theory.

(continued after index)



Daniel W. Stroock

An Introduction
to Markov Processes

@ Springer



Daniel W. Stroock

MIT

Department of Mathematics, Rm. 272
Massachusetts Ave 77

02139-4307 Cambridge, USA
dws @math.mit.edu

tditorial Board

S. Axler F. W. Gehring K. A. Ribet

Mathematics Department Mathematics Department Mathematics Department

San Francisco East Hall University of Calitornia
State Upiversity University of Michigan at Berkeley

%E‘S“AFMHGSCQ CAD41I32 Ann Arbor, MI 48109 Berkeley, CA 94720-3840

USA USA

axler @stsu.edu tgehring @math.Isa.umich.edu ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 60-01, 60J10, 60J27

ISSN 0072-5285
ISBN 3-540-23499-3 Springer Berlin Heidelberg New York

Library of Congress Control Number: 20041113930

This work 1s subject to copyright. All rights are reserved, whether the whole or part of the material 1s concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms orin any other way, and storage 1n data banks. Duplication of this publication or parts thereof 1s permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission
foruse must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer 1s a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Typesetting: Camera-ready by the translator
Cover design: destgn & production GmbH, Heidelberg

Printed on acid-free paper 41/3142 XT-543210



This book is dedicated to my longtime colleague:

Richard A. Holley



Contents

Preface .

Chapter 1 Random Walks A Good Place to Begin

1.1. Nearest Neighbor Random Walks on Z
1.1.1. Distribution at 'ime n .

1.1.2. Passage Times via the Reflection Principle
1.1.3. Some Related Computations

1.1.4. Time of First Return
1.1.5. Passage Times via Functional Equatmns

1.2. Recurrence Properties of Random Walks

1.2.1. Random Walks on Z¢
1.2.2. An Elementary Recurrence Criterion .

1.2.3. Recurrence of Symmetric Random Walk in 22
1.2.4. Transience in Z3
1.3. Exercises

Chapter 2 Doeblin’s Theory for Markov Chains

2.1. Some Generalities . .

2.1.1. Existence of Markov Chams Lo .
2.1.2. Transition Probabilities & Probablhty Vectors
2.1.3. Transition Probabilities and Functions .
2.1.4. The Markov Property .

2.2. Doeblin’s Theory . . . . .

2.2.1. Doeblin’s Basic Theorem .

2.2.2. A Couple of Extensions .

2.3. Elements of Ergodic Theory .

2.3.1. The Mean Ergodic Theorem

2.3.2. Return Times . .

2.3.3. Identification of ™ .

2.4. Exercises

Chapter 3 More about the Ergodic Theory of Markov Chains

3.1. Classification of States
3.1.1. Classification, Recurrence, and Trans;lence

3.1.2. Criteria for Recurrence and Transience .
3.1.3. Periodicity

3.2. Ergodic Theory w1th0ut Doebhn
3.2.1. Convergence of Matrices

o}

L 00 ~J O = N = =

— = =
Sy QU = O

23

23
24
24
20
2'7
27
28
30
32

33
34

38
4()

45

46
46

43
o1
03
00



viil

3.2.2.

3.2.3.
3.2.4.

3.2.90.
3.2.6.
3.2.7.

Contents

Abel Convergence .

Structure of Stationary Distributions
A Small Improvement . . .
The Mean Ergodic Theorem Agam .
A Refinement in The Aperiodic Case .
Periodic Structure .

3.3. Hxercises

Chapter 4 Markov Processes in Continuous Time .

4.1. Poisson Processes . L.
4.1.1. The Simple Poisson Process .
4.1.2. Compound Poisson Processes on Zd *
4.2. Markov Processes with Bounded Rates

4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.2.6.

Basic Construction

The Markov Property . ..
The ()-Matrix and Kolmogorov’s Backward Equatmn
Kolmogorov’s Forward Equation .

Solving Kolmogorov’s Equation

A Markov Process from its Infinitesimal Characteristics

4.3. Unbounded Rates

4.3.1. Explosion

4.3.2. Criteria for Non-explosion or Explosion
4.3.3. What to Do When Explosion Occurs .
4.4. Ergodic Properties . . .

4.4.1. Classification of States .

4.4.2. Stationary Measures and Limit Theorems
4.4.3. Interpreting m;;

4.5. Exercises

Chapter 5 Reversible Markov Processes

5.1. Reversible Markov Chains .

5.1.1. Reversibility trom Invariance

5.1.2. Measurements in Quadratic Mean .

5.1.3. The Spectral Gap . . . .

5.1.4. Reversibility and Perlodlmty

5.1.5. Relation to Convergence in Varlation

5.2. Dirichlet Forms and Estimation of & . . ..
5.2.1. The Dirichlet Form and Poincaré’s Inequahty .
5.2.2. Estimating (3.

5.2.3. Estimating G_

5.3. Reversible Markov Processes in Continuous Time .
5.3.1. Criterion for Reversibility . . Lo
5.3.2. Convergence in L*(7) for Bounded Rates .
5.3.3. L?(7)-Convergence Rate in General

515
5
09
61
62
60
67

I

79
(O
77
80
30
33
39
80
86
33
39
90
92
94
95
95
98

. 101
. 102

. 107

. 107
. 108
. 108
. 110
. 112
. 113
. 115
. 115
. 117
. 119
. 120
. 120
. 121
. 122



Contents

5.3.4. Estimating A . . .

5.4. Gibbs States and Glauber Dynamlcs

5.4.1. Formulation . . .

5.4.2. The Dirichlet Form

5.5. Simulated Annealing™ .

5.6.1. The Algorithm . . . . . o
5.5.2. Construction of the 'I‘ran51t1011 Probablhtles .
5.5.3. Description of the Markov Process .

5.5.4. Choosing a Cooling Schedule .

5.5.5. Small Improvements .

5.6. Exercises '

Chapter 6 Some Mild Measure Theory

6.1. A Description of Lebesgue’s Measure Theory .
6.1.1. Measure Spaces . . . . . L.
6.1.2. Some Consequences of Countable Addltnflty
6.1.3. Generating o-Algebras .

6.1.4. Measurable Functions

6.1.5. Lebesgue Integration . .. . .
6.1.6. Stability Properties of LebeSﬂ‘ue Integratlon .
6.1.7. Lebesgue Integration in Countable Spaces
6.1.8. Fubini’s Theorem .

6.2. Modeling Probability . . . . . .
6.2.1. Modeling Infinitely Many Tosses of a, Falr Com
6.3. Independent Random Variables

6.3.1. BExistence of Lots of Independent Random Varla,bles

6.4. Conditional Probabilities and Expectations .
6.4.1. Conditioning with Respect to Random Variables

Notation .
References .

Index .

1X

. 125
. 126
. 126
. 127
. 130
. 131
. 132
. 134
. 134
. 137
. 138

. 145

. 145
. 145
. 147
. 148
. 149

. 150
. 151
. 193

. 199
. 197
. 198
. 162
. 163
. 165
. 166

. 167

. 168

. 169



Preface

To some extent, it would be accurate to summarize the contents of this
book as an intolerably protracted description of what happens when either
one raises a transition probability matrix P (i.e., all entries (P);; are non-
negative and each row of P sums to 1) to higher and higher powers or one
exponentiates R(P — I), where R is a diagonal matrix with non-negative
entries. Indeed, when it comes right down to it, that is all that is done in
this book. However, I, and others of my ilk, would take offense at such a
dismissive characterization of the theory of Markov chains and processes with
values in a countable state space, and a primary goal of mine in writing this
book was to convince its readers that our offense would be warranted.

The reason why I, and others of my persuasion, refuse to consider the theory
here as no more than a subset of matrix theory is that to do so is to ignore the
pervasive role that probability plays throughout. Namely, probability theory
provides a model which both motivates and provides a context for what we
are doing with these matrices. 'Lo wit, even the term “transition probability
matrix” lends meaning to an otherwise rather peculiar set of hypotheses to
make about a matrix. Namely, it suggests that we think of the matrix entry
(P);; as giving the probability that, in one step, a system in state ¢ will make
a. transition to state j. Moreover, if we adopt this interpretation for (P);;,
then we must interpret the entry (P”),;; of P" as the probability of the same
transition in n steps. Thus, as n — oo, P is encoding the long time behavior
of a randomly evolving system for which P encodes the one-step behavior,
and, as we will see, this interpretation will guide us to an understanding of
lim,_,+(P");;. In addition, and perhaps even more important, is the role
that probability plays in bridging the chasm between mathematics and the
rest of the world. Indeed, it is the probabilistic metaphor which allows one to
formulate mathematical models of various phenomena observed in both the
natural and social sciences. Without the language of probability, it is hard to
imagine how one would go about connecting such phenomena to P™.

In spite of the propaganda at the end of the preceding paragraph, this
book is written from a mathematician’s perspective. Thus, for the most part,
the probabilistic metaphor will be used to elucidate mathematical concepts
rather than to provide mathematical explanations for non-mathematical phe-
nomena. There are two reasons for my having chosen this perspective. First,
and foremost, is my own background. Although I have occasionally tried to
help people who are engaged in various sorts of applications, I have not accu-
mulated a large store of examples which are easily translated into terms which
are appropriate for a book at this level. In fact, my experience has taught
me that people engaged in applications are more than competent to handle
the routine problems which they encounter, and that they come to someone
like me only as a last resort. As a consequence, the questions which they
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ask me tend to be quite dificult and the answers to those few which 1 can
solve usually involve material which is well beyond the scope of the present
book. The second reason for my writing this book in the way that I have
is that I think the material itself is of sufficient interest to stand on its own.
In spite of what funding agencies would have us believe, mathematics qua
mathematics is a worthy intellectual endeavor, and I think there is a place
for a modern introduction to stochastic processes which is unabashed about
making mathematics its top priority.

I came to this opinion after several semesters during which I taught the
introduction to stochastic processes course offered by the M.L.T. department
of mathematics. The clientele for that course has been an interesting mix ot
undergraduate and graduate students, less than half of whom concentrate in
mathematics. Nonetheless, most of the students who stay with the course
have considerable talent and appreciation for mathematics, even though they
lack the formal mathematical training which is requisite for a modern course
in stochastic processes, at least as such courses are now taught in mathematics
departments to their own graduate students. As a result, I found no ready-
made choice of text for the course. On the one hand, the most obvious choice is
the classic text A First Course in Stochastic Processes, either the original one
by S. Karlin or the updated version {4] by S. Karlin and H. Taylor. Their book
gives a no nonsense introduction to stochastic processes, especially Markov
processes, on a countable state space, and its consistently honest, if not al-
ways easily assimilated, presentation of proofs is complemented by a daunting
number of examples and exercises. On the other hand, when I began, I feared
that adopting Karlin and Taylor for my course would be a mistake of the same
sort as adopting Feller’s book for an undergraduate introduction to probabil-
ity, and this fear prevailed the first two times I taught the course. However,
after using, and finding wanting, two derivatives of Karlin’s classic, I took the
plunge and assigned Karlin and Taylor’s book. The result was very much the
one which I predicted: 1 was far more enthusiastic about the text than were
my students. '

In an attempt to make Karlin and Taylor’s book more palatable for the
students, I started supplementing their text with notes in which I tried to
couch the proofs in terms which I hoped they would find more accessible, and
my efforts were rewarded with a quite positive response from my students.
In fact, as my notes became more and more extensive and began to diminish
the importance of the book, 1 decided to convert them into what is now this
book, although I realize that my decision to do so may have been stupid. For
one thing, the market is already close to glutted with books which purport
to cover this material. Moreover, some of these books are quite popular, al-
though my experience with them leads me to believe that their popularity
is not always correlated with the quality of the mathematics they contained.
Having made that pejorative comment, 1 will not make public which are the
books which led me to this conclusion. Instead, I will only mention the books
on this topic, besides Karlin and Taylor’s, which I very much liked. Namely,
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J. Norris’s book |5} is an excellent introduction to Markov processes which,
at the same time, provides its readers with a good place to exercise their
measure-theoretic skills. Of course, Norris’s book is only appropriate for stu-
dents who have measure-theoretic skills to exercise. On the other hand, for
students who possess those skills, Norris’s book is a place where they can
see measure theory put to work in an attractive way. In addition, Norris
has included many interesting examples and exercises which illustrate how
the subject can be applied. The present book includes most of the math-
ematical material contained in [5|, but the proofs here demand much less
measure theory than his do. In fact, although 1 have systematically employed
measure theoretic terminology (Lebesgue’s Dominated Convergence Theorem,
the Monotone Convergence Theorem, etc.), which is explained in Chapter 6,
[ have done so only to familiarize my readers with the jargon which they will
encounter if they delve more deeply into the subject. In fact, because the
state spaces in this book are countable, the applications which I have made of
Lebesgue’s theory are, with one notable exception, entirely trivial. The one
exception, which is made in §6.2, is that I have included a proof that there
exist countably infinite families of mutually independent random variables.
Be that as it may, the reader who is ready to accept that such families exist
has no need to consult Chapter 6 except for terminology and the derivation ot
a few essentially obvious facts about series. For more advanced students, an

excellent treatment of Markov chains on a general state space can be found
in the book [6] by D. Revuz.

The organization of this book should be more or less self-evident from the
table of contents. In Chapter 1, I give a bare hands treatment of the basic
facts, with particular emphasis on recurrence and transience, about nearest
neighbor random walks on the square, d-dimensional lattice Z¢. Chapter 2
introduces the study of ergodic properties, and this becomes the central theme
which ties together Chapters 2 through 5. In Chapter 2, the systems under
consideration are Markov chains (i.e., the time parameter is discrete), and the
driving force behind the development there is an idea which was introduced
by Doeblin. Restricted as the applicability of Doeblin’s idea may be, it has
the enormous advantage over the material in Chapters 3 and 4 that it provides
an estimate on the rate at which the chain is converging to its equilibrium
distribution. After giving a reasonably thorough account of Doeblin’s theory,
in Chapter 3 I study the ergodic properties of Markov chains which do not
necessarily satisty Doeblin’s condition. The main result here is the one sum-
marized in equation (3.2.15). Even though it is completely elementary, the
derivation of (3.2.15), is, without doubt, the most demanding piece of analy-
sis in the entire book. So far as I know, every proof of (3.2.15) requires work
at some stage. In supposedly “simpler” proofis, the work is hidden elsewhere
(either measure theory, as in [5] and [6], or in operator theory, as in [2}). The
treatment given here, which is a re-working of the one in |4] based on Feller’s
renewal theorem, demands nothing more of the reader than a thorough un-
derstanding of arguments involving limits superior, limits inferior, and their
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role in proving that limits exist. In Chapter 4, Markov chains are replaced by
continuous-time Markov processes (still on a countable state space). I do this
first in the case when the rates are bounded and theretore problems of possible
explosion do not arise. Afterwards, I allow for unbounded rates and develop
criteria, besides boundedness, which guarantee non-explosion. The remainder
of the chapter is devoted to transferring the results obtained for Markov chains
in Chapter 3 to the continuous-time setting. Aside from Chapter 6, which is
more like an appendix than an integral part of the book, the book ends with
Chapter 5. The goal in Chapter 5 is to obtain quantitative results, reminis-
cent of, if not as strong as, those in Chapter 2, when Doeblin’s theory either
fails entirely or yields rather poor estimates. The new ingredient in Chapter
5 is the assumption that the chain or process is reversible (i.e., the transition
probability is self-adjoint in the L*-space of its stationary distribution), and
the engine which makes everything go is the associated Dirichlet form. In
the final section, the power of the Dirichlet form methodology is tested in an
analysis of the Metropolis (a.k.a. as simulated annealing) algorithm. Finally,
as I said before, Chapter 6 is an appendix in which the ideas and terminol-
ogy of Lebesgue’s theory of measure and integration are reviewed. The one
substantive part of Chapter 6 is the construction, alluded to earlier, in §6.2.1.

Finally, I have reached the traditional place reserved for thanking those
individuals who, either directly or indirectly, contributed to this book. The
principal direct contributors are the many students who suffered with various
and spontaneously changing versions of this book. I am particularly grateful
to Adela Popescu whose careful reading brought to light many minor and a few
major errors which have been removed and, perhaps, replaced by new ones.
Thanking, or even identifying, the indirect contributors is trickier. Indeed,
they include all the individuals, both dead and alive, from whom I received
my education, and I am not about to bore you with even a partial list of who
they were or are. Nonetheless, there is one person who, over a period of more
than ten years, patiently taught me to appreciate the sort of material treated
here. Namely, Richard A. Holley, to whom I have dedicated this book, is a
true probabilist. To wit, for Dick, intuitive understanding usually precedes
his mathematically rigorous comprehension of a probabilistic phenomenon.
This statement should lead no one to to doubt Dick’s powers as a rigorous
mathematician. On the contrary, his intuitive grasp of probability theory not
only enhances his own formidable mathematical powers, it has saved me and
others from blindly pursuing flawed lines of reasoning. As all who have worked
with him know, reconsider what you are saying if ever, during some diatribe
into which you have launched, Dick quietly says “I don’t follow that.”

In addition to his mathematical prowess, every one of Dick’s many students
will attest to his wonderful generosity. 1 was not his student, but I was
his colleague, and I can assure you that his generosity is not limited to his

students.

Daniel W. Stroock, August 2004



CHAPTER 1

Random Walks
A Good Place to Begin

The purpose of this chapter is to discuss some examples of Markov processes
which can be understood even before the term “Markov process” is. Indeed,
anyone who has been introduced to probability theory will recognize that
these processes all derive from consideration of elementary “coin tossing.”

1.1 Nearest Neighbor Random Walks on Z

Let p be a fixed number from the open interval (0,1), and suppose that!
{B, : n € Z7}isasequence of {—1, 1}-valued, identically distributed Bernoul-
li random variables® which are 1 with probability p. That is, for any n € Z*

and any F = (e1,...,€,) € {—1,1}",

P(Bl —€1,..., 8, = Gn) = pN(E)q”_N(E) where ¢ =1 — p and

1.1.1 S (E -
( ) N(FE) = #{m L € = 1} = Ej———-?—-—(———-)- when S, (F) = ;Em-
Next, set
(1.1.2) Xo=0 and X, = Z B,, forneZ.
m=1

The existence of the family {B,, : n € Z™} is the content of §6.2.1.

The above family of random variables { X,, : n € N} is often called a nearest
netghbor random walk on Z. Nearest neighbor random walks are examples
of Markov processes, but the description which we have just given is the
one which would be given in elementary probability theory, as opposed to a
course, like this one, devoted to stochastic processes. Namely, in the study
of stochastic processes the description should emphasize the dynamic aspects

17 is used to denote the set of all integers, of which N and Z™ are, respectively, the non-
negative and positive members.

2 For historical reasons, mutually independent random variables which take only two values
are often said to be Bernoulli random variables.
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of the family. Thus, a stochastic process oriented description might replace
(1.1.2) by

P(Xg=0)=1 and
(1.1.3)

ﬁ(Xn_Xn_lzeXO?...an—l):{p 1 6
q ].ff‘::—"]-p

where ?‘*(X,,,rl — X1 = € } Xo, - . .,Xn_.l) denotes the conditional probability
(cf. §6.4.1) that X,, — X,,_1 = € given 0({ Xy, ..., X,—1}). Notice that (1.1.3)
is indeed more dynamic a description than the one in (1.1.2). Specifically, it
says that the process starts from 0 at time n = 0 and proceeds so that, at
each time n € ZT, it moves one step forward with probability p or one step
backward with probability ¢, independent of where it has been before time n.

1.1.1. Distribution at Time n: In this subsection, we will present two
approaches to computing P(X,, = m). The first computation is based on the
description given in (1.1.2). Namely, from (1.1.2) it is clear that P(|X,| <

n) = 1. In addition, it is clear that

n odd > P(X, isodd) =1 and n even > P(X,, is even) = 1.

Finally, given m € {—n,...,n} with the same parity as n and a string F =
(€1, ..,€n) € {—1,1}™ with (cf. (1.1.1)) Sp(E) = m, N(E) = 25™ and so

re+rn. L — L

P(By =¢1,...,Bn =€) = p 27¢"3

AN £!
Hence, because, when (k) = kl—k)!
T

there are (ﬂl+n) such strings F, we see that
2

1s the binomaal coefficient “¢ choose k.”

P(Xy =m) = @L)pﬂﬁﬂqﬂ;m

if m € Z, im| < n, and m has the same parity as n

(1.1.4)

and i1s 0 otherwise.

Our second computation of the same probability will be based on the more
dynamic description given in (1.1.3). To do this, we introduce the notation
(P™),, = P(X,, = m). Obviously, (P°%),, = 6o.m, where 0 ¢ is the Kronecker
symbol which is 1 when k = £ and 0 otherwise. Further, from (1.1.3), we see
that P(X,, = m) equals

P(Xp1=m—-1& X, =m)+P(X,,.1 =m+1& X, =m)
:p-!i"(Xn_l = m, — 1) + q}P’(Xn_I = m + 1).

That 1s,

(1.1.5) (P%),, = 00.m and (P"),, = p(P" i1 + (P 1) i1
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Obviously, (1.1.5) provides a complete, albeit implicit, prescription for com-
puting the numbers (P™),,, and one can easily check that the numbers given
by (1.1.4) satisty this prescription. Alternatively, one can use (1.1.5) plus in-
duction on n to see that (P™),, = 0 unless m = 2¢ —n for some 0 < £ < n and
that (C™); = (C™)p—1 + (C™)y~1 when (C™)p = p~*q" *(P")2p_,. In other
words, the coefficients {(C™), : n € N & 0 < £ < n} are given by Pascal’s
triangle and are therefore the binomial coefficients.

1.1.2. Passage Times via the Reflection Principle: More challenging
than the computation in §1.1.1 is finding the distribution of the first passage

time to a point a € Z. That is, given a € Z \ {0}, set”
(1.1.6)  (y=inf{n>1: X,, = a} (= oo when X,, # a for any n > 1).

Then (, is the first passage time to a, and our goal here is to find its distribu-
tion. Equivalently, we want an expression for P((, = n), and clearly, by the
considerations in §1.1.1, we need only worry about n’s which satisfy n > |a]
and have the same parity as a.

Again we will present two approaches to this problem, here based on (1.1.2)
and in §1.1.5 on (1.1.3). To carry out the one based on (1.1.2), assume that
a € Z7T, suppose that n € Z7 has the same parity as a, and observe first that

P((ﬂ:n):l.'(Xn:a&Cﬂ>n—1)szﬁ(Ca>n—l&Xn_1:a,—1).

Hence, it suffices for us to compute I.I'(C.z1 >n—1& X,,_1 =a— 1). For this
purpose, note that for any £ € {—1,1}"~! with S,,_1(F) = a — 1, the event

nre 1 n—_a

{(B]..’l e e ::B'n,—l) — E} has pI‘Ob&blllty Dz q 2z . ThllS,

1.4+ a T — (1.

(%) PG =mn)=N(n,a)p™7 ¢3

where N (n,a) is the number of E € {—1,1}"! with the properties that
Se(B)y<a—1for0<f<n—-—1and S, 1(F)=a—1. That is, everything
comes down to the computation of N (n,a). Alternatively, since N(n,a) =
(nga_il) ~N'(n,a), where N'(n, a) is the number of E € {-1,1}"~! such that

Sn—1(FE) =a — 1 and Se(E) > a for some ¢ < n — 1, we need only compute
N'(n,a). For this purpose we will use a beautiful argument known as the
reflection principle. Namely, consider the set P(n, a) of paths (Sy,...,S5,_1) €
7" with the properties that Sop =0, Sp — Sp—-1 € {—1,1} for 1 <m <n —1,
and S,, > a for some 1 < m < n — 1. Clearly, N'(n,a) is the numbers of
paths in the set L(n,a) consisting of those (Sy,...,5.,_1) € P(n,a) for which
Sn—1 = a — 1, and, as an application of the reflection principle, we will show
that the set L(n,a) has the same number of elements as the set U(n, a) whose
elements are those paths (Sp,...,S,_1) € P(n,a) for which S,,_1 = a + 1.
Since (Sp,...,Sn—1) € U(n,a) if and only if Sy = 0, S,, — Sp—1 € {—1,1}

3 As the following indicates, we take the infemum over the empty set to be 4-o0.
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foralll < m < n-1, and $,_1 = a + 1, we already know how to count

them: there are (T;_l) of them. Hence, all that remains is to provide the

advertised applicatiim of the reflection principle. To this end, for a given
S =(S50,...,8._1) € P(n,a), let £(S) be the smallest 0 < k < n—1 for which
Sk > a, and define the reflection R(S) = (S, ..., Sn—1) of S so that S, = Sy,
if 0 < m < ¢(S) and Sk = 2a — Sk, if 4(S) < m < n — 1. Clearly, & maps
L(n,a) into U(n,a) and U(n,a) into L(n,a). In addition, R is idempotent:
its composition with itself is the identity map. Hence, as a map from L(n, a)
to U(n, a), R it must be both one-to-one and onto, and so L(n,a) and U(n, a)
have the same numbers of elements.
We have now shown that N'(n,a) = (ﬁ; ) and therefore that

Finally, after plugging this into (*), we arrive at

- [ n—1 n—1\| nte n_a
E:-D(Cﬂ — ﬂ’) — (ﬂ—l—ﬂ, - 1) Il ( n-+a ) : p . q : ?
L 2 R

2

which simplifies to the remarkably simple expression

(L Tl n+a n-—a (1
P((, =n) = — (n+ﬂ>p 2 g 2 = —P(X,, = a).

T > T

The computation when a < 0 can be carried out either by repeating the
argument just given or, after reversing the roles of p and ¢, applying the
preceding result to —a . However one arrives at it, the general result is that

(1.1.7) a#0 = P((, =n)= %(nzﬂ)pn?qﬂzﬂ — ]—(E-‘-P(Xﬁ = q)

5 (f!

for n > |a| with the same parity as a and is 0 otherwise.

1.1.3. Some Related Computations: Although the formula in (1.1.7) is

elegant, it is not particularly transparent. In particular, it is not at all evident
how one can use it to determine whether P((, < co) = 1. To carry out this
computation, let @ > 0 be given, and write of {, = f.,(B1,...,Bp,...), where

. is the function which maps {—1,1}%" into Z* U {oo} so that, for each
n € N,

T
fal€lyeo y€py.n.) >N = Zf—:g<a, for 1 <m < n.
£=1

Because the event {(, = m} depends only on (B,...,B,,) and

Co=m = (o1 =m+GoT"
where C}'_ o X" = fl(Bm‘i*l? L an-I-ﬂ: R ):f

(1.1.8)
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{(o = m & (o1 < 0} = {(a = m}'ﬂ {1 02X™ < o}, and {{, = m} is
independent of {{; 0 2™ < oo}. In particular, this leads to

P(Ca+1 <.QO) = i P(Ce = m & (g1 < 00)
m=1
= S PG = m)P(G o B < oo)
m=1
= P(G1 < o0) i P(Ca =m) =P(¢1 < 00)P((e < 00),
m=1
since (Brma1,...3 Bmtn,---)and (By,...,B,,...) have the same distribution

and therefore so do (; o 2™ and (;. The same reasoning applies equally well
when a < 0, only now with —1 playing the role of 1. In other words, we have
proved that

(1.1.9) P(Co < 00) = P(Cognay < 00)'“ for a € Z\ {0},

where sgn(a), the signum of a, is 1 or —1 according to whether a > 0 or
a < 0. In particular, this shows that P(¢; <o) =1 = P({, < o0) =1 and
P((_1<o0)=1 = P{(.,<oc)=1forallacZ™".

In view of the preceding, we need only look at P((; < o). Moreover, by
the Monotone Convergence Theorem, 1heorem 6.1.9,

o0

— ]; oG] I3 2n—1m _ o |
P(¢; < o0) S%E_S | =lm ) s ({1 =2n —1)

n=1

Applying (1.1.7) with ¢ = 1, we know that

1 2n — 1
P(Cr=2n—1) = = ( )'p‘”q”‘l-

on—1\ n

Next, note that

1 (2n - 1) _ (-1 vt *ﬁ@m 1)

2n — 1 n nl(n —1)! n!

where?, for any o € R,

(c};)_{l if n =
n) %H:T;lo(a—m) ifneZ™

4 In the preceding, we have adopted the convention that Hﬁ:k a; =11 ¢ < k.
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is the generalized binomial coefficient which gives the coeflicient of £ in the
Taylor’s expansion of (1 + z)® around x = 0. Hence,

Z 2N IP §1 = 2n — ]_) (2> (w4'pq‘92)ﬂ’ o \/ | bq ?
=1

2qs n 248
and so
_ 1 — /1 — 4dpgs?
(1.1.10) lﬂl'scﬂ I e for |s| < 1.

248

Of course, by ijmmetry, one can reverse the roles of p and ¢ to obtain

o1 1 — /1 — 4dpgs?

1.1.11 H | = ——————  for |s| < 1.
(1.1.11) 6 - £

-l

By letting s 7 1 in (1.1.10) and noting that 1 — 4pg = (p + q)? — 4pq =
(p — q)?, we see that®

1-|p—q _pAg

lim K [SCI

s,/'1 2q {
and so e
1L P-4
B < p—
<o) ={s i<,

Of course, P({.1 < o0) is given by the same formula, only with the roles of p
and g reversed. Thus,

1 facZt &p>qor —acZt &p<gq
a
(%;—) facZt*&p<qgor —acZ' & p>q.

(1.1.12)  P((, < 00) = {
1.1.4. Time of First Return: Having gone to so much trouble to arrive at

(1.1.12), it is only reasonable to draw from it a famous conclusion about the
recurrence properties of nearest neighbor random walks on Z. Namely, let

po = inf{n >1: X, =0} (= 0 if X, # 0 for all n > 1)

be the time of first return to 0. Then, by precisely the same sort of reasoning
which allowed us to arrive at (1.1.9), we see that P(X; = 1 & py < o0) =
pP({_1 < 00) and P(X; = -1 & pp < o0) = qP((3 < o0), and so, by (1.1.12),

(1.1.13) P(po < o0) = 2(p A q).

° We use a A b to denote the minimum min{a, b} of a,b € R.
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In other words, the random walk {X,, : n > 0} will return to O with probability
1 2f and only f it 1s symmetric in the sense that p = %—

By sharpening the preceding a little, one sees that P(X; =1 & pg = 2n) =
pP((_1 =2n—1) and P(X; = -1 & py = 2n) = gP((4 = 2n — 1), and so, by

(1.1.10) and (1.1.11),

(1.1.14) E[s7] =1-—+/1—4pgs? for |s| < 1.
Hence,
. d : 4pgs*
iipgs“:’“} = s—m-E[s‘“” = P2 for 5| < 1,
‘ ds T W1 — 4pgs?

and therefore, since® E[pgs?®] / E[pg, po < o] as s 1,

' © |lp—g¢q

which, in conjunction with (1.1.13), means that’

2;_!9\/91'_11= 1
p — ¢

p—q|

The conclusions drawn in the preceding provide significant insight into the
behavior of nearest neighbor random walks on Z. In the first place, they say
that when the random walk is symmetric, it returns to 0 with probability 1
but the expected amount of time it takes to do so is infinite. Secondly, when
the random walk is not symmetric, it will, with positive probability, fail to
return. On the other hand, in the non-symmetric case, the behavior of the
trajectories is interesting. Namely, (1.1.13) in combination with (1.1.15) say
that either they fail to return at all or they return relatively quickly.

1.1.5. Passage Times via Functional Equations: We close this discus-
sion of passage times for nearest neighbor random walks with a less computa-
tional derivation of (1.1.10). For this purpose, set u,(s) = E[s%] for a € Z\ {0}
and s € (—1,1). Given a € Z™, we use the ideas in §1.1.3, especially (1.1.8),
to arrive at

N#d

-SCI sz}

0O 0O
ua+l(3) — Z s"E :Sglﬂzm# Ga = m — Z s™ :Iﬁ(Cﬂ* — mﬂ: _
m=1

- Z $"P(Ca = m)ui(s) = uqa(s)ui(s).

 When X is a random variable and A is an event, we will often use E[X, A| to denote
‘L[X 1 A] :
"a Vb is used to denote the maximum max{a, b} of a, b € R.
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Similarly, if —a € Z™, then u,_1(s) = ug(s)u_1(s). Hence
(1.1.16) Ug(8) = uﬁgﬂ(ﬂ)(s)‘“‘ for a € Z \ {0} and |s] < 1.

Continuing with the same line of reasoning and using (1.1.16) with a = 1, we
aiso have

u1(s) = ]ELSCI, X1 — 1} —|—E:SC1, X1 = —1:'

= ps + gskE [3@“""21, X1 = —1| = ps + gsua(s) = ps + gsui(s)°.

Hence, by the quadratic formula,

14 +/1 — 4pgs?
B 2q5s |

u1(S)

Because P((7 is odd) = 1, uy1(—s) = —u1(s). At the same time,

l+vi—4pg _pVvVag_

—_— — 1.
2q 8 2q qg

s€(0,1) =

Hence, since s € (0,1) == wuq(s) < 1, we can eliminate the “+” solution and
thereby arrive at a second derivation of (1.1.10). In fact, after combining this
with (1.1.16), we have shown that

(}____\/1_433@2)‘“‘ ifac 7+

2gs

L

i

(1.1.17) E[s¢

for s} < 1.

28

(1— v 1_433%2.)“@ if —aqeZ™

1.2 Recurrence Properties of Random Walks

In §1.1.4, we studied the time pg of first return of a nearest neighbor random
walk to 0. As we will see in Chapters 2 and 3, times of first return are critical
(cf. §2.3.2) for an understanding of the long time behavior of random walks
and related processes. Indeed, when the random walk returns to 0, it starts
all over again. Thus, if it returns with probability 1, then the entire history of
the walk will consist of epochs, each epoch being a sojourn which begins and
ends at 0. Because it marks the time at which one epoch ends and a second,
identically distributed, one begins, a time of first return is often called a
recurrence time, and the walk is said to be recurrent if P(pg < oo) = 1. Walks
which are not recurrent are said to be transient.

In this section, we will discuss the recurrence properties of nearest neigh-
bor random walks. Of course, we already know (cf. (1.1.13)) that a nearest
neighbor random on Z is recurrent if and only if it is symmetric. Thus, our
interest here will be in higher dimensional analogs. In particular, in the hope
that it will be convincing evidence that recurrence is subtle, we will show that
the recurrence of the nearest neighbor, symmetric random walk on Z persists
when Z is replaced by Z* but disappears in Z>.
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1.2.1. Random Walks on Z%: To describe the analog on Z% of a nearest
neighbor random walk on Z, we begin by thinking of Ny = {-1,1} as the
set, of nearest neighbors in Z of 0. It should then be clear why the set of
nearest neighbors of the origin in Z% consists of the 2d points in Z¢ for which
(d — 1) coordinates are 0 and the remaining coordinate is in N;. Next, we re-
place the Ni-valued Bernoulli random variables in §1.1 by their d-dimensional
analogs, namely: independent, identically distributed N -valued random vari-
ables B1,...,B,,,....% Finally, a nearest neighbor random walk on Z¢ is a

family {X,, : n > 0} of the form

Xg =0 and XH:ZBm for n > 1.
m=1

The equivalent, stochastic process oriented description of {X,, : n > 0} is
P(Xp=0)=1 and, forn > 1 and € € Ny,

(1'2'1) I?(Xﬂ, — Xp—1 =€ l X0 - - vXﬂ*“l) — Pe;

where pe = P’(Bl = €). When Bj is uniformly distributed on N4, the random
walk is said to be symmetric.

In keeping with the notation and terminology introduced above, we define
the time pg of first return to the origin equal to n it n > 1, X,, = 0, and
X, #0forl < m < n, and we take pg = oo if no such n > 1 exists.
Also, we will say that the walk is recurrent or transient according to whether
P(pg < oc) is 1 or strictly less than 1.

1.2.2. An Elementary Recurrence Criterion: Given n > 1, let p{()ﬂ) be
the time of the nth return to 0. That is, pél) = po and, for n > 2,

p{()n_l) <00 = p{gn) = inf{m > p»~ Y. X,, = 0}

and pf_-,”'*l) =00 —» pgn’) = o0. KEquivalently, if g : (Nd)w — LT U {oo} is

determined so that

™m
9(61?...€gj...)>ﬂ if Z,EE#O for 1 <m <n,
=1

then pg = g(B1,...,By,...), and p[(}n) =m > péﬂﬂ) = m + pg o 2" where

po © X" is equal to g(Bm 1y+-->sBmar,-..). In particular, this leads to

P(péﬂH) < 00) = Z F’(p,g”) —m& pgo Xt < oo)
m=1

— P(pf}”) < 00)P(pg < 00),

3 The existence of the B, ’s can be seen as a consequence of Theorem 6.3.2. Namely, let

{U,, : n € Z*"} be a family of mutually independent random variables which are uniformly
distributed on [0,1). Next, let (ki,...,ks4) be an ordering of the elements of N4, set
Bo =0and By = ), P(By = kg) for 1 < m < 2d, define F : [0,1) — Ny so that
F ' Bm-1,8m) = km, and set B,, = F(U,).
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since {p[(]”) = m} depends only on (B4, ...,B,,), and is therefore independent
of pg 0 22, and the distribution of pg o 2. is the same as that of pg. Thus,
we have proved that

(1.2.2) ’P(pg”) < o0) =P(pg < )" forn > 1.

One dividend of (1.2.2) is that it supports the epochal picture given above
about the structure of recurrent walks. Namely, it says that if the walk returns
once to 0 with probability 1, then, with probability 1, it will do so infinitely
often. This observation has many applications. For example, it shows that if
the mean value of ith coordinate of B; is different from 0, then {X,, : n > 0}
must be transient. To see this, use Y,, to denote the 1th coordinate of B,,,
and observe that {Y,, —Y,,_1 : n > 1} is a sequence of mutually independent,
identically distributed {—1,0, 1}-valued random variables with mean value
1 # 0. But, by the Strong Law of Large Numbers (cf. Exercise 1.3.4 below),
this means that % » 1 # 0 with probability 1, which is possible only
if | X,,| > 1Y, — oo with probability 1, and clearly this eliminates the
possibility that, even with positive probability, X,, = 0 infinitely often.

A second dividend of (1.2.2) is the following. Define

To= Y 1lio}(Xy)

1=

to be the total time that {X,, : n > 0} spends at the origin. Since Xy = O,
To > 1. Moreover, forn > 1, Ig > n < pgl) < o0. Hence, by (1.2.2),

o0 X 00
qub]::EE:E%jB:>ﬂn)::1-¥:E:ﬁ?G£TJﬁiCKO:=f1+-jz:mwpgﬂiixﬂn,
n=1 n=1

11=0

and so

1 1

—
—

(1.2:3) o) = 1B <) = Plpg = o0}

Before applying (1.2.3) to the problem of recurrence, it is interesting to
note that 1g is a random variable for which the following peculiar dichotomy

holds:

$%Ib*<i3i)ﬁ’0 > Eﬂ?h]{:ce
E{Ty] = co == P(Tp = oo) = 1.

(1.2.4)

Indeed, if P(Ty < oo) > 0, then, with positive probability, X,, cannot be 0
infinitely often and so, by (1.1.13), P(po < o0) < 1, which, by (1.2.3), means
that [E[Ty| < co. On the other hand, if E|[T3] = oo, then (1.2.3) implies that

P(pg < o) =1 and therefore, by (1.2.2), that P(1p > n) = P(ﬁgﬁ) < 00) =1
for all n > 1. Hence (cf. (6.1.3)), P(Tp = o) = 1.
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1.2.3. Recurrence of Symmetric Random Walk in Z?: The most fre-

quent way that (1.2.3) gets applied to determine recurrence is in conjunction
with the formula

(1.2.5) E[To] = i P(X,, = 0).

n=>0

Although the proof of (1.2.5) is essentially trivial (cf. Theorem 6.1.15):

E[To] =E [Z 1oy (Xn)} = Y E[l(0}(Xn)] =) P(X, =0),
n=0 r=0 1=

in conjunction with (1.2.3) it becomes powerful. Namely, it says that
o

(1.2.6) {X,, : n >0} is recurrent if and only if Z P(X,, = 0) = oo,
re=0

and, since P(X,, = 0) is more amenable to estimation than quantities which
involve knowing the trajectory at more than one time, this is valuable infor-
mation.

In order to apply (1.2.6) to symmetric random walks, it is important to
know that when the walk 1s symmetric, then 0 1s the most likely place for the
walk to be at any even time. To verify this, note that if k € Z2,

P(Xon =k) =) P(X,=/0& Xo, — X, =k —£)

£cZe
=Y P(Xp=0P(Xon —Xpn=k—£) =) P(X,=0PX,=k-¥¢)
ISV A AYA
; !
<[ S PpX.=0)"| | Y PXn=k-06"] =Y PX,=9",
LcZ ez Lezs

where, in the passage to the last line, we have applied Schwarz’s inequality (cf.
Exercise 1.3.1 below). Up to this point we have not used symmetry. However,
if the walk is symmetric, then P(X,, = ¢) = P(X,, = —£), and so the last line
of the preceding can by continued as

Y P(X, =)P(X, =)

LcZe

=) P(X, =0)P(Xsn — X, = —£) = P(X3, = 0).
ez

Thus,

(1.2.7)  {X,: n >0} symmetric => P(Xjy, =0) = max P(Xopn = k).
~
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To develop a feeling for how these considerations get applied, we begin
by using them to give a second derivation of the recurrence of the nearest

neighbor, symmetric random walk on Z. For this purpose, note that, because
P(|X,| <n) =1, (1.2.7) implies that

2n
1= ) P(Xz, =4£) < (dn+ 1)P(Xy, = 0),
{=—2n

and therefore, since the harmonic series diverges, that > °"  P(X,, = 0) = oo.

The analysis for the symmetric, nearest neighbor random walk in Z? re-
quires an additional ingredient. Namely, the d-dimensional analog of the
preceding line of reasoning would lead to P(X5,, = 0) > (4n + 1)~¢, which
1s inconclusive except when d = 1. In order to do better, we need to use the

fact that

=

(1.2.8) {X,, : n >0} symmetric == E[|X,[|*] =n.

To prove (1.2.8), note that each coordinate of B,, is a random variable with
mean value 0 and variance %f. Hence, because the B,,’s are mutually indepen-
dent, the second moment of each coordinate of X,, is =.

Knowing (1.2.8), Markov’s inequality (6.1.12) says that

1 - 1

which allows us to sharpen the preceding argument to give”

1 .
5 < P(JXZM < Qﬁ) = Z ]P"(in = ﬂ)
£]<2y/n

< (4v/n + 1) P(Xy, = 0) < 291 (407 + 1)P(Xy, = 0).

That is, we have now shown that

(1.2.9) P(Xs, = 0) > 2-%(4n¥ + 1)

for the symmetric, nearest neighbor random walk on Z¢. In particular, when
d = 2, this proves that the symmetric, nearest neighbor random walk on Z? is

recurrent.
"For any a, b € [0,00) and p € [1,00), (a + b)P < 2P~ 1(aP 4 bP). This can be seen as
an application of Jensen’s inequality (cf. Exercise 5.6.2), which, in this case, is simply the
statement that z € [0, c0) —— 2P is convex.
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1.2.4. Transience in Z>: Although (1.2.9) was sufficient to prove recurrence
for the symmetric, nearest neighbor random walk in Z*, it only leaves open
the possibility of transience in Z¢ for d > 3. Thus, in order to nail down the
question when d > 3, we will need to see how good an estimate (1.2.9) really
is. In particular, it would suthce to prove that there is an upper bound of the
same form. '

To get an upper bound which complements the lower bound in (1.2.9), we
first do so in the case when d = 1. For this purpose, let 0 < £ < n be given,
and observe that

ED(XQH — 2£) o o

(n!)?
m (n + ¢) '(n — £)! (n:l— E)(n—ljfwl) - (n + 1)

n(n—l)(n—f—l—l)__

Now recall that

(1.2.10) log(l —x) = — i

and therefore that log(l — z) > 32“3 for 0 <z < -%— Hence, the preceding
shows that

P(Xa,, = 20)
P( X2, = 0)

/ - 3¢%
> exXp (—Elog —Trl) > e 2n+D)
n

as long as 0 < £ < 2L, Because P(Xa, = —2f) = P(Xy, = 2¢), we can now
say that
P(X5,, = 0) < e2P(X,, = 2¢) for {4| < +/n.

But, because >, P(Xo, = 2¢) = 1, this means that (2¢/n — 1)P(Xs, = 0) <
3
e?, and so

(1.2.11) P(Xon = 0) <ez(2vn—-1)"", n>1,
when {X,, : n > 0} is the symmetric, nearest neighbor random walk on Z.
If, as they most definitely are not, the coordinates of the symmetric, nearest
neighbor random walk were independent, then (1.2.11) would yield the sort
of upper bound for which we are looking. Thus it is reasonable to examine
to what extent we can relate the symmetric, nearest neighbor random walk
on Z% to d mutually independent symmetric, nearest neighbor random walks
{Ximn:n>0}1<i<d, onZ. To this end, refer to (1.2.1) which p. = 55,
and think of choosing X,, — X,,_1 in two steps: first choose the coordinate
which is to be non-zero and then choose whether it is to be +1 or —1. With
this in mind, let {I,, : n > 0} be a sequence of {1,...,d}-valued, mutually
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independent, uniformly distributed random variables which are independent
of {X;jn: 1 <1< d&n >0} set,forl <i<d, Njgo =0and N,;,, =
Z;zl 1ey(Lm) when n > 1, and consider the sequence {Y, : n > 0} given
by

(1.2.12) Y, = (X1N oo Xd N, )-

Without too much effort, one can check that {Y, : n > 0} satisfies the
conditions in (1.2.1) for the symmetric, nearest neighbor random walk on Z¢
and therefore has the same distribution as {X,, : n > 0}. In particular, by

(1.2.11),

P(X2, =0) = Y P(X;2m, =0& N;on = 2m; for 1 <i < d)

mé&N<
d
— Z (H ':}B(Xi,,Qmi — 0)) E}(Nijgn — Qmi for 1 < 7 < d)
meN? 1=1

miN-Amg >

| d
i Z (H fﬁ(Xi,‘zmT; — O)) P(N»hgn =2m,; for 1 << d)

mENd 1=1
M1 A\ A < %

—d
< e (2\/%— 1) —}—]P(N@-,gn < = for some 1 < ¢ < d).

Thus, we will have proved that there is a constant A(d) < oo such that

a

(1.2.13) P(Xo, = 0) < A(d)n™%, n>1,

once we show that there is a constant B(d) < oo such that

(1.2.14) P(N; 20 < % for some 1 <14 <d) < B(d)n*%j n > 1.

N L e =3 o

In particular, this will complete the proof that

d>3 = Y P(Xs,=0)< oo

n=>0

and therefore that the symmetric, nearest neighbor random walk in 7° is
transient when d > 3.
To prove (1.2.14), first note that

P(Nijgn < Z for some 1 < i < d) < df?(Nl o < %)
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Next, write N1 = )| Zm where Z,, = 1711(I;n), and observe that {Z,, :
m > 1} is a sequence of {0, 1}-valued Bernoulli random variables such that
P(Z,=1) =p= -é%. In particular, for any A € R,

E |exp (/\ZZm)J = (pe)‘ + q)ﬂ:.

L 1

and so

oo s (55}

Since ¥(0) = ¥'(0) = 0, and

— ™M) where Y(A) = log(pe_)‘q + qe)‘p).

where 7, = ez P+9) Taylor’s formula allows us to conclude that

)

Starting from (1.2.15), there are many ways to arrive at (1.2.14). For ex-
ample, for any A > 0 and R > 0, Markov’s inequality (6.1.12) plus (1.2.15)
say that

P (i Lo < NP — nR) = P (e}:p (/\ (np— iZm)) > EHAR)

—_—
< B—ATLR—}—%

e 7

2

T A
<es, AelR.

(1.2.15) E

which, when A = 4n R, gives

(1.2.16) [P (Z L < NP — nR) < e~ MR

1

Returning to the notation used earlier and using the remark with which our
discussion of (1.2.14) began, one see from (1.2.16) that
2

P(Nion < 2 for some 1 <i<d) <de™ &,
which is obviously far more than is required by (1.2.14).

The argument which we have used in this subsection is an example of an
extremely powertul method known as coupling. Loosely speaking, the coupling
method entails writing a random variable about which one wants to know more
(in our case Xo,) as a function of random variables about which one knows
quite a bit (in our case {(X;m,Nim) : 1 <1 < d & m > 0}). Of course,
the power of the method reflects the power of its user: there are lots of ways
in which to couple a random variable to other random variables, but most of

them are useless.
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1.3 Exercises

EXERCISE 1.3.1. Schwarz’s tnequality comes In many forms, the most ele-
mentary of which is the statement that, for any {a, : n € Z} C R and

{b,: neZ} CR,
Z b < /Za,% /Zbi‘
ncZz nes nez

Moreover, when the right hand side is finite, then

Z a, b, — Z a? b?;
nez | nez neZ

if and only if there is an o € R for which either 6,, = aa,,, n € Z, or a,, =
ab,,, n € Z. Here is an outline of one proot of these statements.

(a) Begin by showing that it suffices to treat the case in which a,, =0 = b,
for all but a finite number of n’s.

(b) Given a real, quadratic polynomial P(z) = Az? + 2Bz + C, use the
quadratic formula to see that P > 0 everywhere if and only if C > 0 and
B? < AC. Similarly, show that P > 0 everywhere if and only if C > 0 and
B? < AC.

(¢) Assuming that a,, = 0 = b, for all but a finite number of n’s, set
P(z) =Y. (anx+by)?, and apply (b) to get the desired conclusions. Finally,
use (a) to remove the restriction of the a,,’s and b,,’s.

EXERCISE 1.3.2. Let {Y,, : n > 1} be a sequence of mutually independent,
identically distributed random variables satisfying E!|Y1]] < oco. Set X, =
S _ Yy, forn>1. The Weak Law of Large Numbers says that

X, |
P ( — - EYi) > e) — 0 for all € > 0.
In fact,
X,
(1.3.3) lim E ” EY1]|| =0,

from which the above follows as an application of Markov’s inequality. Here
are steps which lead to (1.3.3).

(a) First reduce to the case when E[Y7] = 0. Next, assume that E[Y}?] < oo,
and show that

r 72 I 2
£ | X” - <K An LYy

(<
|

Hence the result is proved when Y; has a finite second moment.
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(b) Given R > 0,J set YéR) — Yﬂl[ij)(IYnD — lﬂ:[Yﬂ, |Yﬁ| < R] and XT(I,R) —
S Y,V Note that, for any R > 0,

m=1 -
- X X(R) X. — X(R) —I

(=1

:‘Yl!:r IYI' 2 R_ ,

2
x ) . R
< |E ( ) +2E(||Y1], V1|2 R| < — 4+ 21
_ ==

\

and use this, together with the Monotone Convergence Theorem, to complete
the proof of (1.3.3).

EXERCISE 1.3.4. Refer to Exercise 1.3.2. The Strong Law of Large Numbers
says that the statement in the Weak Law can be improved to the statement
that % — [E|Y;| with probability 1. The proof of the Strong Law when
one assumes only that E||Y;|| < oo is a bit tricky. However, if one is willing
to assume that E[Y}}] < oo, then a proof can be based on the same type
argument which leads to the Weak Law.

Let {Y,, }{° be a sequence of mutually independent random variables with
the properties that M = sup,, E :\Ynl"j‘: < o0, and prove that, with probability
1, lim,, oo % 2:121 (Ym — T%[Ym]) = 0. Note that we have not assume yet
that they are identically distributed, but when we add this assumption we get
limy, oo = 9 r_y = E[Y1] with probability 1.

Here is an outline.

(a) Begin by reducing to the case when E[Y,,| =0 for alln € ZT.
(b) After writing

T 4 (f’
E (Z Yk) = Y  EY Y
i

and noting that the only terms which do not vanish are those for which each
index 1s equal to at least one other index, conclude that

T 4 Tt
E (Z Yk) = E[Y}]+6 » E[YZ]E[Y/].
1 k=1

1<k<€<n

Hence, since E[Y?]? < E[Y}}],

=l —rwr

" 4
(*) E (Z Yk) < 3Mn?.
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(c) Starting from (*), show that

n F 1 41
'D El Yk I > e ) < iIE Zl Yk | < SM — ()
on e [: n | J T edn?

for all e > 0. This is the Weak Law of Large Numbers for independent random
variables with bounded fourth moments. Of course, the use of four moments
here is somewhat ridiculous since the argument using only two moments is

easler.
(d) Starting again from (*) and using (6.1.4), show that

P(sup Z; k 26) < ) P ( d Y zne)
1

>

AM <~ 1  4AM
< — Z — < >0 asm — oo for all e > 0.

(e) Use the definition of convergence plus (6.1.4) to show that

P<22Yk7@0>:ﬁp(6 ﬁ U Z?Z%)

N=1m=1n>m"

=1

m==1 1>m

Finally, apply the second line of (6.1.3) plus (d) above to justify

(BB e ()

m=1n>m >

for each N € Z7. Hence, with probability 1, ézﬁf’ Y. » 0, which is the
Strong Law of Large Numbers for independent random variables with bounded
fourth moments.

EXERCISE 1.3.5. Readers who know DeMoivre’s proof of the Central Limit
Theorem will have realized that the estimate in (1.2.11) is a poor man’s sub-
stitute for what one can get as a consequence of Stirling’s formula

Ti
(1.3.6) n! ~ v2rn (E) as n — 00,
e

meaning that the ratio of the quantities on the two sides of “~” tends to 1.
Indeed, given (1.3.6), show that

2
P(Xap, = 0) ~ 4/ —

T

Next, give a proof of (1.3.6) based on the following line of reasoning.
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(a) Let 11, ..., 7, be a mutually independent, unit exponential random vari-
ables,'® and show that for any 0 < R < \/n
. _ vnR+n
1 12 <P (_R < 71T T T —n < R) — ! ! / o=t dt.
It \/ﬁ (‘H o 1) —v/nR+n

(b) Make a change of variables tollowed by elementary manipulations to
show that

where

E,(0)=(n—1)log (1+ i ) —\/ﬁa+a—2.

 (c¢) As an application of the Taylor’s series for log(1+x) (cf. (1.2.10)), show
that E,,(c) — 0 uniformly for |o| < R when n - oo, and combine this with
the results in (a) and (b) to arrive at

__ pitzen R s
lim —— / e~ 2 do <1

and
nttze—m R 1
lim — e 2 doz1— —;.
T OO Tl _R R

o5 2

Because ffﬂm e~ 2 do = +/2m, it is clear that (1.3.6) follows after one lets
R / .

EXERCISE 1.3.7. The argument in §1.2.3 is quite robust. Indeed, let {X,, :
n > 0} be any symmetric random walk on Z? whose jumps have finite second
moment. That is, Xg = 0, {X,, — X,—-1 : n > 1} are mutually independent,
identically distributed, symmetric (X; has the same distribution as —X;), Z*-
valued random variables with finite second moment. Show that {X,, : n > 0}
is recurrent in the sense that P(dn > 1 X,, = 0) = 1.

10 A unit exponential random variable is a random variable T for which P(7 > t) = e~ V0.
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EXERCISE 1.3.8. Let {X,, : n > 0} be a random walk on Z% X, = 0,
{X,, — X,-1: n > 1} are mutually independent, identically distributed, 7.2
valued random variables. Further, for each 1 <1 < d, let (X,,); be the ith
coordinate of X,,, and assume that

mirn “iﬂa((Xl)i{ 7& 0) > 0 but P)(H 7 75 j (Xl)g(Xl)j 7é 0) — (.

1<+<d

If, for some C' < oo and (a,...,qq) € [0,00)? with Z‘f a; > 1, .:iﬁ((Xn)i —
0) < Cn~%,n > 1, show that {X,, : n > 0} is transient in the sense that
P(dn>1X,=0)<1.

FEXERCISE 1.3.9. Let {X, : n > 0} be a random walk on Z%, as in the
preceding. Given k € 74, set

Tx = Y 1pg(X,) and G =inf{n >0: X, = k}.

ri=={)

Show that

(1.3.10) ElTx] = P((k < o0)E|[Ty] =

P(po = o)

where pg = inf{n > 1: X,, = 0} is the time of first return to 0. In particular,
if {X,, : n > 0} is transient in the sense described in the preceding exercise,
show that

Z 1B(T)(Xn)£ < oo forall r € (0, 00),

L o

where B(r) = {k : |k| < r}; and from this conclude that |X,,| — o0 with
probability 1. On the other hand, if {X,, : n > 0} is recurrent, show that
X, = 0 infinitely often with probability 1. Hence, either {X,, : n > 0} is
recurrent and X,, = 0 infinitely often with probability 1 or it is transient and
X,,| — oo with probability 1

EXERCISE 1.3.11. Take d = 1 in the preceding, Xg = 0, and {X,, — X,,_

n > 1} to be mutu&ﬂy independent, identically distributed random varlables
for which 0 < E{|X;]| < oo and E[X;] = 0. By a slight variation on the
argument given in §1.2.1, we will show here that this random walk is recurrent

but that

L -

lim X, =oo and lim X, = —oo with probability 1.

—
T —> 00 11— 0

(a) First show that it suffices to prove that sup,, X,, = oo and that inf,, X, =
—00. Next, use the Weak Law of Large Numbers (cf. Exercise 1.3.2) to show
that

El|X
lim max | -fﬂ- — (.
n—o0 1<m<n T
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(b) For n > 1, set Tém = Zi_:ln L1 (Xop), show that E Tén) < E :TU(”):
for all k € Z, and use this to arrive at
n

e ORI L _ .
(4p(n) + YE|T| > ; where u(n) = Ugﬂgﬁ_rEHXm”'

Finally, apply part (a) to conclude that E{13| = oco. Hence, by (1.3.10),
P(pg < o0) =1, and so {X,, : n > 0} is recurrent.

(c) To complete the program, proceed as in the derivation of (1.2.2) to pass
from (b) to

(*) P(p[(}m) < oo) =1 forallm >1,

where ,o{(]m) is the time of the mth return to 0. Next, for r € ZT, set n, =
inf{n > 0 : X,, > r}, show that ¢ = P(n; > pg) < 1, and conclude that

P(m > p{(}m)) < €™. Now, combine this with (*) to get P(m < o0) = 1.
Finally, argue that

[V

P(’OTH < oo) "-"”(nr < oo)f?“(m < oo)

and therefore that IF’(m < oo) = 1 for all » > 1. Since this means that, with
probability 1, sup,, X,, > r for all r > 1, it follows that sup,, X,, = oo with
probability 1. To prove that inf,, X,, = —oo with probability 1, simply replace
{X,:n>0}by{-X,: n>0}.

EXERCISE 1.3.12. ! Here is an interesting application of one dimensional
random walks to elementary queuing theory. Queuing theory deals with the
distribution of the number of people waiting to be served (i.e., the length
of the queue) when, during each time interval, the number of people who
arrive and the number of people who are served are random. The queuing
model which we will consider here is among the simplest. Namely, we will
assume that, during the time interval [n — 1,n), the number of people who
arrive minus the number who can be served is given by a Z-valued random
variable B,,. Further, we assume that the B, ’s are mutually independent
and identically distributed random variables satisfying 0 < [E[|B;|| < co. The
associated queue is, apart from the fact that there are never a negative number
of people waiting, the random walk {X,, : n > 0} determined by the B,’s:
Xog=0 and X, = 221:1 B,,. To take into account the prohibition against
having a queue of negative length, the queuing model {Q,, : n > 0} is given
by the prescription

Q[] = ( a]fld Qﬂ, — (Qn—l + Bn)+ for n Z i.
(a) Show that

— X, — min X,, = max (X, — X
Qn n 0<m<n m Ugmin( n m)a

and conclude that, for each n > 0, the distribution of (),, is the same as that
of Mn — INAXp<m<n Xm-

11 So far as I know, this example was invented by Wm. Feller.
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(b) Set My, = lim,, oo M, € NU{o0}, and, as a consequence of (a), arrive
at

lim P(Qn =j) =P(My =j) forjeN

TE— OO0

(c) Set u = E|[B;]. The Weak Law of Large Numbers says that, for each
e > 0, P(|X,, — nu| > ne) — 0 as n — oo. In particular, when p > 0, show
that P(My, = o0) == 1. When g = 0, use Exercise 1.3.11 to reach the same
conclusion. Hence, when E[B;| > 0, P(Q, = j) — 0 for all ; € N. That
is, when the expected number of arrivals is a least as large of the expected
number of people served, then, with probability<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>