Fractional Calculus Computer Algebra System, Electrochemistry Software, Massage DrHuang.com | list | science | math | physics | chemistry | computer | medicine | help | ? | 中文
+ + + =


Complex Function 复变函数

Content

  1. List of Functions 函数目录
  2. Complex function in different domain or plane
  3. Basic Function 初等复变函数
  4. circular function
  5. Special Function 特殊函数
  6. gamma Functions 伽马函数
  7. zeta Functions
  8. Reference

Function Search

  • Search function with ? in the input box, e.g.

  • search function in wiki. e.g.
  • serach function in Digital Library of Mathematical Functions NIST, e.g.
    erf

    List of Math function and operations 函数目录

    function reference

    Complex function in different domain or plane

    Real domain

  • plot with complex2D( x ) in real domain for 2 curves of real and imag parts

    Complex domain

  • WebXR Surface 2D in complex domain and plane
  • complexplot( z ) in complex domain and plane
  • plot with complex3D( x ) in 3D space on complex plane
    Hyperlinks lead to plots in two dimensions of the real and imaginary parts of functions on the real and imaginary axes, as well as visualizations in three dimensions of the real and imaginary parts and their absolute value on the complex plane. The 3D graph can be zoom and rotated with mouse wheel.

    Notice that Microsoft Internet Explorer IE did not support svg, so IE cannot show these graph, please use other browrer.

    Real Function 实函数

    1. abs(x,y) = hypo(x, y) = sqrt(x*x+y*y) — absolute value of real number
    2. surd( x, n ) — real-valued root of a real number, n must be integer
    3. nthRoot(x,n) — real-valued root of a real number

      Basic Function 初等复变函数

      Basic Functions 基本初等函数

    4. abs( x ) — absolute value of a real or complex number
    5. arg( x ) — argument of a real or complex number
    6. arg( x, y ) = arg(complex(x,y)) = atant2(y,x) — argument of a real or complex number
    7. pow( x, y ) — power of a real or complex number to a real or complex exponent
    8. root( x, y ) — root of a real or complex number with real or complex degree
    9. sqrt( x ) — square root of a real or complex number
    10. cbrt( x ) — cubic root of a real or complex number
    11. exp( x ) — exponential of a real or complex number
    12. exp(x)*x = =inverseW(x) = inverseLambertW( x ) — inverse of the Lambert W-function of a real number,or complex number

      Logarithmic Functions 对数函数

    13. ln(x) = log( x ) — natural logarithm of a real or complex number, inverse of exp(x)
    14. ln(n,x) = ln(n)(x) — the nth derivative of ln(x)
    15. log( x ) = ln(x) — natural logarithm of a real or complex number
    16. log( x ,base) = logb(x) — logarithm of a real or complex number to a real or complex base
    17. log10( x ) = log10(x) — the 10-base logarithm of a real or complex number
    18. W(x) = lambertW( x ) — principal branch of the Lambert W-function of a real number or complex number
    19. W(n,x) = lambertW( k, x ) — branch of integer index k of the Lambert W function of a real or complex number

      Circular Functions 三角函数

    20. sin( x ) — sine of a real or complex number
    21. cos( x ) — cosine of a real or complex number
    22. tan( x ) — tangent of a real or complex number
    23. cot( x ) — cotangent of a real or complex number
    24. sec( x ) — secant of a real or complex number
    25. csc( x ) — cosecant of a real or complex number
    26. inverse function

    27. asin(x) = arcsin( x ) — inverse sine of a real or complex number
    28. acos(x) = arccos( x ) — inverse cosine of a real or complex number
    29. atan(x) = arctan( x ) — inverse tangent of a real or complex number
    30. acot(x) = arccot( x ) — inverse cotangent of a real or complex number
    31. asec(x) = arcsec( x ) — inverse secant of a real or complex number
    32. acsc(x) = arccsc( x ) — inverse cosecant of a real or complex number
    33. atan2(y,x) — inverse tangent of real number

    34. Hyperbolic Functions 双曲函数

    35. sinh( x ) — hyperbolic sine of a real or complex number
    36. cosh( x ) — hyperbolic cosine of a real or complex number
    37. tanh( x ) — hyperbolic tangent of a real or complex number
    38. coth( x ) — hyperbolic cotangent of a real or complex number
    39. sech( x ) — hyperbolic secant of a real or complex number
    40. csch( x ) — hyperbolic cosecant of a real or complex number
    41. inverse function

    42. asinh(x) = arcsinh( x ) — inverse hyperbolic sine of a real or complex number
    43. acosh(x) = arccosh( x ) — inverse hyperbolic cosine of a real or complex number
    44. atanh(x) = arctanh( x ) — inverse hyperbolic tangent of a real or complex number
    45. acoth(x) = arccoth( x ) — inverse hyperbolic cotangent of a real or complex number
    46. asech(x) = arcsech( x ) — inverse secant of a real or complex number
    47. acsch(x) = arccsch( x ) — inverse hyperbolic cosecant of a real or complex number

    48. Trigonometric Functions

    49. sinc( x ) = sin(x)/x — cardinal sine of a real or complex number
    50. sinc(x,y) = sinc( abs(x,y) )
    51. gudermannian( x ) = arctan( sinh(x) ) — Gudermannian function of a real or complex number,
    52. haversine( x ) = sin(x/2)^2 -— haversine of a real or complex number

      inverse function

    53. inverseGudermannian( x ) = arctanh( sin(x) ) — inverse Gudermannian function of a real or complex number,
    54. inverseHaversine( x ) = inverse( haversine(x) ) = 2asin(sqrt(x)) —- inverse haversine of a real or complex number

      Special Function 特殊函数

      math handbook chapter 12 special function

      Bessel Functions 贝塞耳函数

    55. besselJ( n, x ) — Bessel function of the first kind of real or complex order n of a real or complex number
    56. besselJZero( n, m )mth zero of the Bessel function of the first kind of positive order n
    57. besselJZero( n, m, true )mth zero of the first derivative of the Bessel function of the first kind of positive order n
    58. besselY( n, x ) — Bessel function of the second kind of real or complex order n of a real or complex number
    59. besselYZero( n, m )mth zero of the Bessel function of the second kind of positive order n
    60. besselYZero( n, m, true )mth zero of the first derivative of the Bessel function of the second kind of positive order n
    61. besselI( n, x ) — modified Bessel function of the first kind of real or complex order n of a real or complex number
    62. besselK( n, x ) — modified Bessel function of the second kind of real or complex order n of a real or complex number
    63. hankel1( n, x ) — Hankel function of the first kind of real or complex order n of a real or complex number
    64. hankel2( n, x ) — Hankel function of the second kind of real or complex order n of a real or complex number

    65. Bessel-Type Functions

    66. Ai(x) = airyAi( x ) — Airy function of the first kind of a real or complex number
    67. AiPrime(x) = airyAiPrime( x ) — derivative of the Airy function of the first kind of a real or complex number
    68. Bi(x) = airyBi( x ) — Airy function of the second kind of a real or complex number
    69. BiPrime(x) = airyBiPrime( x ) — derivative of the Airy function of the second kind of a real or complex number
    70. sphericalBesselJ( n, x ) — spherical Bessel function of the first kind of real or complex order n of a real or complex number
    71. sphericalBesselY( n, x ) — spherical Bessel function of the second kind of real or complex order n of a real or complex number
    72. sphericalHankel1( n, x ) — spherical Hankel function of the first kind of real or complex order n of a real or complex number
    73. sphericalHankel2( n, x ) — spherical Hankel function of the second kind of real or complex order n of a real or complex number
    74. struveH( n, x ) — Struve function of real or complex order n of a real or complex number
    75. struveL( n, x ) — modified Struve function of real or complex order n of a real or complex number

    76. Orthogonal Polynomials 正交多项式

      Polynomial function
    77. hermite( n, x ) — Hermite polynomial of real or complex index n of a real or complex number
    78. laguerre( n, x ) — Laguerre polynomial of real or complex index n of a real or complex number
    79. laguerre( n, a, x ) — associated Laguerre polynomial of real or complex index n and real or complex argument a of a real or complex number
    80. legendreP( l, x ) — Legendre polynomial of real or complex index l of a real or complex number
    81. legendreP( l, m, x ) — associated Legendre polynomial of real or complex indices l and m of a real or complex number
    82. legendreQ( l, x ) — Legendre function of the second kind of real or complex index l of a real or complex number
    83. legendreQ( l, m, x ) — associated Legendre function of the second kind of real or complex indices l and m of a real or complex number
    84. chebyshevT( n, x ) — Chebyshev polynomial of the first kind of real or complex index n of a real or complex number
    85. chebyshevU( n, x ) — Chebyshev polynomial of the second kind of real or complex index n of a real or complex number
    86. sphericalHarmonic( l, m, θ, φ ) — spherical harmonic of integer indices l and m and real numbers. Returns a complex number even if the result is purely real.

    87. Elliptic Integrals 椭圆积分

    88. ellipticF( x, m ) — incomplete elliptic integral of the first kind of a real or complex number with real or complex elliptic parameter m
    89. ellipticF( m ) — complete elliptic integral of the first kind of a real or complex elliptic parameter m
    90. ellipticK( m ) — complete elliptic integral of the first kind of a real or complex elliptic parameter m
    91. ellipticE( x, m ) — incomplete elliptic integral of the second kind of a real or complex number with real or complex elliptic parameter m
    92. ellipticE( m ) — complete elliptic integral of the second kind of a real or complex elliptic parameter m
    93. ellipticPi( n, x, m ) — incomplete elliptic integral of the third kind of a real or complex number with real or complex characteristic n and elliptic parameter m
    94. ellipticPi( n, m ) — complete elliptic integral of the third kind of a real or complex elliptic characteristic n and parameter m
    95. jacobiZeta( x, m ) — Jacobi zeta function of a real or complex number with real or complex elliptic parameter m, with the first argument of the same type as for elliptic integrals
    96. carlsonRC( x, y ) — degenerate Carlson symmetric elliptic integral of the first kind of real or complex numbers
    97. carlsonRD( x, y, z ) — degenerate Carlson symmetric elliptic integral of the third kind, or Carlson elliptic integral of the second kind, of real or complex numbers
    98. carlsonRF( x, y, z ) — Carlson symmetric elliptic integral of the first kind of real or complex numbers
    99. carlsonRG( x, y, z ) — Carlson completely symmetric elliptic integral of the second kind of real or complex numbers
    100. carlsonRJ( x, y, z, w ) — Carlson symmetric elliptic integral of the third kind of real or complex numbers

    101. Elliptic Functions 椭圆函数

    102. jacobiTheta( n, x, q ) — Jacobi theta function n of a real or complex number with real or complex nome q
    103. ellipticNome( m ) — elliptic nome q of a real or complex elliptic parameter m
    104. am( x, m ) — Jacobi amplitude of a real or complex number with real or complex elliptic parameter m
    105. sn( x, m ) — Jacobi elliptic sine of a real or complex number with real or complex elliptic parameter m
    106. cn( x, m ) — Jacobi elliptic cosine of a real or complex number with real or complex elliptic parameter m
    107. dn( x, m ) — Jacobi delta amplitude of a real or complex number with real or complex elliptic parameter m
    108. weierstrass(x)
    109. weierstrassRoots( g2, g3 ) — Weierstrass roots e1, e2 and e3 for real or complex invariants. Returned as an array.
    110. weierstrassHalfPeriods( g2, g3 ) — Weierstrass half periods w1 and w3 for real or complex invariants. Returned as an array. Consistent with evaluation of Weierstrass elliptic function in terms of Jacobi elliptic sine.
    111. weierstrassInvariants( w1, w3 ) — Weierstrass invariants g2 and g3 for real or complex half periods. Returned as an array.
    112. weierstrassP( x, g2, g3 ) — Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.
    113. weierstrassPPrime( x, g2, g3 ) — derivative of the Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.
    114. inverseWeierstrassP( x, g2, g3 ) — inverse Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.
    115. kleinJ( x ) — Klein j-invariant of a complex number

    116. Hypergeometric Functions 超几何函数

    117. hypergeometric0F1( a, x ) — confluent hypergeometric function of a real or complex parameter a of a real or complex number
    118. hypergeometric1F1( a, b, x ) — confluent hypergeometric function of the first kind of real or complex parameters a and b of a real or complex number
    119. hypergeometricU( a, b, x ) — confluent hypergeometric function of the second kind of real or complex parameters a and b of a real or complex number
    120. whittakerM( k, m, x ) — Whittaker function of the first kind of real or complex parameters k and m of a real or complex number
    121. whittakerW( k, m, x ) — Whittaker function of the second kind of real or complex parameters k and m of a real or complex number
    122. hypergeometric2F1( a, b, c, x ) — Gauss hypergeometric function of real or complex parameters a, b and c of a real or complex number
    123. hypergeometric1F2( a, b, c, x ) — hypergeometric function of real or complex parameters a, b and c of a real or complex number
    124. hypergeometricPFQ( A, B, x ) — generalized hypergeometric function of arrays of real or complex parameters A and B of a real or complex number

    125. Gamma Functions 伽马函数

    126. beta( x, y ) — beta function of real or complex numbers
    127. beta( x, y, z ) — incomplete beta function Bx(y,z) of real or complex numbers, where x = 1 replicates the beta function
    128. beta( x, y, z, w ) — generalized incomplete beta function By(z,w) − Bx(z,w) of real or complex numbers
    129. betaRegularized( x, y, z ) — regularized incomplete beta function Ix(y,z) of real or complex numbers
    130. betaRegularized( x, y, z, w ) — generalized regularized incomplete beta function Iy(z,w) − Ix(z,w) of real or complex numbers

    131. factorial( n ) — factorial of a real or complex number
    132. factorial2( n ) — double factorial of a real or complex number
    133. binomial( n, m ) — binomial coefficient of real or complex numbers
    134. multinomial( n1, n2, … ) — multinomial coefficient of real or complex numbers
    135. pochhammer( x, n ) — Pochhammer symbol of real or complex numbers

    136. gamma( x ) — gamma function of a real or complex number
    137. gamma( x, y ) — upper incomplete gamma function Γ(x,y) of real or complex numbers
    138. gamma( x, 0, y ) — lower incomplete gamma function γ(x,y) of real or complex numbers
    139. gamma( x, y, z ) — generalized incomplete gamma function γ(x,z) − γ(x,y) of real or complex numbers
    140. GammaQ(x, y) = gammaRegularized( x, y ) — regularized upper incomplete gamma function Q(x,y) of real or complex numbers
    141. GammaQ(x,y,z) = gammaRegularized( x, y, z ) — generalized regularized incomplete gamma function Q(x,z) − Q(x,y) of real or complex numbers

    142. logGamma( x ) — logarithm of the gamma function of a real or complex number
    143. psi(x) = polygamma(x) = digamma( x ) = d/dx logGamma(x) — digamma function of a real or complex number
    144. psi(n,x) = polygamma(n,x) — polygamma function of positive integer order of a real or complex number

    145. Gamma-Type Functions

    146. erf( x ) — error function of a real or complex number
    147. erfc( x ) = 1-erf(x) — complementary error function of a real or complex number,
    148. erfi( x ) — imaginary error function of a real or complex number
    149. fresnelS( x ) — Fresnel sine integral of a real or complex number
    150. fresnelC( x ) — Fresnel cosine integral of a real or complex number
    151. Ei(x) = expIntegral( x ) — exponential integral of a real or complex number
    152. En(n,x) = expIntegralE( n, x ) — generalized exponential integral of a real or complex order n of a real or complex number
    153. li(x) = logIntegral( x ) — logarithmic integral of a real or complex number
    154. si(x) = sinIntegral( x ) — sine integral of a real or complex number
    155. ci(x) = cosIntegral( x ) — cosine integral of a real or complex number
    156. shi(x) = sinhIntegral( x ) — hyperbolic sine integral of a real or complex number
    157. chi(x) = coshIntegral( x ) — hyperbolic cosine integral of a real or complex number
    158. Dawson(x) = erfi(x)*exp(-x*x)*sqrt(pi)/2, Dawson plus, it is the particular solution to the differential equation y'+2x*y=1
    159. Dawsonm(x) = erf(x)*exp(x*x)*sqrt(pi)/2, Dawson minus, it is the particular solution to the differential equation y'-2x*y=1

      Zeta Functions

    160. zeta( x ) — Riemann zeta of a real or complex number
    161. zeta(z,a) = hurwitzZeta( x, a ) — Hurwitz zeta function of a real or complex number with real or complex parameter a
    162. eta(x) = dirichletEta( x ) — Dirichlet eta of a real or complex number
    163. bernoulli( n ) — Bernoulli number for index n
    164. bernoulli( n,x ) — Bernoulli polynomial for index n of a real or complex number
    165. H(x) = harmonic( n ) — harmonic number for index n
    166. harmonic( n,x ) — harmonic number for index n from 1 to x
    167. harmonic( n,a,x ) — harmonic number for index n from a to x
    168. polylog( n,x ) — polylogarithm function of real or complex order n of a real or complex number
    169. polylog( n,b,x ) — polylogarithm function of real or complex order n of a real or complex number

      Miscellaneous Functions

    170. chop( x ) — set real and complex parts smaller than 10−10 to zero
    171. chop( x, tolerance ) — set real and complex parts smaller than tolerance to zero
    172. round( x ) — closest integer to a real or complex number
    173. round( x, y ) — closest integer multiple of y to a real or complex number
    174. ceiling( x ) — closest integer greater than a real or complex number
    175. floor( x ) — closest integer less than a real or complex number
    176. sgn(x) = sign( x ) — signum function of a real or complex number
    177. integerPart( x ) — integer part of a real or complex number
    178. fractionalPart( x ) — fractional part of a real or complex number
    179. random( ) — random real number between zero and one
    180. random( x ) — random real or complex number between zero and x
    181. random( x, y ) — random real or complex number between x and y
    182. kronecker( i, j ) — Kronecker delta δij for real or complex arguments
    183. kronecker( i, j, k, … ) — Kronecker delta δijk… for an arbitrary number of real or complex arguments
    184. piecewise( [ function, [begin,end] ], … ) — piecewise expression defined on an arbitrary number of subdomains returned as a function

    References

    1. complex - complex function - complex math
    2. math handbook chapter 10 complex function
    3. complex animate(z) for phase animation, the independent variable must be z.
    4. complex plot(z) for phase and/or modulus, the independent variable must be z.
    5. complex2D(x) for complex 2 curves of real and imag parts, the independent variable must be x.
    6. complex3D(x) for 3 dimensional graph, the independent variable must be x.
    7. color WebXR surface of complex function on complex plane
    8. Riemann surface - Complex Branches - complex coloring
    9. 2D surface - 3D surface
    
    See Also