§3 Laplace transform 

 

    Laplace transform of [ Laplace transform and its inversion formula ] 

               ( s is a complex number, s = )

    Inversion formula of Laplace transform

                 

The integral is taken along any straight line Res= , which is the growth index, and at the same time, the integral is understood in the sense of the principal value .

    [ Conditions for the existence of Laplace transform ]   If the following three conditions are satisfied, then its Laplace transform exists .

(i)          The complex-valued function sum of real variables is continuous except for the discontinuous points of the first type (there are at most a finite number in any finite interval);

(ii)        when t < 0 , =0;

(iii)      is of finite order, that is to say it is possible to find constants and A > 0 such that

                            

The number here is called the growth index, and when it is a bounded function, it can take =0.

    If the above three conditions are satisfied, then L ( s ) is an analytic function on the half-plane Res> . The inversion formula holds at the continuous points of .

[ Properties of Laplace Transform ]

            ( a is a constant )

               ( a , b are constants )

        

in the formula

              

is called the convolution (or convolution) of the function and g ( t ) .

 

[ Main formula table of Laplace transform]

 

        original function     

  Laplace transformed function

           

   

 

         ( the nth derivative)

 

     ( n -fold integration)

 

 

 

 

  f ( n ) ( t )         

   

 

 

 

 

        original function     

  Laplace transformed function

           

 

         

  ( ) m s n L ( m ) ( s )

 

 

    ( n -fold integration)

 

 

 

 

 

  f ( t 2 )

 

  t v- 1 f ( t )             (Re v > )

 

 

 

 

   L (ln s )

        

 

 

 

 

 

[Laplace transformation table]

              

          

 

 

 

Laplace Transformation Table I

 

(It is convenient to use this table to find the Laplace transform of a known function)

f ( t )

L ( s )

1

               ( c > 0 )

e cs

1

t

t n             

            

t v                ( Rev > )

        ( a > 0 )

   

     

               ( a > 0 )

           ( a > 0 )

            ( a > 0 )

            ( > 0 )

( a > 0)

( 2 t + t 2 ) v ( a >0, Rev > )     

 

                        

             ( a > 0 )

           ( a > 0 )

             ( a > 0 )

            ( a > 0 )

          ( a > 0 )

           ( a > 0 )

           ( a > 0 )

             ( a > 0 )

             ( a > 0 )

e a t

        

te a t

      

t n e a t         

     

t v e a t (             Rev > )

     

      

            ( a > 0 )

               ( a > 0 )

 

              ( a > 0 )

  

             ( a > 0 )

              

               ( a > 0 )

               ( a > 0 )

         

         

               ( a > 0 )

               ( a > 0 )

 

                           

        

  

                           

          (Rev > -1)

          ( Rev > )

                  

              

         

         

  

  

 

           

         

       ( a > 0 )

       ( a > 0 )

  

       ( a > 0 )

       ( a > 0 )

 

 

            

            

           

 

 

 

 

 

 

 

 

ln t

         ( for Euler's constant)

    

      

erf ( a t )       ( a >0 )

      ( a > 0 )

 

     ( a > 0 )

      ( a > 0 )

     ( a > 0 )

      ( Rev > -1 )

        

      (Rev > 0)

        

    ( Rev > -2 )

   ( Rev > -1 )

       ( Rev > -1 )

              

 ( Rev > -1 )

   

 

Laplace Transformation Table II

 

(The Laplace transform of a known function is convenient to use this table to check its original function)

L ( s )

f ( t )

   

   

      ( varies)

 

      

 

 

 

  

 

    

    

   

    

  

  

      

     

         

      

  

 

 

  ( )

 

    [ Double Laplace transform and its inversion formula ]

    The double Laplace transform of the function f ( x,y ) is

    The inversion formula of the double Laplace transform is:

Among them .

 

Original text