# Hermite(n,x) polynomials;
# Hermite(n) number;
#hermite(0):=	1;	
#hermite(1):=	0;	
#hermite(n_,x_):=if(n>0, expand(2x*hermite(n-1,x)-2*(n-1)*hermite(n-2,x)), if(n< -1, exp(x^2/2)*expand(2x*hermite(-n-2,x)+2*(-n-2)*hermite(-n-3,x)) ));
#hermite(2,x_):=	4x^2-2;	
#hermite(3,x_):=	8x^3-12x;	
#hermite(4,x_):=	16x^4-48x^2+12;	
#hermite(5,x_):=	32x^5-160x^3+120x;	
#hermite(6,x_):=	64x^6-480x^4+720x^2-120;	
#hermite(7,x_):=	128x^7-1344x^5+3360x^3-1680x;	
#hermite(8,x_):=	256x^8-3584x^6+13440x^4-13440x^2+1680;	
#hermite(9,x_):=	512x^9-9216x^7+48384x^5-80640x^3+30240x;	
#hermite(10,x_):=1024x^(10)-23040x^8+161280x^6-403200x^4+302400x^2-30240;



#hermite(n_,x_):=if(n>0, expand(2x*hermite(n-1,x)-2*(n-1)*hermite(n-2,x)), if(n<0, expand(2x*hermite(n+1,x)-2*(n+1)*hermite(n+2,x)) ));

hermite(-1,x_):=sqrt(pi)/2*exp(x^2)*erfc(x);
hermite(0,x_):=1;
hermite(1,x_):=	2x;	

hermite(n_):=if(isodd(n),0, hermite(n,0) );